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Abstract. We define, calculate and analyze irregularity in-
dicesλISSN of daily series of the International Sunspot Num-
ber ISSN as a function of increasing smoothing fromN = 162
to 648 days. The irregularity indicesλ are computed within
4-year sliding windows, with embedding dimensionsm = 1
and 2.λISSN displays Schwabe cycles with∼ 5.5-year vari-
ations (“half Schwabe variations” HSV). The mean ofλISSN
undergoes a downward step and the amplitude of its varia-
tions strongly decreases around 1930. We observe changes
in the ratioR of the mean amplitude ofλ peaks at solar cycle
minima with respect to peaks at solar maxima as a function of
date, embedding dimension and, importantly, smoothing pa-
rameterN . We identify two distinct regimes, called Q1 and
Q2, defined mainly by the evolution ofR as a function ofN :
Q1, with increasing HSV behavior andR value asN is in-
creased, occurs before 1915–1930; and Q2, with decreasing
HSV behavior andR value asN is increased, occurs after
∼ 1975. We attempt to account for these observations with
an autoregressive (order 1) model with Poissonian noise and
a mean modulated by two sine waves of periodsT1 andT2
(T1 = 11 years, and intermediateT2 is tuned to mimic quasi-
biennial oscillations QBO). The model can generate both Q1
and Q2 regimes. Whenm = 1, HSV appears in the absence
of T2 variations. Whenm = 2, Q1 occurs whenT2 variations
are present, whereas Q2 occurs whenT2 variations are sup-
pressed. We propose that the HSV behavior of the irregular-
ity index of ISSN may be linked to the presence of strong
QBO before 1915–1930, a transition and their disappearance
around 1975, corresponding to a change in regime of solar
activity.

1 Introduction

Regular and irregular features of solar activity reflect the be-
havior of the solar dynamo. Their spectrum contains low-
frequency “cycles”, from decadal to centennial scales, whose
durations and amplitudes vary with time, and a higher fre-
quency spectrum with much stronger irregularities, notably
in the 1–3-year pseudoperiod range. The case of quasi-
biennial oscillations (QBO) has been widely discussed in the
recent literature (e.g., McIntosh et al., 1992; Lawrence et al.,
2008; Mursula et al., 2003; Rouillard and Lockwood, 2004).
The range of 1–3-year quasi-periodicities has been studied
in a number of time series, using different techniques such
as power spectral analysis (Rouillard and Lockwood, 2004;
Valdes-Galicia et al., 1996), wavelet analysis (Kudela et al.,
2002; Mursula et al. , 2003), empirical mode decomposition
(Vecchio et al., 2010), or the successive approximation tech-
nique (Mavromichalaki et al., 2003). All techniques confirm
the reality of these quasi-periodicities, with time-varying am-
plitude and “frequency”.

Several papers discuss variations with periods close to 27
days (related to the Sun’s rotation as seen from Earth). For in-
stance, in an earlier paper (Le Mouël et al., 2007), we consid-
ered the series of the International Sunspot Number (ISSN;
SIDC team, 2005) and magneticaa index: we computed their
energy for periods of around 27 days and found that this en-
ergy roughly followed the initial time series it was computed
from. More detailed analysis revealed a significant increase
of energy approximately two decades prior to the increase
in solar activity that occurred in the 1930s. Other papers
deal with the long-term evolution of short-term variations of
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different time series by standard wavelet analysis (Lawrence
et al., 2008) or using some modification of Kolmogorov en-
tropy (Blanter et al., 2005, 2006). These papers reveal the
existence of different regimes in the long-term evolution of
the high-frequency part of the spectrum (estimated locally in
time).

In a previous paper (Shapoval et al., 2013), we introduced
the irregularity index of a given time series as the conver-
gence (or divergence) rate of nearby points in a certain phase
space, under a “one-step” translation. In the case of low-
dimensional dynamical systems, the irregularity index cor-
responds to the maximal Lyapunov exponent (e.g., Bergé et
al., 1984). Lyapunov exponents characterize the convergence
(resp. divergence) rate of infinitesimally close trajectories
of a dynamical system to (resp. from) its attractor in phase
space. There is a link between the magnitude of the Lya-
punov exponent and the regularity of the process: the larger
the exponent, the stronger the irregularities. In contrast to the
maximal Lyapunov exponent, the irregularity index can be
computed for shorter time series with a significant random
component.

In Shapoval et al. (2013), we explored variations of the ir-
regularity indexλm(t) of the daily ISSN series as a function
of time for intermediate values (4–6) of the embedding di-
mensionm: λm(t) generally attains strong main maxima at
ISSN minima, has secondary maxima at ISSN maxima and
minima at the time of the descending and ascending phases
of the Schwabe cycles. Such a pattern of “half-Schwabe cy-
cles”, with a large amplitude ofλ main maxima, remained
stable between 1850 and 1915, then changed to a new pat-
tern (with significantly smaller maxima) that remained sta-
ble from 1935 to 2005. We interpreted this pattern change as
an indication of a “hidden” change in the regime of solar ac-
tivity, the years 1915–1935 being a transitional interval. We
could reproduce the observed behavior ofλ with a synthetic
signal, consisting of an autoregressive process of order 1 with
Poisson noise, modulated by an 11-year sine. The switch be-
tween the two regimes was obtained by a change in autocor-
relation, itself linked to the lifetime of sunspots. In a second
paper (Shapoval et al., 2014), we found additional evidence
of the two regimes of the irregularity index using embedding
dimensions from 3 up to 32. During the first regime R1, from
1850 to 1915,λ values were larger than during the second
regime R2. The difference is most remarkably seen at the
minima of the Schwabe cycles. The value ofλ at the recent
minimum between cycles 23 and 24 was found to be as large
as the largest value ofλ prior to 1915, and much larger than
values between 1915 and 2000. This could signal a return of
solar activity to regime R1. In Shapoval et al. (2014), we es-
tablished that the two regimes ofλ were stable with respect
to the parameters used in the computation and to detrending
(“decycling”) of the Schwabe cycles.

In Shapoval et al. (2013, 2014), we studied the two
regimes of the irregularity index with embedding dimension
m between 3 and 16. In the present paper, we concentrate

on the smallest values ofm (1 and 2). However our analy-
sis cannot be performed at many solar minima because the
distances between nearby points in the phase space contain
too many zeros. Therefore, we first preprocess the data by
smoothing them overN = 162, 324 or 648 successive values
(these numbers are chosen as multiples of 27 to suppress the
influence of solar rotation on the times series).

Several authors have suggested that observed solar (mag-
netic) time series are generated by an (as yet) unknown low-
dimensional dynamical system (see Zhang, 1996, and Sello,
2001, for a review and original results). Attempts to recon-
struct the dynamical system and to use it to predict the future
behavior of the time series have led, according to the reports
of their authors, to reasonable medium-term predictions of
the Schwabe cycle. The efficiency of different predictions
is out of the scope of this paper. Pesnell’s review (2012) of
the prediction of ongoing cycle 24 together with Love and
Rigler’s (2012) and Choudhuri and Karak’s (2012) finding
of random walk properties exhibited by some cycle-to-cycle
characteristics constitute a useful introduction to the subject.
The horizon of the predictions based on chaotic models is
linked to the estimates of Lyapunov exponents (Bershadskii,
2009; Zhang, 1996; Sello, 2001). In these studies, Lyapunov
exponents are focused on the low-frequency part of the data
spectrum, and the dynamical system is reconstructed based
on at least decades of observation. In the present paper, we
use the irregularity index with embedding dimensionsm = 1
and 2 to characterize higher-frequency variations of ISSN in
the period range of the QBO.

Section 2 recalls the definition of the irregularity index
and previous attempts to use them in trying to characterize
the solar dynamo. Section 3 illustrates further applications of
the irregularity index to the Wolf number ISSN and also to
the geomagnetic indexaa, with results on the evolution of
its higher frequency content. A simple autoregressive model
is next constructed in Sect. 4, in order to try and reproduce
some of the observed properties of the irregularity index and,
in particular the appearance (depending on the fundamental
parameters of the irregularity index and of model parameters)
of half-Schwabe cycle peaks. The discussion and conclusion
are given in Sect. 5.

2 Basic tools

This section recalls the definition of classical Lyapunov
exponents and of the irregularity index first introduced in
Shapoval et al. (2013). Further remarks that may be useful to
better appreciate the characteristics of the method are given
in the Appendix.

Nonlin. Processes Geophys., 21, 797–813, 2014 www.nonlin-processes-geophys.net/21/797/2014/



A. Shapoval et al.: Can irregularities of solar proxies help understand quasi-biennial solar variations? 799

2.1 Theoretical background

2.1.1 Definition

Lyapunov exponents are well defined for dynamical systems.
Let F map am dimensional Euclidian space� into itself.
The Lyapunov exponentλ measures the rate of exponential
convergence or divergence of initially close points in a phase
space under the mapF :

‖Jε‖ ∼ ‖ε‖eλ, ε ∈ �,

whereJ is the linear part (Jacobian matrix) ofF , ‖ · ‖ is the
norm in the phase space, and‖ ε ‖ is small.

Formally, we define the trajectoryU0, U1, U2, . . . , as

U1 = F (U0) , U2 = F (U1) , . . . ,

for an arbitrary pointU0 of the phase space. The small dis-
tanceεn in the neighborhood ofUn becomesεn+1 =J (Un)εn

under the mapF . Thus,

εn+1 = Jn ε0, Jn = J (Un) J (Un−1) . . . J (U0) .

The limit,

λ = lim
n→∞

lim
ε0→0

1

n
log

(
‖Jn ε0‖

‖ε0‖

)
, (1)

is the Lyapunov exponent. For so-called ergodic systems,
the limit (Eq. 1) is the same for almost any initial pointU0
(Oseledets, 1968; Eckmann and Ruelle, 1985).

2.1.2 Reconstruction of a dynamical system

Sometimes, when an underlying dynamical system does exist
but is not known, a Lyapunov exponent can still be computed
for a time seriesu1, u2, . . . ,uL , allowing one to reconstruct
the key features of the dynamical system, i.e., the embedding
dimensionm and the mapF (Wolf et al., 1985; Rosenstein
et al., 1993; Kantz, 1994). The vectors of the phase space are
supposed to be

U1 =
(
u1, uT +1, . . . , u(m−1)T +1

)
,

U2 =
(
u2, uT +2, . . . , u(m−1)T +2

)
, (2)

and so on, whereT is a delay. The Lyapunov exponent is
computed for the mapF defined on the set {Ui} by

F (Un) = Un+1. (3)

A corollary of the fundamental Takens theorem (Takens,
1981) underlies this computation: let the time series be a pro-
jection of the orbit of a dynamical system that lies on its at-
tractorA and be dense on it. Then the Lyapunov exponents
of the attractorA and of the set{Ui} are the same for an ar-
bitrary delayT .

2.1.3 Standard computational technique

In practice, the time series under study are always finite and
noisy. Values of the delayT and of the embedding dimen-
sion m must first be selected in order to estimate the Lya-
punov exponent. The delay is frequently taken to be the time
of the first minimum of the autocorrelation function of the
series, or that of its mutual information (Fraser and Swinney,
1986). The embedding dimension is chosen to be the mini-
mal valuem such that the mapF transforms a neighborhood
of each pointUi defined in Eq. (2) into a neighborhood of
F(Ui).

GivenT andm, the Lyapunov exponent is to be inferred
from the quantities

log

(
‖J (U − V )‖

‖U − V ‖

)
(4)

for sufficiently close pointsU , V in the phase space�.
Algorithms introduced by Rosenstein et al. (1993) and
Kantz (1994) have been used with success in recent anal-
yses of solar time series (Macek et al., 2006; Li and Li,
2007). In order to circumvent the rather slow computation
of the Jacobian, Ding and Li (2007) use the initial nonlinear
mapF rather than its linearizationJ when computing the
ratio (Eq. 4).

2.2 Definition of the irregularity index

Based on the standard technique described in Sects. 2.1.2
and 2.1.3, this section introduces a straightforward defini-
tion of the quantity computed in the paper. In order to de-
termine the irregularity index, we relax the requirement that
close points in the phase space must be remote along the time
axis, contrary to what is done for the Lyapunov exponent.

2.2.1 Phase space

We consider a sliding window ofL valuesu1, u2, . . . , uL ,
whereui is the ith daily value of a given index, counted
within the window. Given the embedding dimensionm and
delayT , define the vectorsU i in the phase space by Eq. (2).

2.2.2 The map

Let F be the displacement along the orbits given by Eq. (3).

2.2.3 Nearest neighbors

For eachUi , find the nearest pointUj which does not co-
incide withUi . Specifically, takej =9(i) such that dist(Ui ,
Uj ) = minUi 6=Ul

dist(Ui , Ul), andl = 1, 2, . . . ,L; the distance
between two vectorsU i andU j is the square root of the sum
of the squares of the differences between each vector coordi-

nate: (6m
k=1

(
u(k−1)T +j − u(k−1)T +i)

2
)1/2

.
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2.2.4 Space-close points

We next build the sequence2 of the distances corresponding
to the different1 pairs (Ui , U9(i)), wherei goes from 1 toL.
Let L̃ = |2| be the number of these pairs andd∗ be the left
α quantile (α ∈ [0, 1]) of 2; in other words, the pairs (Ui ,
U9(i)), andi ∈ {1 . . . , L} are ordered according to the dis-
tance between the two elements of each pair, so that the or-
dered sequence is{Uik , U9(ik)} k = 1, . . . ,L̃, where dist(Uik ,
U9(ik)) ≤ dist(Uik+1, U9(ik)+1). P is defined as the firstα
fraction of the ordered pairs, i.e.,P = {(Uik , U9(ik)) : k ≤

L̃α}.

2.2.5 Small distances for Eq. (2)

We enlargeP to the setP̃ by adding the pairs displaced along
the orbit of each (Uik , U9(ik)) ∈ P until the distance between
the elements in each pair becomes large enough (see below)
or the end of the window is reached. Formally,

P̃ =

L̃⋃
k=1

{(
Uik , U9(ik)

)
,

(
F Uik , F U9(ik)

)
,

. . . ,
(
F l Uik , F l U9(ik)

)}
such that (i) dist(F l′ Uik , F l′ U9(ik)) ≤ d∗, l′ = 0, 1, . . . ,l, and
(ii) either l + ik =L or l + 9(ik) =L (the end of the window
is reached) or dist (F l+1Uik , F l+1U9(ik)) > d∗ (the distance
is large enough).

2.2.6 Irregularity index

For each pair (U , V ) ∈ P̃ , we compute log [dist(FU,
FV)/dist(U , V )] and define the irregularity indexλ as the
median of these numbers. The computed irregularity index is
assigned to the middle of the sliding window of lengthL. Let
g be the lag between two successive sliding windows (we use
g =L/8; i.e., 6 months); we construct the new time series:

λL/2, λL/2+g, λL/2+2g, . . . ,

consisting of the irregularity indices found for sliding win-
dows [1,L], [g + 1, g + L], [2 g + 1, 2g + L], and so forth.
This new time series is considered as an additional solar in-
dex series.

2.3 Some specifics of the irregularity index

Many papers have aimed at reconstructing the dynamical
system underlying long time series, such as the daily Wolf
numbers (Spiegel and Wolf, 1987; Lawrence et al., 1995),
the monthly Wolf numbers (Ruzmaikin et al., 1992; Price
et al., 1992), and also some yearly series (Ostryakov and

1If Ui is the nearest neighbor ofUj andUj is the nearest neigh-
bor ofUi then the distance dist (Ui , Uj ) is considered only once.

Usoskin, 1990). These series are either sufficiently long (tens
of thousands of points for daily Wolf numbers) or smooth
(since at least the 27-day variations are averaged). The em-
bedding dimension for these systems is generally taken to
be at least 7, and the delayT is of the order of months
(see e.g., Greenkorn, 2009, for a summary table). However,
smaller embedding dimensions (4< m< 9) have been used
by Greenkorn (2009) for daily data over one Schwabe cycle.
The latter paper shows that the Lyapunov exponent is only
weakly sensitive to the value of delayT as long as it remains
small (a few days). The orbit corresponding to the time series
mentioned above now and then returns to the same regions in
the phase space. Usually, only points that are close in the
phase space but far from each other on the time axis are used
to estimate the Lyapunov exponent (Rosenstein et al., 1993).

In this paper, on the contrary, we do not set any limit to the
distance in time of points that are close in the phase space,
and the exact definition of points being “close” is adapted to
the data being studied, using theα quantile of the smallest
distances, as explained above. When the embedding dimen-
sionm = 1, the smallest positive distance between two points
in the phase space is 1 because of the integer nature of ISSN.
We find that at the minima of the ISSN series many points
lying at distance 1 are mapped along the corresponding tra-
jectories to points lying at exactly the same distance, so that
the values of the irregularity index computed at the signal
minima can be inadequate (many values of the ratio – Eq. 4
– are zero). The transition fromm = 1 to m = 2 changes the
properties of the exponent. Whereas we studied embedding
dimensionsm from 4 to 6 in Shapoval et al. (2013) and up
to 32 in Shapoval et al. (2014), we concentrate here on the
casesm = 1 and 2 that are the simplest, and because they shed
light on the occurrence of the quasi-biennial variations, at the
focus of the present paper.

We first smooth the ISSN daily series and investigate the
properties of the irregularity index computed for different
smoothing, with delayT = 1. We compute the irregularity in-
dex within a 4-year sliding window; the choice of this 4-year
length is a compromise between two opposite requirements:
first, the window must be sufficiently large to obtain a stable
determination of the irregularity index; second, it should be
shorter than the Schwabe cycles. We have checked that the
values of the irregularity index calculated as explained are
only weakly sensitive to changes of window length inside a
3–5-year interval.

3 Data analysis

Solar activity is estimated in the paper with the Wolf (ISSN,
sunspot) numbers, involving the number of groups and the
number of spots in each particular group. The number of
groups reflects the emerging magnetic field and is an indica-
tor of activity. The number of spots within a group depends
on the magnetic field as such and also on the interaction
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Figure 1. The irregularity indexλ (blue) computed in a 4-year sliding window for the ISSN averaged over 162 (top panel), 324 (middle
panel), and 648 (bottom panel) days; embedding dimensionm = 1. The Wolf numbers averaged first overN = 162, 324, and 648 days, and
then over 4 years are shown in red, together with solar cycle number. Dashed black vertical lines are located at the maxima of ISSN.

between the magnetic and velocity fields. In this paper, we
mainly study sunspot numbers, but we also present some
preliminary results on group sunspot numbers (Hoyt and
Schatten, 1998) in order to check that results are not affected
by the way in which ISSN is determined (including possible
data heterogeneities).

The Wolf (sunspot) numbers (ISSN) are defined asK

(10G + s), whereG is the number of sunspot groups,s is
the number of individual spots, andK is a factor that is rel-
ative to the observer. Daily data series of ISSN are available
from 1849 onwards (SIDC-team, 2005). We now apply our
algorithm to the ISSN seriesw(t). The time series is strongly
affected by the∼ 27-day signal connected to solar rotation
and reflected axis asymmetry of solar activity (Bartels, 1934;
Kitchatinov and Olemskoy, 2005; Howe 2009; Le Mouël et
al., 2007). Therefore the series is first smoothed in order to
reduce the influence of the Sun’s rotation. Namely, it is aver-
aged over multiples of 27 (days), i.e.,N = 162 (27× 6), 324
(27× 12), and 648 (27× 24) days. This results in new series

ISSN(t) =
t−[N/2]+N∑
k=t−[N/2]

w(k), where [x] is the integer part ofx.

3.1 Casem = 1

The evolution of the irregularity indexλ computed with
m = 1 and the three values ofN given above is shown
(in blue) in Fig. 1, together with the originalISSN se-
ries smoothed over the same 4-year window (in red). With

162-day averaging (Fig. 1a), there is a clear one-to-one cor-
respondence between Schwabe cycles of ISSN andλ. The
maxima of the cycles coincide precisely with each other in
time. Theλ “Schwabe cycles” exhibit asymmetry: the rising
segments are shorter and steeper than the decreasing ones.
There is some structure in the decreasing segments, some-
times in the form of a secondary maximum; minima in the
irregularity index cycles occur later than minima in the ISSN
series.

When the data are smoothed over larger windows, oscilla-
tions with a period close to 5.5 years, i.e., half the period of
the Schwabe cycle, appear (Fig. 1b, c). We call these “half-
Schwabe variations” (HSV; see Shapoval et al., 2013, 2014).
In the following, we use HSV to refer to the presence of ir-
regularity maxima at solar minima (thus generating a 5.5-
year quasi-periodicity), since the irregularity maxima at solar
maxima are almost always present. We also sometimes refer
to HSV to refer to the amplitude or amplitude changes of
the irregularity peaks and their ratios (see below). In Fig. 1c,
both maxima and minima of the ISSN Schwabe cycles corre-
spond to maxima of HSV. Averaging over 324 days leads to
an intermediate behavior of the irregularity index (Fig. 1b):
secondary peaks at solar cycle minima appear clearly in the
1870s and 1880s and after 1950, but some are not or hardly
visible at 1865, 1900 or 1975.

In order to provide a more quantitative measure of HSV
behavior, we determine the ratioR of the amplitude ofλ os-
cillations near maxima of ISSN (1Smax) to that near minima

www.nonlin-processes-geophys.net/21/797/2014/ Nonlin. Processes Geophys., 21, 797–813, 2014
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of ISSN (δSmin; R = δSmin/1Smax in Fig. 2; the method is in-
troduced in Shapoval et al. (2013) and further explained in
the present paper). Figure 2 presents a schematic “Schwabe
cycle” (smoothed artificial signal in red; actually somewhat
more than one full period) and its irregularity indexλ in blue.
λ attains main maximaλSmax at the maxima of the (smoothed)
original signal, secondary maximaλSmin at the minima of the
signal, and its minimaλmid on the descending and ascend-
ing phases of the signal (subscripts in this notation corre-
spond to thesignalnot toλ itself). Three local minima occur
in Fig. 2 (because somewhat more than one cycle is repre-
sented)λ1

mid, λ2
mid, andλ3

mid. λmid is defined as their mean.
Let 1Smax =λSmax − λmid andδSmin =λSmin − λmid. 1Smax and
δSmin measure the amplitude ofλ peaks at signal maxima
(minima) when they exist. Finally,R = δSmin/1Smax measures
“HSV performance”, such that a decrease ofR accompanies
a clearer appearance of HSV.

The quantitiesλSmax, λSmin, andλmid can be determined
even if the HSV structure is subdued.λSmin is taken to be the
maximalvalue ofλ in a neighborhood of theminimumof the
smoothed original signal. We extend the construction ofR to
several solar cycles. In such a case the quantitiesλSmax, λSmin,
andλmid are obtained by averaging the corresponding quan-
tities for all cycles included in the time window of interest.

We see in Fig. 1 thatδSmin increases significantly (from
∼ 0.1 to∼ 0.7) whenN is increased from 162 to 648 (HSV
is actually hardly visible whenN = 162 and almost as strong
as peaks at solar maxima whenN = 648). This is mainly due
to the large drop ofλ on descending and ascending phases
as smoothing is increased. In Fig. 1b, we note differences
in behavior between the period before and after∼ 1930 (for
instance lower overall mean value ofλ and larger amplitude
of HSV and Schwabe cycles after 1930).

3.2 Casem = 2

The above computations are repeated form = 2 (Fig. 3). Dif-
ferent epochs can readily be distinguished. First, both the
amplitude of variations and actual values ofλ change around
1930, in a much more visible way than in the casem = 1, con-
firming that 1930 is a time of first-order regime change. This
is particularly clear in Fig. 3b whereλ drops from a mean
value of about 0.3 to 0.2. This implies that the ISSN series
becomes less irregular after 1930 (see discussion). In Fig. 3a
(162-day averaging), HSV is clearly visible in cycles 21–23,
i.e., from 1975 onwards; it is still visible from about 1915 to
1975 but is barely recognizable prior to 1915. 1915 and 1975
therefore appear as possible second-order regime changes or
at least singularities. Increased smoothing strengthens HSV
behavior. In Fig. 3b, with 324-day averaging, HSV is seen
with varying shapes and amplitudes from 1867 to 1930 and
from 1945 to 2005, with a gap at the times of cycle minima
16–17 and 17–18. In Fig. 3c, with 648-day averaging, HSV
is quite clearly present from 1867 to 1915, but it is subdued
from 1975 to 2005. We further note that someλ maxima at

Δ δ

λ
Smax

λ
Smin

λ
mid
1 λ

mid
2 λ

mid
3

λ

 
Figure 2. Construction ofR = δSmin/1Smax (see text); smoothed ar-
tificial signal (red) and its irregularity index (blue); main maxima
λSmax, secondary maximaλSmin, and local minimaλi

mid. Black lines
show construction of1Smax andδSmin.

solar minima are enhanced by increasing smoothing prior to
1915 (cycles 12–13 and 13–14), whereas others remain sim-
ilar or are reduced after 1975 (cycles 21–22 and 22–23).

Using the same notations as introduced for the casem = 1,
we see (Table 1a) that indeedλSmin is larger for the pe-
riod 1867–1915 than for 1975–2008, both decreasing with
increasingN , the former from 0.37 to 0.22 and the latter
from 0.30 to 0.10, whenN increases from 162 to 648. We
see in Fig. 3 that HSV is better marked whenN is increased
for the period 1867–1915 and whenN is decreased for the
period 1975–2008. This can be expressed by the evolution
of the ratioR = δSmin/1Smax of the mean amplitudes of HSV
peaks at solar minima vs. solar maxima as a function of
N . WhenN increases from 162 to 648, this ratio increases
from 0.67 to 0.79 for the period 1867–1915 but decreases
from 0.71 to 0.34 for 1975–2008 (Table 1a).

In summary, theλ curves shown in Figs. 1 and 3 allow
us to distinguish different epochs. In Fig. 1, we see the very
strong appearance of HSV with an amplification ofλ peaks at
solar cycle minima, and an indication of a change in behavior
of δSmin values as a function ofN before and after∼ 1930. In
Fig. 3, we also see thatλ decreases in both mean value and
amplitude of variations in the 1930s. TheR ratio increases
with N for the period 1867–1915, but it decreases in 1975–
2008. So, evolution of the irregularity index reveals a first-
order singular date∼ 1930. Finer analysis of HSV proper-
ties (R ratio evolution as a function of smoothing) reveals
second-order singular dates around 1915 and 1975.

4 A model

We have already made a first attempt at constructing a model
that would embody HSV behavior of irregularity in solar ac-
tivity as observed in real data in Shapoval et al. (2013). We
extend here the method, with slightly different choices of
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Figure 3.Blue curves : the irregularity indexλ computed in 4-year sliding windows for the Wolf numbers averaged overN days; red curves :
the Wolf numbers averaged overN days and then over 1461 days (4 years), whereN is 162 (top panel), 324 (center panel), and 648 (bottom
panel) days;m = 2. Dashed black vertical lines are located at times of possible regime change ofλ.

relevant parameters, to concentrate on what could be related
to the QBO.

4.1 Definition of the model

Consider a first-order autoregressive AR(1) processx(t):

x(t) = a x(t − 1) + η(t),

where the random variableη(t) is Poissonian with mean
µ(t), P {η = n} = e−µ µn/n!. The meanµ(t) is modulated
by the sum of two periodic functions (as opposed to only one
in Shapoval et al., 2013) with periodsT1 and T2, T1 > T2.
The longer periodT1 is set to 11 years (11× 365 days), corre-
sponding to the Schwabe cycle. We choose the shorter (which
we call intermediate) periodT2 in the range from 1 to 3 years,
such that it includes the QBO. Therefore,

µ(t) = h

(
−cos

2π t

T1
− k cos

2π t

T2
+ c

)
, (5)

whereh > 0, 0< k < 1; c > 1+ k is a vertical shift. The syn-
thetic signalw(t) is defined by

w(t) = [M x(t)]. (6)

M is set to 10 to mimic the factor in the definition of the
group sunspot number. This yields the same order of magni-
tude for synthetic and observed ISSN values.

The model is a function of variablet (time, in days) and
depends on five adjustable parameters:a, h, T2, k andc. The

value of parametera in the auto-regressive process deter-
mines the correlation of the data. Modeling the sunspot series
by an autoregressive AR(1) model connectsa to the lifetime
of sunspots (Blanter et al., 2005).h controls the smoothness
of the signal. The factork < 1 controls the relative amplitude
of the T2 vs. T1 modulations. The vertical shiftc controls
the ratio of the maximum to the minimum ofλ. Figure 4
shows an example of a realization of the model with param-
eters given in the legend.

4.2 Modeling results

4.2.1 Appearance of HSV with data smoothing
(casem = 1)

Already with m = 1 and without intermediate period modu-
lationT2 (k = 0), HSV appears in response to increasing data
smoothing (Fig. 5). ForN = 162 days,λ shows no HSV max-
ima at solar minima. WhenN is increased to 648, allλ val-
ues decrease, but their overall structure changes markedly.λ

remains approximately the same at solar minima, decreases
slightly at solar maxima and falls dramatically in intermedi-
ate intervals (corresponding to the ascending and descending
phases of the “solar” cycle). As a result,λ now peaks sharply
not only at solar maxima but also at solar minima: this behav-
ior is indeed reminiscent of that observed for ISSN (compare
Figs. 5 and 1a, c), as looked for when building the model.
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Table 1.Calculation ofR ratio values (see text).N is the number of
days over which the ISSN data are smoothed to remove in particu-
lar the effect of solar rotation;λSmin is the mean value of the max-
ima of the irregularity index at the times of solar minima over the
period range indicated under the heading “years” (by default 1867–
2008 when not indicated);λSmax is the mean value of the maxima
of the irregularity index at the times of solar maxima over the same
period range;λmid is the mean value of the minima of the irregu-
larity index as indicated in Fig. 2 in the text;δSmin =λSmin − λmid;
1Smax =λSmax − λmid; andR = δSmin/1Smax. Each part of the table
corresponds to a figure as indicated.

N λSmin λSmax λmid δSmin δSmax R years

(a) (corresponding to Fig. 3)

162 0.37 0.43 0.23 0.14 0.20 0.67 1867–1910
324 0.31 0.35 0.15 0.16 0.19 0.83
648 0.22 0.25 0.10 0.12 0.15 0.79
162 0.30 0.34 0.18 0.12 0.17 0.71 1970–2008
324 0.21 0.26 0.12 0.09 0.14 0.64
648 0.10 0.18 0.06 0.04 0.12 0.34

(b) (corresponding to Fig. 6)

Fig. 6a (T = 450,a = 0.8,h = 0.4,c = 1.7,k = 0.35)

162 0.34 0.48 0.30 0.03 0.17 0.19
648 0.21 0.32 0.11 0.10 0.21 0.47

Fig. 6b (T = 610,a = 0.8,h = 0.4,c = 1.7,k = 0.35)

162 0.37 0.47 0.31 0.06 0.16 0.39
648 0.24 0.35 0.10 0.14 0.25 0.56

Fig. 6c (T = 700,a = 0.8,h = 0.4,c = 1.7,k = 0.35)

162 0.35 0.46 0.30 0.05 0.15 0.31
648 0.24 0.31 0.10 0.14 0.21 0.70

Fig. 6d (T = 800,a = 0.8,h = 0.4,c = 1.7,k = 0.35)

162 0.36 0.51 0.32 0.05 0.19 0.25
648 0.18 0.34 0.10 0.08 0.23 0.35

(c) (corresponding to Fig. 7)

Fig. 7b (a = 0.8,h = 0.4,k = 0, c = 1.2)
162 0.14 0.54 0.09 0.05 0.45 0.12
648 0.09 0.30 0.05 0.04 0.25 0.16

Fig. 7c (a = 0.8,h = 0.4,k = 0, c = 1.6)

162 0.43 0.54 0.32 0.12 0.22 0.53
648 0.20 0.33 0.09 0.11 0.24 0.46

Fig. 7d (a = 0.8,h = 0.4,k = 0, c = 1.7)

162 0.48 0.53 0.33 0.15 0.20 0.77
648 0.27 0.30 0.10 0.17 0.20 0.83

(d) (corresponding to Fig. 8)

(a = 0.8,h = 0.8,k = 0, c = 1.7)

162 0.40 0.46 0.28 0.12 0.17 0.69
648 0.15 0.26 0.07 0.08 0.18 0.43

0 5 10 15 20
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100
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140 w

Figure 4.A realization of the AR(1) process introduced in Sect. 3.1,
shown prior to smoothing byN days and over the 4-year interval
over which it will next be averaged (see text). Model parameters:
a = 0.8,h = 0.4,k = 0.35,c = 1.7,T1 = 11 years, andT2 = 700 days.
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Figure 5. The irregularity index computed in 4-year sliding win-
dows for synthetic data averaged over 162 (solid gray) and 648
(dashed black) days (m = 1). Model parameters:a = 0.8, h = 0.4,
k = 0.0, andc = 1.7. Red dashed vertical lines at solar sunspot
minima.

4.2.2 Increase in HSV behavior as a function of data
smoothing (casem = 2)

The behavior of the irregularity index form = 2 is signifi-
cantly richer. We set intermediate period variations at a rel-
atively strong level (k = 0.35; Fig. 6): the irregularity index
exhibits HSV that increases as smoothing is increased (see
Fig. 6a–c when averaging interval goes from 162 days –
solid gray lines – to 648 days – dashed black lines). In the
case whenT2 = 610,N = 648, strong HSV peaks are always
present except in 1 out of 10 possible occurrences (aty = 11;
Fig. 6b). On the contrary, for the sameT2 but with N = 162,
HSV peaks are quite subdued (yet generally visible), though
again only 1 out of 10 is missing (aty = 41; Fig. 6b). In
that case, increasing data smoothing in the model results in
amplifying HSV behavior:R increases from 0.39 to 0.56
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Figure 6. The irregularity index computed in 4-year sliding windows for synthetic data averaged over 162 (solid gray) and 648 (dashed
black) days (m = 2). Model parameters:a = 0.8,h = 0.4,c = 1.7,k = 0.35, and intermediate period variationT2 set at 450(a), 610(b), 700(c),
800(d) days. Red dashed vertical lines at solar sunspot minima.

(Table 1b). HSV increases (that isR increases) with smooth-
ing whenT2 is in the interval [450, 700] (Fig. 6a–c). The
effect slowly disappears whenT2 reaches 800 (Fig. 6d).

Figure 7 illustrates the effect of changing the value of the
“vertical shift” c when there is no intermediate period mod-
ulation (k = 0). HSV behavior becomes increasingly signif-
icant asc is increased:R grows from∼ 0.1 to 0.8 asc in-
creases from 1.2 to 1.7 (Table 1c).

Comparing Fig. 6c (wherek = 0.35) to Fig. 7d (where
k = 0, a = 0.8,h = 0.4, andc = 1.7 in both cases), we see that
HSV behavior is more visible in the case of a smallerN (162)
whenk is smaller (R is then respectively 0.31 vs. 0.77; Ta-
ble 1c). Whenk = 0, there is little or no HSV increase (R

increases from 0.77 to 0.83; Table 1c; Fig. 7b–d) whereas
with k = 0.35 it grows significantly (from 0.31 to 0.70; Ta-
ble 1b). Therefore,k is an important factor controlling HSV
behavior.

4.2.3 Decrease of HSV as a function of data smoothing
(casem = 2)

When intermediate period (T2) variations are suppressed and
parameterh (that controls the smoothness of the signal) is
increased (Fig. 8), we find another regime in which HSV
decreases with increasing smoothing. WhenN increases

from 162 to 648, theR ratio decreases from 0.69 to 0.43
(Table 1d).

4.2.4 A direct comparison of model with observations

In Fig. 9, we model the data of cycles 21–23 (which have
similar durations, to allow a comparison with a model where
T1 = 11 years). Parameterk is set to zero anda to 0.9. This
choice ofa reflects the increase of the lifetime of sunspots
found by Blanter et al. (2005). We can now directly compare
the irregularity index computed for the synthetic and actual
signals.

Since the model contains a random ingredient and the
computation of the irregularity index is sensitive to partic-
ular realizations, two of them are shown in Fig. 9. The irreg-
ularity index for the model follows rather precisely that for
ISSN for N = 162 (Fig. 9, middle row panels, except at the
minimum between cycles 22 and 23 in the realization on the
right side). The quality of the fit is somewhat less forN = 648
(Fig. 9, bottom row panels). Nevertheless, the model realiza-
tions globally reproduce theλ pattern of the real data quite
faithfully.

An explicit comparison (Fig. 9) of the irregularity index
for the model and ISSN time series is possible for cycles 21–
23 (1975–2005) becauseλ constructed with ISSN exhibits a
smooth, quasi-cyclic and regular behavior, as is the case for
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Figure 7. The irregularity index computed in 4-year sliding windows for synthetic data averaged over 162 (solid gray) and 648 (dashed
black) days (m = 2). Model parameters are:a = 0.8,h = 0.4,k = 0, andc = 1.05(a), 1.2 (b), 1.6 (c) and 1.7(d). Red dashed vertical lines at
solar sunspot minima.
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Figure 8. The irregularity index computed in 4-year sliding win-
dows for synthetic data averaged over 162 (solid gray) and 648
(dashed black) days (m = 2). Model parameters:a = 0.8, h = 0.8,
k = 0, andc = 1.7. Red dashed vertical lines at solar sunspot minima.

model realizations. The regime observed in 1867–1915 does
not display such regular cycles ofλ and therefore does not
allow such an easy comparison.

5 Summary, discussion and conclusion

The evolution of the daily values of sunspot number ISSN
from 1850 to 2005 has been studied in this paper, using tools

from dynamical systems. Some interesting results are ob-
tained with the irregularity index, a new method introduced
in Shapoval et al. (2013, 2014). The method computes the
rate of divergence of close trajectories in the phase space
under a one-step translation mapping. This index is akin to
the maximal Lyapunov exponent for time series calculated
for low-dimensional dynamical systems, but is applicable to
short time series with a random component. We have com-
puted the irregularity indexλ of ISSN for embedding dimen-
sionsm = 1 and 2 within a 4-year sliding window, after first
averaging the data overN = 162, 324 and 648 days (multi-
ples of the solar rotation period). The irregularity index for
N = 162 follows the Schwabe cycle (Fig. 1), with sharp, high
peaks at solar cycle maxima. But whenN becomes large
enough, it also exhibits sharp maxima at solar cycle min-
ima (see also Shapoval et al., 2013), resulting in 5.5-year
time variations, i.e., half the period of the Schwabe cycles
(Fig. 1 middle and bottom panels; Fig. 3); we call themhalf-
Schwabe variations(HSV).

The mean level of the irregularity index for ISSN under-
goes a downward step around 1930 (particularly clear with
embedding dimensionm = 2, as seen in Fig. 3). This can be
linked to the observation by Bershadskii (2008) that a change
in the fractal properties of ISSN took place at that time.
For a given time period, HSV can be characterized by the
mean differencesδSmin of λ values at the times of Schwabe
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Figure 9. Top row panels: two synthetic signals (blue; see text) and
ISSN (red) averaged over 4 years. The two columns of the figure are
relative to different synthetic signals. The irregularity index (m = 2)
for model (blue) and ISSN (red) series are shown averaged over 162
(middle row) and 648 days (bottom row).a = 0.9,h = 0.4, andk = 0.

cycle minima (λSmin) and the mean ofλ minima (λmid) at the
middle times of the descending and ascending phases of the
Schwabe cycles; we use the ratioR of δSmin over its equiv-
alent1Smax taken at the times of Schwabe cycle maxima. A
first regime (denoted by Q1) is characterized byR increas-
ing with N , and a second one (Q2) hasR decreasing withN .
For ISSN, withm = 2, Q1 is observed until∼ 1915, whereas
Q2 appears after∼ 1975; the main transition may be around
1930 (Fig. 3).

HSV as such may not be regarded as a result with great im-
portance. Our functionalλ can attain its extrema on both as-
cending and descending phases. If such is the case, HSV ap-
pears because of a certain similarity between these ascending
and descending phases. That is why we cannot yet discuss
the physics underlying the essence of HSV. However, we are
entitled to look for simple time series that would display the
properties observed for ISSN.

A synthetic signal, generated by a simple autoregressive
model of order 1 exhibits many of the above-mentioned prop-
erties of the irregularity index of ISSN. The random part of
this synthetic signal is taken to be Poissonian. Its mean is
modulated by the sum of two periodic functions with peri-
odsT1 = 11 years andT2 < T1, the latter being tunable in an
interval that can range from months to years. The introduc-
tion of intermediate oscillations (T2) allows one to reproduce
both the Q1 and Q2 regimes (Table 1). When the embed-
ding dimensionm is 1, HSV (5.5-year pseudoperiod) oscil-
lations appear even ifT2 variations are absent (k = 0; Fig. 5).
Whenm is equal to 2, the behavior of the irregularity index

series becomes richer: regime Q1, in which HSV behavior in-
creases with smoothingN , is observed for larger values ofk

(Fig. 6), whereas regime Q2, in which HSV decreases with
N , is obtained when intermediate period (T2) variations are
absent (k = 0) and parameterh (which controls the smooth-
ness of the signal) is increased (Fig. 8). We conclude that
high frequency components of ISSN have much in common
with an AR(1) process. The presence and then disappearance
of ∼ 1–2-year (T2) oscillations seem to be required to pro-
duce a transition between regimes Q1 and Q2 (whenm = 2).
We propose that these oscillations may be linked to the QBO,
the second most powerful solar variation after the 11-year cy-
cle (e.g., Ivanov et al., 2002).

At first order, the observed change in the mean level ofλ

around 1930 found in this paper could mark a shift of solar
activity to a new regime (a transition of the solar dynamical
system to a new state). This regime change is also marked by
a (second order) change in the way HSV amplitude varies as
the data is increasingly smoothed. These observed features
can be reproduced by the model: theR ratio increases with
increasingN (Q1) prior to 1915 and decreases after 1975
(Q2). Although several model parameters interact to promote
one or the other regime, the most important one appears to be
parameterk, which reflects the presence or absence of inter-
mediateT2 variations in the process. The shift of the irreg-
ularity index of ISSN from regime Q1 to Q2 may be due to
the decrease or even disappearance of QBO.

In contrast to a standard statistical analysis, one cannot in-
troduce a reasonable null hypothesis in the present study. In-
stead, we have checked the stability of the observed phenom-
ena with respect to the parameters that control the irregularity
index and we have tested the significance of our conclusions
with the auto-regressive model.

The homogeneity of the ISSN-series is a long-debated
question. Svalgaard (2010, 2012) points to an abrupt increase
of ISSN in ~1945 and argues that this increase is caused by
changes in the measurement rules. The NASA website (http:
//solarscience.msfc.nasa.gov/greenwch.shtml) also notes that
the sunspot series is not uniform; abrupt changes occurred in
1941–1942 (sunspot numbers) and 1976–1977 (sunspot ar-
eas, not used in our paper). However, our conclusions about
regime changes are not seriously affected by such events, be-
cause we use ratios (Eq. 4). Moreover, the date of the∼ 1930
singularity is remote from 1941 to 1942 (or 1945).

In order to see whether the observed behavior of the irreg-
ularity index of ISSN could be affected by such data prob-
lems, we have computed the irregularity index for another
proxy influenced by solar activity but derived completely in-
dependently, namely the geomagnetic indexaa (available at
http://isgi.latmos.ipsl.fr/source/indices/aa/). With m = 1, we
computed the irregularity index foraa as such (without any
prior averaging over multiples of 27 days). The values ofλ(t)

(Fig. 10) exhibit both a noticeable increase in mean level
(from about 1.75 to 2) and a decrease in range (from 0.5
to 0.2) in the 1930s. The sign of the change in mean value
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Figure 10. Red curve: the dailyaa averaged over 4 years. Blue
curve: the irregularity index computed in a 4-year sliding window
with m = 1. Vertical dashed lines are at the maxima of Wolf num-
bers (averaged over 4 years). The number of each Schwabe cycle is
indicated.

is opposite to that found for the irregularity index of ISSN
(Fig. 10 vs. Fig. 3), but the same singularity in solar behavior
could be at the origin of both.

Although this paper focuses mainly on changes of the ir-
regularity index with smoothing, we also describe briefly
changes ofλ with time, in order to provide further evi-
dence of the robustness of the technique. Our previous pa-
per (Shapoval et al., 2013) examines the time evolution ofλ

computed for ISSN with a 4-year sliding window and differ-
ent embedding dimensions and finds a change of regime in
approximately 1915–1940. The same computation has been
repeated for the Hoyt and Schatten group sunspot numbers
(GSN, Hoyt and Schatten, 1998). Despite differences in in-
homogeneities and potential problems with the two series,
the main results are quite similar, excluding the possibility
of an artefact due to the choice of an imperfect time series.
The irregularity index of GSN exhibits two different regimes
with a clear transition in the period 1915–1940 (details and
figures in Appendix B). This strengthens the result obtained
for ISSN and published in Shapoval et al. (2013) and further
supports our approach, as used in the present paper.

It would be good to find some physical evidence to sup-
port our hypothesis that the change of regime can be linked
to QBO rarefactions. There has been a significant amount
of research on oscillations in the 1–2-year period range
in cosmic rays (Valdes-Galicia et al., 1996; Kudela et al.,
2002; Rouillard and Lockwood, 2004) and in midlatitude
coronal holes area (McIntosh et al., 1992). Obridko and
Shelting (2007) give a brief review of these works, together
with new results (see also e.g., Ivanov et al., 2002). Inter-
mediate variations do not seem to have been reported up to
now for ISSN, but further interesting observations have been
made foraa (Lockwood, 2001; Mursula et al., 2003). Using
an extendedaa index over 160 years, Mursula et al. (2003)
have found that the power of “mid-term quasi-periodicities”

(identical to QBO) is larger at periods alternating between
1.3 and 1.6 years; maxima of 1.3-year oscillations occur at
the maxima of Schwabe cycles 18 and 22, while the 1.6-
year oscillations peak at the maxima of cycles 16 and 21.
The spectral power ofaa is high during periods of high solar
activity and would reflect the strength of the solar dynamo.
Sudden disappearance of power is considered as a precursor
for long-term decreases in solar activity. Our observations of
a post-1975 decrease ofR ratio with smoothing and our mod-
eling of this regime by using an AR(1) process withoutT2
variations are in line with the work of Mursula et al. (2003).

At least two different mechanisms could generate QBO.
On one hand, Ivanov et al. (2002) show that the QBO of so-
lar magnetic fields are mainly revealed in their large-scale
component; they argue that QBO actually reflect variations in
the equatorial dipole (and to a lesser extent quadrupole); for
these authors, QBO sources are located near the base of the
convection zone and remain invariable. Vecchio et al. (2012),
using magnetic synoptic maps from 1976 to 2003, propose
that QBO are fundamental modes associated with poleward
magnetic flux migration from low to high latitudes (part of
meridional circulation) during the maximum and descend-
ing phases of the solar cycle. A strong link between QBO
and the solar dynamo is inferred from these and other works.
Time variations of QBO might therefore provide information
on changes in meridional flow. On the other hand, nonlinear-
ity of the solar dynamo itself could be the source of QBO.
Using a nonlinear Babcock–Leighton model, Charbonneau
et al. (2007) support the hypothesis that the nonlinear com-
ponent of the solar dynamo prevails over the stochastic one.
Mayr and Schatten (2012) argue that the strong nonlinearity
in the Charbonneau et al. (2007) equations could generate
QBO without any time-dependent solar excitation.

The irregularity index of ISSN computed in this paper may
provide a measure of the irregular behavior of the solar dy-
namo. Duhau and de Jager (2008) propose that ISSN may
be used as a proxy of the toroidal component of the Sun’s
magnetic field andaaof the poloidal component. The irregu-
larity index ofaaas such presents a change in the 1930s, with
a sign opposite to that for ISSN. We could therefore interpret
our observations of changes in regime of the irregularity in-
dices of ISSN andaa as indicating respectively a decrease
in the irregular character of the toroidal field and an increase
in the irregularity of the poloidal field in the 1930s, date of
the advent of a grand maximum period in solar activity. Our
analysis also suggests that another change may have started
around 1975, as witnessed by decreasing HSV as a function
of smoothing (see Fig. 3a–c in that order). This may have
heralded the 2005 change found in our complementary stud-
ies of the irregularity index (Shapoval et al., 2013, Figs. 2–5;
Shapoval et al., 2014, Figs. 1–3).

The irregularity index method is promising but still not a
fully understood tool. It appears to be able to uncover singu-
lar phenomena and solar activity changes that cannot easily
be seen by other means, but the tool depends on a number
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of parameters, particularly the embedding dimension and
changes of behavior as the embedding dimension is changed.
We note that the regime changes R1 and R2 uncovered by
Shapoval et al. (2013, 2014) are not identical to the regime
changes Q1 and Q2 found in the present paper. The R1/R2
regimes are marked by different levels of the irregularity in-
dex (computed with embedding dimensions from 4 to 32).
In the present paper, when embedding dimensionm is 2, we
also find some evidence of the R1/R2 regimes (Fig. 3a, b).
But we introduce an additional tool, the analysis of the ir-
regularity index as a function of data smoothing (N ), and
this is what reveals the Q1/Q2 regimes. Although R1 and
Q1, ending around 1915–1930, could correspond to the same
regime, R2 (starting after 1930 and possibly ending in 2008)
and Q2 (emerging clearly only after 1975) do not coincide.
The physical nature of these singularities and the differences
in their timing and behavior remain to be deciphered.
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Appendix A: Examples of computation of the
irregularity index

In order to illustrate some aspects of the computations in-
volved in this paper, we generate synthetic data with the
formula

u(t) = sin
2π t

20
+ η(t), t = 1, 2, . . . , 19,

whereη(t) is a random variable uniformly distributed over
[−0.05, 0.05]. The embedding space is one-dimensional
(m = 1).

Figure A1 exhibits 19 points of the sample. For each point,
we first find the nearest neighbor. In the present case, only
13 pairs of nearest neighbors are different, so that the set of
distances consists of 13 values. Letα = 0.25. Since the in-
teger part of 0.25× 13 is 3, theα quantiled∗ is the third
distance from the lowest one. Distances less than or equal to
d∗ are “small”, according to our definition. For each pair of
nearest neighbors, the mapF defined in Eq. (3) that moves
points along their trajectory is applied, the distance between
the corresponding images being small. In the example above,
the pair at times 6 and 19 (red points in Fig. A1) possesses
the smallest distance. A move to the right is impossible be-
cause 19 is the largest time in the window. Thus, this pair
does not contribute to the computation of the exponent.

The points at times 4 and 11 form the next pair (blue
filled circles). The distance betweenu(5) andu(12) (blue
empty circles), which is|u(12) − u(5)|, is larger than
d∗; therefore, this pair generates a single quantity log
[|u(12) − u(5)|/|u(11)− u(4)|] as a candidate irregularity
index.

The last pair under consideration is [u(1), u(11)]. Since
the valueu(11) appears twice in the pairs we consider, the
corresponding point in the graph is marked first by a blue
circle and second by a green circle (the green circle is
smaller). Although the valuesu(2) andu(12) are very close,
the distance betweenF(u(1))=u(2) andF(u(11)) =u(12)
is larger than the critical distance. Thus, the quantity log
[|u(12)− u(2)|/|u(11)− u(1)|] becomes the second candi-
date to the irregularity index. The irregularity index is chosen
as the median of the candidate values.

Appendix B: Regime change ofλ of GSN and ISSN

The irregularity indexλ of both ISSN and GSN is computed
with a 4-year sliding window, 8-day delay, and embedding
dimensions 2–32. According to Figs. B1 and B2,λ of both
the series exhibits two different patterns before∼ 1915 and
after ∼ 1940 with a transition during 1915–1940. The pat-
terns for ISSN differ by the values of the irregularity index.
High values of the irregularity index, most markedly seen at
the minimum of cycles 14 and 15, underlie the pattern prior
to 1915. The second pattern continues with the minimum
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Figure A1. Computation ofλ. Synthetic signal vs. time (see text).
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Figure B1. The irregularity indexλ computed for ISSN within 4-
year sliding windows; the embedding dimensionm is indicated; ver-
tical lines are at solar cycle minima.
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Figure B2. The irregularity indexλ computed for GSN (Hoyt and
Schatten, 1998) within 4-year sliding windows; the embedding di-
mensionm is indicated; vertical lines are at solar cycle minima.

of cycles 23 and 24 whenλ achieves another remarkable
maximum.

The irregularity index of GSN also exhibits four high max-
ima at the minima of cycles 11–15. We cannot check the ex-
istence of the cycle 23–24 peak since recent data, following
the Hoyt and Schatten technique, are not available as open
sources. This confirmation of the regime change of solar ac-
tivity between 1915 and 1940 vindicates our approach and
results.
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