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S U M M A R Y
In order to study fine scale structure of the Earth’s deep interior, it is necessary to extract
generally weak body wave phases from seismograms that interact with various discontinuities
and heterogeneities. The recent deployment of large-scale dense arrays providing high-quality
data, in combination with efficient seismic data processing techniques, may provide important
and accurate observations over large portions of the globe poorly sampled until now. Major
challenges are low signal-to-noise ratios (SNR) and interference with unwanted neighbouring
phases. We address these problems by introducing scale-dependent slowness filters that pre-
serve time-space resolution. We combine complex wavelet and slant-stack transforms to obtain
the slant-stacklet transform. This is a redundant high-resolution directional wavelet transform
with a direction (here slowness) resolution that can be adapted to the signal requirements. To
illustrate this approach, we use this expansion to design coherence-driven filters that allow us
to obtain clean PcP observations (a weak phase often hidden in the coda of the P wave), for
events with magnitude Mw > 5.4 and distances up to 80◦. In this context, we then minimize a
linear misfit between P and PcP waveforms to improve the quality of PcP–P traveltime mea-
surements as compared to a standard cross-correlation method. This significantly increases
both the quantity and the quality of PcP–P differential traveltime measurements available for
the modelling of structure near the core–mantle boundary. The accuracy of our measurements
is limited mainly by the highest frequencies of the signals used and the level of noise. We
apply this methodology to two examples of high-quality data from dense arrays located in
north America. While focusing here on body-wave separation, the tools we propose are more
general and may contribute to enhancing seismic signal observations in global seismology in
situations of low SNR and high signal interference.

Key words: Time-series analysis; Wavelet transform; Spatial analysis; Mantle processes;
Body waves.

1 I N T RO D U C T I O N

Seismologists interested in the Earth’s deep structure use measure-
ments of traveltimes and amplitudes of a variety of short-period
teleseismic body wave phases that interact with discontinuities in
different parts of the mantle and the core. However, typically, a par-
ticular phase type can only be used within a limited distance range
where it is well isolated from other interfering phases. In order to
expand the range of measurements and therefore the sampling of
the Earth’s interior, one can devise waveform modelling approaches
in which observed seismograms are compared to synthetics that al-
ready incorporate the effects of such interferences. This is currently
the trend in the context of global and continental scale tomogra-
phy, where progress has recently been achieved, owing to improved
means of accurately computing the seismic wavefield in the pres-

ence of realistic 3-D heterogeneity using numerical methods (e.g.
Fichtner & Igel 2008; Tape et al. 2010; Lekić & Romanowicz 2011;
Zhu et al. 2012; French et al. 2013). These approaches are however
computationally heavy, increasingly so at short periods, limiting
their current applications to periods longer than 30–40 s, and to
the modelling of phases with relatively high signal-to-noise ratio
(SNR).

Alternatively, array processing techniques have been developed in
order to enhance the signal of weak short-period body-wave phases
and isolate them from unwanted neighbouring phases. While these
techniques have often been developed in the context of communica-
tions, radio astronomy and exploration geophysics, among others,
they are becoming increasingly relevant to global seismology, owing
to the deployment of dense large scale arrays, such as the USArray
of Earthscope or Hi-net in Japan.
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Most studies use data-independent (using prior information only)
array-processing techniques to improve SNR and to isolate coher-
ent signals of weak body-wave phases, through a delay-and-sum
(i.e., slant-stack) approach. These intuitive approaches are impor-
tant to observe weaker signals to improve our understanding of
mantle heterogeneities, topography of main discontinuities, and dy-
namics and evolutions of the core and inner core. For example,
the use of phase-weighed stacks (Schimmel & Paulssen 1997) has
provided observations on the extremely elusive PKJKP phase (valu-
able to model inner-core shear velocity) data from the IRIS/IDA and
GEOSCOPE networks (Deuss et al. 2000), from the Gräfenberg ar-
ray in Germany (Cao et al. 2005) and from Hi-net (Wookey &
Helffrich 2008).

In the context of the study of fine scale structure near the core–
mantle boundary (CMB), Thomas et al. (2002) achieve observa-
tions of the weak PdP phase (P wave reflected at the top of D′ ′, and
closer to P than PcP) with data from the Yellowknife array (19 short-
period seismometers deployed in two lines in area of 20 × 20 km)
using vespagrams (i.e. slant-stacks) and frequency–wavenumber (f–
k) analysis. These PdP observations reveal a discontinuity around
241 km above CMB near the Kamchatka peninsula. Rost & Thomas
(2010) observe PdP and PuP (P wave reflected at the top of an ul-
tralow velocity zone, i.e. ULVZ) at closer epicentral distances (less
than 32◦) using the same array to infer the presence or absence
of an ULVZ. They combine stacks on the theoretical slowness and
backazimuth of PcP to form a source array, a limited kind of double-
array stacking scheme (Scherbaum et al. 1997). Cobden & Thomas
(2013) obtain amplitudes and polarities of PdP and SdS applying
fourth-root slant stacks to small arrays to study the origin of D′ ′

reflections in several regions. Frost et al. (2013) present evidence
of scattered PKP waves at the eastern edge of the African LLSVP
using the Yellowknife array. They use the F-statistic for a variety of
slownesses and backazimuths to achieve higher resolution and in-
coherent noise rejection compared to linear slant-stack approaches.

Within the array-processing literature, a classic much better al-
ternative to data-independent approaches are data-dependent (ro-
bust) Capon beamformers (e.g. Li et al. 2003; Lorenz & Boyd
2005). They define optimum sums in the least-square sense, with
the constraint of keeping the signals of interest intact. Robust Capon
beamformers seek various strategies to overcome uncertainties in
the direction of arrival and in the elements of the array. Alternative
convex optimization approaches have recently been proposed, see
Gershman et al. (2010) for a review. Other techniques used in the
geosciences are parametric methods for spectral estimation such as
MUSIC (Schmidt 1986) and blind-source-separation methods such
as independent components analysis (Hyvärinen & Oja 2000).

A direct application of conventional array-processing approaches
is typically hindered by the low directional discrimination of the
seismometers (e.g. as opposed to telescopes) and the relatively high
interstation distance (in wavelengths) of dense large scale seismic
arrays. When array deployments are dense and close to regular, such
as the ones used in exploration geophysics to obtain high resolution
profiles, tools developed with image processing applications in mind
have proven useful in data-independent approaches.

Radon-based methods project signals to sparser transformed do-
mains where they are enhanced and better separated, and if needed,
they are back-transformed to the original domain. Traditionally used
in exploration for filtering and migration (Yilmaz 2001), in seismol-
ogy they help, for example for mapping upper-mantle discontinu-
ities (Gu & Sacchi 2009). A variety of multiscale transformations
with spatial, directional and frequency selectivity originating from
image processing (e.g. Jacques et al. 2011) are used in similar appli-

cations to help with feature extraction by efficiently concentrating
the information of local plane waves in a few coefficients. For ex-
ample, curvelets, introduced to better capture edge information in
images, have been used for denoising (e.g. Ma & Plonka 2010)
among other applications.

The short time duration of body waves and the uncertainties in
their instantaneous slowness, especially along their codas, hinders
optimal data-dependent approaches. Since our objective is to create
simple and flexible designs with a reduced beamformer complexity,
we here opt for a data-independent strategy built around the slant-
stacklet transform that we introduce in the next section. Originally
designed for close to regular 1-D arrays in the context of exploration
geophysics (Ventosa et al. 2011), we here extend this approach to
more irregular large-scale 2-D seismic arrays.

Next, we illustrate the proposed method in an application to the
case of teleseismic P and PcP waves as observed on the USArray.
Here PcP is a weak phase often hidden in the coda of the P wave, and
generally difficult to isolate. We also introduce a method to estimate
traveltime differences based on the minimization of a linear misfit
between the P and PcP waveforms in order to improve the quality of
PcP–P differential traveltime measurements compared to the widely
used cross-correlation method. We finally apply these tools to obtain
clean PcP–P observations on two events that are representative of
the main practical difficulties, with a special focus on the analysis
of the main sources of bias.

Although we focus on body-wave separation, and in particular
illustrate our approach for the case of P and PcP, as observed on
USAarray, with the ultimate goal of studying CMB topography,
the tools proposed here are generic, and they may prove useful in
applications where signal can be isolated or enhanced using high-
resolution slowness filters.

2 T H E S L A N T - S TA C K L E T T R A N S F O R M

Our purpose is to overcome the challenge in the observation of seis-
mic waves with low SNR and in the presence of interference from
other signals. Here noise is a random process while interference
(i.e. other signals or coherent-noise) is not. We conventionally deal
with a low SNR through stacking, in which case the SNR improves
by

√
N if the signals are identical across all stations and their noises

are independent, Gaussian and of equal power. Observations in low
signal-to-interference ratio (SIR) environments are more challeng-
ing. In the absence of noise, N fairly well-located stations suffice to
separate N uncorrelated signals coming from N different directions.
However, their often finite SNR, close direction of arrival, and high
cross-correlation hinder their separation and increase the number
of stations required to minimize their cross-interference.

Body waves are finite-duration broad-band signals with distinct
polarization, traveltime, slowness and waveform. We exploit the fact
that teleseismic waves can be locally approximated by plane waves,
in order to separate them according to their instantaneous slowness.
The slant-stacklet transform approach we introduce here is closer
in spirit to other multiscale directional frames developed in image
processing in the context of wavelet analysis (e.g. Jacques et al.
2011). Our main distinctive design goal is to promote flexibility in
the choice of optimal-resolution compromises in analysis operators
that expand wavefields in slowness. Scale diversity helps in control-
ling slowness resolution in different frequency bands. Compared to
non-redundant approaches, redundant expansions provide a much
greater flexibility, in return for a higher computational cost, and
often lead to algorithms able to retrieve signals with a lower SNR
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and SIR. This redundancy enables the slant-stacklet transform to
achieve extremely-adaptable resolution compromises, and reduces
the complexity of filters with a much higher slowness resolution. In
particular, we distinguish two adaptive-filtering schemes depending
on the cross-interference among signals in the transformed domain.
In Section 2.2, cross-interferences can be considered negligible and
a direct selection thus suffices; while in Section 2.3 they are not,
and more involved synthesis operations are required. The design of
the actual filters is often a tedious task due to the non-stationarity of
the seismic waves and the high dimensionality of the transformed
domain. In Section 2.4, we overcome this practical drawback by
introducing signal-adapted filters based on instantaneous slowness
measurements.

2.1 Analysis

The slant-stacklet transform is conceptually a combination of local
slant-stack transform (LSST), for example Ventosa et al. (2012b),
and the continuous wavelet transform (CWT). We write the local
slant-stack decomposition of a wavefield u(t, x) as a weighted sum
around a location xc along a set of wave fronts with slowness p:

vp,xc (τ ) =
∫ ∞

−∞
a(x − xc)u[τ + pT (x − xc), x] dx . (1)

Here pT denote the transpose p vector. The time-space trajectory of
the wave front with a slowness p is t = τ + pT(x − xc), where τ is
delay, x − xc distance between locations x and xc, and x, xc, p ∈ R

N .
The spatial-weighting function a(x) is smooth and has unit area.

The CWT of u(t, x) along the time axis and is defined as:

W ux (τ, λ) =
∫ ∞

−∞
u(t, x)

1√
λ

ψ∗
(

t − τ

λ

)
dt, (2)

where λ is scale and ψ(t) is the mother wavelet, conventionally, a
zero-mean unit-energy function. ψ∗(t) denotes the complex conju-
gate of ψ(t). Then the slowness expansion of Wux(τ , λ) equivalent
to eq. (1) is:

Wvp,xc (τ, λ) =
∫ ∞

−∞
aλ(x − xc)W ux [τ + pT (x − xc), λ] dx, (3)

where a(x) may be function of λ and xc.
CWT is translation invariant [i.e. a translation on u(t) results in

a translation on Wu(τ , λ)]. This property enables us to include the
delay component that varies with distance, pT(x − xc) in eq. (2), in
the mother wavelet as an extra delay term,

Wvp,xc (τ, λ) =
∫ ∞

−∞

∫ ∞

−∞
u(t, x)φp,λ(t − τ, x − xc) dt dx (4)

with

φp,λ(t, x) = aλ(x)
1√
λ

ψ∗
(

t − pT x

λ

)
. (5)

The family of functions φp, λ(t, x) controls the resolution of the
slant-stacklet expansion in the time, scale, space and slowness
axes (Appendix A). The directional mother wavelet φp(t, x) re-
sembles a localized planar wavefield with a slowness p, instead of
the 1-D function employed in eq. (2). This wavelet oscillates in
the time dimension and remains smooth along the wave front with
slowness p.

In summary, the slant-stacklet transform expands a time-space
wavefield into a time-scale space-slowness domain, where space
and slowness are real vectors with no more than three components.

2.2 Filtering and synthesis: separable signals

A synthesis operator derived from the frame inequality eq. (B1) is
the pseudo-inverse or dual frame. The analysis frame and its dual
frame are equal when the frame is tight. When these operators are
used, filtering operations, for example denoising, are conventionally
perform using threshold functions (Mallat 2009). Our interest is
separating signals that can be modelled locally as plane waves, from
other signals and noise. Instead of following the pseudo-inverse
approach, we opt to exploit previous knowledge on these signals to
be able to define synthesis operators and high resolution slowness
filters specifically adapted for them. In particular, we define punctual
synthesis operators that do not use information from neighbouring
stations, in contrast to the dual frame.

Let u denote R overlapping plane waves of slowness qr,

u(t, x) =
R∑

r=1

ur

(
t − qT

r x
)
. (6)

and its slant-stacklet transform Wvp,xc (τ, λ). The most simple in-
verse operation we can write when these signals are well separated
in slowness is probably the ‘lazy inverse’. In the previous section,
we introduce the slant-stacklet transform, eq. (4), as a combination
of the LSST, eq. (1) and the CWT eq. (2). Therefore, when signals
are clearly separated in slowness in the transform domain (equiva-
lently, with the LSST alone), we can select their components at each
slowness and space locations (e.g. p = qr and xc = x to estimate ur),
and apply the inverse wavelet transform to the result. This is:

ur (t, x) = 1

Cψ

∫ ∞

0

∫ ∞

−∞
W uqr ,x (τ, λ)

1√
λ

ψ

(
t − τ

λ

)
dτ

dλ

λ2
(7)

where

Cψ =
∫ ∞

0
|ψ̂(ω)|2 dω

ω
< ∞ (8)

is called the wavelet admissibility condition. Although sub-optimal,
this constitutes a fast and trivial solution that suffices in applications
where spatial-resolution constraints allow the use of an array aper-
ture large enough to clearly separate each signal in the transformed
domain.

The filter above applied to the R overlapping plane waves of
eq. (6) writes in frequency:

v̂p(ω, xc) =
R∑

r=1

ĥ(ω, qr − p)ûr (ω)e− j xcqr ω, (9)

where the transfer function of the filter is:

ĥ(ω, qr − p) = 1

Cψ

∫ ∞

0
âλ[(qr − p)T ω]|ψ̂(λω)|2 dλ

λ
, (10)

where vp is the estimated signal. This filter preserves the spectrum
of signals with slowness qr because we define â(0) = 1 and thus
ĥ(ω, qr − p)|p=qr = 1. However, signals with close slowness are
not fully rejected because â is not impulsive, that is the aperture of
the array is finite and hence also its slowness resolution.

The main parameter controlling slowness resolution is the scaling
function of a with λ, f(λ) (Appendix A). Two particular cases are of
interest, no scaling and scaling proportional to λ.

2.2.1 No spatial-weighting scaling

When no scaling is used, aλ(x) = a(x), ĥ(ω, qr − p) =
â[(qr − p)T ω] equals the transfer function of the p–f transform
(Forbriger 2003). This is equivalent to the LSST (Ventosa et al.
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2012b), where â[(qr − p)T ω]|p=qr = 1, and for any other slowness
âλ[(qr − p)T ω]|p 	=qr is a low-pass filter with a cut-off frequency
proportional to 1/(qr − p).

2.2.2 Spatial-weighting scaling proportional to λ

The transfer function of the filter is independent of frequency when
the scaling of the spatial-weighting function is proportional to scale,
aλ(x) = λ−1a(λ−1x). In this case, eq. (10) writes,

ĥ(ω, qr − p) = 1

Cψ

∫ ∞

0
â[(qr − p)T λω]|ψ̂(λω)|2 dλ

λ
. (11)

Applying the change of variables b = λω, db = ω dλ, the frequency
dependence of the transfer function vanishes:

h(qr − p) = 1

Cψ

∫ ∞

0
φ̂∗

qr −p(b)ψ̂(b)
db

b
= Cφqr −p ,ψ

Cψ

, (12)

where we define φ̂∗
qr −p(ω) = â[(qr − p)T ω]ψ̂∗(ω) to clearly distin-

guish the analysis and synthesis operators, φ and ψ respectively.
Note that Cφqr −p ,ψ equals the wavelet admissibility coefficient of
a wavelet transform using different analysis and synthesis mother
wavelets. This reduces to Cψ , eq. (8), when p = qr.

2.3 Filtering and synthesis: non-separable signals

Apart from requirements of optimal spatial-resolution, slowness and
waveform variations along signal wave fronts are major constraints
on the maximum aperture of the weighting function due to the
plane wave assumption. Limited apertures often impede defining a
slant-stacklet expansion capable of fully separating signals in the
transformed domain, and consequently hinders the design of filters
to isolate them. We can still separate close signals in these scenarios,
despite their cross-interference, as long as we are able to distinguish
their individual maxima.

We improve the slowness selectivity of filters built with the lazy
inverse significantly, keeping the framework of the slant-stacklet
expansion, by modelling the cross-interference of plane waves. We
see in eq. (12) that if aλ(x) scales proportionally with λ, f(λ) = λ,
a wavefield composed by R overlapping plane wave of slowness qr

expands in slowness as:

vs(t, xc) =
R∑

r=1

ur (t − qr xc)h(qr − ps). (13)

where ps is discretized slowness and s ∈ Z the slowness index
(Appendix B). This allows us to improve the slowness resolution of
filters further from the slant-stacklet transform limitations, through
a deconvolution operation.

In general, cross-interference in slowness changes with scale
when f(λ) 	= λ and, to a lower extent, with delay. We consider in
the following the delay dependency negligible in practice, to focus
on the scale dependency. As a result we approximate the wavefield
expansion in slowness and scale as:

Wvs,xc (τ, λ) 

R∑

r=1

W ur (τ − qr xc, λ)h(λ, qr − ps), (14)

modelling the cross terms (including the synthesis operation) in
slowness at each scale as:

h(λ, qr − ps) = 1

λ2Cψ

∫ ∞

−∞
φ∗

λ(τ, qr − ps)ψλ(τ ) dτ. (15)

Similar to (eq. 12), φ and ψ are the analysis and synthesis operators,
respectively. However here the scaling of φ is not proportional to λ

and thus eq. (15) does not simplifies.
Filters based on this cross-interference estimation can be written

as weighted sums in slowness,

W yxc (τ, λ) =
∑

s

f (τ, λ, ps)Wvs,xc (τ, λ), (16)

where f denotes the filter to design, and W yxc (τ, λ) the filtered signal
in the time-space-scale domain. We then use the inverse wavelet
transform to obtain y(t, xc) back in the time-space domain.

Let us assume the slownesses of R signals are different and
known, and let gr(τ , λ) be the imposed gain at each slowness,
which may vary according to τ , λ and xc. Then any filter f satisfying
eq. (16) has to satisfy the following R equations,

S−1∑
s=0

f (τ, λ, ps)h(λ, qr − ps) = gr (τ, λ) ∀r ∈ [1, R]. (17)

Equivalently, in vector notation,

H(λ)f(τ, λ) = g(τ, λ) (18)

where

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hλ(q1− p1) · · · hλ(q1− ps) · · · hλ(q1− pS)

...
...

...

hλ(qr − p1) · · · hλ(qr − ps) · · · hλ(qr − pS)

...
...

...

hλ(qR − p1) · · · hλ(qR − ps) · · · hλ(qR − pS)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

is a rectangular matrix that varies with λ, f a vector of filter coeffi-
cients that are functions of τ and λ, and g a vector of gain constraints
in slowness.

The number of constraints R is in practice much smaller than
the number of slowness components S. We thus have an underdeter-
mined system of equations with an infinite number of solutions. The
stability of these solutions for a given hλ(p) is directly determined
by the slowness differences of contrasting gain conditions on g. As
these slowness differences get smaller, H becomes closer to singu-
lar, and hence smaller inaccuracies on H lead to larger errors on the
filter solution. The ability to separate two close signals is limited
ultimately by the approximation made in modelling the cross terms
in eq. (15). Next, we focus on two of these solutions, the minimum
noise and the minimum interference solutions.

2.3.1 Minimum noise

When the slowness of all signals is well-known, the least-square
solution leads to a minimum noise level. The general solution f(τ, λ)
with minimum energy under the R constraints of eq. (18),

min
f(τ,λ)

fT (τ, λ)f(τ, λ) with H(λ)f(τ, λ) = g(τ, λ), (20)

is a function of the noise distribution (see, e.g. Kay 1993). The
particular solution for white Gaussian noise is the pseudo-inverse:

f(τ, λ) = [
HT (λ)H(λ)

]−1
HT (λ)g(τ, λ). (21)

As long as the system of equations defined in eq. (20) is not close
to singular, this solution leads to smooth filters that employ all the
slowness components available.
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2.3.2 Minimum interference

In the previous solution, we implicitly classified all signals within a
seismic wavefield into two clearly separate groups: coherent signals
and non-coherent signals or noise. We have prior information on
the number and instantaneous slowness of the first ones, and on
the distribution of the second ones. In scenarios where this sepa-
ration is clear, we measure signals with an optimal SNR; however,
seismic wavefields are usually very complex, and this separation is
frequently not very clear.

Among relatively strong coherent signals and background noise,
there exist a large number of much weaker and less coherent signals,
for example those due to scattering. This set of signals consists of
many waves with very complex travel paths, traditionally referred
to as coherent noise; but also includes waves with long travel paths
and/or high attenuation. We consequently interpret coherent noise
as a group of coherent signals for which the exact number and
individual slownesses are unknown.

A simple method to reduce the effects of coherent noise is to focus
exclusively on the slowness components where coherent signals
are expected to be stronger. With this constraint, the system of
equations defined in eq. (17) reduces to a full system of equations
with, typically, a single solution,

f(τ, λ) = HR
−1(λ)g(τ, λ), (22)

where HR is formed by the subset of columns of H satisfying ps = qr

with r ∈ [1, R]. This is

HR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · hλ(q1−qr ) · · · hλ(q1−qR)

...
. . .

...
...

hλ(qr −q1) · · · 1 · · · hλ(qr −qR)

...
...

. . .
...

hλ(qR −q1) · · · hλ(qR −qr ) · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where hλ(0) = 1. Note that this is equivalent to the lazy inverse
shown in Section 2.2 for negligible off-diagonal elements.

2.4 Signal adaptation

To design minimum noise or interference filters, previous knowl-
edge about the slowness of the signals is required to set g(τ, λ)
appropriately. When prior information is not accurate, we can esti-
mate slowness using any method, for example Bear & Pavlis (1997).
A trivial approach is to search for energy maxima of the slant-
stacklet expansion close to the expected slowness. This approach
often poses problems because of the wide dynamic range of the
energy of seismic signals and of variations of the noise level that
hinder the definition of thresholds able to distinguish signals from
noise. Alternatively, we can seek solutions more closely related to
SNR or to waveform similarity along the wave front, while reduc-
ing the dynamic range of the observations. Coherence estimators
are useful in this context. They measure similarity of two or more
signals, with values within the range of [0, 1] or [−1, 1], typically.

In particular, to assess slowness, we search for coherency maxima
of plane waves in the transformed domain. We basically replace the
spatial-weighting function a(x) used in the slant-stacklet expansion,
eq. (4), with a coherence estimator. Then, we search for coherency
maxima close to the expected theoretical values. With this approach,
we achieve slowness maxima defined directly by the quality or
clearness of the signal, and not by its local power, much more
polluted by noise.

To measure instantaneous slowness, we opt for coherence es-
timators for analytic signals because they are independent of
the instantaneous phase, see appendix of Taner et al. (1979).
Equivalent coherence estimators for real signals require smooth-
ing, and thus sacrifice time-resolution, to avoid zero-crossing un-
certainties. Coherence estimators for analytic signals do not have
this problem, even when no smoothing is applied, as long as the
envelope is not close to zero.

In summary, our master pieces to assess slowness are: (1) the
analytic wavelet transform, (2) coherence estimators for analytic
signals and (3) algorithms to search and track slowness maxima.

A wavelet transform is called analytic if the negative frequencies
of the mother wavelet are zero, ψ̂a(ω) = 0 ∀ω < 0, or equiva-
lently, Real(ψa(t)) = ψ(t). The wavelet transform of a wavefield
u(t, x) is then:

W u p,xc (τ, λ, x) =
∫ ∞

−∞
u(t, x)

1√
λ

ψ∗
a

[
t − τ − pT (x − xc)

λ

]
dt,

(24)

where ψ∗
a (t − pT x) is the analytic mother wavelet. As in eq. (3), the

additional factor pT(x − xc) plays the role of an independent delay
term that accounts for the relative traveltime difference between x
and xc of a wavefield with slowness p.

A diversity of coherence estimators for analytic signals are avail-
able in the literature (e.g. Taner et al. 1979; Schimmel & Paulssen
1997). The main differences among them originate in the particular
definitions of what is similar and what is not, and the properties
of the signal domain chosen. Nonetheless, many of them are in-
timately related. We define similarity as a measure of how close
the waveforms of two or more signals are, independently of their
amplitude. We accordingly employ coherence estimators based on
normalized cross-correlations or phase stack, instead of energy ra-
tios such as semblance. We specifically apply coherence estimators
along x around xc, with an optional smoothing along τ in low SNR
settings.

Let us define si [k] = W u p,xc (τ + k, λ, xc + xi ). A natural coher-
ence estimator based on cross-correlations calculates the mean of
geometrically normalized cross-correlations between all the pairs
at zero delay (this is τ for si[k]):

CGNCC = 2

M (M − 1)

M∑
i=1

M∑
j>i

ri j√
rii r j j

, (25)

where M is the number of stations, i and j signal indices, rij cross-
correlation between si and sj at zero delay, and rii and rjj their
auto-correlations. CGNCC ∈ [−1/(M − 1), 1], fully coherent signals
attain the maximum value, while totally incoherent signals give
zero. The phase-stack coherence estimator (Schimmel & Paulssen
1997) is a much faster alternative that can be expressed as:

Cv
PS =

∑
k

∣∣∣∣∣
1

M

M∑
i=1

si [k]

|si [k]|

∣∣∣∣∣
v

, (26)

where M is the number of stations used,
∑

k smoothing along the
time dimension, and v a power factor accounting for different means.
CPS ∈ [0, 1], similarly to CGNCC, Cv

PS = 1 for fully coherent signals,
and Cv

PS = M−v for the totally incoherent ones. Both estimators
are independent of the relative amplitude of the signals, the key
difference between them is in the weighting of each signal in time.
CGNCC promotes signals along time according to their envelope,
while CPS is totally independent of their instantaneous amplitude.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/201/1/207/729649 by guest on 18 February 2022



212 S. Ventosa and B. Romanowicz

Figure 1. (a) Velocity data from an earthquake off the east coasts of Kamchatka (2010/07/30 3:56:19.2 UTC, Mw = 6.3, depth = 30.3 km). Instrument response
is removed and data are bandpass filtered from 1 to 60 s. (b) Epicentral distances (blue lines) and location of the stations with good quality signal shown in
(a) (red triangles) and not shown (black triangles).

To locate slowness maxima, we first roughly define stop and pass
bands in the transformed domain based on previous information on
the signals. Then, within each of these bands, we search for the n
highest maxima in slowness at each time-scale-space location above
a predefined threshold. For stability reasons in the synthesis opera-
tion, we impose a minimum slowness separation between maxima
of opposite bands, according to the maximum slowness resolution
we can achieve after the inverse operation.

The above coherence estimators are more effective with well-
separated signals in slowness. As signals get closer in slowness,
strong signals hinder the detection of overlapping weaker signals
(even when their separation would still be possible), because they
behave as a powerful noise that masks weaker signals. In these
scenarios, we keep using coherence estimators to locate most of the
signals, but we impose gain constraints in g(τ, λ) according to prior
information on the instantaneous slowness of the weakest signals.

3 A P P L I C AT I O N T O P A N D P c P
I S O L AT I O N

Fig. 1 shows raw velocity time-series with the instrument response
removed, for a shallow earthquake off the east coast of Kamchatka
(Mw = 6.3, depth = 30.3 km) observed at a subgroup of 119 stations
(BHZ channel) located in north America (mostly from USArray),
from a total of 640 stations with good quality signal selected from
the IRIS database sampling the CMB under the Gulf of Alaska. For
more information on the scale structure in this area (see e.g. Vidale
& Benz 1992; Castle & van der Hilst 2000; Rost & Revenaugh
2004). We distinguish the direct P wave a few seconds after its the-
oretical arrival time. The core-reflected PcP can be distinguished
only in distance windows where other signals are weaker, for exam-
ple from 65◦ to 70◦ and less clearly from 55◦ to 60◦. We can also
observe a rich group of strong P post-cursors and even some weaker
PcP post-cursors. The first main signal after P is probably pP, and
that after PcP is probably pPcP. Indeed, the radiation pattern for
P waves towards USArray is strong for P, PcP and their p depth
phases, but very weak for sP and sPcP. Later signals may be due

to reflections and P-to-s conversions at the Moho and the 410 and
660 km discontinuities in the upper mantle, in view of a time of
arrival of about 20 s after P of the first one, and their similarity with
signals arriving about 35 s after P and later.

The high energy of all these P post-cursors is the main source of
signals that hinder the observation of PcP in this relatively strong
event. The waveform of P is short enough to not overlap with
PcP until epicentral distances closer to 80◦, outside the epicentral
distance range sampled. This is an important problem in stronger
and shallower events with, frequently, a much longer P coda. Back-
ground noise becomes a major problem only for weak events, where
PcP is difficult to appreciate directly, but it may still be possible to
extract PcP waveforms thanks to their high coherence along their
wave fronts.

Two main parameters constrain the minimum aperture needed to
separate overlapping signals: (1) their slowness difference and (2)
the inter-station distance. The slowness difference between P and
PcP decreases as epicentral distance increases, while the station dis-
tribution across the array limits the actual minimum and maximum
aperture we can achieve.

An event with depth of 30.3 km has a predicted slowness differ-
ence for P and PcP, according to AK135, of 2.860 s deg−1 at 60◦,
1.912 s deg−1 at 70◦ and 1.467 s deg−1 at 75◦. We thus need a min-
imum slowness resolution of 3 s deg−1 to distinguish two maxima
in slowness at 75◦ with the non-separable signals assumption (e.g.
Section 2.3). This is about half the slowness resolution needed when
neglecting the cross terms (e.g. Section 2.2), where a full separation
of the signals in the transformed domain is required. Although we
could separate signals using coarse resolution with accurate slow-
ness information on the signals, we constrain the slowness resolution
to twice the slowness difference between P and PcP, to promote the
smoothness of the filters in the slowness axis. Smoothness is of
importance for stability reasons, or somehow equivalently, to keep
the gain of other signals under control at unconstrained slowness.

The minimum aperture is limited by the interstation distance. The
station separation for the USArray is approximately 0.6◦; however,
a constant slowness resolution with period of 3 s deg−1 leads to
apertures as low as 0.3◦ at 1 s using uniform station weighting. To
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Figure 2. Time-slowness sections at a distance of 60.24◦ (TA.H27A) for the data shown in Fig. 1. (a) Amplitude and (b) coherence at a period of 2 s.
(c) Amplitude and (d) coherence at 8 s. Black dots mark the slowness components where we impose gain constraints on the synthesis operation.

avoid these anomalous apertures, we impose a minimum value of
2◦ (aperture at 6 s period), wide enough to enclose 8 stations, and a
maximum aperture of 6.7◦ for practical purposes.

Aliasing in slowness may become problematic at short periods.
The extreme case occurs when the interstation separation equals
their separation in epicentral distance, in the case of USArray this
is about 0.6◦, which would produce aliasing at ±nT/0.6, where T is
period and n ∈ N. This is at ±3.33◦ at a period of 2 s. This aliasing
is reduced in practice for a variety of reasons, for example the
signals have a short duration, arrays are not regularly spaced, and
stations have different epicentral distances. However, they become
the main source of biases at very short periods. We therefore opt for
not using periods shorter than 1 s at this stage.

Fig. 2 shows time-slowness sections of a record section cen-
tred around an epicentral distance of 60.24◦ (Fig. 1) expanded in
the time-scale-slowness domain. We choose the complex Morlet
wavelet for analysis, because it has optimal time and frequency res-
olution and it is approximately analytic. Its mother wavelet has the
form:

ψ(t) = π−1/4e−iω0t e−t2/2, (27)

where t is time and ω0 is central frequency. A standard choice of
ω0 = π

√
2/ ln 2 makes the amplitude of the side lobes equal to half

of the main lobe.

We generate a frame of time-space wavelets in scale and slow-
ness according to Appendix B. The subsampled wavelet frame,
eq. (B4), uses four voices, six octaves and a sampling period of
b0 = 1. The central frequency of the wavelet with the lowest scale
is 1 Hz. The periods analysed then range from 1 s to about 54 s. The
sampling in slowness is about 10 times the actual slowness resolu-
tion at each scale, with a minimum value of 3 smpl (s deg−1)−1.
We think this high level of redundancy achieves a balance be-
tween implementation efficiency and filter flexibility. This balance
allows for a relatively fast implementation (still far slower than
non-redundant alternatives) and, in return, it simplifies the design
of the filter, improves signal adaptation, and makes the configura-
tion extremely flexible. Figs 2(a) and (c) display amplitude mea-
surements at periods of 2 and 8 s, while Figs 2(b) and (d) show
the corresponding measurements of coherence using phase-stack,
eq. (26), with v = 2 and a square window of five samples. This is
a length of 4 s at a period of 2 s and 16 s at a period of 8 s. Note
that the finite time resolution at individual scales of the symmetric
wavelets used produces relatively wide maxima in the time-scale
domain, which may extend before the time of arrival of signals
at low frequencies. This does not limit the actual time resolution,
which is determined by the low scale components, and helps in the
filtering.

We use coherence to measure the instantaneous slowness of P
and its post-cursors. PcP, far weaker than P, is still usually strong
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Figure 3. P and PcP extractions from data shown in Fig. 1. (a) P extracted. (b) Data minus the P extracted. (c) PcP extracted. (d) Data minus the PcP extracted.
Signals in (a) and (c) are clean but spatially smoothed, while in (b) and (d), they are not smoothed but noiser. All figures use the amplitude normalization used
for the raw data.

enough to obtain a robust measurement of its slowness at these
periods. We can identify PcP in all figures with the first main
lobe at slowness of about 4 s deg−1 at around 50 s arrival time.
However, the use of 1-D model predictions usually provides more
accurate information, especially at large epicentral distances where
the slownesses of P and PcP are closer, and PcP coherence maxima
are masked by the P coda. We can additionally appreciate that the
two main lobes of Fig. 2(a) have weak side lobes with slowness
maxima about 1.5 s deg−1 (at the top edge of the figure), produced
by aliasing effects.

Fig. 3 presents results after the filtering and synthesis operations
using the minimum noise solution, eq. (21). Fig. 3(a) shows P and
its post-cursors extracted with a gain constraint of 1 at the slowness
of P and a gain of 0 at the slowness of PcP. Fig. 3(b) shows the
result after subtracting this result from the raw data (Figs 1–3a).
Similarly, Fig. 3(c) shows PcP and their post-cursors using the same
slowness constraints but with their gains exchanged, and Fig. 3(d)
its subtraction from the raw data.

Figs 3(a) and (c) show clean and smooth observations of P, pP,
PcP, pPcP and other signals. Comparing Fig. 3(c) with the raw
data (Fig. 1), we see a dramatic attenuation of P and all the post-

cursors as well as of the noise level. We can only distinguish a very
small remainder of P caused mainly by waveform differences and
misalignments. In contrast to the raw data, now it is possible to
clearly see PcP at all epicentral distances, even at distance larger
than 70◦ where pP and P post-cursors were very strong. Differential
observations from Figs 3(b) and (d) are valuable to validate more
accurate extracted observations from Figs 3(a) and (c).

An inherent shortcoming that may arise in some applications is
due to the smoothing produced by the local stacks. In the PcP–P
application, the resolution lost at the CMB is not significant until
reaching long periods, as scaling is proportional to period for the
array aperture and to its square root for the Fresnel zone. To be
more precise, the Fresnel zone at 2 s is about 3◦ (diameter) for a
zero epicentral distance. And it reduces to 8◦ on epicentral direction
and to 3.5◦ orthogonal to it for epicentral distances of 60◦ (incidence
angle at the CMB of 64.4◦). Then, for an array aperture equal to
1/3 deg s−1 at all periods, the resolution at the CMB on orthogonal
epicentral direction equals the resolution of the array at a period
of 130 s. We use a minimum aperture of 2◦ (resolution of 1.83◦ at
the CMB) in order to enclose a minimum number of stations. This
resolution is sufficient in the period range we consider.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/201/1/207/729649 by guest on 18 February 2022



Extraction of PcP using slant stacklets — I 215

Figure 4. (a) Velocity data from an earthquake in the Svalbard region (2009/06/22 18:15:40.09 UTC, Mw = 5.4, depth = 13.1 km). Instrument response is
removed and data are bandpass filtered from 1 to 60 s. (b) Epicentral distances (blue lines) and location of the stations with good quality signal shown in (a) (red
triangles) and not shown (black triangles). (c) P extracted and (d) PcP extracted from the data shown in (a). All figures use the same amplitude normalization.

When smoothing is not admissible, we can use the differences
(Figs 3b and d) instead of the extractions. These observations are
noisier than the previous ones since random noise is not attenuated.
However, we are able to obtain relatively clean observations of PcP
without any smoothing because we remove most of the P signal and
its post-cursors.

Fig. 4(a) shows velocity time-series from a shallow earthquake
of magnitude Mw = 5.4 observed in north America (Fig. 4b).
Due to its low magnitude, low SNR is the main problem to be
addressed in this example in order to observe PcP. At these az-
imuths P post-cursors caused by Moho and upper-mantle discon-
tinuities appear much weaker than in Fig. 1. Figs 4(c) and (d)
present results after the filtering and synthesis operations using
the configurations applied in the previous example. The noise at-
tenuation is high enough to observe clearly several P post-cursors
on Fig. 4(c) and PcP on Fig. 4(d). SNR can be further improved
by increasing the array aperture in exchange for reducing spatial
resolution.

In summary, the extracted observations from raw data improve
SNR and SIR but are smoothed, while differential observations
improve SIR and do not suffer from smoothing, but result in lower
SNR.

4 P c P – P T R AV E LT I M E D I F F E R E N C E
E S T I M AT I O N W I T H T W O S L I D I N G
W I N D OW S

The traveltime difference or delay between two seismic phases
is obtained as an optimal solution of a given objective function.
These functions conventionally define a distance between two sig-
nals based on their similarity or coherence. Valid notions of distance
are any norm and some non-linear functions. The definition of sim-
ilarity is also non-unique. It can be based on the actual signals,
on their waveforms (neglecting amplitude differences), on their in-
stantaneous phase, among others. For example, let x1 and x2 be
two similar uniformly continuous signals separated by an unknown
delay td and let us write the objective function most frequently
used as:

min ‖x1(t) − x2(t − td )‖2 . (28)

Then it can be proven that the optimal solution is the delay corre-
sponding to the absolute maximum of cross-correlation between x1

and x2, if similarity involves waveform and amplitude. If similar-
ity involves only waveform, it is the delay with the maximum of
‘geometrically normalized’ cross-correlation.
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Main difficulties conventionally arise from random noise and ad-
ditional correlated signals. Broadly, noise reduces accuracy, while
signals introduce bias. The reference seismic phase, signal x1 in
eq. (28), is chosen to be a clear signal, but its inherently limited
frequency content and short duration may produce suboptimal solu-
tions, due to, for example cycle-skipping effects. Additional signals
arriving close in time may introduce additional suboptimal solu-
tions. Noise has a direct impact on the accuracy of all solutions and
deteriorates their amplitudes. When the effects of random noise are
combined with uncertainties in the time of arrival of the reference
signal and with lack of previous knowledge on td, the selection of
the solution of choice among all optimal and suboptimal solutions
becomes non-trivial.

The quality of PcP–P traveltime difference observations is ex-
posed to noise and other correlated signals. Here, P is the reference
signal x1 and PcP x2, leading to positive delays. PcP is a relatively
weak signal with low SNR, which limits accuracy. Of more impor-
tance are the P and PcP depth phases. These signals may introduce
additional solutions, as a result of their high similarity with the direct
phases that arise from their close travel paths. The high similarity
and particularly their close arrival times may introduce significant
bias. In shallow events, less than 100 km depth, pP and pPcP arrive
about 0.25 s km−1 after P and PcP, respectively per kilometre of
the hypocentral depth, and sP and sPcP about 0.36 s km−1. This
is not a problem for very shallow events where differences among
the observed PcP–P, pPcP–pP and sPcP–sP compared to predic-
tions obtained with 1-D models are negligible. In fact, extra pairs
of signals close to P and PcP and with very similar traveltime dif-
ferences (below the actual resolution) often contribute to enhance
accuracy. It is also not a problem for much deeper events where P
and PcP depth phases arrive later than P and PcP. In this scenario,
depth phases actually provide genuine information derived from
significant differences in their travel paths, and hence in the CMB
sampling. Depth phases are problematic at intermediate depths due
to their close time of arrival but still significant traveltime differ-
ence. This leads to substantial bias when pPcP–pP or sPcP–sP are
misinterpreted as PcP–P.

Other coherent signals may be present but their lower amplitude
and/or different time of arrival make them less problematic. This
is the case of PdP, a seismic phase with a travel path analogous to
PcP but with a reflection at the top of D′ ′ instead of CMB. This
phase arrives a few seconds before PcP and has a slightly higher
slowness. PdP observations provide precious information on the
topography of D′ ′. The similar travel paths of PdP and PcP but
an often lower reflection coefficient at the top of D′ ′ than at CMB
hinders PdP observations. The presence of this phase may lead to a
solution for PdP–P traveltime difference clearly separated from the
most likely PcP–P traveltime difference, which should not lead to
misinterpretations.

4.1 The two sliding window approach

A blind selection of an optimal portion of the seismogram as a ref-
erence signal in the sense of maximizing SNR and SIR based on
predictions of 1-D models is in general problematic. Uncertainties
on arrival time of P are higher than on the PcP–P traveltime differ-
ence, strong depth phases are not always present, and signal duration
has strong variations. A long window guarantees that a major por-
tion of the reference signal is covered, but leads to low SNR, and
depth phases may not be excluded. Additionally, late portions of the
P coda in strong events may suffer from non-negligible attenuation
effects, in the sense of t* operator, and introduce additional bias.

A short window enables the maximization of SNR while rejecting
depth phases, but cycle-skipping problems may become more se-
vere, and uncertainties on the time of arrival of the reference signal
hinders the optimal location window.

To overcome this dilemma we opt for short windows, but instead
of using a fixed window on P and a sliding window on PcP, we let
both move. Given the objective function shown in eq. (28), this is
equivalent to adding a delay term in x1 and x2,

min ‖x1(t − ta) − x2(t − td − ta)‖2 . (29)

In summary, the 1-D search along td in eq. (28) turns into a 2-D
search along the td and ta variables in eq. (29). We could search
for the global optimal solution, but it is far more powerful to relax
constraints on ta and td and search for optimal and suboptimal
solutions. With this approach, we can potentially observe variations
of PcP–P traveltimes along their waveforms, as well as those of
pPcP–P and sPcP–sP, and other coherent signals such as PdP–P,
among other signals that could be due to noise and cycle-skipping.
In this scenario, the main complexity is to develop algorithms smart
enough to identify all these signals using the prior information
available.

The definition of similarity in objective functions for PcP–P trav-
eltime difference estimation are based on the waveform. Amplitude
differences are neglected due to the additional attenuation that PcP
suffers compared to P as a result of its longer travel path. In fact,
amplitude differences provide valuable observations on their own to
distinguish velocity perturbations from topography. However, fully
ignoring amplitudes may lead to optimal solutions with unrealistic
attenuation values. Similarly, another issue that derives from using
many reference signals, one for every ta value used, eventually may
arise when strong minima appear even when x1(t − ta) only con-
tains weak signals from the coda of the P wave, or just noise. To
overcome these problems, we define a slightly different objective
function to search for the signal x2 that obtains the maximum energy
reduction using the reference signal. We also add extra constraints
on the amplitude difference to avoid unrealistic values. This writes

max f (td , ta), (30)

with

f (td , ta) = ‖x2(t − td − ta)‖2 − ‖ax1(t − ta) − x2(t − td − ta)‖2 ,

(31)

where a is a real attenuation scalar.
The energy reduction varies according to td, ta and a. The ob-

jective function f(td, ta) is maximized with respect to td when the
second term is minimized. The optimal solution for attenuation at
a given ta and td that minimizes this term is:

a(td , ta) = 〈x1(t − ta), x2(t − td − ta)〉
‖x1(t − ta)‖2

, (32)

where 〈x1(t), x2(t)〉 is the inner product between x1 and x2. This is the
optimum estimator of the PcP/P amplitude ratio using their actual
signals in the least-square sense.

Introducing the optimal solution for attenuation in eq. (31), and
simplifying we obtain

f (td , ta) = |〈x1(t − ta), x2(t − td − ta)〉|2
‖x1(t − ta)‖2

. (33)

Using eq. (32), the objective function defined in eq. (33) can be
interpreted as

f (td , ta) = a(td , ta) 〈x1(t − ta), x2(t − td − ta)〉 . (34)
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This equation facilitates the interpretation of thresholds in both the
PcP/P amplitude ratio and the inner product between P and PcP
signals.

We impose maximum and minimum thresholds as additional
constraints on the amplitude ratio a. The first threshold contributes
to the rejection of unlikely low-energy reference signals, since we
expect PcP to have lower energy than P, while the second rejects x2

signals with an unlikely low energy that leads to anomalously low
PcP/P amplitude ratios.

4.2 Bias due to intrinsic attenuation

The accuracy of observations of both traveltime differences and
amplitude ratios varies strongly with the signal quality but also with
their similarity. Intrinsic attenuation has an effect on amplitude but
also introduces frequency-dependent dispersion that may eventually
cause a significant waveform distortion, leading to important bias.
To a first order approximation (e.g. Shearer 2011) we can model
attenuation as a function of travelled distance x, frequency ω and
time t as

A(x, ω, t) = A0e−ωt∗0 /2e−iω(t−x/c0)e−iωt∗0 ln(ω/ω0)/π , (35)

where t∗
0 = x/c0 Q (‘tstar’), c0 is the velocity at the reference

frequency ω0 and Q the quality factor, inversely proportional to
attenuation. Note that the Fourier convention is opposite here:
û(ω) = ∫ ∞

−∞ u(t)e+iωt dt . The last exponential term in eq. (35) mod-
els the traveltime delay that intrinsic attenuation introduces at fre-
quencies that deviate from ω0. An option to reduce the effects of
waveform distortion in differential traveltime measurements is to
compensate for the integral of t∗

0 ln(ω/ω0)/π along the travel paths
considered, according to a reference model of velocity and attenua-
tion. Intrinsic attenuation attains higher values in the upper mantle
than in the lower mantle, Qμ is as low as 80 for the asthenosphere
(depths from 80 to 220 km) compared to 312 in the lower mantle
in PREM (Dziewonski & Anderson 1981). To evaluate waveform
distortion, we use the value given by PREM in the lower mantle,
Qβ = Qμ = 312, along the full travel path, considering that the
P and PcP paths diverge mostly in the lower mantle, where they
spend most of their time, especially at large epicentral distances.
This translates into a Qα = (9/4)Qμ = 702 assuming infinite Qκ ,
and writes:

(PcP–P)t∗0 
 (tPcP − tP )
ln(ω/ω0)

Qαπ
. (36)

Dispersion due to intrinsic attenuation is thus approximately propor-
tional to PcP–P traveltime difference. Here it may become signifi-
cant only at low frequencies and large epicentral distances because
Qα is relatively high. Thus, we can safely ignore it in a first approx-
imation because the high frequencies components of the signals,
where dispersion is lower, provide accuracy to PcP–P traveltime
observations. However, since corrections using eq. (36) in the fre-
quency domain are simple, we do opt to correct for waveform
distortion to maximize P and PcP similarity. These corrections may
become mandatory in other applications such as ScS–S, due to their
higher differential traveltimes, lower Q, and lower frequencies.

5 A P P L I C AT I O N T O P c P – P
T R AV E LT I M E D I F F E R E N C E S

The resolution of the objective function in td is proportional to the
cross-correlation length of x1 and x2, which is roughly inversely
proportional to the maximum frequency components. However the

resolution is far lower in ta because the signal waveforms and the
windows have finite width in time. This in practice produces rela-
tively long and smooth ridges of suboptimal solutions along ta with
a relatively constant td value. To evaluate every solution, we first
group them in separate ridges and then we estimate their significance
based on the impact on energy reduction of the reference signal,
f(td, ta). We group individual suboptimal solutions along increasing
ta in a single ridge as long as variations on td and gaps are small,
and f(td, ta) does not reduce significantly. Ridges far shorter than
the window length are discarded. To evaluate the rest, we calculate
smooth histograms along td weighed by f(td, ta). More specifically,
every solution along the ridge adds a narrow raised cosine function
(Hann window) to a 1-D function with amplitude equal to f(td, ta)
and centred at td. Once every solution is considered, the amplitude
of the highest peak gives an estimate of the quality of the ridge and
its position the traveltime difference. We finally identify the ridge
that best represents PcP–P, or any other signal, based on its quality
and its offset with respect to the prediction made using the prior
model.

Figs 5 and 6 illustrate the objective function in two scenarios,
(1) strong direct and depth phases and (2) moderate cycle-skipping
ambiguity. Figs 5(a) and 6(a) present velocity seismograms with the
instrument response removed and filtered with a bandpass filter from
1 to 60 s. The next two figures show the estimation of P (Figs 5b
and 6b) and PcP (Figs 5c and 6c) using the slant-stacklet trans-
form introduced in the previous section. Then, Figs 5(d) and 6(d)
show the objective functions together with their main optimal so-
lutions grouped in ridges in white and the values of PcP–P and
pPcP–pP predicted by the global 1-D model AK135 (corrected for
ellipticity) in magenta. We use a square window of 12 s to evaluate
the objective function, and for the predicted solutions we consider
that all signals are delta functions located at the predicted time of
arrival.

In the first scenario (Fig. 5d), we can clearly identify PcP–P with
the first strong ridge from about −2 to 9 s, and pPcP–pP with the
secondary maximum from 14 to 22 s. Both traveltime differences
agree with predictions. The traveltime differences along the main
part of the PcP–P maximum ridge are very stable. We only have
deviations at the extremes were maxima reduce severely, thus they
do not perturb the observation, that is the location of the main peak
of the amplitude-weighted histogram (Fig. 5e) is not affected by
the extrema of the ridge due to their fluctuations and much lower
maxima. The waveforms of pP and especially pPcP are weaker, and
more affected by high frequency noise. This widens the secondary
maxima and generates a far more unstable ridge.

In the second scenario (Fig. 6d), depth phases are extremely weak
due to a low radiation in their direction of propagation; consequently,
we can identify PcP–P as the main ridge from −4 to 6 s and, far
weaker, pPcP–pP as the ridge between 7 and 18 s. The traveltime
difference values are higher (positive) than predicted. Comparing
the waveform of P and PcP is difficult to distinguish if P is faster
than predicted, PcP is slower or both. In the evaluation of the ob-
jective function (Fig. 6d), we obtain a very stable ridge that leads to
a PcP–P traveltime difference of about 0.5 s. The secondary ridge
with traveltime difference of about −4 s is probably due to moder-
ate cycle-skipping effects. They are produced by the combination of
two factors, differences in P and PcP waveforms and the presence
of secondary lobes. Waveform differences between P and PcP may
reduce the amplitude of this solution below the values of others
produced by weaker signals but that better resemble the reference
signal. From 46 to about 49 s (Fig. 6c) we can observe a weak lobe
which has a similar waveform to P. This matching produces the
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Figure 5. PcP–P traveltime estimation from an earthquake near the
east coast of Kamchatka (2006/08/24 21:50:36.7 UTC, Mw = 6.5,
depth = 54.2 km) with strong pP and pPcP signals towards the USAr-
ray. (a) Original signal at a distance of 57.2◦ (TA.N10A). (b) Observed
P wave, x1. (c) Observed PcP wave, x2. (d) Objective function, eq. (34),
with ridges in white and predictions from the AK135 model (corrected for
ellipticity) in magenta. Vertical axis is traveltime difference variation with
respect to predicted PcP–P with AK135, td, and horizontal axis is the time
at the centre of the reference window, ta. (e) Smooth histogram of traveltime
differences of all ridges starting from −6 to 6 s having a minimum length
of 4 s.

ridge in Fig. 6(d) with a traveltime difference of about −4 s. With
the actual SNR it is difficult to distinguish if this signal has a real
origin, for example PuP (caused by a drop in compressional wave
speed in an ULVZ), or it is just coherent-noise.

We test robustness of PcP–P traveltime observations to strong
interferences (i.e. P post-cursors and scatters), building synthetic
seismograms using DSM (Kawai et al. 2006) with the isotropic
PREM model (Dziewonski & Anderson 1981). In Fig. 7(a), we

Figure 6. PcP–P traveltime estimation from an earthquake near the coast
of northern Chile (2010/05/06 2:42:47.9 UTC, Mw = 6.2, depth = 46.8 km)
with a minor cycle skipping problem. (a) Original signal at a distance of
58.72◦ (TA.X34A). (b) Observed P wave. (c) Observed PcP wave. (d)
Objective function with ridges indicated. (e) Smooth histogram of traveltime
differences of all ridges.

model the seismograms from the event shown in Fig. 1 using the
global CMT solution for the moment tensor (Dziewonski et al.
1981; Ekström et al. 2012) with a maximum frequency of 2 Hz,
but with an event depth of 100 km. We extract P (Fig. 7c) and
PcP (Fig. 7d) from this data set using the configuration of the
slant-stacklet transform used in Figs 1 and 4. Figs 7(e) and (f) plot
PcP–P differential traveltime observations, assessed using the two
sliding window approach, according to theoretical values for the
isotropic PREM model calculated with the TauP Toolkit (Crowell
et al. 1999) with the same ellipticity corrections used in DSM. On
the raw data results (Fig. 7e), we see that the PcP–P observations
are contaminated by the strong energy of the P coda, pP and sP;
while on the extracted signals (Fig. 7f), PcP–P observations are
close to zero (mean of −0.12 s and standard deviation of 0.08 s),
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Figure 7. PcP–P traveltime differences on synthetics (DSM) compared to expected observations (TauP) using the isotropic PREM model. (a) Synthetics are
for the geometry shown in Fig. 1 but with an event depth of 100 km. (b) Epicentral distances (blue lines) and location of the stations shown in (a) (red triangles)
and not shown (black triangles). Extracted P (c) and PcP (d) using the slant-stacklet transform. PcP–P traveltime difference variations using the method of two
sliding windows on (e) the raw synthetics and (f) on the extracted P and PcP.

as it is expected from using the same 1-D model in DSM and TauP.
Remaining variations are mainly due to the non-ideal separation of
P and PcP and their limited high frequency contents.

5.1 Illustration on real data

Fig. 8 shows observed traveltime difference variations according
to the AK135 1-D model corrected for ellipticity for the event
shown in Fig. 1 along epicentral distance. Seeing the distribution
of the observations in Fig. 8, we consider outliers as any obser-
vation outside the interval of ±2 s. Fig. 8(a) shows observations

taken using the raw data, Fig. 8(b) using the extracted P and PcP
signals (Figs 3a and c), and Fig. 8(c) using their differences (Figs 3b
and d).

PcP–P differential traveltime observations are based on their
waveform similarity. However, as P, pP and later signals of sim-
ilar slowness are highly cross-correlated, it is hard to distinguish
maxima of the objective function caused by PcP or other signals.
When we measure PcP–P on the raw data (Fig. 8a), these signals
become the major interference. Their often higher amplitude and
similarity compared to PcP produce higher maxima which may
lead to systematic errors such as those observed in Fig. 8(a), where
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Figure 8. Observed PcP–P traveltime difference variations compared to
AK135 1-D model, (PcP−P)data − (PcP−P)model, using (a) the raw data of
Fig. 1, (b) the P and PcP extractions (Figs 3a and c), (c) the data minus the
extracted P and the data minus the extracted PcP (Figs 3b and d).

most observations are aligned along anomalous diagonal lines. This
problem is fully solved in Fig. 8(b) by using the extracted P and
PcP signals, and even when we use the difference measurements
in Fig. 8(c), no systematic error appears. In the latter case, we can
observe a higher number of random outliers, and a slightly higher
dispersion on the observations, which is expected considering that
random noise is not attenuated in this case and that P and PcP do not
suffer any spatial smoothing. Interpretation of these results in terms
of structure in the vicinity of the CMB requires an additional step to
correct for mantle structure. In this example, correcting for mantle
structure reduces the variance of the observations significantly, in
particular, from 65◦ to 70◦. This will be addressed in a companion
paper (Ventosa & Romanowicz 2015).

Equivalently to Fig. 8, Fig. 9 shows observed PcP–P traveltime
difference variation for the event shown in Fig. 4. PcP–P observa-
tions are not possible in the raw data (Fig. 9a) due to the low SNR of
PcP; however, in Fig. 9(b) we observe relatively clean observations
using the extracted P and PcP signals (Figs 4c and d). In this fig-
ure, most observations concentrate at about zero. Small variations
around this value are due to local variations and, to a smaller extent,
to measurement uncertainties. SNR can be further enhanced using
wider array apertures at the cost of reducing spatial resolution. We
consider spatially close observations far from this main trend as out-
liers. In this scenario the observations on the differences (Fig. 9c)

Figure 9. Observed PcP–P traveltime difference variations compared to
AK135 1-D model corrected for ellipticity, (PcP–P)data − (PcP–P)model,
using (a) the raw data of Fig. 4(a), (b) the P and PcP extractions (Figs 4c
and d), (c) the data minus the extracted P and the data minus the
extracted PcP.

perform closer to the raw data because noise is not attenuated and
other correlated signals are relatively small.

6 C O N C LU S I O N S

We have shown that we can obtain PcP–P traveltime difference mea-
surements of unprecedented quality using array data in the presence
of interfering signals. The key ingredients which make these obser-
vations possible are accurate signal extraction and local traveltime
difference measurements.

The slant-stacklet transform achieves a high slowness selectivity
without sacrificing flexibility on the resolution compromises. This
feature has proven useful in P and PcP signal extraction. Now it
is possible to obtain clean observations of PcP even when it is
hidden in the coda of P. The high slowness resolution allows the
separation of P and PcP up to 80◦ of epicentral distance, where
their slowness difference and time difference are very small, and
probably more importantly, it allows a high level of rejection of
interfering signals, such as pP and sP, even when their accurate
slowness and time of arrival are not precisely known in advance.
Our present limit in signal extraction is the level of noise. Working at
larger epicentral distances is possible with larger apertures; however,
P and PcP kernels converge (at 85◦ the bottoming point of P is
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slightly deeper than 2500 km) and may partially overlap at relatively
short periods, making them less attractive. When it is not possible
to attain the slowness resolution required in the signal extraction
due to spatial resolution constraints, alternative approaches based
on the prediction of interfering signals followed by their adaptive
subtraction with no slowness and spatial resolution limitations (e.g.
Ventosa et al. 2012a; Pham et al. 2014) may be of interest.

The main problem in the estimation of the traveltime difference
is the high cross-correlation with other close and usually stronger
signals. Although the slant-stacklet transform removes the strongest
correlated signals that mask PcP, a local traveltime difference es-
timation is nearly as important to reduce bias and outliers. In par-
ticular, the objective function we introduce maximizes the energy
reduction on the objective signal (PcP). We conclude that its so-
lution is less sensitive to noise than the standard cross-correlation
solution and naturally allows the introduction of additional con-
straints on the amplitude ratio of the two signals. Furthermore, its
2-D representation (time – differential time), in addition to pro-
viding a less ambiguous PcP–P identification, allows a more in-
volved analysis of many often weaker signals with precious com-
plementary information such as pPcP–pP, sPcP–sP, PdP–P, among
others.

At least as important as the accuracy of PcP–P observations is an
exhaustive analysis of all sources of bias. We conclude that although
epicentre mislocation and intrinsic attenuation biases are present,
they are negligible compared to the accuracy of our observations.
As we will show in our companion paper, they are much smaller
than the bias caused by mantle heterogeneities.

Although we illustrate these tools with PcP data, they address
general problems of teleseismic signal processing. Hence, they
should be useful for a wider range of applications. Apart from ap-
plications under similar conditions using other phases constraining
CMB and D′ ′ or the inner-core boundary, the slant-stacklet trans-
form may prove useful in applications that benefit from removing
random noise and interfering signals in slowness without com-
promising resolution, such as in the imaging of the upper-mantle
discontinuities using SS precursors (e.g. Zheng et al. 2015), or in
the observation of weak signals from the core.
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A P P E N D I X A : R E S O LU T I O N A NA LY S I S

The slant-stacklet expansion shown in eq. (4) can be rewritten using
the convolution operator over t and x:

Wvp,xc (τ, λ) = u � φp,λ(−τ, −xc). (A1)

The Fourier transform of φλ, p(t, x) is

φ̂λ,p(ω, k) =
√

λψ̂∗(−λω)âλ(k + pω), (A2)

where ω is frequency in rad s−1 and k wavenumber in rad deg−1.
ψ̂(ω) denotes the Fourier transform of ψ(ω).

This equation involves the product of the Fourier transforms of
the wavelet family of functions,

√
λψ̂∗(−λω), and a set of slowness

bandpass filters, âλ(k + pω). The first term is the transfer func-
tion of a set of bandpass filters of bandwidth proportional to ω,
that is of constant quality factor, and central frequency η/λ, where
η = 1

2π

∫ ∞
0 ω|ψ̂(ω)|2dω. The second term decomposes the Fourier

transformed domain into a set of diagonal bands with slope of −1/p
centred at the origin. This is illustrated in Fig. A1.

The time and frequency resolutions are controlled by ψτ , λ(t),
while the spatial and wavenumber resolutions by aλ(x). The

Figure A1. Frequency wavenumber resolution of two slant-stacklet atoms
with aλ(x) = λ−1a(λ−1x) and x, p ∈ R.

resolution in time is λσ t, in frequency σω/λ, and the area of the
Heisenberg box is σ tσω. Similarly, the energy spread in the space
dimension is:

1

‖aλ(x)‖2

∫ ∞

−∞
x2 |aλ(x)|2 dx = f 2(λ)σ 2

x (A3)

and in wavenumber

1

2π ‖aλ(x)‖2

∫ ∞

−∞
k2 |âλ(k)|2 dk = σ 2

k

f 2(λ)
. (A4)

The space and slowness resolutions are thus controlled by f(λ). The
resolution in space is f(λ)σ x and in wavenumber σ k/f(λ). The space
wavenumber area remains equal to σ xσ k.

The slowness resolution at the scale λ is the ratio between the
wavenumber resolution and the central frequency of the wavelet at
this scale, σ p = σ kλ/ηf(λ). The function f(λ) is in general smooth.
When this function is constant, f(λ) = b, this leads to the same fre-
quency wavenumber resolution as the LSST (Ventosa et al. 2012b),
σ p = σ kλ/bη; and when it is proportional to scale, f(λ) = bλ, to
slant-stacklet atoms whose shape and slowness resolution remain
constant with scale, σ p = σ k/bη (see Fig. A1).

A P P E N D I X B : D I S C R E T I Z AT I O N

The actual resolution of the slant-stacklet expansion is not regular
across the transformed space. A wavefield u can be recovered from
its inner products with a finite family of functions generated from
φτ,λ,p,xc (t, x) if this family of functions satisfies the frame inequality
(i.e. constitutes a frames)

A ≤
∑
n∈�

|φ̂n(ω, k)|2 ≤ B, (B1)

where B ≥ A > 0 are two constants for almost all ω and k in R
N ,

n is a shorthand for the indices τ , λ, p, xc and � for their domains.
When A = B the frame is called tight and if additionally {φn}n ∈ �

are linearly independent, the frame is not redundant and is called an
orthonormal basis.

We search for a close to tight frame, A 
 B, because the
balance it provides between simplicity—having a nearly perfect
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reconstruction to reduce estimation errors on the signals extracted—
and maximum freedom when setting the expansion. In addition, it is
convenient to have freedom in the choice of the mother wavelet, and
of the slowness bandpass filter and its scaling law to maximize the
performance of filtering operations. For these reasons, we opt for
complex-wavelet transforms based on frames of wavelets with sev-
eral voices per octave, and a sampling of the slowness dimensions
proportional to the actual resolution. We preserve at this stage the
sampling across the spatial dimensions of the wavefield, frequently
sparse and always limited.

We thus define the family of functions as

φr, j,v,s,xc (t, x) = a j,v(x − xc)ψ∗
r, j,v

(
t − pT

s (x − xc)
)

(B2)

with

a j,v(x) = 1

f (2 j+v/V )
a

(
x

f (2 j+v/V )

)
(B3)

and

ψ∗
r, j,v(t) = 1√

2 j+v/V
ψ∗

(
t − rb02 j

2 j+v/V

)
, (B4)

where scale is λ = 2j + v/V and delay τ = rb02j, where j ∈ Z is an oc-
tave, v ∈ [0, V − 1], a voice, V the number of voices, r ∈ Z delay and
b0 sampling period. We discretize slowness as ps = p0 + sλc0/f(λ),
considering that slowness resolution is inversely proportional to fre-
quency and controlled by f(λ), where s ∈ Z slowness index and c0

slowness sampling period.
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