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Common dependence on stress 
for the statistics of granular 
avalanches and earthquakes
Takahiro Hatano1, Clément Narteau2 & Peter Shebalin3

Both earthquake size-distributions and aftershock decay rates obey power laws. Recent studies have 
demonstrated the sensibility of their parameters to faulting properties such as focal mechanism, 
rupture speed or fault complexity. The faulting style dependence may be related to the magnitude 
of the differential stress, but no model so far has been able to reproduce this behaviour. Here 
we investigate the statistical properties of avalanches in a dissipative, bimodal particulate 
system under slow shear. We find that the event size-distribution obeys a power law only in the 
proximity of a critical volume fraction, whereas power-law aftershock decay rates are observed at 
all volume fractions accessible in the model. Then, we show that both the exponent of the event 
size-distribution and the time delay before the onset of the power-law aftershock decay rate are 
decreasing functions of the shear stress. These results are consistent with recent seismological 
observations of earthquake size-distribution and aftershock statistics.

Individual earthquakes may be regarded as large scale ruptures involving a wide range of structural and 
compositional heterogeneities in the crust. However, the statistical properties of a population of earth-
quakes are often described by simple power-laws. Among them, two laws are ubiquitous and occupy a 
central position in statistical seismology: the Gutenberg-Richter (GR) law1 and the Modified Omori law 
(MOL)2,3. The GR law describes the earthquake magnitude-frequency distribution

( ) ∝ , ( )−P M 10 1w
bMw

where Mw is the moment magnitude and b a constant with a value around 1 along active fault zones. The 
MOL describes the aftershock occurrence rate

( ) ∝ ( + ) , ( )−n t t c 2p

where t is the elapsed time from the triggering event (the so-called mainshock), p a positive 
non-dimensional constant with a typical value of 1 and c a time constant. The parameters in these two 
laws are believed to bear some information on the physical state of the crust. Indeed, Schorlemmer et al. 
find that the b-value of the GR law is decreasing going from normal (extension) over strike-slip (shear) 
to thrust (compression) earthquakes4. Narteau et al. also find that the time constant c in the MOL has 
the same dependence on the faulting mechanism5. These two observations indicate that, under a simple 
assumption, b and c are decreasing functions of shear stress. Although the underlying mechanism needs 
further investigation, this may reflect a common time-dependent behaviour of fracturing in rocks during 
the propagation of earthquake ruptures and the nucleation of aftershocks.

Because the shear stress along an active fault is not directly measurable, a solution to address stress 
dependences in earthquake statistics is to analyse models that implement a restricted set of physical 
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processes. Such models are indeed numerous, ranging from rock fracture experiments6–9 to computer 
simulations on cellular automata10,11. Among them, sheared granular media12–19 are simple representa-
tions of granular fault gouges (Fig. 1), which are commonly used in geophysics to analyse deformation 
of highly damaged rocks in fault zones20–22. Additionally, both the energy and the stress can be easily 
defined in these models.

Here we use the simplest form of structural complexity - a bimodal distribution of particle size - to 
elucidate its fundamental control on the emergent scaling laws. We then perform numerical simulations 
showing that, as for real seismicity, avalanches in sheared granular matter obeys the GR law and the MOL 
with b and c-values being decreasing functions of the shear stress. The details of our numerical model 
are described in the Methods section.

Results
Characterisation of avalanches.  As observed in many previous works on amorphous particulate 
systems14–17,20,21,23–30, Fig.  2 shows that the temporal fluctuations of the energy becomes volatile if the 
shear rate is sufficiently low and the volume fraction is sufficiently high. Under such condition the kinetic 
energy is negligible in comparison with the elastic energy E(t), and therefore the elastic energy drop 
should approximate a transition from a local maximum to a local minimum in configurational energy. 
Then, an avalanche is defined as an abrupt drop of the elastic energy, E(t1) −  E(t2), where t1 and t2 denote 
the beginning and the end of an event, respectively. This is illustrated in the inset of Fig. 2b.

Figure 1.  A conceptual model of a fault zone using a 3D granular system. We consider that the fault 
zone is a strongly damaged area that may be investigated through granular mechanics. The granular model 
represents a thin gouge layer. The constant grain size, the relatively high porosity and the low grain size to 
system size ratio of the model do not capture the natural structural and compositional complexities of fault 
zones in nature. Despite these strong differences, we explore similarities between the dynamics of avalanches 
in the model and earthquakes.
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Following the literature of earthquake studies31, we define the magnitude of avalanche as  
M ∫ log10[E(t1) −  E(t2)] +  m0, where m0 =  11 is chosen so that the magnitude of the smallest avalanches is 
approximately zero. Note that, with this definition of magnitude, the GR law reads P(M) ∝  10−2/3bM, as the 
moment magnitude for earthquake31 is defined as Mw ≃  2/3 log10[E(t1) −  E(t2)] +  const. Hereafter, we use 
β ∫ 2/3b instead of b. Other important quantities that characterise an avalanche are the initial stress 
σ σ≡ ( )ˆ t1  and the stress drop σ σ σ∆ ≡ ( ) − ( )ˆ ˆt t1 2 . The definition of the shear stress and other technical 
remarks on avalanches are described in the Methods section.

Magnitude-frequency distribution.  First, we discuss the nature of the avalanche magnitude-frequency 
distribution with respect to the two control parameters, the shear rate γ  and the volume fraction φ. 
Figure 3a,b show these distributions at several shear rates for φ =  0.644 and φ =  0.650, respectively. Both 
parameters control the shape of the magnitude-frequency distribution. For example, one can observe a 
break in scale-invariance for high shear rates at low volume fraction (φ =  0.644 and γ = −

 10 5 in Fig. 3a). 
Similarly, characteristic-size distribution (i.e, peaked at a single magnitude) are observed for high volume 
fraction (Fig.  3b). However, the distribution is independent of the shear rate below a characteristic γ
-value, which may be interpreted as the inverse of the structural relaxation time. Not surprisingly, this 
threshold value is a decreasing function of the volume fraction. In the volume fraction range investigated 
here, it is approximately 10−6 for φ =  0.644 (Fig. 3a) and 10−8 for φ =  0.650 (Fig. 3b). Hereafter, we dis-
cuss such rate-independent behaviours by choosing sufficiently low shear rates.

Figure  3c shows rate-independent magnitude-frequency distributions at several volume fractions. 
They may be regarded as the GR law in the proximity of a critical volume fraction (φ ≃  0.644), whereas 
they no longer obey the GR law at higher volume fractions. At much lower volume fractions (φ <  0.64), 
we can hardly obtain a sufficient number of avalanches that ensures statistical significance. It should be 
noted that the β-value in the proximity of a critical volume fraction is sensitive to the minute changes in 
volume fraction. The β-value is a decreasing function of the volume fraction ranging from 0.47 to 0.78. 
We obtain the smallest value (0.47) at the largest volume fraction (φ =  0.645) and the largest value (0.78) 

Figure 2.  Typical time series of the elastic energy for a constant shear rate γ = −


10 7 and different 
volume fraction φ: (top) φ =  0.630, (middle) φ =  0.644, (bottom) φ =  0.650. As shown by the normalization 
constant of the vertical axes, the total energy and the energy releases explore different ranges of magnitude 
according to volume fraction. Inset in the middle panel shows how we estimate the energy release associated 
with a single avalanche.



www.nature.com/scientificreports/

4Scientific Reports | 5:12280 | DOI: 10.1038/srep12280

at the smallest volume fraction (φ =  0.642). The β-value at intermediate volume fractions (φ =  {0.643, 
0.644}) is approximately 0.64. This range of values is comparable to that of earthquakes4 for which the 
β-value varies from 0.50 along normal faults (i.e., extensional regime, low stress) to 0.73 along reverse 
faults (i.e., compressional regime, high stress).

We remark that distribution functions of other quantities also obey power laws. Among them, we find 
that the distribution functions of the avalanche duration, t2 −  t1, exhibit power-law tails, the exponent 
of which is approximately 3.0 irrespective of the volume fraction. We also find that the exponent for the 
stress drop distribution is twice larger than that for energy drop.

As similar power law behaviours have been observed in many particulate systems, it is interesting to 
compare the present result with other studies on sheared granular matter. Actually, a range of β-value 
have been obtained: 0.36 to 0.9513, 0.82 to 0.8914, and 1.015 have been reported. On the other hand, the 
GR law is not observed in an experiment that is conducted at lower volume fractions16. All these behav-
iours are consistent with the present result, where the β-value depends on both the volume fraction and 
the stress level. Thus, the β-value should not be an analogue for critical exponents. Some studies also 
report similar β-value variations17–19.

As an evidence of such non-universality, one can further illustrate a wide range of β-values obtained 
in various amorphous systems23–30. In a fracture experiment32 and a frictional system33, the β-values are 
also found to be sensitive to control parameters. There may exist many unknown ingredients that control 
the β-value, and further investigation is required for the unified understanding of all these exponents in 
general amorphous systems.

To discuss the effect of shear stress on the β-value, we introduce the shear stress σ at the beginning 
of an event as an additional argument to the magnitude-frequency distribution. Then, P(M, σ) is the 
conditional probability of observing a magnitude M avalanche under the (global) shear stress value σ. 
For convenience, σ is integrated in a certain interval Si ∫ [10−i/2, 10−i/2+0.5] (i =  {1, 2, ···, 9}). Thus, we 
obtain the following distribution function: ∫ σ σ( ) = ( , )P M P Mdi Si

. Figure 4a shows the behaviours of 
Pi(M) at φ =  0.643. We can see that the probability of observing a larger avalanche increases as the shear 
stress increases. More importantly, the distribution function at each stress level develops a power-law tail 
with a β-value, which is a decreasing function of the shear stress (Fig. 4b). We confirm that this stress 
dependence is independent of the volume fraction in the range 0.642 ≤  φ ≤  0.645. In addition, the shear 
stress dependence of the β-value is qualitatively the same as that in rock fracture experiments7.

Aftershock statistics and the Modified Omori Law.  Second, we can also study time series of ava-
lanches from our simulations to take them as analogues for mainshock-aftershocks sequences. Unlike the 
magnitude-frequency distribution, and despite the systematic occurrence of aftershocks in seismogenic 
areas, there are only few examples of such mainshock-aftershocks sequences in amorphous systems9,14. 
Triggered events may be difficult to distinguish from other events or simply too rare in individual 
sequences to exhibit a specific decay rate. Here, we use stacks of aftershocks to capture signals over 

Figure 3.  Avalanche magnitude-frequency distributions: (a) for a volume fraction φ =  0.644 and three 
shear rate values, γ ∈ , ,− − −


[10 10 10 ]5 6 7 . (b) for a volume fraction φ =  0.650 and three shear rate values, 

γ ∈ , ,− − −


[10 10 10 ]7 8 9 . (c) for several volume fraction values at low shear rate, γ = −


10 7 for φ ≤  0.645 and 
γ = −


10 8 for φ >  0.645.
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more than two decades in time. Following geophysical studies5,34,35, the definitions of mainshocks and 
aftershocks as well as the declustering technique are described in Fig. 5 and in the Methods section.

Figure 6a shows the aftershock rates with respect to the time τ from the mainshock for several ranges 
of mainshock magnitude, which is denoted by MM. The magnitude of aftershocks is denoted by MA. The 
studied ranges of MM and MA-values are chosen so that we have enough events in the numerical output 
to get sufficient statistics. We find that the MOL (Eq. 2) holds with the exponent p ≃  1 irrespective of the 
magnitude range of mainshocks. Figure 6b,c show the dependence of the aftershock rate on the volume 
fraction. We test several volume fractions (φ =  {0.642, 0.643, 0.644, 0.645} and shear rate 
γ = , ,− − −
 {10 10 10 }6 7 8 ) to verify the existence of the MOL irrespective of these parameters. This relax-
ation process, characterised by an initial plateau followed by a power law decay, remains stable across the 
entire parameter space of the model. This is not the case for the GR law (Fig. 3). In addition, the time 
constant c is insensitive to the volume fraction, as shown in Fig. 6b,c.

If aftershocks are triggered by external shear, aftershock statistics may be controlled by the shear strain 
that is applied after a mainshock, τγ . In this case the aftershock decay rate n(τ) must be scaled as τγ( )n . 
Taking the MOL into account, this means that γ∝ / c 1 . However, we confirm that the c-value is inde-
pendent of the shear rate. This indicates that aftershocks are not driven by the additional shear strain 
applied after a mainshock; rather, they are caused by the intrinsic relaxation dynamics. Thus, we do not 
expect aftershocks in the quasi-static shear deformation, in which a system fully relaxes to a stable con-
figuration after an avalanche.

Figure 4.  Dependency of the avalanche magnitude-frequency distribution on the global shear stress. (a) 
The avalanche magnitude-frequency distributions for different ranges of shear stress value, a volume fraction 
φ =  0.643 and a shear rate γ = −


10 7. Events i are classify according to the value of the global shear stress at 

the inititation of the avalanches (See text for the exact ranges of shear stress value). (b) The slope of the 
magnitude-frequency distribution with respect to the global shear stress. The β-value is a decreasing 
function of the global shear stress.

Figure 5.  The declustering method to select mainshock and aftershocks. We consider two non-
overlapping magnitude ranges for mainshocks ,M M[ ]min

M
max
M  and aftershocks ,M M[ ]min

A
max
A . A magnitude 

∈ ,M M M[ ]min
M

max
M  event occuring at time tM is selected as a mainshock if there is no larger event in the 

time interval [tM −  Δ T; tM +  Δ T]. All magnitude ∈ ,M M M[ ]min
A

max
A  events in the time window [tM, 

tM +  Δ T] are selected as aftershocks (see also the Methods section.)
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Next, we analyse how the time constant c depends on the magnitude of the shear stress. We define 
for aftershocks the stress range [σmin, σmax] and select only aftershocks that belong to this stress range 
and the magnitude range ,M M[ ]A

min
A

max . The aftershock rates are shown in Figure 7a, in which the MOL 
(with p =  1) holds clearly and c is a decreasing function of shear stress. We estimate the c-values by fitting 
the data with A/(τ +  c) using the maximum-likelihood method. As shown in Fig. 7b, the c-value has a 

Figure 6.  The aftershock decay rate. (a) Occurence rate of magnitude MA ∈  [1, 3] aftershocks for different 
mainshock magnitude ranges and a volume fraction φ =  0.644. The dashed line is proportional to 1/t (i.e., 
the Omori Law). (b) Occurence rate of MA ∈  [1, 3] aftershocks for different volume fractions and magnitude 
MM ∈  [3, 4] mainshocks. (c) Occurence rate of MA  ∈  [2, 4] aftershocks for different volume fractions and 
magnitude MM ∈  [4, 5]. In all cases, the shear rate γ = −


10 7 and individual aftershocks are stacked according 

to their main shock times to compensate for the small number of events in each sequence. There are at least 
10 mainshocks and 1000 aftershocks in each sequence. Note the time delay before the onset of a power-law 
aftershock decay rate.

Figure 7.  Dependency of the aftershock decay rate on the global shear stress. (a) Occurence rate of 
MA ∈  [1, 3] aftershocks for different ranges of shear stress value and a volume fraction φ =  0.644. Aftershocks 
i ∈  {0, 1, 2, 3} are classify according to the global shear stress value σi ∈  [exp(i −  10), exp(i −  9)] at the 
inititation of the avalanches. The time delay before the onset of the power-law decay rate is systematically 
decreasing with the level of stress (i.e., an increasing i-value). (b) Negative dependence of the c-value on 
the global shear stress. Circles: φ =  0.644, MM ∈  [3, 4], and MA ∈  [1, 3]; Squares: φ =  0.645, MM ∈  [3, 4], and 
MA ∈  [1, 3]. Diamonds: φ =  0.644, MM ∈  [2, 3], and MA ∈  [1, 2].
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negative dependence on the shear stress. We confirm this stress dependence for two volume fractions 
(φ =  {0.644, 0.645}) and for two magnitude ranges (MM ∈  [3, 4], MA ∈  [1, 3] and MM ∈  [4, 5], MA ∈  [2, 4]). 
This negative shear-stress dependence of the c-value for aftershocks is consistent with the trend inferred 
from seismological observations5,34,35.

Discussion and conclusion
Many systems exhibit crackling noise behaviours that share common properties with earthquake sta-
tistics36. However, none of them as yet been able to systematically capture the dependence of both the 
GR law and the MOL on the level of stress5. Here, we have not only shown that these two fundamental 
laws of statistical seismology are relevant to avalanches in sheared granular matter, but also they have 
common dependence on the level of stress.

Concerning the GR law, which is commonly observed in a wide range of materials under different 
conditions from laboratory experiments to the field, we find scale invariance in the model only for a nar-
row range of volume fraction (φ ≃  0.644). This does not contradict the previous studies, most of which 
involve different boundary conditions. For example, under constant pressure condition13,15, a system 
can be self-organised to a critical volume fraction at sufficiently low shear rates. Additionally, in some 
experiments conducted at constant volume fractions, the GR law hardly approximates avalanche-size 
distributions if the volume fraction is lower than a critical value16,17. In contrast, the GR law holds for 
earthquakes irrespective of the details: tectonic setting, depth, rock type, and loading rate. We do not 
have a clear answer about this difference. Nevertheless, the fact that our model can produce self-similar 
scalings over more than five orders of magnitude at the critical volume fraction is sufficient to differen-
tiate between the GR law and other types of distribution. Hence, we can explore the sensibility of this 
power-law regime to different conditions, especially to shear stress. In addition, when the GR law is not 
respected, a characteristic avalanche size emerges, a behaviour that may be compared to the characteristic 
earthquake distribution37,38.

Concerning aftershocks, we have shown that similar relaxation process may occur in sheared gran-
ular media and in the seismogenic crust. In addition, the negative stress dependences of the time delay 
before the onset of the power-law decay rate is the same as the one observed in real seismicity. This stress 
dependence is also coincident with the behaviour of some simple models based on a frictional constitu-
tive law39, damage mechanics34, or static fatigue40,41, despite the absence of such physical processes in our 
granular model. A quantitative result in the present study, that the time constant c in MOL is an expo-
nentially decreasing function of the applied shear stress, should be tested in more realistic and complex 
systems that are relevant to seismogenic zones as well as various industrial situations.

Methods
Simulation model.  Our three-dimensional granular system is made of frictionless spheres with 
diameters of d and 0.7d (the ratio of populations is 1:1). For the sake of simplicity, we assume that the 
mass m of these particles are the same. We limit ourselves to a rather small-size system (N =  1500) for 
computational efficiency. Using the radius and the position of particle i, which are denoted by Ri and ri, 
respectively, the force between particles i and j is written as ζ= 

 − ⋅ 
khF n r nij ij ij ij ij. Here rij =  ri −  rj, 

nij =  rij/|rij|, and hij =  (Ri +  Rj) −  |rij| is the overlap length. If Ri +  Rj <  |rij|, particles i and j are not in con-
tact so that the force vanishes.

Throughout this study, we adopt the units in which d =  1, m =  1, and k =  1. We choose ζ =  2.0, which 
corresponds to the vanishing coefficient of restitution. A constant shear rate γ  is applied to the system 
through the Lees-Edwards boundary conditions42. Note that under these boundary conditions the system 
volume is constant. Thus, the important parameters are the shear rate γ  and the packing fraction φ.

To set-up the initial condition, particles are randomly distributed in a simulation box with zero 
shear stress. When the kinetic energy has relaxed to zero, a constant shear rate is applied. To avoid 
transient behaviours, we concentrate only on the data for which the the total strain is greater than 
100%. Simultaneously, we verify that a steady state of uniform shear rate and uniform volume fraction 
is achieved. Here, we investigate such uniform steady states only.

Definition of avalanche.  The beginning of an avalanche is taken at time t =  t1 at which the total 
elastic energy E(t) starts decreasing; i.e., ( ) =E t 01  and ( ) <Ë t 01 . Symmetrically, the end of an event is 
the time t =  t2 at which ( ) =E t 02  and ( ) >Ë t 02 . We also calculate the so-called global shear stress σ( )ˆ t  
using the virial43. In analysing the time series, we did not set the noise threshold. Namely, any small 
increase in energy leads to the termination of an avalanche.

For simplicity, the spatial information of avalanches is discarded. In this case, one might overlook 
simultaneous avalanches occurring at different places. However, this is unlikely because the present sys-
tem is small (i.e. the characteristic length is approximately of 9d).

Definitions of mainshocks and aftershocks.  Because aftershocks result from changes of stress 
induced by a mainshock, we disregard the smaller avalanches for which M <  0 and consider ranges of 
magnitude for mainshocks ,M M[ ]min

M
max
M  and aftershocks ,M M[ ]min

A
max
A . In practice, a magnitude 
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∈ ,M M M[ ]min
M

max
M  event occurring at time tM is not a mainshock if there is at least one avalanche of 

the same or higher magnitude range in the time interval [tM −  Δ T, tM +  Δ T]. Thus, we only consider 
isolated mainshocks and, taking sufficiently large Δ T-values, we also avoid overlapping aftershock 
sequences that belong to different mainshocks. Then, all <M Mmin

M  avalanches that follow a magnitude 
MM mainshock within the time interval [tM, tM +  Δ T] are regarded as aftershocks. Finally, each after-
shock is characterised by its magnitude MA and the elapsed time τ since the mainshock.

In order to reduce artefacts related to event detectability, we disregard larger magnitude range for 
mainshocks and smaller magnitude range for aftershocks. In addition, the magnitude range of main-
shocks are chosen within the intermediate magnitude range in which the GR law holds. Using this strict 
methodology, we considerably reduce the number of events in our artificial catalogues. Therefore, in 
all ranges of magnitudes, aftershocks are stacked with respect to the time of their mainshocks to finally 
end-up with a single aftershock sequence.
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