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S U M M A R Y
We formulate the inverse problem of waveform inversion for localized 3-D seismic structure,
computing partial derivatives of waveforms with respect to the elastic moduli at arbitrary
points in space for anisotropic and anelastic media. In this study we minimize computational
requirements by using the Born approximation with respect to a laterally homogeneous model,
but this is not an inherent limitation of our approach. We solve the inverse problem using the
conjugate gradient (CG) method, using Akaike’s Information Criterion (AIC) to truncate the
CG expansion. We apply our method to invert for 3-D shear wave structure in the lowermost
mantle beneath Central America using a total of 2154 waveforms at periods from 12.5 to 200 s
recorded at stations near the Pacific coast of North America for 29 deep and intermediate-depth
events beneath South America. The resulting model shows lateral heterogeneity in the E–W
direction, which may be associated with a subducted cold slab surrounded by hotter materials
with slower velocities. Various tests show that our model is robust.

Key words: Mantle processes; Body waves; Seismic tomography.

1 I N T RO D U C T I O N

Forward modelling studies have made many important contribu-
tions to studies of the Earth’s interior. However, as the volume of
data increases, it will become increasingly difficult for analysts,
however skilled, to determine which model provides the best over-
all fit to the data. Since many more seismic observatories such
as arrays are now being deployed, it is desirable to be able to
conduct objective and quantitative inversion of a large amount
of seismic waveform data for detailed seismic structure in the
Earth.

In order to conduct waveform inversion, computation of the par-
tial derivatives is required. Tarantola (1984) conducted pioneering
work to develop algorithms for efficient computation of steepest
descent vectors for acoustic wavefields for application to waveform
inversion. Geller & Hara (1993) extended these results to derive
efficient algorithms for computation of partial derivatives in both
matrix and wavefield formulations. While the former is suitable for
inversion for global structure (e.g. Hara et al. 1993), the latter is
appropriate for inversion for local structure (e.g. Kawai & Geller
2010a; Fuji et al. 2012). Many other studies have also presented

theoretical formulations of waveform inversion and/or inversion re-
sults for synthetic or model data, including Pratt (1999), Sirgue &
Pratt (2004) and Tromp et al. (2005).

Several groups have conducted waveform inversion of observed
data, sometimes called full-waveform inversion. Chen et al. (2007)
inverted phase-delay measurements of P and S body waves to deter-
mine the 3-D structure of the Los Angeles region, using the finite-
difference method to compute synthetic seismograms. Tape et al.
(2009, 2010) inverted for crustal structure beneath southern Cali-
fornia using the spectral element method (SEM) to compute syn-
thetic seismograms. They used waveform data to obtain traveltime
or phase data for finite frequency kernels (Dahlen & Tromp 1998).
Waveform inversion was conducted using a data set consisting pri-
marily of surface waves by Fichtner et al. (2008, 2009, 2010), who
used the SEM for computation of synthetics. They weighted phase
data and amplitude data and created penalty functions to investigate
not only laterally heterogeneous but also anisotropic structure in the
upper mantle. Except for studies on shallow structure (such as the
crust and upper mantle), it is currently difficult to conduct wave-
form inversion following the above-mentioned approaches, because
SEM is computationally costly.
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496 K. Kawai et al.

Figure 1. Schematic explanation of waveform inversion for localized structure in the Earth’s deep interior. We select target regions which are well sampled
by waveforms excited in regions where intermediate or deep focus earthquakes (to minimize complications in the waveforms due to surface reflections) occur
frequently and are observed by dense receiver networks such as arrays; we then invert for 3-D local structure of the target region parametrized as voxel structure.
In order to conduct waveform inversion for localized structure, it is necessary to be able to make static corrections stably and to efficiently compute partial
derivatives for voxel perturbations.

Takeuchi (2012) conducted full-waveform inversion for the shear
velocity structure of the whole mantle expanding the laterally het-
erogeneous structure in spherical harmonics up to angular order
18, using the direct solution method (DSM; Geller & Ohminato
1994; Kawai et al. 2006) to compute synthetics. As for exploration
seismology, it has long been suggested that waveform inversion
will eventually become one of the most important tools. Some ba-
sic algorithms have already been developed (e.g. Tarantola 1984,
1986; Pratt 1999), and techniques for waveform inversion are being
widely discussed in exploration seismology (see Virieux & Op-
erto 2009, for a review). However, published applications to real
data (e.g. Sirgue et al. 2010; Prieux et al. 2011) are still relatively
rare and are generally limited to frequency domain applications for
acoustic-wave approximations.

Our group has conducted waveform inversion for seismic struc-
ture in the deep Earth’s interior using the DSM to compute synthet-
ics and their partials. Kawai et al. (2007) determined the fine struc-
ture of depth dependence of shear wave velocity structure within
D′ ′, whereas traveltime tomography can resolve only average struc-
ture over a depth range of three to four hundred kilometres. Fuji
et al. (2010) directly inverted for 1-D localized anelastic structure
in the mantle transition zone, whereas previous studies investigated
anelastic structure using intermediate values such as t∗, an inte-
grated value which is frequency-dependent. Kawai & Geller (2010b)

showed that resolution of the velocity of SV shear waves very close
to the CMB is inherently limited due to the boundary condition of
zero tangential traction at the CMB and that no method, including
shear wave splitting studies, can resolve anisotropy immediately
above the CMB. They also showed that the elastic constants in
D′ ′, including anisotropy, can be determined straightforwardly by
waveform inversion for depths greater than one or two wavelengths
above the CMB. In this study we extend our methods to invert for
3-D shear velocity structure in D′ ′ beneath Central America.

2 M E T H O D S F O R WAV E F O R M
I N V E R S I O N F O R 3 - D L O C A L I Z E D
S T RU C T U R E

In this section we summarize our methods (Fig. 1) for inversion of
waveforms for localized 3-D structure. We discuss the applicability,
robustness and resolution of these methods in Section 3.

2.1 Synthetics

In this study we use the DSM to compute full-wave synthetic seis-
mograms for a 1-D transversely isotropic model. We then compute
the partials for 3-D structure using the Born approximation. The

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/197/1/495/686890 by guest on 18 August 2023



3-D full localized waveform inversion in D′′ 497

DSM obtains the solution of the weak form of the equation of mo-
tion by directly solving the Galerkin weak form of the equation of
motion:

(ω2T − H + ωR)c = −g, (1)

where c is the vector of coefficients of the trial functions, T is the
mass matrix, H is the stiffness matrix, g is the force vector and
R enforces continuity conditions at fluid–solid boundaries, which
exist only for the spheroidal case. We do not use geometrical op-
tics or Earth-flattening approximations in computing the synthetics
and their partial derivatives. The publicly available DSM software
efficiently computes highly accurate synthetic seismograms in a
spherically symmetric transversely isotropic earth model (Kawai
et al. 2006). Although the publicly released software is only for 1-D
media at present, this approach can also be applied to 3-D problems
(e.g. Cummins et al. 1997). In this study, although only toroidal–
toroidal coupling is taken into account, we compute synthetics for
both the toroidal and spheroidal wavefield to remove the effects of
non-physical waves (see Kawai et al. 2006, for details).

2.2 Partials

We use the methods of Geller & Hara (1993), which are an ex-
tension of the methods of Tarantola (1984), to compute the partial
derivatives. Geller & Hara (1993) give both matrix and wavefield
formulations of the partials. While the former are more suitable for
investigation of global scale 3-D structure, the latter are more suit-
able for inversion for localized 3-D structure. The latter approach
is therefore adopted in this study.

We express the i-component of the displacement for the k-th
earthquake at the point r as u(k)

i (r), and the i-component of the
backpropagated displacement at r excited by a point force in the
j-direction at the p-th station as η

(p)
i j (r). Note that r will in general

be a point in the Earth’s interior (the ‘target’ of the inversion).
The partial derivatives in the wavefield formulation are expressed

as follows:{
∂u(k)

i

[
r (p)

]
∂ml

}∗

=
∫

V
(ω∗)2

[
u(k)

j

]∗ [
ρ(l)

]∗
η

(p)
j i dV

−
∫

V

[
u(k)

j,q

]∗ [
C (l)

jqrs

]∗
η

(p)
ri,sdV , (2)

where ρ(l) = δρδ(r − r0) or C (l)
i j pq = δCi jpqδ(r − r0) and ui, j = ∂ui

∂x j

is a locally Cartesian derivative (see Geller & Hara 1993, for details).
Since the transverse component of waveforms is used in this study,
we take into account toroidal–toroidal coupling and neglect other
coupling.

2.2.1 3-D synthetics based on the Born approximation

We compute 3-D synthetics for voxel perturbations including
anisotropy and anelasticity using the first-order Born approxima-
tion as follows:

u3D(r) = u1D(r) +
∑

l

∂u(r)

∂ml
δml , (3)

where u3D is a synthetic seismogram for the 3-D earth model and
u1D is a synthetic for a 1-D earth model such as PREM (Dziewon-
ski & Anderson 1981). We have developed efficient software for
computation of synthetics for a 3-D earth model using the above
formulation.

Figure 2. We compare synthetics computed for a finite perturbation to those
computed using the partial derivatives to confirm the absence of bugs. The
green layer, which has a thickness of 100 km, is perturbed finitely and spheri-
cally symmetrically. Partial derivatives for each white block 1◦ × 1◦ × 10 km
are computed. The sum of the voxel perturbations is compared to the spher-
ically symmetric perturbation to confirm the reasonableness of the voxel
perturbations.

In order to validate these methods, we compare finite perturbation
waveforms to the partial derivatives. We simulate a locally laterally
homogeneous perturbation to a 1-D model by uniformly perturbing
a large number of adjacent voxels, as shown in Fig. 2. We compare
the difference of the synthetics for the initial and final 1-D models
to the perturbations computed by summing the Born perturbations
for all of the voxels for several different finite perturbations. Since
the 1- and 3-D models are not directly comparable this is not a
rigorous test of the accuracy of the partials, but rather just a check
to confirm the absence of a serious bug. In all cases the results were
reasonable.

2.3 Static corrections

The observed waveforms sample both structure inside and outside
the target region. The effects of the latter must be accounted for.
We handle this by making static corrections (time-shifts) to the
observed waveforms. We have developed three methods for static
corrections: the direct inversion method (Kawai & Geller 2010a),
the autopick method (time-shift before inversion) (Fuji et al. 2010)
and the hybrid method (Konishi et al. 2012). While the second is
suitable in cases where the reference phase and the phase of primary
interest sample almost the same path except for the target region,
the first is suitable in cases where a reference phase cannot be used
because both phases sample the target regions. The third is suitable
for both cases. Konishi et al. (2012) discuss the relation of these
three methods. This study adopts the autopick method, since the
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direct S phase can be used as a reference phase for the epicentral
distances used in this study when the target region is D′ ′.

2.4 Data processing

The synthetics and partial derivatives must both be processed in
the same way as the observed data. We design a recursive digital
Butterworth bandpass filter (e.g. Shanks 1967), following Saito
(1978). As this paper is written in Japanese, we summarize this
method in Appendix B.

2.5 Inverse problem formulation

In our various studies of 1-D structure, we have solved the wave-
form inversion inverse problem using DLS (damped least squares),
SVD (singular value decomposition; Lanczos 1961; Wiggins 1972;
Lawson & Hanson 1974; Menke 1984) and CG (conjugate gradient;
Beckman 1960; Reeves 1964). Inversion using SVD and CG was
discussed by Fuji et al. (2010) and Fuji (2010), respectively; we
briefly summarize the main results in Appendix A.

2.6 Variance

When we use a relatively small amount of waveform data, we can
directly compute Aδm. However, note that we can easily compute
the total variance |δd − Aδm|2, as follows:

|δd − Aδm|2 = (δd − Aδm)T (δd − Aδm)

= (δdT − (Aδm)T )(δd − Aδm)

= δdT δd − δdT Aδm − (Aδm)T δd + (Aδm)T Aδm

= δdT δd − (AT δd)T δm − δmT (AT δd)

+δmT (AT A)δm. (4)

Since AT δd and ATA are M × 1 and M × M matrices, respectively,
the above computation will always be feasible.

2.7 Model resolution matrix

The model resolution matrix, R, is defined as follows by Menke
(1984, p. 64):

mest = Rmtrue, (5)

where mtrue and mest are the solution of the inverse problem using
a complete basis and a particular estimate of the model parameters
obtained by an inversion using a truncated basis, respectively. The
solution to the inverse problem

Gmtrue = dobs (6)

is

mest = G−g dobs, (7)

where G−g is the generalized inverse matrix. The model resolution
matrix is therefore written as:

R = G−gG. (8)

2.7.1 Model resolution matrix for SVD

In our linearized inversions G = A, and the inverse problem is
solved using the first L eigenvectors (see Section A2), where we use
Akaike’s Information Criterion (AIC) to truncate the SVD expan-
sion. We therefore have

δmest =
[

L∑
i=1

viv
T
i

λ2
i

]
ATδdobs

=
[

L∑
i=1

viv
T
i

λ2
i

]
ATAδmtrue

=
[

L∑
i=1

viv
T
i

λ2
i

] ⎡
⎣ M∑

j=1

v jv
T
j λ

2
j

⎤
⎦ δmtrue

= VL VT
Lδmtrue, (9)

where we used the orthogonality of the eigenvectors in going from
the next to last line of eq. (9) to the last line. By comparing eq. (9)
to eq. (5) we can see that

R = VL VT
L . (10)

2.7.2 Model resolution matrix for CG

For the CG expansion using eqs (A24) and (A28), we have

δmest = PL−1PTATδdobs

= PL−1PTATAδmtrue. (11)

By comparing eq. (11) to eq. (5) we can see that the model resolution
matrix for the CG solution is

R = PL−1PTATA. (12)

3 A P P L I C AT I O N T O O B S E RV E D DATA

3.1 Data

We choose the D′ ′ layer beneath Central America (Fig. 3) as the
target region for the 3-D inversion in this paper. The shear wave
velocity structure here has been suggested to be laterally heteroge-
neous by previous studies based on ray theoretical approximations
(e.g. Grand 2002; Hung et al. 2005; Hutko et al. 2006).

We carry out our inversion in two stages. In the first stage we use
412 records from the IRIS/USGS, SCSN, PNSN, BDSN and CNSN
networks for the events listed in Table 1; ray paths are shown in
Fig. 3. We use this data set to conduct a preliminary inversion and
we then perform a series of tests to validate the robustness of the
inversion results. In Section 4, we present results for the second-
stage inversion, in which we use a much larger data set, consisting
of the 412 records used in the first-stage inversion and an additional
1742 records from the US-Array for the 14 events shown in Table 2,
for a total of 2154 records.

We use the transverse components of broad-band waveform data
obtained by rotating the N–S and E–W components (Table 1 and
Fig. 3). We deconvolve the instrument response and apply a band-
pass filter to the data and construct data sets for the passband 0.005
to 0.08 Hz (i.e. for the period range, 12.5–200 s). We then select
records which include S, ScS and the other phases that arrive be-
tween them.
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Figure 3. Event-receiver geometry for the first-stage data, with great circle
ray paths. The portions of the great circles which sample D′ ′ are shown
in red, and plus signs indicate the turning points within D′ ′. Blue reversed
triangles show the sites of North American stations (data from IRIS/USGS,
SCSN, PNSN, BDSN and CNSN) used in our study. Red stars show the 15
intermediate and deep earthquakes studied (Table 1). The yellow dot is the
location for the target for the test of the effect of shallow structure shown
in Fig. 18. Inset at lower left-hand side shows a schematic cross-section for
the calculations in Fig. 18. The triangle shows a station and the cross shows
a source. Coloured circles show the locations of the perturbations to the
shallow structure and the green rectangle shows the target region in D′ ′.

Table 1. Earthquakes for which we used IRIS/USGS, SCSN, PNSN, BDSN
and CNSN data.

Event # Date (Y/M/D) Latitude Longitude Depth Mw

1 1993/5/24 −23.45 −66.88 231.9 7.0
2 1993/10/19 −22.12 −65.69 278.9 6.0
3 1994/1/10 −13.28 −69.27 603.6 6.9
4 1994/4/29 −28.51 −63.22 565.9 6.9
5 1994/5/10 −28.62 −63.02 603.0 6.9
6 1994/8/19 −26.72 −63.42 562.6 6.4
7 1997/1/23 −22.04 −65.92 281.6 7.1
8 1997/11/28 −13.70 −68.90 600.5 6.6
9 1999/9/15 −20.73 −67.37 217.5 6.4
10 2000/4/23 −28.41 −63.04 607.9 6.9
11 2000/5/12 −23.72 −66.85 226.6 7.2
12 2002/10/12 −8.30 −71.66 539.4 6.9
13 2003/7/27 −20.05 −65.19 350.6 6.0
14 2004/3/17 −21.24 −65.60 297.0 6.1
15 2005/3/21 −24.86 −63.47 572.4 6.8

3.2 Synthetics and partials

We compute synthetics using the algorithm of Kawai et al. (2006)
for the anisotropic PREM model (Dziewonski & Anderson 1981)
for the Global CMT solutions using boxcar moment rate functions.
We compute the ratio of the maximum amplitude of the data and the
corresponding synthetic, and exclude records for which the ratio is
greater than 2 or less than 0.5. The first-stage data set consists of

Table 2. Earthquakes for which we used US-Array data.

Event # Date (Y/M/D) Depth Latitude Longitude Mw

1 2005/06/02 193.2 −24.35◦ −67.21◦ 6.0
2 2006/08/25 185.8 −24.44◦ −67.18◦ 6.6
3 2006/09/22 602.4 −26.85◦ −63.05◦ 6.0
4 2006/11/13 573.4 −26.10◦ −63.47◦ 6.8
5 2007/05/25 188.5 −24.33◦ −67.36◦ 5.9
6 2007/07/21 280.2 −22.31◦ −66.00◦ 6.4
7 2007/11/18 262.4 −22.67◦ −66.48◦ 6.0
8 2008/09/03 571.3 −26.85◦ −63.30◦ 6.3
9 2008/10/12 361.5 −20.30◦ −65.23◦ 6.2

10 2009/07/12 197.1 −15.25◦ −70.75◦ 6.1
11 2009/09/05 209.8 −15.46◦ −70.68◦ 5.8
12 2009/11/13 611.8 −17.96◦ −64.22◦ 5.8
13 2009/11/14 221.2 −23.04◦ −66.83◦ 6.2
14 2010/01/28 204.5 −23.64◦ −66.96◦ 5.9

412 records that satisfy the criteria; 374 records that did not satisfy
the criteria were rejected. The data are velocity seismograms (with
units of m s−1) with 1 Hz sampling. The reciprocal of the maximum
amplitude of each record is used as the weighting factor in the
inversion, so that all data have roughly the same importance.

3.3 Static corrections

The source parameters (moment tensors, centroids and half dura-
tions) are fixed to the Global CMT solution. We convolve a boxcar
moment rate function with the GCMT half duration with the syn-
thetic seismograms and their partial derivatives. Since the inversion
is only for the structure of D′ ′ in the target region, other effects must
be accounted for empirically. To correct for the effect of local struc-
ture near the stations and the sources, we make static corrections
using the autopick method (Fuji et al. 2010).

3.4 First-stage inversion

The S-wave velocities at points 400 km or more above the CMB
are fixed to PREM, while those within 400 km of the CMB are the
unknown parameters. The study area is at latitudes between −10◦

and 30◦ and longitudes between 255◦ and 275◦. We divide the
studied volume into 5◦ × 5◦ × 50 km voxels. There are thus 336
unknown parameters. We conduct inversion using the first n basis
vectors obtained by the CG method. We choose the value of n that
minimizes AIC.

Model CG5, the model obtained for n = 5, is shown in Fig. 4.
Defining the variance of the data to be 100 per cent, the variance
(data minus synthetics) for the PREM synthetics is 88.4 per cent. A
further variance reduction to 80.9 per cent is achieved by making the
static corrections. The variance for model CG5, which minimizes
AIC, is 63.0 per cent, as shown in Fig. 5 and Table 3.

Fig. 4 shows laterally heterogeneous structure mainly in the E–W
direction for each depth; wiggling high-velocity anomalies are sur-
rounded by low-velocity anomalies. The velocity perturbations are
largest at the bottom of the mantle and second largest in the depth
range from 350 to 400 km above the CMB. The velocity anomalies
seem to continue from the CMB to 400 km above the CMB. The lat-
eral scale of the high-velocity anomaly is about 250 km × 1500 km.
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Figure 4. Results of the first-stage inversion (CG5) for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for each depth
range. The reference for the velocity perturbation is the PREM model.

Figure 5. Variance reduction for stage 1 CG and SVD inversions. Model
CG5 is shown in Fig. 4 and Models SVD50 and SVD200 are shown, respec-
tively, in Figs 11 and 12.

3.5 Resolution check

We conduct synthetic resolution (‘checkerboard’) tests (Figs 6
and 7) to examine the ability of our methods to resolve various syn-
thetic structure models. Since the input models are synthetic, static
corrections are not needed. Synthetic seismograms were calculated
using the Born approximation. We confirm that waveform inversion
can resolve the lateral heterogeneity well in all depth ranges for this

Table 3. Variance and AIC for each model obtained
using the data for the events in Table 1. For calculation
of AIC values, an empirical redundancy parameter α

of 30 is used.

Model Variance (per cent) AIC

PREM 88.4 —
PREM with time-shift 80.9 304.2
CG5 63.0 285.1
SVD50 67.5 383.1
SVD200 62.9 676.9

region, although the resolution in the depth range from 50 to 150 km
above the CMB is relatively low. Waveform inversion can resolve
laterally heterogeneous structure from waveforms propagating only
in a relatively limited range of azimuths because of the large amount
of information contained in the waveforms, which are linearly in-
dependent. This differs from waveform inversion for upper-mantle
structure using surface waves, because our data set includes wave-
forms whose incidence angles differ from one another and whose
most sensitive point, that is, the turning point, is different for each
record. Fig. 7 shows that although the overall resolution of later-
ally heterogeneous structure is good, resolution where the number
of bottoming points is large is better, for example, around profile
B–B′. As we show in Section 4, better resolution in the northeast
direction is obtained by also using data from the US-Array, which
was deployed recently.
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Figure 6. Recovered models for checkerboard patterns of the heterogeneities for each depth. The input model is shown in the left panel.

It should be noted that the above-mentioned checkerboard resolu-
tion test is a best-case estimate and that some studies have suggested
that checkerboard tests can be misleading (e.g. Lévêque et al. 1993).
Recent research is exploring other ways to estimate the uncertainty
of waveform inversion results (e.g. Fichtner & Trampert 2011a,b).

We now discuss validation of our methods, the robustness of our
obtained model and the resolution of the data set.

3.6 Inversion without static corrections

To address the question of the effect of the time-shifts (static correc-
tions), we conduct inversions without making any time-shifts. A data
set of 412 time windows with a variance reduction of 7.5 per cent
(relative to synthetics for PREM when no time-shift was made) was
used, and the resulting models for CG5 are shown in Fig. 8. The
models obtained have essentially the same character as the mod-
els obtained by the actual inversions shown in Fig. 6, except that
the absolute velocities are systematically shifted to lower values.
Thus we conclude that the pattern of the 3-D velocity models is
not an artefact of the time-shifting, but that hypothetical errors in
the time-shifting procedure might cause small errors in the absolute
velocities. The question of static corrections is complex, and further
work is warranted. For example, it might be possible to use sensitiv-
ity kernels and a 3-D global structure model to compute correction
terms and invert the corrected data for the velocity in D′ ′. However,
the results in the above-mentioned figures confirm the robustness
of the overall spatial patterns found by our inversion.

3.7 Comparison with CG using 20 s periods waveforms

We conduct inversion using the first five basis functions obtained
by the CG method in the same way as mentioned above, but using
waveforms only up to periods of 20 s. The inversion for n = 5 is
shown in Fig. 9. This model is very similar to that obtained using

waveforms at periods up to 12.5 s in Fig. 4. We thus further confirm
that our model (CG5 in Fig. 4) is robust.

We also conduct checkerboard tests to estimate the resolution of
waveforms at periods up to 20 s and find that the resolution (Fig. 10)
is a little worse than that up to 12.5 s (Fig. 6). This may imply that
the scale of laterally heterogeneous velocity structure in the regions
investigated in this study is large enough to be resolved by data sets
at periods up to 20 s.

3.8 Comparison of CG inversion with inversion
using SVD

We conduct inversion using the eigenvectors corresponding to the
n largest eigenvalues of the SVD of the matrix of partial derivatives
as the basis functions for the perturbation to the starting model.
The results of our inversions for n = 50 and 200 are shown in
Figs 11 and 12 (SVD50 and SVD200, respectively). Fig. 5 shows
the variance for both SVD and CG inversions, which indicates that
the SVD inversion converges more slowly than the CG inversion.
Table 3 shows variance and AIC values for each model. The variance
for SVD200 is almost equal to that for CG5 and a comparison of
Fig. 4 and Fig. 12 shows that model SVD200 is almost equivalent
to CG5. However, AIC for SVD200 is much larger than that for
SVD50, while AIC for SVD50 is larger than that for PREM with
time-shifts. This suggests that the data set does not contain sufficient
information to justify inverting for even the first 50 basis vectors
when the SVD basis is used, but the SVD inversion results are shown
here for purposes of comparison.

Although the features of models SVD50 and SVD200 are sim-
ilar in terms of pattern, the magnitude of the perturbations in
SVD50 is smaller than SVD200. As well known for SVD in-
version, eigenvectors for large eigenvalues tend to reflect long-
wavelength structure in the model space. As discussed in Sec-
tion 3.7, the similarity in pattern of inferred models between SVD50
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Figure 7. Recovered models for checkerboard patterns of the heterogeneities for six cross-sections (A–A′, B–B′, C–C′, D–D′, E–E′, F–F′ and G–G′). The
input model is interlaminated with patterns 1 and 2 for each 50 km depth interval. The input models for each cross-section are shown in the centre column.

and SVD200 may imply that the long-wavelength components are
dominant for this case. However, it is not necessarily true that the
expansion coefficients for eigenvectors of large eigenvalues will be
dominant.

We also conduct checkerboard tests to estimate the resolution of
SVD50 (Fig. 13) and SVD200 (Fig. 14). We find that the resolution
of SVD50 is, of course, worse than that of SVD200 and that the
resolution of SVD200 is equal to that of CG5 (Fig. 6).
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3-D full localized waveform inversion in D′′ 503

Figure 8. Results of the inversion (CG5) for the 3-D shear wave velocity structure without static corrections.

The contribution to the data space for SVD inversion can be
described as the summation of contributions for model parameters
up to the truncation index, q, as follows:

s(qsvd) = A
qsvd∑
i=1

δmi = A
qsvd∑
i=1

eivi =
qsvd∑
i=1

si , (13)

where si = Aeivi . When we describe the contribution to the data
space for the SVD inversion in the checkerboard test as sc, we know
that sc = s. The contribution to the data space for the CG inversion
can be written as:

c(qcg) = A
qcg∑
i=1

δmi = A
qcg∑
i=1

ai pi =
qcg∑
i=1

ci , (14)

where ci = Aai pi . The contribution to the checkerboard test, cc,
is:

cc(qcg) = A
qcg∑
i=1

δmc
i = A

qcg∑
i=1

ai pc
i =

qcg∑
i=1

cc
i . (15)

As cc is generally not equal to c, the question of whether the
checkerboard test for the CG inversion reflects the resolution of
the data set in the actual inversion remains open. As discussed
later, our results qualitatively suggest that cc ≈ c using the relation
sc(200) = s(200). While sc(200) ≈ cc(5) from the similarity be-
tween Figs 6 and 14, s(200) ≈ c(5) between Figs 4 and 12. Hence,
our results qualitatively suggest that cc ≈ c. This should be quanti-
tatively verified, but remains a topic for future work.

3.9 Solution errors

As noted in Section A2, the contributions to the data space of the
eigenvectors of large eigenvalues include significant solution errors.
Thus a sharp truncation of the SVD expansion can reduce solution
errors (eq. A20). On the other hand, as noted in Section A3, while
inversion using the CG method efficiently reduces the residuals
between the observed data and synthetics, the truncation of the CG
expansion will not necessarily contribute to reduction of solution
errors. In this section, we discuss solution errors for both approaches
for the data set used in this study.

The covariance matrix truncated at the k-th SVD eigenvector is
given by eq. (A20):

covar. (δm) = σ 2
d

k∑
j=1

v jv
T
j

λ2
j

. (16)

The covariance matrix truncated at the k-th CG iteration is given by
eq. (A33):

covar. (δm) = σ 2
d

k∑
j=1

p j pT
j

pT
j ATA p j

. (17)

In order to estimate the solution errors, we compute the variance
of the solution obtained using a statistical propagation-of-errors
analysis. The definition of the covariance matrix for the data is as
follows:

covar. (δd) =
N∑
i. j

(δd i − ¯δd i )(δd j − ¯δd j ). (18)
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Figure 9. Results of the inversion (CG5) of low-pass filtered waveforms (at periods up to 20 s rather than up to 12.5 s) for each depth range. The reference for
the velocity perturbation is the PREM model.

Figure 10. Recovered models for checkerboard patterns of the heterogeneities for each depth using low-pass filtered waveforms (at periods up to 20 s rather
than up to 12.5 s). The input model is shown in the left-hand panel.
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3-D full localized waveform inversion in D′′ 505

Figure 11. Results of the inversion (SVD50) for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for each depth range.
The reference for the velocity perturbation is the PREM model.

In this study, we assume that the data errors are uncorrelated and
equal, in which case the data covariance matrix becomes a constant
times the identity matrix:

covar. (δd) = σ 2
d I. (19)

The above assumption is not necessarily valid, as the time windows
include S, ScS and other phases arriving between them, which prop-
agate along different paths and hence do not necessarily have the
same data errors. Although more sophisticated estimation of so-
lution errors may be required, this also is a topic for future work.
We use the average of the noise amplitude before the arrival of
the direct S phase as the data error. Fig. 15 shows the contribu-
tion to the variance of three typical voxels for each model pa-
rameters for both SVD and CG inversions. As shown by eq. (16),
the SVD variance for small indices (large eigenvalues) is small,
while the variance for large indices becomes large. On the other
hand, the CG variance reduction improves rapidly for a small num-
ber of basis vectors as compared to the SVD inversion. Consider-
ing that the variance reduction of SVD200 is comparable to that
of CG5, CG can achieve large variance reduction with relatively
small solution errors. As noted, however, we assume that the data
errors are uncorrelated and equal. This could also influence this
discrepancy of the solution errors between CG5 and SVD200.

3.10 Quality control stacks

Ideally it would be possible to look at individual observed wave-
forms and compare them to synthetics for the various models to see
visually as well as quantitatively the improvement in the fit of the

final model as compared to the initial model. However, it is difficult
to intuitively understand the effects of 3-D structure by inspection
of individual waveforms. Also, unfortunately, the noise level is too
high to allow meaningful visual comparison of data and synthetics
for individual records. We therefore present ‘quality control stacks’
(QC stacks), some of which are shown in Fig. 16, for some of
the events in this study. These stacks serve as an ancillary check
to ensure that the inversion results are reasonable. The QC stacks
are computed by aligning the records using the PREM arrival time
and normalizing the maximum amplitude of each of the observed
records to one. The synthetics are processed using the same weight-
ing factors as the corresponding observed record. Model CG5 was
used as the final model in constructing the QC stacks. The QC stacks
shown in Fig. 16 are typical examples, and those for the other events
are basically similar. The QC stacks in Fig. 16 show that the synthet-
ics for the final model are, overall, an improvement over those for
the initial model, thereby confirming that the inversion has reached
a reasonable result. Comparing these QC stacks to those obtained by
our previous studies on laterally homogeneous models (e.g. Kawai
& Geller 2010a), the improvement is less clear. This is because this
stacking method is most suitable for studies on laterally homoge-
neous layered structure but less suitable for a 3-D structure or for
relatively smooth structure. It would be desirable to find some better
methods to visualize the model improvement in the data space.

3.11 Record sections

We now show some examples of comparisons between observed
data and synthetic seismograms for both the initial and final models.
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Figure 12. Results of the inversion (SVD200) for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for each depth
range. The reference for the velocity perturbation is the PREM model.

Figure 13. Recovered models for checkerboard patterns of the heterogeneities for each depth for SVD50. The input model is shown in the left-hand panel.
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Figure 14. Recovered models for checkerboard patterns of the heterogeneities for each depth for SVD200. The input model is shown in the left-hand panel.

Figure 15. Contribution to variance of three typical voxels (longitude, lat-
itude, radius) = (−90◦, 10◦, 3505 km), (−90◦, 15◦, 3705 km) and (−85◦,
10◦, 3605 km), for each model parameter for both SVD and CG inversions.
These are obtained using a statistical propagation-of-errors analysis. SVD
eigenvalues for each index normalized by maximum eigenvalue are also
plotted.

For studies of 3-D structure, record sections are found to be more
effective from the visual point of view than QC stacks. However,
we emphasize that these should also be considered as ancillary, and
that the primarily validation of the inversion results is the statistical
data (variance reduction and AIC). A record section for six events
is shown in Fig. 17. As relatively long-period (12.5–200 s) seismo-
grams at epicentral distances around 90◦ are used in this study, it
is difficult to identify phases such as S, ScS and other phases asso-
ciated with complex structure in the lowermost mantle. Note that
as the waveforms shown here are only a small portion of our data
set, the fit for individual waveforms is not particularly meaningful.
However, the fit of the synthetics for the inferred model (CG5) to

the observed data is reasonably good for all epicentral distances.
Even for overlapping phases at epicentral distances around 90◦ and
diffracted waves at epicentral distances over 100◦, significant im-
provements are confirmed. It is, however, difficult to intuitively
understand which structure in CG5 contributes to the improved fit
of the synthetics to the observed data.

Our models were all obtained by linearization with respect to a
spherically symmetric starting model. Our methods for computing
synthetics can also be used with respect to a 3-D starting model
(e.g. Cummins et al. 1997) but the computational requirements
for waveform inversion would be greatly increased. In the future
it would be desirable to conduct inversions with respect to 3-D
starting models. These and many other important technical issues,
such as the effect of the choice of starting model on the results of
the inversion, should be further explored, but as we have shown in
this paper our present techniques are capable of obtaining robust
3-D earth models. It thus seems reasonable to press ahead with
applications of waveform inversion to real data, and to incrementally
improve the analytical techniques in parallel with obtaining new
models of the Earth’s interior.

3.12 Orthogonality

In this study, the target region for inversion is only in the lower-
most mantle and the structure for shallow regions is assumed to be
the anisotropic PREM model (Dziewonski & Anderson 1981). In
order to examine the possible effects of shallow structure, such as
the subducted Farallon slab, on the inversion results, we check the
independence of partial derivatives for perturbations to structure in
such regions and to structure in the lowermost mantle. We compute
partial derivatives at intervals of 100 km for the depth range 100–
500 km at the yellow dot in Fig. 3. The schematic image of the target
region and shallow perturbation points is shown in the inset in the
lower left-hand side of Fig. 3. We compute the direction cosines
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Figure 16. ‘Quality control (QC)’ stacks for events 19931019, 19940819, 20030727 and 20050321 computed as follows: The horizontal axis is in seconds,
while the vertical axis indicates amplitude for stacked waveforms. First, all of the observed waveforms for each event were time-shifted using PREM, after
making the same source and station corrections as in the inversion. These waveforms were then filtered in the passband 12.5–200 s using a bandpass filter. The
maximum amplitude of each observed record was normalized to one, and the waveforms were then stacked (red curves). The synthetics for the initial model
(PREM, green curves) and final model (blue curves) were stacked using the same weighting factors as for the corresponding observed record. Model CG5 was
used as the final model. Note that since QC stacks are merely an ancillary presentation of visual data to confirm the absence of bugs and show the general state
of some subset of the data, it is not significant whether we use PREM or the final model for the QC stacks.

between the i-th partial derivative in the target region and the j-th
partial derivative in the shallower region (Fig. 18). We select a sin-
gle event (19970123) and a single station (WDC) for comparing the
extent of coupling for this data set. The deviation from 90◦ is very
large for one event and one station (Fig. 18a). This indicates that
it is difficult to separate the effects of shallow structure and struc-
ture in the target region from any individual seismogram. However,
we can see that for larger numbers of waveforms the partials are
close to orthogonal. Fig. 18(b) shows direction cosines for one sta-
tion and all 27 events. Although the deviations from 90◦ become
smaller, the partial derivatives with respect to the target region are
not sufficiently independent of those of shallow structure. Fig. 18(c)
shows direction cosines for one event and about 80 stations. It is
noteworthy that although the number of waveforms in this case
(80) is larger than in the former case (27), the deviation from 90◦

is sometimes larger than for Fig. 18(b). Also note that the devia-
tion has periodic peaks, which indicates constructive interference
between the shallow structure and structure in the target region.
However, the data set in this study is large enough to effectively
eliminate the trade-off between shallow structure and structure in

the the target region when all seismograms and all stations are used
(Fig. 18d) .

4 S E C O N D - S TA G E I N V E R S I O N

4.1 Inversion

In this section, we perform waveform inversion using the second-
stage data set, discussed in Section 3.1. The additional sources and
stations used in the second-stage study are shown in Fig. 19 and
Table 2. The studied region and the number of unknown parameters
are the same as in the first-stage inversion in Section 3.4.

Map views of model CG5, the model obtained for n = 5, are
shown in Fig. 20, and cross-sections are shown in Fig. 21. The
variance reduction and AIC for several values of the empirical
redundancy parameter α are shown in Fig. 22 and Table 4. Defining
the variance of the data to be 100 per cent, the variance (data minus
synthetics) for the PREM synthetics is 78.4 per cent. A further
variance reduction to 58.1 per cent is achieved by making the static
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Figure 17. A record section of the transverse component for the six events. The traveltime is reduced at an apparent velocity of 8.3 km s−1. A bandpass filter
at periods between 12.5 and 200 s is applied. The black, red and blue traces show observed waveforms, synthetics for the initial model (PREM) and synthetics
for the final model (CG5), respectively. S, ScS and other phases associated with complex structure such as the D′ ′ discontinuity are almost entirely overlapped
at the epicentral distances used in this study for this period band.

corrections. The variance for model CG5, which minimizes AIC,
is 55.2 per cent, as shown in Table 4. While a variance reduction of
17.9 per cent was obtained in the first-stage inversion (Table 3), a
reduction of 2.9 per cent is achieved here. The additional data used

in the second-stage inversion were recorded by the US-Array. These
waveforms have a relatively higher S/N ratio and a much lower level
of short-wavelength noise than the waveforms used in the first-stage
inversion. This is confirmed by the fact that the initial variance for
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Figure 18. Panels show the value of the cosine of the angle between a vector of partial derivatives for the i-th point in the target region and the vector of partial
derivatives for the depth shown by each coloured region at shallower depths. See inset panel at lower left of Fig. 3 for details. Panel (a) is for one waveform for
one event, panel (b) is for all waveforms for one event, panel (c) is for all events for one station and panel (d) is for all events for all stations. The number of
waveforms used in the four panels is 1, 29, 80 and 2154, respectively.

the second-stage inversion (78.4 per cent) is lower than that for the
first-stage inversion (88.4 per cent). The static correction inherently
tends to make time-shifts based on the long-wavelength component
in the waveforms rather than short-wavelength noise. Since the data
set in the second-stage inversion contains mainly of high-quality
data observed by the US-Array, the variance reduction for the static
correction is greater than that for the first-stage inversion.

Figs 20 and 21 show wiggling high-velocity anomalies sur-
rounded by low-velocity anomalies. The velocity perturbations are
largest at the bottom of the mantle. Although the pattern is almost
the same for each depth, the amplitude of the velocity perturbation
decreases as the distance from the CMB increases. The amplitude
of the velocity perturbation in the lowermost 150 km of the mantle
is notably large. Two strong low-velocity anomalies exist: one is
to the northeast of the largest high-velocity anomaly in the depth
range from 100 to 150 km, another is to the southwest of the largest
high-velocity anomaly in the depth range from 50 to 100 km above
the CMB.

The overall features of the model obtained by the second-stage
inversion (Fig. 20) are almost the same as the results of the first-
stage inversion (Fig. 4) but the details differ. Fig. 4 shows that
the second largest velocity perturbation occurs in the depth range
from 350 to 400 km above the CMB, and this is also the depth

range with the largest velocity perturbation for the second-stage
inversion. The lateral scale of the high-velocity anomaly just above
the CMB obtained by the first-stage inversion (Fig. 4) is about
250 km × 1500 km, while it is about 250 km × 250 km for the
second-stage inversion (Figs 20 and 21). The model obtained in the
second-stage inversion is much sharper than that for the first-stage
inversion. This appears to be due to the superior quality and quantity
of the data set for the second-stage inversion.

4.2 Effects of noise

We conduct synthetic resolution tests (Fig. 23) to examine the ability
to resolve various synthetic structure models for the second-stage
inversion in the same manner as those presented for the first-stage
inversion in Section 3.5. Compared to the results for the first-stage
inversion (Fig. 6), Fig. 23 shows improved resolution.

We now test ‘checkerboard’ models with random noise added to
the synthetics. A comparison of waveforms with/without noise is
shown in Fig. 24. White noise is used with a fixed amplitude and
randomly chosen phase in the frequency domain, and transformed to
the time domain. The variance of the residuals is 9 and 70 per cent
respectively. With a variance of the residuals of 70 per cent, it is
difficult to visually identify signals of even direct S phases. We can
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Figure 19. Event–receiver geometry, with great circle ray paths for the
additional data used in the second-stage inversion. The portions of the great
circles which sample D′ ′ are shown in red, and plus signs indicate the turning
points within D′ ′. Blue reversed triangles show the sites of the US-Array
stations used in our study. Red stars show the 14 intermediate and deep
earthquakes studied (Table 2).

see a small deviation from the input mosaic pattern, but the data
set still has sufficient resolving power to basically recover the input
model (Fig. 25).

4.3 Model resolution matrix

For completeness we also conduct an SVD inversion using the
eigenvectors of the 200 largest eigenvalues as the basis. The result-
ing model, SVD200, is shown in Fig. 26, and the variance reduction
and AIC are shown in Table 4. The overall features of the respective
models are generally similar. In contrast to the first-stage inversion,
the AIC values in Table 4 show that the stage 2 data set appears
to contain sufficient information to invert for the first 200 com-
ponents of the SVD expansion, although the AIC value is slightly
higher than that for CG5. (SVD200 is not necessarily the best SVD
model in terms of minimizing AIC, but we are presenting this model
primarily for purposes of comparison.)

We calculate the model resolution matrices for the SVD200 and
CG5 expansions using eqs (10) and (12), respectively. Figs 27 and 28
show plots of selected rows of the respective model resolution ma-
trices. As shown by the equations in Section 2.7, what the model
resolution matrix tells us is not how much resolution we actually
have, but just the extent to which our truncation of the solution of
the inverse problem is smearing out the model parameters. Fig. 27
shows that the model resolution matrix for SVD200 is much less
smeared out than that for CG5 (Fig. 28). As the AIC values for
SVD200 are reasonable in Table 4, Fig. 28 may be a reasonable
estimate of the actual resolution in the data set. On the other hand,
CG requires only five basis vectors to arrive at essentially the same
model, which requires 200 SVD basis vectors, and as a result the

Figure 20. Results of the second-stage inversion (CG5) for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for each
depth range. The reference for the velocity perturbation is the PREM model.
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Figure 21. Results of the inversion for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for cross-sections A–A′ (panel
a) and B–B′ (panel b). The orientation of the cross-sections is shown in Fig. 20.

Figure 22. Variance and AIC values for CG inversions. AIC values are
shown for several choices of the empirical redundancy parameter α.

nominal resolution matrix for CG5 (Fig. 28) appears very poor,
whereas the resolution is probably really about the same as Fig. 27.
The question of how to accurately quantify the resolution of CG
inversions thus remains as an important subject for future work.

Table 4. Variance and AIC for each model obtained
using the data for both the events in Table 1 and the
events in Table 2. For calculation of AIC values, an
empirical redundancy parameter α of 30 is used.

Model Variance (per cent) AIC

PREM 78.4 —
PREM with time-shift 58.1 3888.3
CG5 55.2 3861.4
SVD50 56.0 3871.5
SVD200 55.4 3867.5

4.4 Jack-knife test

We take random subsets of 50 per cent of our data set for the second-
stage inversion (jack-knife) and invert for velocity structure. We
conduct 10 such inversions. The results of three such inversions
are shown in Fig. 29. The features of all three models are almost
identical to those of CG5 (Fig. 20). While the overall features shown
in Figs 20 and 29 match, they differ at some points. This suggests
that the inference of models will become unstable using smaller
data sets.
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Figure 23. Recovered models for checkerboard heterogeneity input model for each depth. The input model is shown in Fig 14.

Figure 24. Waveforms with and without noise.
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Figure 25. Recovered models for checkerboard heterogeneity input model for each depth. The input model is shown in Fig 14. Data set for the inversion
contains white noise (see details in text).

Figure 26. Results of the second-stage inversion (SVD200) for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for
each depth range. The reference for the velocity perturbation is the PREM model.
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Figure 27. One selected row of the resolution matrix for the SVD200 model determined by our inversion with respect to a voxel at a latitude of 15◦ at a
longitude of 275◦ in the depth range between 0 and 50 km (this page) and between 350 and 400 km above the CMB (next page). The upper panel for each depth
range shows the resolution matrix for the first-stage inversion and the lower panel shows the resolution matrix for the second stage.
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Figure 27 – (Continued)

5 G E O P H Y S I C A L I N T E R P R E TAT I O N

Fig. 20 shows lateral heterogeneous structure mainly in the E–
W direction for each depth; wiggling high-velocity anomalies are
surrounded by low-velocity anomalies. The velocity perturbations

are largest at the bottom of the mantle and second largest in the depth
range from 350 to 400 km above the CMB. As shown in Fig. 20,
the velocity anomalies seem to continue from the CMB to 400 km
above the CMB. The lateral scale of the high-velocity anomaly is
about 250 km × 250 km.
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Figure 28. One selected row of the resolution matrix for the CG5 model determined by our inversion with respect to a voxel at a latitude of 15◦, at a longitude
of 275◦ in the depth range between 0 and 50 km (this page) and between 350 and 400 km above the CMB (next page). The upper panel for each depth range
shows the resolution matrix for the first-stage inversion and the lower panel shows the resolution matrix for the second stage.

Fig. 21 shows that a sheet-like high-velocity anomaly reaches
to the CMB and that the highest velocity (about 8 per cent faster
than PREM) is observed in the deepest depth range. This can be
interpreted as a remnant of the ancient Farallon Plate, which is

thought to have been subducted continuously over the past 100 Myr,
and which recently sunk down to the CMB. Such a remnant should
be about 1500 K colder than the ambient mantle. Considering a
CMB temperature of 3800 K (Kawai & Tsuchiya 2009), 2300 K for

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/197/1/495/686890 by guest on 18 August 2023



518 K. Kawai et al.

Figure 28 – (Continued)

the subducted slab is plausible, as it is just 200 K colder than the
mantle adiabat of about 2500 K (Brown & Shankland 1981).

It is difficult to detect obvious evidence for the phase transition
from Mg-perovskite (pv) to post-perovskite (ppv) in our model,
perhaps because our inversion method is parametrized to infer a

relatively smooth model rather than a model with sharp disconti-
nuities. However, in the depth range from 200–400 km above the
CMB, the fastest anomaly is found in the depth range 350–400 km
above the CMB and the magnitude of the anomaly decreases as
the depth increases to 300 km above the CMB. This suggests that
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Figure 29. Results of the three jack-knife inversions (CG5) for the 3-D shear wave velocity structure in the lowermost mantle beneath Central America for
each depth range. Each model (a and b, this page, and c, next page) was inferred from a randomly chosen data set consisting of 1000 waveforms.

the pv–ppv phase transition occurs over a depth range of at most
about 100 km. Also the fact that the fast anomaly is concentrated
at depths of 250–400 km above the CMB may also be indicative of
the pv–ppv phase transition. This sheet-like high-velocity region is
250 km wide (E–W) and 250 km long (N–S).

As previous tomographic studies (Grand 2002) reported that the
fast shear velocity anomaly which is interpreted as being the Faral-
lon slab seems to penetrate the 660 km discontinuity, the length of
the ancient subduction region has been thought to be 1500 km. This
is comparable to the present trench-parallel Farallon slab width,
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Figure 29 – (Continued)

although the width before 30 Ma is estimated to have been much
larger than at present (Schellart et al. 2009). The width (250 km)
seems to be two or three times greater than that of typical litho-
sphere. This could be because the sinking slab bulged out due to
a slowing of its sinking speed in the more viscous lower mantle
(Bunge & Grand 2000). The sheet-like fast velocity anomaly re-
ported in this study seems to be isolated, while many previous tomo-
graphic studies (e.g. Grand 2002) reported a broader fast anomaly
beneath North America and South America, which might imply
the existence of other fast anomalies due to subduction of older
slabs over the 100 Myr subduction history of the Farallon Plate.
Such anomalies were not detected by this study, which might reflect
events inducing subduction direction changes such as the birth of
the Cocos Plate and the splitting of the Farallon and Nazca plates
(Bunge & Grand 2000; Schellart et al. 2009).

6 C O N C LU S I O N

Localized waveform inversion is well suited for studying fine struc-
ture using data from recently deployed arrays such as US-Array and
Hi-net. In this study, we used data from a dense station network
along the Pacific in western North America. As the US-Array is
currently being extended eastwards, the resolution of future studies
will be higher than that of this study.
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A P P E N D I X A : I N V E R S E P RO B L E M
F O R M U L AT I O N

We define δd to be the residual (the difference of the observed
seismogram, dOBS, and the synthetic seismogram for the initial
model, dINIT):

δd = dOBS − dINIT. (A1)

The inverse problem is usually written as:

Aδm = δd, (A2)

where A is the N × M matrix of partial derivatives, N is the number
of observations, M is the number of model parameters and δm is the
perturbation to the initial model. Since the number of unknowns (the
number of elements of δm) is usually far smaller than the number
of data points (number of elements of δd) in geophysics (M < N),
it is well known that eq. (A2) implies the following minimization
rather than strict equality:

|Aδm − δd|2 = minimum. (A3)

We now use the above results to obtain the least-squares solution of
eq. (A3) by solving the normal equations:

ATAδm = ATδd. (A4)

A1 DLS

The normal equations using DLS can be written as:(
ATA + ε2I

)
δm = ATδd, (A5)
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where ε is a damping factor and I is the identity matrix. When
weighted inversion is conducted, this equation can be written using
a diagonal weighting matrix whose explicit elements are Wij = wiδij,
where

√
wi is the weighting factor for the i-th data bin d i ,(

ATWA + ε2I
)
δm = ATWδd. (A6)

By replacing the identity matrix by another matrix, one can impose
other constraints such as smoothness (e.g. Inoue et al. 1990). Kawai
et al. (2007) inverted for seismic structure using eq. (A5).

A2 SVD

We can decompose an M × N matrix A using the SVD (e.g. Lanczos
1961):

A = U�VT, (A7)

where U and V are unitary N × N and M × M matrices, and the
non-zero eigenvalues are ordered as follows:

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
M > 0. (A8)

The unitary M × M matrix V contains the right eigenvectors of A:

V = [v1 v2 · · · vM ] (A9)

normalized to satisfy:

vT
j vl = δ jl , (A10)

and the N × M matrix (M < N) � contains the eigenvalues:

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0

. . .

0 λM

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A11)

For later use we define the matrix consisting of the first L right
eigenvectors as follows:

VL = [v1 v2 · · · vL ] . (A12)

In this section, we assume that the problem is overdetermined,
that is, that ATA is positive definite and that all of the λ2

i in eq. (A7)
are thus positive. From eq. (A7) we have

ATA = V�TUTU�VT = V�T�VT, (A13)

because U is unitary.
From eqs (A10) and (A13) we have

vT
j (ATA)vk = λ2

kδ jk . (A14)

We write the solution of eq. (A4) as an eigenfunction expansion:

δm =
M∑

j=1

e jv j = Ve, (A15)

where the expansion coefficients ej are the unknowns, and the vector
e is defined to be:

eT = (e1 e2 · · · eM ). (A16)

We substitute eq. (A15) into eq. (A4), multiply both sides of the
resulting equation on the left by vT

j , and use eq. (A14) to solve for
each expansion coefficient of eq. (A15) as follows:

e j = vT
j ATδd

λ2
j

. (A17)

We can write the contribution of the i-th eigenvector to the data
space as:

δsi = Aδmi = Aeivi = eiλi ui . (A18)

We write eq. (A17) in matrix form as follows:

e = (�T �)−1VTATδd. (A19)

As we assume that the data errors are uncorrelated and equal, the
data covariance matrix is a constant times the identity matrix. Hence,
the covariance matrix is written as:

covar. (δm) = σ 2
d (ATA)−1

= σ 2
d

M∑
j=1

v jv
T
j

λ2
j

= σ 2
d V(�T �)−1VT. (A20)

|λi| becomes smaller as i increases in eq. (A20). When |λi| is close
to zero, the variance of the solution increases. On the other hand,
when the eigenvectors of only the largest L eigenvalues are used and
other eigenvectors are omitted, the solution error can be suppressed
(Wiggins 1972; Jackson 1972; Menke 1984). As discussed in sec-
tion 3.4, we use AIC (Akaike 1977) as the criterion for the cut-off
of the SVD expansion. AIC is a measure that rewards variance re-
duction and penalizes increases in the number of model parameters.
The model with the minimum AIC is the model which nominally
gives the optimum trade-off between variance reduction and model
complexity.

A3 CG

Suppose that { p j = p1, p2, · · ·} is a sequence of M mutually
orthogonal conjugate vectors with respect to ATA; that is,

pT
j A

TA pk = 0 for j 	= k. (A21)

We write the solution of eq. (A4) as an expansion in terms of the
conjugate vectors:

δm =
M∑

j=1

a j p j , (A22)

where the expansion coefficients aj are the unknowns. We define
the vector a to be:

aT = (a1 a2 · · · aM ). (A23)

Eq. (A22) can be written as follows in matrix form:

δm = Pa, (A24)

where we define the matrix P to be:

P = ( p1 p2 · · · pM ). (A25)

Substituting eq. (A22) into eq. (A4), multiplying both sides on
the left-hand side by the transpose of some particular pk , and using
eq. (A21), we obtain:

pT
k ATδd = ak pT

k ATA pk . (A26)

The k-th expansion coefficient is thus given by:

ak = pT
k ATδd

pT
k ATA pk

. (A27)

Using eq. (A23) we can write this in matrix form as follows:

a = L−1PTATδd, (A28)
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where we define the M × M diagonal matrix L as follows:

L =

⎛
⎜⎜⎜⎝

pT
1 ATA p1 0

. . .

0 pT
M ATA pM

⎞
⎟⎟⎟⎠ . (A29)

Assuming that the data are uncorrelated and all have equal vari-
ance σ 2

d , we can write the covariance matrix for a as follows in the
CG representation of ATA:

covar. (a) = σ 2
d L−1, (A30)

while in the model space, the covariance matrix is written as:

covar. (δm) = σ 2
d (ATA)−1 = σ 2

d PL−1PT. (A31)

In the CG inversions we sum over only the first n (where n ≤ M)
conjugate vectors as follows:

δmn =
n∑

j=1

a j p j . (A32)

Thus the covariance matrix in the model space is given by:

covar. (δmn) = σ 2
d

n∑
j=1

p j pT
j

pT
j ATA p j

. (A33)

While eq. (A20) clearly shows that the solution error of the contri-
bution to the data space of the i-th eigenvector becomes larger as i
increases, this is not clear in eq. (A33). We discuss this in section
3.9 using the actual values.

In order to minimize the data variance as rapidly as possible, the
first conjugate vector is defined to be the gradient vector:

p1 = −ATδd. (A34)

Each successive conjugate vector is then chosen to be as close as
possible to the gradient vector while still being conjugate. We follow
Reeves (1964) below. Let rk be the residual (in the model space) at
the k-th iteration:

rk = ATδd − ATAδmk . (A35)

We then choose the next basis vector pk+1 to be as close as possible
to rk , while also being conjugate to all previous basis vectors:

pk+1 = rk −
k∑

i=1

pT
i ATArk

pT
i ATA pi

pi . (A36)

We then calculate the next expansion coefficient as follows:

ak+1 = pT
k+1rk

pT
k+1ATA pk+1

. (A37)

As the CG basis is problem-specific, it converges using a smaller
number of independent parameters (expansion coefficients of the
basis vectors) than is required for SVD inversion.

We truncate the conjugate vector expansion (eq. A32), using
AIC. The variance VARn and AICn for the model CGn (the model
obtained using n in eq. A32) are written, respectively, as follows:

VARn = |dn
OBS − dSYN|2

|dn
OBS|2

, (A38)

AICn = ND ln 2π + ND ln(VARn) + ND + 2(n + 1), (A39)

where ND is the number of independent data, and dn
SYN is the vector

of synthetic seismograms including the contribution of the first n

basis vectors of the CG basis. We assume here that we have K events
and P stations with records available at all stations for all events. We
also assume here that each time-series has T points. In this study the
upper bound on the value of ND is ND1 = KPT/12.5 because we
use 12.5–200 s bandpass-filtered waveforms, interpolated at a 1 Hz
sampling frequency (the meaning of the superscript is explained
later). It is reasonable to consider that the data are, to some extent,
redundant, but at present we have no rigorous way to quantify
the extent of the redundancy. In this study we use the empirical
parameter α which we define as follows:

NDα = 1

α
KPT/12.5. (A40)

From eq. (A33) we can rewrite the variance for each CG expan-
sion coefficient aj as follows:

var. (a j ) = σ 2
d

pT
j ATA p j

. (A41)

If we assume that σ d is the variance of the data itself, we can estimate
the nominal error bars δaj for each model parameter as follows:

δa j = σd√
pT

j ATA p j

. (A42)

A P P E N D I X B : R E C U R S I V E F I LT E R

As we design the filter following Saito (1978), which is written in
Japanese, we summarize this method here. The bandpass filter is
characterized by five parameters (Fig. B1): AP, AS, fH, fL and fS,
which are parameters related to amplitudes for the passband and
stop band, higher and lower frequencies for passband and higher
frequency for stop band, respectively. The frequency response for
the Butterworth filter is:

|Bn(σ )|2 = 1

1 + σ 2n
, (B1)

where σ is non-dimensional angular frequency. The passband is
defined as: |σ | ≤ σ P and the stop band is defined as |σ | ≥ σ S. For
a finite number of poles n, we design the response function as:

1

1 + A2
P

≤ |Bn(σ )|2 ≤ 1 |σ | ≤ σP < σS

|Bn(σ )|2 ≤ 1

1 + A2
S

σS ≤ |σ |. (B2)

Figure B1. Schematic image drawn after Saito (1978) to explain the But-
terworth bandpass filter, which is characterized by the five independent
parameters: AP, AS, fH, fL, and, fS.
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Figure B2. Comparisons between waveforms filtered by SAC (Seismic
Analysis Code) and those filtered by our filter (which follows Saito 1978)
for the three passbands (0.005–0.125, 0.005–0.08, 0.005–0.05 Hz).

In order to satisfy eq. (B2),

n ≥ log(AS/AP )

log(σS/σP )
. (B3)

The minimum integer n satisfying eq. (B3) can be obtained. In order
to design a bandpass filter, we transform σ as:

σ = λ2 − λ2
0

λ
, (B4)

where λ is dimensionless angular frequency. When the roots of λ

for σ = σ P are defined as λH and −λL, |σ | ≤ σ P is transformed to
λL ≤ |λ| ≤ λH. Also, when the roots of λ for σ = σ S are defined as
λS and −λ′

S , |σ | ≥ σ S is transformed to |λ| ≥ λS and |λ| ≤ λ′
S . We

can also obtain the following relations:

σP = λH − λL ,

σS = λS − λ′
S,

λ2
0 = λH λL = λSλ

′
S . (B5)

We then transform eq. (B2) using the following bilinear transfor-
mation:

λ = c

i

1 − z

1 + z
c > 0 , (B6)

where λ = c tan ω/2. We can write the quantities in eq. (B5) in
terms of ω as:

σP = c(tan ωH /2 − tan ωL/2),

σS = c(tan ωS/2 − tan ω′
S/2),

λ2
0 = c2 tan ωH /2 tan ωL/2 = c2 tan ωS/2 tan ω′

S/2 . (B7)

c satisfies the following relation:

c2 = (AP AS)1/n(tan ωH /2 − tan ωL/2)−1

·| tan ωS/2 − tan ωH /2 tan ωL/2 cot ωS/2|−1 . (B8)

Using angular frequencies of fH, fL, and fS for the bandpass filter,
we write, after Saito (1978):

σS

σP
= | tan(ωS/2) − tan(ωH /2) tan(ωL/2) cot(ωS/2)|

tan(ωH /2) − tan(ωL/2)
. (B9)

While Saito (1978) uses AP, AS, fH, fL and fS as five free parameters,
we use AP, AS, fH, fL and n. Also, we set 1/(1 + A2

P ) and 1/(1 + A2
S)

to 0.9 and 0.1, respectively. Hence, in our software three parameters
(fH, fL, n) should be given. In this study, for example, with fH, fL and n
of 0.08, 0.005 Hz and 4, we obtain fS of 0.133 and f ′

S of 0.003 Hz.
We compare waveforms filtered by our bandpass filter to those

filtered by SAC (Fig. B2). Since the SAC filters are proprietary,
there may be some small difference between the SAC filter and our
filter. This cannot be confirmed but, if so, it would probably be due
to differences in the definition of n.
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