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Abstract. Marine-produced short-lived trace gases such as

dibromomethane (CH2Br2), bromoform (CHBr3), methylio-

dide (CH3I) and dimethyl sulfide (DMS) significantly im-

pact tropospheric and stratospheric chemistry. Describing

their marine emissions in atmospheric chemistry models as

accurately as possible is necessary to quantify their im-

pact on ozone depletion and Earth’s radiative budget. So

far, marine emissions of trace gases have mainly been pre-

scribed from emission climatologies, thus lacking the inter-

action between the actual state of the atmosphere and the

ocean. Here we present simulations with the chemistry cli-

mate model EMAC (ECHAM5/MESSy Atmospheric Chem-

istry) with online calculation of emissions based on surface

water concentrations, in contrast to directly prescribed emis-

sions. Considering the actual state of the model atmosphere

results in a concentration gradient consistent with model real-

time conditions at the ocean surface and in the atmosphere,

which determine the direction and magnitude of the com-

puted flux. This method has a number of conceptual and

practical benefits, as the modelled emission can respond con-

sistently to changes in sea surface temperature, surface wind

speed, sea ice cover and especially atmospheric mixing ra-

tio. This online calculation could enhance, dampen or even

invert the fluxes (i.e. deposition instead of emissions) of very

short-lived substances (VSLS). We show that differences be-

tween prescribing emissions and prescribing concentrations

(−28 % for CH2Br2 to+11 % for CHBr3) result mainly from

consideration of the actual, time-varying state of the atmo-

sphere. The absolute magnitude of the differences depends

mainly on the surface ocean saturation of each particular gas.

Comparison to observations from aircraft, ships and ground

stations reveals that computing the air–sea flux interactively

leads in most of the cases to more accurate atmospheric mix-

ing ratios in the model compared to the computation from

prescribed emissions. Calculating emissions online also en-

ables effective testing of different air–sea transfer velocity

(k) parameterizations, which was performed here for eight

different parameterizations. The testing of these different k

values is of special interest for DMS, as recently published

parameterizations derived by direct flux measurements using

eddy covariance measurements suggest decreasing k values

at high wind speeds or a linear relationship with wind speed.
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Implementing these parameterizations reduces discrepancies

in modelled DMS atmospheric mixing ratios and observa-

tions by a factor of 1.5 compared to parameterizations with a

quadratic or cubic relationship to wind speed.

1 Introduction

The oceans emit large amounts of halogen- (Penkett et al.,

1985; Quack and Wallace, 2003) and sulfur-containing sub-

stances (Bates et al., 1992; Watts, 2000) that influence atmo-

spheric chemistry. Organic bromine and iodine in the atmo-

sphere is largely supplied by oceanic emissions of very short-

lived substances (VSLS) such as dibromomethane (CH2Br2),

bromoform (CHBr3) and methyliodide (CH3I) (Lovelock

and Maggs, 1973; Hossaini et al., 2013). Also, a large frac-

tion of the atmospheric sulfur loading is due to oceanic

emissions of OCS, CS2, H2S and dimethyl sulfide (DMS;

CH3SCH3), the latter being the major compound transport-

ing sulfur from the ocean to the atmosphere (Watts, 2000;

Sheng et al., 2015). Thus, we focus on DMS in this study.

Assessing marine emissions of VSLS is crucial, as they

significantly influence Earth’s atmosphere in both the tro-

posphere and the stratosphere. In the troposphere, bromine-

containing VSLS such as CHBr3 and CH2Br2 contribute

to ozone destruction and alter the oxidative capacity (von

Glasow et al., 2004; Salawitch, 2006). Oceanic CH3I is the

main organic iodine compound in the atmosphere (Lovelock

and Maggs, 1973) and impacts tropospheric oxidative ca-

pacity and ozone destruction (Chameides and Davis, 1980;

Saiz-Lopez et al., 2012). Iodine oxides, which can be prod-

uct gases of CH3I are likely to contribute to nucleation and

growth of secondary marine aerosol production (O’Dowd

and De Leeuw, 2007). DMS emitted to the troposphere is

a precursor of secondary organic aerosol and potentially

cloud condensation nuclei and thus influences the radiative

budget (Charlson et al., 1987). Halogenated VSLS also en-

hance stratospheric ozone depletion (Sinnhuber and Meul,

2015) and thus contribute to the ozone-driven radiative forc-

ing of climate (Hossaini et al., 2015). Despite the short life-

time of CH3I (4–7 days) compared to the bromocarbons (6–

120 days), there is potential for a small fraction of marine-

produced CH3I to be transported to the stratosphere where

it also contributes to ozone depletion (Tegtmeier et al., 2013;

Solomon et al., 1994). DMS has a shorter lifetime of 11 min–

46 h (Barnes et al., 2006; Osthoff et al., 2009) compared

to CH3I. Despite the short lifetime, there is potential even

for the very short-lived DMS to be transported to the trop-

ical tropopause layer (TTL) in convective hot spot regions

(Marandino et al., 2013a, b).

The impact of marine VSLS emissions on atmospheric

chemistry has been studied in chemistry–climate and trans-

port models (e.g. Salawitch et al., 2005; Kerkweg et al.,

2006b; Sinnhuber et al., 2009; Liang et al., 2010; Ordóñez

et al., 2012). Therein, marine emissions of the VSLS have

mainly been based on prescribed boundary layer mixing ra-

tios (Aschmann et al., 2009) or emission scenarios (Warwick

et al., 2006; Liang et al., 2010; Ordóñez et al., 2012; Hossaini

et al., 2013). However, prescribing emissions in atmospheric

models lacks the impact of the atmospheric boundary layer

mixing ratio on the concentration gradient. This concentra-

tion gradient at the interface between ocean and atmosphere

directly influences the emissions, as it determines the direc-

tion and magnitude of the flux. The lack of potential feed-

backs can result in a modelled atmospheric surface concen-

tration inconsistent with the oceanic surface concentration.

Here, we evaluate a conceptually different way of consid-

ering marine emissions in chemical climate models that is

based on a consistent concentration gradient between ocean

and atmosphere. In contrast to previous approaches of ei-

ther specifying atmospheric surface mixing ratios or speci-

fying sea-to-air fluxes, water concentrations are prescribed

and emissions are calculated online. Thus, the concentra-

tion gradient at the interface and the emissions are consis-

tent with the atmospheric boundary layer and the ocean sur-

face, and the emissions can respond to the actual state of

the atmosphere. The approach is applied to established con-

centration climatologies of short-lived halocarbons (CH2Br2,

CHBr3, CH3I) and sulfur compounds (DMS) that share com-

mon characteristics such as supersaturation in the surface

ocean and marine production. For the halocarbons, this set-

up is applied for the first time and uses surface ocean con-

centration climatologies derived from observations by Ziska

et al. (2013). Oceanic DMS emissions have been evaluated

in coupled ocean–atmosphere models (Kloster et al., 2006;

Cameron-Smith et al., 2011) or modelled online during a test

for the implementation of different submodels (Kerkweg et

al., 2006b). In our study, the focus lies on how to consider

oceanic emissions in a stand-alone atmospheric model, and

uses the most updated DMS concentrations available (Lana

et al., 2011). Additionally, we compare the output of the two

methods with observations from aircraft and ship campaigns.

Prescribing water concentrations and calculating emis-

sions online enables convenient testing of different air–sea

gas exchange parameterizations. Air–sea gas exchange is cal-

culated as the product of the concentration gradient between

air and water at the surface and the transfer velocity. The lat-

ter needs to be parameterized, and many different parameteri-

zations have been published (see e.g. Wanninkhof et al., 2009

for a summary). Most parameterizations relate the transfer

velocity to wind speed (e.g. Liss and Merlivat, 1986; Wan-

ninkhof and McGillis, 1999; Nightingale et al., 2000; Ho et

al., 2006), but others take the effect of bubble-mediated trans-

fer (Asher and Wanninkhof, 1998) or enhancement by rain

(Ho et al., 1997, 2004) into account. Testing a variety of dif-

ferent parameterizations on prescribed water concentrations

to calculate atmospheric abundances provides information on

the uncertainties of global emission estimates.

The experimental set-up consists of two steps. First, we

prescribed surface water concentrations in the chemistry cli-
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mate model EMAC (ECHAM5/MESSy Atmospheric Chem-

istry) (Jöckel et al., 2006, 2010) and air–sea exchange of

VSLS was then calculated online by the submodel AIRSEA

(Pozzer et al., 2006). The model results are then evaluated

and compared to a simulation where the difference results

from prescribed VSLS emissions (PE). To compare the sim-

ulation set-up with prescribed emissions to the set-up with

prescribed water concentrations, we used the same concen-

tration climatologies that were used to create the emission

climatologies. In our study, these concentration and corre-

sponding emission climatologies were published by Ziska

et al. (2013) for the halocarbons and Lana et al. (2011) for

DMS. The modelled atmospheric mixing ratios of the gases

are compared to measurements from time series of ground-

based stations, ship and aircraft campaigns in order to iden-

tify whether the online calculation is simulating the atmo-

spheric mixing ratios more accurately. In a second step, we

use the coupled module to test the sensitivity of the global

emissions to eight different, frequently used or recently pub-

lished, transfer velocity parameterizations.

2 Model set-up and data description

2.1 The atmosphere-chemistry model EMAC

The EMAC model is a global atmospheric chemistry

climate model described in Jöckel et al. (2006, 2010).

ECHAM5/MESSy includes submodels describing processes

of the troposphere and middle atmosphere as well as interac-

tion with land and human influences. Air–sea gas exchange

is calculated in EMAC with the submodule AIRSEA, as de-

scribed by Pozzer et al. (2006).

The numerical simulations were nudged towards the

European Centre for Medium-Range Weather Forecasts

(ECMWF) ERA-Interim reanalysis (Dee et al., 2011) every

6 h (temperature, divergence, vorticity, surface pressure). The

resolution of the EMAC atmosphere was∼ 2.8◦× 2.8◦ (T42)

and 39 vertical hybrid pressure levels up to 0.01 hPa (L39).

The effect of resolution on the results tested with a finer res-

olution (T106) was only minor (see Table S2 in the Sup-

plement). The atmospheric model as well as the submodel

AIRSEA uses a time step of 600 s. The convective transport

follows the scheme of Tiedtke (1989) and the tracer advec-

tion is described in Lin and Rood (1996). An overview of

these nudged simulation set-ups can be found in Sect. 2.3.

The simulations include the four very short-lived species,

CH2Br2, CHBr3, CH3I and DMS, and simplified atmo-

spheric loss reactions for them. The loss reactions include

– oxidation with OH, O(1D), Cl and photolysis for CHBr3

and CH2Br2 following the reactions rates by Sander et

al. (2011);

– oxidation with OH, Cl and photolysis for CH3I (Sander

et al., 2011);

– and oxidation with OH and O(3P) for DMS (Sander et

al., 2011).

EMAC uses monthly mean concentrations of OH, devel-

oped and evaluated for the TransCom-CH4 model intercom-

parison project, and discussed in detail by Patra et al. (2014).

Monthly mean photolysis rates for VSLS were calculated by

the TOMCAT CTM (chemical transport model) which has

been used extensively to examine the tropospheric chem-

istry of VSLS (e.g. Hossaini et al., 2013). These fields

were provided at a horizontal resolution of 2.8◦× 2.8◦

(longitude× latitude) and on 60 vertical levels (surface to

∼ 60 km). TOMCAT calculates photolysis rates online us-

ing the code of Hough (1988) which considers both di-

rect and scattered radiation. Within TOMCAT, this scheme

is supplied with surface albedo, monthly mean climatolog-

ical cloud fields and ozone and temperature profiles. The

photolysis rates have recently been used and evaluated as

part of the ongoing TransCom-VSLS model intercomparison

project (http://www.transcom-vsls.com).

The simulated atmospheric lifetimes in our set-up gener-

ally agree well with published estimates for these gases, indi-

cating that the basic assumption of the simplified chemistry

applied here is valid. The local mean tropical (20◦ N–20◦ S)

lifetime of CH2Br2 in the troposphere in our model study is

143 days and thus lies below 167 days, which was found in

Hossaini et al. (2010). The mean tropospheric tropical life-

time of CHBr3 is 20 days in our study, which is consistent

within 10 % with a recent reevaluation of CHBr3 lifetime by

Papanastasiou et al. (2014), together with a recent reevalua-

tion of the reaction of OH with CHBr3 by Orkin et al. (2013).

The local lifetime of CH3I in our study is 3 days, which is in

accordance with the study of Tegtmeier et al. (2013). The

tropical lifetime of DMS in our study ranges between less

than 1 day and up to 3 days and is thus within but at the

higher end of the range of 11 min–46 h (Barnes et al., 2006;

Osthoff et al., 2009).

2.2 Parameterizations of air-sea gas exchange

In this study, the AIRSEA submodel (Pozzer et al., 2006) and

its approach for air–sea gas exchange was adopted, using the

two-layer model (Liss and Slater, 1974). Marine emissions

(F ) of gases are calculated as the product of the concentra-

tion gradient between air and water concentration of the gas

(1c) and the transfer velocity (k; Eq. 1), which needs to be

parameterized.

F = k ·1c = k · (cw−H · cair) (1)

with cw being the water concentration, H the Henry constant

(dimensionless, water over air) and cair the concentration of

the gas in air which was taken from the modelled atmosphere

in the respective time step. Henry constants and their temper-

ature dependencies are taken from Moore et al. (1995) for the

halocarbons and De Bruyn et al. (1995) for DMS.

www.atmos-chem-phys.net/15/11753/2015/ Atmos. Chem. Phys., 15, 11753–11772, 2015
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The transfer velocity k comprises air- (kair) and water-side

(kw) transfer velocities (Eq. 2) in all parameterizations with

the Henry constant (H ), air temperature (Tair) and the ideal

gas constant (R):

k =

(
1

kw

+
R ·H · Tair

kair

)−1

. (2)

The water-side transfer velocity kw is often parameterized

in relation to wind speed with linear (e.g. Liss and Merli-

vat, 1986), quadratic (e.g. Ho et al., 2006) or cubic (e.g.

Wanninkhof and McGillis, 1999) dependencies. Differences

between these parameterizations arise from different tech-

niques to determine kw. The kw parameterizations tested in

our study result from tracer release experiments in wind

tanks (Liss and Merlivat, 1986), from deliberate tracer tech-

niques in the open ocean (Nightingale et al., 2001; Ho et al.,

2006) or from direct flux measurements using eddy covari-

ance (Wanninkhof et al., 1999; Marandino et al., 2009; Bell

et al., 2013). Additional drivers of gas exchange, e.g. bubble-

mediated transfer (e.g. Asher and Wanninkhof, 1998) and en-

hancement in the presence of rain (e.g. Ho et al., 2004) are

discussed. Bubble-mediated transfer has been suggested to

be influential for gases with low solubilities since they more

quickly escape from the liquid phase into the bubbles. Asher

and Wanninkhof (1998) reanalysed data from a dual tracer

experiment and found a better fit when bubble-mediated gas

transfer was considered in the flux calculations. Bubbles are

more easily transported to the surface and released to the at-

mosphere, thereby adding to the total flux. Rain is believed

to increase the flux under calm wind conditions due to an al-

teration of the sea surface, which was tested in a dual tracer

experiment in the laboratory (Ho et al., 2004). Other factors

are known to influence air–sea gas exchange such as the pres-

ence of surfactants, but parameterizations including that ef-

fect are only marginally explored (Tsai and Liu, 2003) and

require global distributions of surfactants that are currently

not available. First steps of including surfactants in global

models are currently discussed (Elliott et al., 2014; Burrows

et al., 2014).

For sparingly soluble gases, kw dominates the transfer ve-

locity, and kair is often neglected as a simplification. For more

soluble gases, McGillis et al. (2000) found that considering

kair alters the flux to the atmosphere significantly when low

temperatures or moderate wind speeds prevail. The parame-

terizations of kair according to Kerkweg et al. (2006a, Eqs. 3

and 4 therein) assumes a dependency on the friction velocity

and surface wind speed, which is considered in the AIRSEA

submodel.

The transfer velocity needs to be adapted to each gas by

scaling it with the dimensionless Schmidt number in water

for kw and the Schmidt number in air for kair divided by the

Schmidt number that the specific parameterization was nor-

malized to, which is in most cases either 600 or 660. The

Schmidt number is the ratio of the diffusion coefficient of

the compound to the kinematic viscosity of the surround-

ing medium. Following the approach of the AIRSEA sub-

model, the Schmidt number in water is estimated by scaling

the CO2 Schmidt number in water (Wannikof, 1992; Wilke

and Chang, 1955), while the Schmidt number in air is cal-

culated from air viscosity and diffusivity of the gas in air

(Lymann et al., 1990).

2.3 Experimental set-up

2.3.1 Prescribed concentrations and prescribed

emissions

The experimental set-up consists of two steps. First, we

compare emissions and atmospheric mixing ratios from pre-

scribed water concentrations (PWC) with those derived from

prescribed emissions (PE) (Fig. 1). For the PWC and PE set-

up, two different submodels are used to calculate the emis-

sions in EMAC: in the PE approach, emission climatologies

are prescribed offline using the submodel OFFLEM (Kerk-

weg et al., 2006b). For the PWC set-up, emissions (or de-

positions) are calculated online using the submodel AIRSEA

(Pozzer et al., 2006). Details of the simulation set-ups for

simulations 1 (PWC) and 2 (PE) can be found in Table 1.

Both simulations cover a period of 24 years (1990–2013) to

average out interannual variabilities in emissions and to en-

sure that the model output can be subsampled specifically at

the times of atmospheric observations specified in Sect. 2.4.

In simulation 1, we prescribe water concentration clima-

tologies for the halocarbons from Ziska et al. (2013, Z13)

and for DMS from Lana et al. (2011, L11). The assump-

tion of constant water concentrations despite loss by emis-

sions is justified by the relatively small emissions compared

to the absolute amount of gas in the oceanic mixed layer and

the fast production of the compounds in water (e.g. Hop-

kins and Archer, 2014; Hepach et al., 2015). The modelled

emissions from the PWC set-up are compared to the original

Z13 and L11 emission climatologies. In the same manner,

resulting atmospheric mixing ratios in the PWC simulation

are compared to atmospheric concentrations from the PE set-

up with prescribed emissions from Z13 and L11. The emis-

sion climatology from Z13 is based on constant water and

atmospheric concentrations extrapolated from ∼ 5000 mea-

surements, using 6-hourly ERA-Interim wind fields and the

Nightingale et al. (2000) parameterization for water-side

transfer velocity. The L11 concentration climatology is based

on ∼ 40 000 measurements and surface wind data for the

emission climatologies from the NCEP/NCAR reanalysis

project with a water-side transfer velocity parameterized ac-

cording to Nightingale et al. (2000, N00) and an air-side

transfer velocity according to Kondo (1975). The climatolo-

gies, prescribing emissions and concentrations of the gases

of interest (CH2Br2, CHBr3, CH3I and DMS) were regrid-

ded to the T42 grid of EMAC with ncregrid (Jöckel, 2006),

which is in all four cases coarser than the original grid de-

Atmos. Chem. Phys., 15, 11753–11772, 2015 www.atmos-chem-phys.net/15/11753/2015/
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Figure 1. Schematic overview of the set-up of prescribed emissions (PE, left panel) and online-calculated fluxes based on prescribed water

concentrations (PWC, right panel) implemented in EMAC. Climatologies of fixed water and atmospheric concentrations in Ziska et al. (2013;

Z13) and Lana et al. (2011; L11) were used to compute a global emission estimate, and the resulting interannual mean emission climatology

is prescribed in EMAC using the submodule OFFLEM (PE, left panel). Calculating emissions online based on prescribed concentration (Z13,

L11) considers the current state of the atmosphere during the calculation of emissions in the submodule AIRSEA (PWC, right panel).

Table 1. Set-up of model simulations evaluated in this study. PWC: prescribed water concentration, PE: prescribed emissions, AIRSEA:

submodel for online calculation of emissions, OFFLEM: submodel for prescribing emissions.

Abbreviation kw- Emission calculation, Rain White cap Period

parameterization submodule effect coverage effect

1 PWC Nightingale et al. (2000) PWC, AIRSEA No No 1990–2013

2 PE Prescribed emissions, no online

calculation, kw in original pub-

lications N00

PE, OFFLEM No No 1990–2013

3 LM86 Liss and Merlivat (1986) PWC, AIRSEA No No 2010–2011

4 W99 Wanninkhof et al. (1999) PWC, AIRSEA No No 2010–2011

5 N00 Nightingale et al. (2000) PWC, AIRSEA No No 2010–2011

6 H06 Ho et al. (2006) PWC, AIRSEA No No 2010–2011

7 H06r Ho et al. (2006) PWC, AIRSEA Yes No 2010–2011

8 A98 Asher and Wanninkhof (1998) PWC, AIRSEA No Yes 2010–2011

9 B13m Bell et al. (2013) modified, only

DMS

PWC, AIRSEA No No 2004–2013

10 M09 Marandino et al. (2009) PWC, AIRSEA No No 2004–2013

scribed in Z13 and L11 (1◦× 1◦ in both). It has to be noted

that this leads to a smoothing of small, local hotspots, but we

assume this to be negligible since we compare emissions on

a global scale.

Besides the concentrations taken from the climatologies

Z13/L11, the air–sea calculation requires information on sea

surface temperature, salinity and wind. The mean sea sur-

face temperature in the model for simulation 1 (1990–2013)

was 15.95 ◦C, 15.82 ◦C in Z13 and 16.22 ◦C in L11. The

mean wind speed in the EMAC simulations (PWC, PE) was

7.51 m s−1, which is slightly larger than the wind speed used

to calculate the emission climatologies in Z13 (EMAC is

4.7 % larger) and L11 (EMAC is 2.7 % larger). Sea surface

salinity is prescribed with a constant value of 0.4 mol L−1 in

our model simulations as opposed to spatially varying salin-

ity in Z13 and L11. A 2-year simulation comparing the ef-

fects of a constant salinity versus the Z13 climatology re-

vealed a low effect on global emissions (< 3 %), which is in

accordance with findings of Ziska et al. (2013). Compared to

the calculation of the Schmidt number in the publications by

www.atmos-chem-phys.net/15/11753/2015/ Atmos. Chem. Phys., 15, 11753–11772, 2015
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Z13 and L11, the submodel AIRSEA uses a different empiri-

cal, temperature-dependent equation to calculate the Schmidt

number. In AIRSEA, the Schmidt number of CO2 at the re-

spective temperature is calculated and then adapted with the

molar volume to the Schmidt number of the gas of interest

(Wilke and Chang, 1955; Hayduk and Laudie, 1974). In Z13,

the Schmidt number is calculated by averaging the diffu-

sion coefficient according to Hayduk and Laudie (1974) and

Wilke and Chang (1955) and then dividing by the dynamic

viscosity of seawater at varying temperatures and a constant

salinity of 35. In L11, the Schmidt number is calculated ac-

cording to Saltzman et al. (1993). The resulting differences

are negligible at sea surface temperatures higher than 10 ◦C

and grow largest at 0 ◦C, where they are still less than 15 %.

Since the Schmidt number is then normalized to the Schmidt

number of CO2, the resulting difference becomes small and

does not lead to significant differences in the global emission

estimates of all four compounds. Differences in other influ-

ential input parameters for emission calculation between our

PWC set-up and Z13 and L11 are thus small, ensuring that

differences in emissions between PWC and Z13 and L11 can

be attributed to the consideration of the actual state of the

atmosphere in the PWC set-up.

2.3.2 Transfer velocity parameterizations

In the second part of the study, we test the sensitivity of the

global emissions towards eight different transfer velocity pa-

rameterizations. These tests cover a 2-year time span (2010–

2011) with 1 year (2009) as spin-up. The simulations 3–6

(Table 1) test the impact of different water-side transfer ve-

locity parameterizations related to wind speed. The parame-

terizations tested in this study are illustrated in Fig. 2. With

increasing wind speed, the differences between the transfer

velocity parameterizations grow larger; hence, testing these

parameterizations yields a range of global emission estimates

that reflects this uncertainty. Parameterizations and the gen-

eral description of air–sea gas exchange calculation are de-

scribed in Sect. 2.2.

Table 1 provides an overview of all performed simulations.

Simulation 3 uses the 3-step linear parameterization of Liss

and Merlivat (1986, LM86), simulation 4 the cubic relation-

ship by Wanninkhof and McGillis (1999, W99), simulation

5 the quadratic parameterization by Nightingale et al. (2000,

N00), and simulation 6 the quadratic transfer velocity param-

eterization by Ho et al. (2006, H06). The effect of rain (simu-

lation 7 in Table 1) was tested adding the Ho et al. (1997) rain

effect parameterization to the H06 transfer velocity parame-

terization (see Pozzer et al., 2006, Eqs. 10 and 11). White cap

coverage according to Asher and Wanninkhof (1998, A98)

considers bubble-mediated gas exchange and is used in simu-

lation 8. The different parameterizations (LM86, W99, N00,

H06) were available from the AIRSEA version of Pozzer

et al. (2006). The N00 parameterization was normalized to

wind speed [m s-1]
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k 66
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Figure 2. Parameterizations for water-side transfer velocity of air–

sea gas exchange kw for a Schmidt number of 660 that are tested

in this study: the linear parameterization LM96 (Liss and Merlivat,

1986), the cubic parameterization W99 (Wanninkhof and McGillis,

1999), the quadratic parameterization N00 (Nightingale et al., 2000)

and H06 (Ho et al., 2006), the parameterization modified according

to Bell et al. (2013, B13m) with a levelling off at wind speeds higher

than 11 m s−1, and the linear parameterization M09 (Marandino et

al., 2009).

the Schmidt number of 600 as in the original publication by

Nightingale et al. (2000), while 660 was used in Z13.

Two additional simulations including only DMS were per-

formed to test the effect of two recently published parame-

terizations of kw. These two parameterizations have been de-

rived from in situ DMS eddy covariance measurements and

deviate from previously published parameterizations. Bell et

al. (2003) observed that the transfer velocity does not in-

crease at wind speeds higher than 11 m s−1. Marandino et

al. (2009) found a linear dependency between wind speed

and the transfer velocity kw for DMS. Both simulations cover

the period of 2004–2013, since observations from this period

were available for comparison. These two parameterizations

for kw were added to the submodule code of AIRSEA (for

equations see Table 4). The modification of the code included

a parameterization based on results of the study from Bell

et al. (2013, B13m) with a conservative approach, in which

the N00 parameterization was used at wind speeds below

11 m s−1 and kept constant at higher wind speeds to account

for the missing increase of kw with increasing wind speed. Fi-

nally, the parameterization by Marandino et al. (2009, M09)

was used in simulation 10 for the same period as B13m. Both

newly implemented parameterizations are part of the most

recent release MESSy 2.52.

2.4 Observational data

Simulated atmospheric mixing ratios of the trace gases from

PWC and PE are compared to observations from ship cam-
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Figure 3. Locations of atmospheric data for comparison with model output used in this study. Panel (a) shows locations of atmospheric

measurements from 23 aircraft campaigns considered for comparison with halocarbon simulations. Panel (b) shows location of measurements

in the atmospheric boundary layer from ships (PHASE-1, Knorr-06, Knorr-07, M98) and from aircraft campaign (HIPPO 1–5) measurements

considered for comparison with DMS simulations.

paigns, aircraft campaigns and ground-based time series sta-

tions.

A total of 23 aircraft campaigns providing halocarbon data

are considered in order to create annual zonal mean clima-

tologies of these trace gases. The combined data set ranges

from 90◦ N to 75◦ S, transecting from the surface to the

upper troposphere/lower stratosphere over land and ocean

from 1992 to 2012 (see Table S1 for details on the aircraft

campaigns). Many of the more recent data sets are inter-

calibrated (see e.g. Brinckmann et al., 2012; Hall et al., 2014;

Sala et al., 2014; Wisher et al., 2014). The latitudinal and lon-

gitudinal distributions and names of the aircraft campaigns

are illustrated in Fig. 3a. The measurements were averaged

in zonal 10◦ wide latitude bins with a vertical extent ranging

from 10 to 50 hPa (10 hPa in boundary layer and TTL re-

gions). Most of the measurements are located around 30◦ N

of latitude with more than 150 points per bin. The tropical

region (20◦ N–20◦ S) has an average of 50 points per bin.

Figure S1 in the Supplement illustrates the numbers of the

measurements per bin. For the comparison of measured and

modelled data, the EMAC output of simulations 1 and 2 is

first sampled at the same location as the aircraft measure-

ments (longitude, latitude, altitude and time) by linear inter-

polation. Then, the same process of averaging per bin as for

the measurements is applied to the model output.

Nine coastal ground stations from NOAA/ESRL, where

halocarbons have been measured by the NOAA global flask

sampling network starting from 1990–2004 were chosen for

comparison due to their location close to the coast (Table 2).

These data are currently available at the HalOcAt (Halocar-

bons in the Ocean and Atmosphere) database (https://halocat.

geomar.de/). Two time series stations situated distant to the

coast (Park Falls, Wisconsin, Niwot Ridge Forest, Colorado,

both USA) were chosen to assess to contribution of marine

www.atmos-chem-phys.net/15/11753/2015/ Atmos. Chem. Phys., 15, 11753–11772, 2015
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Table 2. Metadata of the ground-based time series stations of halocarbons (NOAA) considered in this study. For DMS, the data from time

series of Cape Grim and Amsterdam Island were considered.

Nr. Abbr. Station name Latitude Longitude Elevation (m) Period

1 ALT Alert, Canada 82.45◦ N 62.51◦W 210 1992–2011

2 AMS Amsterdam Island 37.80◦ S 77.54◦ E 55 1990–1999

3 SUM Summit, Greenland 72.58◦ N 38.48◦W 3209 2004–2011

4 BRW Barrow, Alaska 71.32◦ N 156.61◦W 27 1993–2011

5 MHD Mace Head, Ireland 53.33◦ N 9.90◦W 42 1998–2011

6 LEF Park Falls, Wisconsin 45.95◦ N 90.27◦W 868 1996–2011

7 THD Trinidad Head, California 41.05◦ N 124.151◦W 120 2002–2011

8 NWR Niwot Ridge Forest, Colorado 40.03◦ N 105.55◦W 3475 1993–2011

9 KUM Cape Kumukahi, Hawaii 19.5◦ N 154.8◦ E 39 1995–2011

10 MLO Mauna Loa, Hawaii 19.53◦ N 155.58◦W 3433 1993–2011

11 CGO Cape Grim, Tasmania 40.68◦ S 144.69◦ E 164 1993–2011

12 PSA Palmer Station, Antarctica 64.92◦ S 64.00◦W 15 1997–2011

13 SPO South Pole 90.00◦ S 59.00◦ E 2837 1993–2011

halocarbon emissions to the atmospheric mixing ratio over

land. Monthly means of the time series were compared to

monthly means of simulations 1 and 2 for the PWC and PE

set-up.

DMS was directly compared to measurements from ship

campaigns in the marine boundary layer, because only few

data from ground-based time series stations is available. The

campaigns chosen were PHASE-I (2004, Marandino et al.,

2007), two campaigns on RV Knorr (Marandino et al., 2007,

2008), and M98 on RV Meteor (2009, A. C. Zavarsky, per-

sonal communication, 2014) to ensure a broad spatial cov-

erage (Fig. 3b). Additionally, DMS data from two time se-

ries stations – Cape Grim, Australia, 1990–1993 (Ayers et

al., 1995) and Amsterdam Island in the Indian Ocean, 1990–

1999 (Sciare et al., 2000) – were used for comparison (Ta-

ble 2). Upper air atmospheric concentrations of DMS were

compared to aircraft measurements from the HIAPER Pole-

to-Pole observation (HIPPO) campaigns 1–5 (Wofsy et al.,

2012), again subsampling the model output for time and lo-

cation of the observations.

3 Results and discussion

3.1 Global emissions based on prescribed

concentrations

The long-term mean of global emissions (1990–2013, sim-

ulation 1 in Table 1) based on PWC is different from the

offline calculated emission climatologies for all four gases.

The magnitude of this difference varies between the gases

+11 % (CHBr3) to −28 % (CH2Br2) (Table 3). The global

spatial pattern of the PWC emissions is similar to the spa-

tial patterns in Z13 and L11 (Figs. 4, 5). Although global

emissions for CH2Br2 were reduced in the PWC set-up com-

pared to the Z13 scenario, they still lie in the range of pre-

viously published estimates (61.8–112.7 Tg yr−1; Table 3).

The global PWC emissions for CHBr3 are 11 % higher than

from Z13, but still 47–60 % lower than top-down approaches

by Warwick et al. (2006), Liang et al. (2010) and Ordóñez

et al. (2012). The PWC CHBr3 emissions lie at the lower

end of emission scenarios, closest to Z13. The same holds

for CH3I, where emissions are 2 % higher compared to Z13

but still 18 % lower than the published estimate from Bell et

al. (2002). Emission estimates in PWC are closest to Z13 and

thus at the lower end of the range of published global emis-

sion estimates. DMS emissions in PWC compared to L11

were 17 % lower (Table 3).

The main differences between PE and PWC result from

considering the actual state of the atmosphere when calculat-

ing emissions from PWC, since the atmospheric mixing ra-

tio of the gas has a direct feedback on its emissions through

the concentration gradient (Eq. 1). Higher atmospheric con-

centrations lead to lower marine emissions (or can even lead

to deposition) and vice versa. In the PWC set-up where the

actual concentration gradient between the ocean surface con-

centration and the model’s atmospheric mixing ratio is con-

sidered, the emissions thus respond consistently to this feed-

back. The most obvious example for that is the global emis-

sion of DMS. In L11, an atmospheric concentration of 0 ppt

is assumed justified by the high supersaturation in the wa-

ter and the short lifetime of DMS. In the PWC approach in

our study, the atmospheric mixing ratio is always higher than

0 ppt, on average 133 (±125) ppt, and this is likely the main

reason for the resulting 17 % reduction in the modelled flux

vs. L11 (Fig. 5).

Considering the actual state of the atmosphere leads to al-

tered concentration gradients and thus emissions for any gas

in the PWC set-up, but the impact on global emissions de-

pends on the specific characteristics and global distribution

of the gas in the surface ocean. For example, the impact of the

PWC approach on global emissions for CH2Br2 (28 % dif-

ference between PWC and Z13) is larger than that for CH3I

Atmos. Chem. Phys., 15, 11753–11772, 2015 www.atmos-chem-phys.net/15/11753/2015/
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A C 

B D 

Figure 4. Emissions from PWC (N00 parameterization for kw) for the trace gases dibromomethane (CH2Br2, panel a), bromoform (CHBr3,

panel b), methyliodide (CH3I, panel c) and dimethyl sulfide (DMS, panel d), their annual mean of the period 1990–2013 (simulation 1,

Table 1).

(2 % difference) (Table 3). This difference can be explained

by the saturation of the two gases: CH3I is mainly oversat-

urated in the surface ocean with a mean saturation ratio (ac-

tual concentration divided by equilibrium concentration) of

18.2 in Z13. CH2Br2 with a mean saturation ratio of 2 is

concentrated closer to equilibrium. The distance from equi-

librium is thus larger for CH3I than for CH2Br2. Changes in

atmospheric mixing ratio therefore affect the concentration

gradient for CH2Br2 more than for CH3I. For CHBr3 with

a similar global ocean surface saturation ratio as CH2Br2, a

drastic change in emissions between PWC and Z13 can be

seen in the Southern Hemisphere (50–90◦ S; Table 3), where

the emissions increase 2 orders of magnitude in the PWC

compared to Z13. The Z13 emission climatology displays a

latitudinal band of elevated atmospheric mixing ratios around

60◦ S, which result in this region being a sink for atmospheric

CHBr3. In our PWC set-up, atmospheric mixing ratios in this

region are not as elevated and hence PWC leads to larger

emissions. In general, gases that are concentrated close to

equilibrium in the surface ocean respond more strongly to

changes in atmospheric concentrations and thus to the PWC

set-up than more supersaturated gases.

Comparing integrated regional fluxes, the halocarbons dis-

play the largest differences in the polar regions (Table 3).

Besides dynamic atmospheric concentrations that may alter

emissions in the PE set-up, two other reasons for differences

in this specific set-up apply for the halocarbons. First, no sea

ice is considered in Z13 whereas EMAC uses prescribed sea

ice in our PWC set-up. L11 considers sea-ice. When sea ice is

present in the model EMAC/AIRSEA, the flux is reduced by

the fraction of surface that is covered by it. This may lead to

the lower flux estimations in our PWC set-up and may partly

explain e.g. the reduced emissions in the Arctic for CHBr3.

Furthermore, our PWC approach takes into account air-side

transfer velocity (Eq. 2) instead of only the water-side trans-

fer velocity as Z13, which can control the flux of more sol-

uble gases at low temperatures and thus decrease emissions

(McGillis et al., 2000). At high latitudes (60–90◦ N and S),

where low temperatures and high winds prevail, the trans-

fer velocity can be reduced by up to 68 % (CH2Br2), 32 %

(CHBr3) and 61 % (CH3I) using kair in the PWC set-up. L11

takes the kair and sea ice into account, so this difference does

not apply.

3.2 Atmospheric mixing ratios based on PWC and PE

The atmospheric mixing ratios in EMAC sustained by emis-

sions either from PWC or PE are compared to available atmo-

spheric observations from aircraft campaigns (halocarbons,

DMS), ground-based time series stations from NOAA/ESRL

(halocarbons) and ship campaigns (DMS). The model output

of simulations 1 and 2 (Tables 1, 4) was subsampled at the

times and locations of the observations. A scatterplot for di-

rect comparison between model output and observations is

provided in the Supplement in Fig. S2.

The largest difference between PWC and PE in the at-

mospheric mixing ratio is again found for CH2Br2 in the

Southern Hemisphere (Fig. 6), where the PWC set-up yields

lower emissions and therefore also lower atmospheric mixing

ratios. For CH2Br2, atmospheric mixing ratios globally de-

crease on average by 28 % compared to the PE set-up, which

is the same percentage as the reduction in the global emis-

sions. Concentrations derived from these reduced fluxes gen-

erally agree better with the measurements, even though Arc-

tic emissions still seem to be underestimated in the model

www.atmos-chem-phys.net/15/11753/2015/ Atmos. Chem. Phys., 15, 11753–11772, 2015
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Figure 5. Differences (PWC–PE) in emissions between PWC (simulation 1, Table 1, 2010–2011) and PE (simulation 2, Table 1, 2010–2011).

Red indicates a larger flux in the PWC set-up, blue a larger one in the PE set-up.

compared to the observations. A possible explanation for

this underestimation could be emissions of VSLS from sea

ice that are not considered in the model, as e.g. Karlsson

et al. (2013) observed elevated CH2Br2 in brines on top of

sea ice. Mixing ratios of CHBr3 are similar in the PWC

and PE set-ups (difference globally only 1.2 %), but both

do not show the same pattern as the measurements: for both

set-ups, atmospheric mixing ratios are underestimated in the

Southern Hemisphere up to the northern tropics (Fig. 6). The

same is evident for CH3I, where PWC and PE also vary only

slightly, while both set-ups underestimate atmospheric CH3I

concentration in the tropics. Since atmospheric concentra-

tions were derived from emissions based on the Z13/L11

water concentration climatology in the PWC set-up, nega-

tive discrepancies to atmospheric observations indicate re-

gions where the concentration climatologies lack hotspots

and can thus identify missing oceanic source regions. For all

three halocarbons, the concentration climatologies seem to

represent water concentrations that are too low in the North-

ern Hemisphere and the tropics to explain the observed at-

mospheric mixing ratios. It has to be noted that coastal ar-

eas are large source regions of halocarbon emissions with

global contributions of up to 70 % (Ziska et al., 2013), which

might be underrepresented in our modelled approach and

thus might at least partly explain these missing sources.

Modelled concentrations matched observations from

NOAA/ESRL ground stations in most of the cases better in

the PWC set-up compared to PE. The agreement between

simulation and measurements increases with the atmospheric

lifetime of the gases: modelled mixing ratios for CH2Br2,

with the longest lifetime of the tested gases, reflect the ob-

served seasonality at all 12 stations well (Fig. 7). The mod-

elled seasonality of the atmospheric mixing ratios is similar

in both the PWC and PE set-ups, indicating that the main

fluctuations at these locations comes from seasonality in at-

mospheric transport and chemistry rather than from season-

ality in emissions, since emissions are constant in PE. For

all stations except for Mace Head, PWC yields atmospheric

mixing ratios closer to the measurements for CH2Br2, re-

ducing overestimations of modelled atmospheric mixing ra-

tios compared to measurements of up to 75 % as e.g. at the

South Pole. Discrepancies between observations and model

simulations are larger in most of the ground-based stations

for CHBr3 (lifetime ∼ 20 days in our simulation) than for

CH2Br2, and again PWC yields as good or more accu-

rate mixing ratios than PE compared to the measurements

(Fig. 8). However, the observed seasonality is not well re-
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Figure 6. Atmospheric mixing ratios (in ppt) of the trace gases dibromomethane (CH2Br2, upper row), bromoform (CHBr3, middle row), and

methyliodide (CH3I, lower row) derived from measurements (see Fig. 3 for locations of aircraft campaigns) and EMAC runs with prescribed

water concentrations and prescribed emissions. Model output was subsampled at locations and times of observations and binned for direct

comparison.

flected in either the PWC or the PE set-up. This mismatch

indicates that a further seasonality in the sources is required,

which can e.g. be accounted for by introducing a seasonality

in the water concentrations prescribed. This finding is op-

posite to findings from Liang et al. (2010), who concluded

that atmospheric CHBr3 mixing ratios are mainly driven by

transport and atmospheric chemistry. Furthermore, the good

agreement between model and observations at continental

sites away from the coast (Park Falls, Wisconsin, USA; Ni-

wot Ridge Forest, Colorado, USA) for CH2Br2 and CHBr3

indicates that the ocean is the dominant source of these

compounds also over land. CH3I, the gas with the shortest

lifetime in the range of a few days, shows the largest dis-

crepancies between modelled mixing ratios and observations

(Fig. 9). The PWC set-up yields mixing ratios in the range

of the observations for only two stations (Alert, Canada,

and Barrow, Alaska, USA) and, in most of the stations, the

seasonality was not well reflected in the model runs. CH3I

seasonality in water concentrations has previously been ob-

served (Shi et al., 2014), indicating that seasonally resolved

water concentrations are needed to reproduce atmospheric

concentrations of the shortest-lived compounds in a more

accurate way. Oceanic emissions in PE and PWC were too

large to explain atmospheric mixing ratios at stations in high

latitudes (Summit, Mace Head, Cape Grim, Palmer Station,

South Pole), but too low to explain atmospheric mixing ratios

in lower latitudes (Park Falls, Trinidad Head, Niwot Ridge,

Cape Kumukahi, Mauna Loa), which agrees with findings

from aircraft campaigns (Fig. 6).

Four ship campaigns were chosen for comparison of DMS,

since only few long-term measurements of atmospheric mix-

ing ratios of DMS are available. Simulation with both the

PWC (N00) and the PE approach overestimate DMS mix-

ing ratios in the marine boundary layer from ship campaigns

(see positive mean bias in Table 5). However, the PWC re-

duces discrepancies within both ship and aircraft campaigns

by a factor of 2 (Table 5), as the mixing ratio is overes-

timated by a factor of 0.61 in PWC as opposed to 1.31

in PE. The observed seasonality of DMS mixing ratios at

Amsterdam Island is well reflected in the simulations ex-

cept for the summer months, where PWC and PE overesti-

mate the monthly mean by a factor of up to 4.6 (PWC) and

6.7 (PE) (Fig. 10). At Amsterdam Island, the simulated an-

nual mean atmospheric mixing ratio of 180.7 ppt in the PWC

set-up agrees very well with the observed annual mean of

181.2 ppt, whereas the simulated annual mean in the PE set-

up is 268.5 ppt. At Cape Grim, the results of the two set-ups

do not differ that much, and both simulations underestimate

the mixing ratios measured during austral summer.

www.atmos-chem-phys.net/15/11753/2015/ Atmos. Chem. Phys., 15, 11753–11772, 2015
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Figure 7. Mean seasonal variation of CH2Br2 mixing ratios (in ppt) using model output based on PE (in red) and PWC (in blue), subsampled

at the location of the NOAA ground-based time series stations. Black dots indicate the long-term monthly means of the time series at the

specific locations (± standard deviation of the monthly means), vertical lines indicate the corresponding standard deviations. Monthly time

series of at least 7 years were averaged, the exact periods are listed in Table 2.

An overall comparison of the agreement of both set-

ups with observations is summarized in a Taylor diagram

(Fig. 11). This diagram is a statistical summary that shows

how well two patterns match each other with regard to their

correlation, variance and root-mean-square difference (Tay-

lor, 2001). The closer a point of a specific set-up is located to

the reference point of observations (here 1.0 on x axis), the

more the simulation resembles the observed measurements.

PWC simulations increased the agreement with observations

for CH2Br2, especially the correlation (0.4 in PE to 0.6 in

PWC), and for DMS (0.53 in PE to 0.65 in PWC), but only

very slightly for CHBr3 and CH3I. Centred statistics for all

compounds can be found in Table 5, with the equations used

to compute the statistics according to Yu et al. (2006) listed

in the Supplement.

3.3 Comparison of different transfer velocity (kw)

parameterizations

A large uncertainty of global emission estimates is related to

different parameterizations of the transfer velocity in Eq. (1).

Atmos. Chem. Phys., 15, 11753–11772, 2015 www.atmos-chem-phys.net/15/11753/2015/
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Figure 8. Same as Fig. 7, for CHBr3.

Calculating emissions online enables a simple way of testing

different transfer velocity parameterizations, which was real-

ized here with eight 2-year simulations described in Table 1

(simulations 3–10).

The largest sensitivity for the emissions of all gases is

introduced by different parameterizations of the water-side

transfer velocity kw tested in simulations 3–6 (Table 4). The

4 parameterizations that were tested (simulation 3–6, Ta-

ble 1) comprised linear (LM86, simulation 3), cubic (W99,

simulation 4) and quadratic (N00, simulation 5, H06, sim-

ulation 6) relations to wind speed. The resulting global

emission estimates in these parameterizations range 53.7–

65.1 Gg yr−1 for CH2Br2, 189.0–249.7 Gg yr−1 for CHBr3,

151.9–225.7 Gg yr−1 for CH3I and 33.4–48.7 Tg yr−1 for

DMS (Table 4). As expected, the linear kw parameterization

(LM86) yields the lowest global emission estimates, since

it produces the lowest kw values (Fig. 2). The N00 parame-

terization produces the highest global fluxes for CHBr3 and

CH2Br2 but not for DMS and CH3I, where the highest fluxes

were obtained by H06 (DMS) and W99 (CH3I) (Table 4).

The fact that different parameterizations lead to higher global

estimates for different gases is explained by the varying spa-

tial distribution of concentration hot spots and regional vari-

ations of wind.

The kw parameterization in simulation 7 increases the flux

under calm conditions due to precipitation. This increase

www.atmos-chem-phys.net/15/11753/2015/ Atmos. Chem. Phys., 15, 11753–11772, 2015
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Figure 9. Same as Fig. 7, for CH3I.

ranged from 4 % (CH2Br2) to 6 % (DMS) (Table 4) when

compared to the reference flux using H06 alone (simula-

tion 6, Table 4). Additional flux due to precipitation is in-

versely correlated to the Schmidt number, so that under iden-

tical conditions, increasing flux would be added in the order

CHBr3 > CH2Br2 > DMS > CH3I. The global flux estima-

tions compared to the reference run do not increase in this or-

der (Table 4), rather DMS > CHBr3∼CH3I > CH2Br2. This

non-uniform response among the gases is explained by the

globally and regionally varying distance from equilibrium

for the four gases, which together with regional precipita-

tion patterns leads to variations in the emissions increased

by rain. The parameterization based on white-cap coverage

(A98) also has small but ambivalent effects on the global flux

for the different compounds (simulation 8, Table 4). Com-

pared to the mean of all nonlinear parameterizations for each

gas, global emissions were higher when the white cap cover-

age parameterization was used for CHBr3 (4 %) and CH2Br2

(2 %) but lower for CH3I (−8 %) and DMS (−6 %) (Table 4).

The parameterizations tested only for DMS are both de-

rived from eddy covariance measurements at sea. Both pa-

rameterizations changed the global emissions by −4.4 %

(B13m) and −1.2 % (M09) compared to the average flux

of simulations 3–6 (Table 4). Although the modelled atmo-

spheric mixing ratios at the time and location of observations

is for both of the parameterizations higher than the observa-
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Table 4. Integrated global emissions during 2010–2011 for sensitivity tests using different parameterizations for the transfer velocity kw

(simulations 3–6, same as in Table 1) and the effects of rain (simulation 7), bubble-mediated transfer parameterized using white cap coverage

(simulation 8) and parameterizations recently suggested for DMS (simulations 9 and 10). Equations for the parameterizations using wind

speed u are given for the Schmidt number (subscript after k) as in the original publications listed. u: wind speed at 10 m a.s.l. in metres per

second. k is given in centimetres per hour.

No. Parameterization CH2Br2 CHBr3 CH3I DMS

Gg yr−1 Gg yr−1 Gg yr−1 Tg yr−1

3 Liss and Merlivat (1986) for u≤ 3.6, k660 = 0.17u

for 3.6 < u< 13, k660 = 2.85u− 9.65

for u≥ 13, k660 = 5.9u

53.74 189.10 151.88 33.38

4 Wanninkhof et al. (1999) k660 = 0.0283u3 58.38 211.17 223.52 45.22

5 Nightingale et al. (2000) k600 = 0.22u2
+ 0.333u 63.04 238.46 209.73 45.49

6 Ho et al. (2006) k660 = 0.266u2 62.71 236.10 213.47 45.91

7 Ho et al. (2006) + rain – 65.08 249.66 225.67 48.70

8 White cap coverage – 62.76 238.51 197.44 42.53

9 Bell et al. (2013), modified for u≤11, k600 = 0.22u2
+ 0.333u

for u > 11, k600 = 30.283

– – – 40.63

10 Marandino et al. (2009) k720 = 1.92u− 1.0∗ – – – 42.45

Mean (simulations 3–6) 59.47 218.71 199.65 42.5

* Units converted, in original publication: k720 = 0.46u− 0.24 (m day−1).

Table 5. Error metrics for the comparison of model output from PWC (simulation 1) and PE (simulation 2) for all of the compounds

including all aircraft campaigns and ship observations, illustrated in Fig. S2 in the Supplement. Determination of error metrics according to

Yu et al. (2006).

CH2Br2 PE CH2Br2 PWC CHBr3 PE CHBr3 PWC CH3I PE CH3I PWC DMS PE DMS PWC

Mean bias (ppt) 0.24 −0.036 −0.23 −0.24 −0.14 −0.14 86.21 42.12

Mean absolute gross error (ppt) 0.30 0.15 0.31 0.31 0.15 0.16 102.9 67.39

RMSE (ppt) 0.381 0.21 0.53 0.53 0.26 0.26 236.2 135.8

Fractional bias (ppt) 0.26 0.0001 −0.23 −0.20 −0.89 −0.96 0.23 0.10

Fractional absolute error (ppt) 0.31 0.20 0.56 0.56 1.13 1.19 1.23 1.18

Normalized mean bias factor (–) 0.27 −0.04 −0.49 −0.53 −1.71 −1.96 1.31 0.64

tions, discrepancies between simulated and observed mixing

ratios were reduced compared to the N00 parameterization

by factors of 1.4 (B13m) and 1.2 (M09).

4 Summary and conclusions

Two different ways of considering marine emissions of trace

gases in global atmospheric chemistry models are discussed

here for the halocarbons CH2Br2, CHBr3, CH3I and the

sulfur-containing compound DMS. In contrast to prescribing

emissions (PE) from oceanic and atmospheric concentration

climatologies in the model, prescribing water concentrations

(PWC) with an online calculation of emissions results in a

consistent concentration gradient between ocean and atmo-

sphere. The approach of modelling emissions online was suc-

cessfully applied for the very short-lived halocarbons for the

first time. The approach is based on the submodel AIRSEA

coupled to EMAC by Pozzer et al. (2006). The method has

a number of conceptual and practical advantages, as in this

framework the modelled flux can respond in a consistent way

to changes in sea surface temperature, surface wind speed,

possible sea ice cover and marine atmospheric mixing ratios

in the model.

Global emission estimates of the four gases differ between

+11 % (CHBr3) and−28 % (CH2Br2) between PWC and PE

when the transfer velocity kw is parameterized according to

Nightingale et al. (2000) in both set-ups. Prescribing water

concentrations instead of emissions has the strongest effect

for gases close to equilibrium in the surface ocean such as

CH2Br2 (28 % reduced emissions in PWC compared to PE),

as its emissions are most sensitive to atmospheric concen-

trations. In contrast, only a 2 % difference is found for the

highly supersaturated gas CH3I. Considering PWC reduces

the global emissions of DMS by 17 %, a comparison to ob-

servations revealed that PWC compared to PE reproduces ob-

servations slightly (CHBr3, CH3I) or much (CH2Br2, DMS)

better for measurements made at ground-based time series

stations, aircraft campaigns and ship cruises. Even though it

is clear that more data for all compounds are needed glob-

ally, the PWC set-up can be used to identify oceanic regions

Atmos. Chem. Phys., 15, 11753–11772, 2015 www.atmos-chem-phys.net/15/11753/2015/
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where more measurements will be needed to improve the

global emission estimate. For example, there are clear dis-

crepancies in the Northern Hemisphere for CHBr3 and the

tropics for CH3I.

Global emission estimates display a large sensitivity to-

wards the parameterization of the transfer velocity kw,

with relative differences between 15.6 % (CH2Br2) and

35.9 % (CH3I) compared to the mean global emissions

of the four tested simulations including kw parameteriza-

tions according to Liss and Merlivat (1986, LM86), Wan-

ninkhof and McGillis (1999, W99), Nightingale et al. (2000,

N00) and Ho et al. (2006, H06). Sensitivity towards rain

or bubble-mediated transfer was generally low (< 10 %

change in global emission estimate). Two parameterization-

adapting results that have recently been suggested for DMS

(Marandino et al., 2009, M09; Bell et al., 2013, B13m) pro-

duced both a lower global emission estimate, which at the

same time reduced discrepancies between simulated and ob-

served atmospheric mixing ratios and yielded simulated at-

mospheric mixing ratios closer to observations than simu-

lated mixing ratios with the N00 parameterization.

In summary, prescribing water concentrations instead of

prescribing emissions in global atmospheric chemistry mod-

els leads to a consistent concentration gradient between

ocean and atmosphere and enables convenient testing of dif-

ferent air–sea gas exchange parameterizations. Based on the

results of our comparison between the PE and PWC, pre-

scribing concentrations leads to more consistent emissions

and mainly more accurate reproduction of observations of

atmospheric mixing ratios of the VSLS described here.

The Supplement related to this article is available online

at doi:10.5194/acp-15-11753-2015-supplement.
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