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Abstract Pits, domes, and small chaos on Europa’s surface are quasi-circular features a few to a few tens
of kilometers in diameter. We examine if injection of water sills into Europa’s ice shell and their subsequent
evolution can induce successive surface deformations similar to the morphologies of these features. We
study the dynamics of water spreading within the elastic part of the ice shell and show that the mechanical
properties of ice exert a strong control on the lateral extent of the sill. At shallow depths, water makes
room for itself by lifting the overlying ice layer and water weight promotes lateral spreading of the sill. In
contrast, a deep sill bends the underlying elastic layer and its weight does not affect its spreading. In that
case, the sill lateral extent is limited by the fracture toughness of ice and the sill can thicken substantially.
After emplacement, cooling of the sill warms the surrounding ice and thins the overlying elastic ice layer.
As a result, preexisting stresses in the elastic part of the ice shell increase locally to the point that they
may disrupt the ice above the sill (small chaos). Disruption of the surface also allows for partial isostatic
compensation of water weight, leading to a topographic depression at the surface (pit), of the order of
∼102 m. Complete water solidification finally causes expansion of the initial sill volume and results in an
uplifted topography (dome) of ∼102 m.

1. Introduction

The surface of Europa is littered with quasi-circular features a few to a few tens of kilometers in diameter.
They may be uplifted (positive relief “domes”) or depressed relative to their surroundings (negative relief
“pits”). In some cases they show evidence of resurfacing or disruption of the crust (small “chaos”). As these
features have an endogenic origin they provide an opportunity to study properties of, and processes within,
Europa’s ice shell.

Figure 1 shows a region containing many of these features. Given that pits, domes, and features with a dis-
rupted surface occur in the same region and have similar sizes, “the principle of parsimony would guide us
to seek a simple explanation for all of these features together, rather than separate explanations for each
type of feature" [Collins and Nimmo, 2009, p. 260]. That is, can pits, domes, and small chaos all be the surface
expression of a fundamentally similar internal process with their morphologies reflecting different stages
of evolution?

The ice shell on Europa may be thick enough to undergo solid state convection in the warm ice that
underlies a largely stagnant lithosphere [McKinnon, 1999; Barr and Showman, 2009]. The upwellings and
downwellings produced by this convection have been invoked to explain the surface deformation at pits
and domes [Rathbun et al., 1998; Pappalardo et al., 1998]. The magnitude of convectively produced tem-
perature anomalies in the solid ice, however, is too small to produce the observed surface deformation
[Nimmo and Manga, 2002; Showman and Han, 2004]. Hence, additional tidal heating [Han and Showman,
2010], melting [Head and Pappalardo, 1999; Sotin et al., 2002; Schmidt et al., 2011], or thermochemical con-
vection [Pappalardo and Barr, 2004; Han and Showman, 2005] must be invoked. The general assessment
is that near-surface weakening or compositional buoyancy are required to produce large relief [Barr and
Showman, 2009].

If pits, domes, and small chaos do all share a common origin, the disruption of the crust to create isolated
blocks of ice that can be rotated and tilted requires that liquid water was present at or near the surface
[Spaun et al., 1998; Carr et al., 1998]. Melting the ice shell all the way from the subsurface ocean to the sur-
face, sometimes referred to as melt-through [Greenberg et al., 1999; O’Brien et al., 2002], is energetically
[Goodman et al., 2004] and rheologically [Nimmo et al., 2003] challenging. As a consequence, near-surface
melting induced by convective motions inside the ice shell has been proposed. Melting could be induced
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Figure 1. Image of domes and pits on Europa. Illumination from the
right. NASA photojournal image PIA03878.

by enhanced tidal dissipation in rising
plumes [Sotin et al., 2002] or by eutec-
tic melting of salty ice above a thermal
plume [Schmidt et al., 2011]. In the lat-
ter case, the decrease in specific volume
of water as it melts would produce
pits above subsurface lenses of water
[Schmidt et al., 2011]. It is not clear, how-
ever, why raised topography of domes,
comparable in magnitude to the neg-
ative relief of pits [Singer et al., 2010],
should result from refreezing of this
water as there is no net addition of mass
to the ice shell. In addition the very low
surface temperature of Europa limits
melting above upwellings, making it dif-
ficult to generate thick lenses of water
[Nimmo and Giese, 2005].

Another means of bringing liquid to the near-surface is by injecting horizontal bodies of water, called sills,
within the ice shell. Formation of sills from a pressurized ocean was proposed by Collins et al. [2000], and
ocean pressure produced by thickening the ice shell could become large enough to make sills [Manga
and Wang, 2007]. Water sills have also been implicated in the formation of double ridges [Craft et al., 2013;
Dombard et al., 2012]. “Compared to (other) mechanisms, sill injection has not been extensively studied”
and “the horizontal extent of likely sills on Europa has not been modeled” [Collins and Nimmo, 2009, p 277].
The goal of the present study is to develop a model for the emplacement of sills within a shell of ice and to
compute the expected surface topography and stresses at all stages during the emplacement and eventual
solidification of water sills. With a quantitative model, we can then evaluate whether water sills, at different
stages of evolution, may be responsible for pits, domes, and small chaos.

2. Conceptual Model Based on Timescales of Processes Involved in Sill Intrusion

Injection of water into an ice shell involves several mechanical and thermal processes including water intru-
sion, water cooling and solidification, compensation of water weight through flexural support, disruption
of the ice shell, and topographic relaxation. There are several distinct timescales involved in each of these
processes, and hence different mechanical and thermal processes dominate over these different timescales.

Figure 2 illustrates conceptually the different stages in the emplacement and solidification of the sill. The
first stage is the intrusion of water into the part of the ice shell that deforms elastically, at least on emplace-
ment timescales (stage 1). If the sill is intruded deep enough, it will deform the ice-ocean boundary and
this topography will relax by viscous flow (stage 2). After emplacement, the water in the sill will start to
freeze. The heat transferred to the surrounding ice will decrease the thickness of the elastic layer above
the sill, increasing preexisting stresses in the ice shell resulting from the global cooling and solidification of
the ocean [Nimmo, 2004; Manga and Wang, 2007] and possibly disrupting the ice shell (stage 3). The dense
water sill will sag downward, supported by the strength of the underlying ice. Compensation of this internal
load will depress the surface of Europa, forming a pit (stage 4). Final solidification of the sill and the volume
expansion of the water will raise the surface, forming a dome (stage 5), provided that complete isostatic
equilibrium was not achieved in stage 4. However, if the ice underneath the sill is heated to the point that it
can no longer provide elastic support, water might sink as a diapir before complete solidification and return
to the ocean.

Where does the water in the sill originate? One possible source is the ocean that underlies the ice shell. As
the ice shell cools and thickens, thermal contraction and volume expansion of ice generate large stresses
[Nimmo, 2004] and will increase ocean pressure [Manga and Wang, 2007] until the ice shell fails and forms
a hydrofracture. At this point, water is injected into the ice shell as a vertical dike. Gas buoyancy from gas
exsolution can also help water rise through dykes in the ice shell [Crawford and Stevenson, 1988]. Transitions
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z=0

Stage 1 : sill intrusion End of Stage 1 : end of a deep sill intrusion

Stage 2 : topographic relaxation

z=0

Stage 4 : elastic compensation - pit

Stage 3 : heating and stress concentration

Stage 5 : Sill cooling and expansion - dome

z=0

Figure 2. Succession of the different stages involved in sill emplacement and evolution in Europa’s ice shell. As an alter-
native to elastic compensation (stage 4), the sill might sink back through the underlying viscous ice as a diapir, if the ice
underneath the sill is heated to the point that it can no longer support the sill’s weight elastically.

to horizontal intrusion occur when the dike encounters stresses unfavorable for propagation, e.g., compres-
sion in the upper part of the ice shell from thermal contraction [Nimmo, 2004], interfaces and discontinuities
where the ice becomes stiffer [Gudmundsson, 2011, chap. 13.4], or a density barrier produced by an increase
in porosity in near-surface ice. Neither the stress nor stiffness distribution are known well enough to identify
the depth at which a dike would be deflected, and so we consider a range of possible depths. Other sug-
gested sources of water for a sill include other solidifying bodies of water in the ice shell [Fagents, 2003] or
melting of ice above a warm, rising diapir [Schmidt et al., 2011].

In the following sections, we examine each stage separately, model the evolution of the sill’s lateral extent
with time, and deduce the resulting surface topography. The thermal and mechanical processes that govern
sill emplacement are coupled and complex, involving fracture propagation, turbulent flow, and elastic defor-
mation in an ice shell in which thermal and rheological properties vary in space and time. In our analysis we
thus focus on limits in which different mechanical and thermal processes dominate; our results and scalings
are therefore best viewed as order of magnitude estimates but nevertheless provide a quantification of the
different elements in the conceptual model (Figure 2).
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A- Shallow sill B- Deep sill

Figure 3. Geometry of sill emplacement at (a) shallow and (b) deep depths.

3. Dynamics of Sill Emplacement

The deformation of the ice shell in response to intrusion of a sill depends on the depth of intrusion and
thickness of the ice shell. The total thickness of the ice shell is not known, is likely time variable [Hussmann
et al., 2002], and is the subject of some debate. The thickness of the elastic part of the shell (on long
timescales) is constrained by observations of flexurally supported features. A compilation of published
values, however, indicates great variability from hundreds of meters to a few kilometers [Billings and
Kattenhorm, 2005; Nimmo and Manga, 2009]. The equilibrium thickness of Europa’s ice shell has a conduc-
tive layer extending to depths of ∼10 km thick for a wide range of ice rheologies [Ruiz, 2010]. Given that
pits, domes, and chaos are among the younger features on Europa [Pappalardo et al., 1998], assuming an ice
shell thickness similar to equilibrium values seems reasonable. For an ice shell in which heat transfer occurs
by conduction in the upper 10 km, the base of the region that will deform elastically on sill emplacement
timescales is 4 to 6 km below the surface (Appendix A).

We model sill intrusion within the ice shell considering two end-member cases. In the first case, the sill
intrudes at shallow depth and the water makes room for itself by lifting the overlying ice, the “roof”
(Figure 3a). In the second case, the sill intrudes at large depth within the ice shell; the roof of the intrusion
has an elastic thickness, du, much larger than the one of its base, dl , and the water makes room for itself by
bending the lower elastic layer (Figure 3b). We evaluate the sill morphologies obtained in those two scenar-
ios. We consider a two-dimensional geometry with a sill that is fed by a central dyke at a constant rate. The
case of an axisymmetric sill is examined in Appendix B.

3.1. Water Intrusion Rate Into the Sill
The timescale to emplace the sill is

𝜏inject = V∕Q0, (1)

where V is the volume of the sill and Q0 is the injection rate.

The injection rate will depend on the overpressure in the ocean ΔP0 driving water ascent and on the height
of sill emplacement in the shell hs. Bernoulli’s equation for a perfect fluid gives at height z in the feeder dyke

ΔP(z) + (𝜌w − 𝜌i) gz + 1
2
𝜌wv2

w(z) = C, (2)

where C is a constant, 𝜌 is density, g is gravity, v is velocity, and subscripts w and i indicate liquid water and
ice, respectively. The maximum velocity that can be reached at the top of the dyke, i.e., at z = 0, using
vw(z = −hs) = 0, is thus

vw =
(

2(ΔP0 − (𝜌w − 𝜌i) ghs)
𝜌w

)1∕2

. (3)

This estimate gives an upper bound for the velocity since friction on the wall is neglected. The driving over-
pressure ΔP0 vanishes quickly as water ascends through the ice shell: to traverse a 10 km ice shell, ΔP0

should be > 106 Pa.
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Table 1. Model Parameters and Values

Parameter Value Reference

Fracture toughness Kc
a 0.1–0.3 MPa m1∕2 Litwin et al. [2012]

Young’s modulus E 1–5 × 109 Pa Nimmo [2004]
Shear modulus G 3.5 × 109 Moore and Schubert [2000]
Poisson ratio 𝜈 0.33 Schulson [2001]
Water compressibility 𝛽 5 × 10−10 Pa−1 Fine and Millero [1973]
Water density 𝜌w 1000 kg m−3

Ice density 𝜌i 910 kg m−3

Water viscosity 𝜇w 1.8 × 10−3 Pa s
Ice activation energy Q∗ 60 kJ mol−1 Goldsby and Kohlstedt [2001]
Ice reference viscosity at 273 K 𝜂0 1013 Pa s Barr and Showman [2009]
Ice thermal conductivity ki 567∕T W m−1K−1 Klinger [1980]
Water thermal conductivity kw 0.6 W m−1K−1

Ice specific heat Ci 2.11 kJ kg−1K−1

Water specific heat Cw 4.19 kJ kg−1K−1

Latent heat of fusion Lf 334 kJ kg−1

Gravitational acceleration g 1.3 m s−2

aTemperature independent over the relevant range of 110–260 K.

Ocean overpressures are calculated to be in the range of 104 to 106 Pa with the upper bound an estimate
of the tensile strength of the ice shell [Manga and Wang, 2007]. Hence, at the depth of emplacement, the
difference ΔP0 − (𝜌w − 𝜌i)ghs is likely ∼104 to < 106 Pa. In that case the emplacement velocity vw of the
intrusion is ∼1 to < 40 m s−1. This estimate is consistent with the value of a few meters per second obtained
by Crawford and Stevenson [1988] for gas-driven vertical ascent of a crack.

For a 2-D geometry, the width w of the dike is determined by a balance of the overpressure holding it open
and restoring elastic stresses [Rubin, 1995]

w = ΔP0hs(1 − 𝜈)∕G, (4)

where 𝜈 is Poisson’s ratio and G is the shear modulus (Table 1). For overpressure values between 5 × 104

and 5 × 105 Pa, the dyke width w is between 0.1 and 1 m and the injection rate is likely to be 0.1 to less
than ∼10 m2 s−1. For an elongated dyke of 100 m to 1 km in length, this 2-D injection rate corresponds to a
volumetric rate of ∼10 to less than 104 m3 s−1.

3.2. Driving Pressure in a Shallow Versus a Deep Sill
At shallow depths, the sill volume is accommodated by lifting and bending the upper layer of ice, because
its flexural rigidity is much smaller than that of the bottom layer (Figure 3a). To model sill intrusion at shallow
depth, we thus assume that water intrudes above a rigid horizontal surface and below an elastic upper layer
of flexural rigidity Du given by

Du =
Ed3

u

12(1 − 𝜈2)
, (5)

where E is Young’s modulus, 𝜈 is Poisson’s ratio, and du is the elastic thickness of the upper layer. In response
to the applied pressure, the upper elastic layer deforms over a characteristic wavelength Λu equal to the
flexural parameter [Turcotte and Schubert, 1982; Michaut, 2011; Lister et al., 2013]

Λu =

[
Ed3

u

12(1 − 𝜈2)𝜌wg

]1∕4

. (6)

The water pressure in the sill is the sum of the hydrostatic pressure due to the overlying ice and liquid water
weight plus an elastic pressure generated by the deformation of the elastic upper layer. However, the lateral
flow of water is driven by pressure gradients, and the hydrostatic pressure due to the overlying ice weight is
constant everywhere, even beyond the sill. Hence, the dynamic pressure P available for lateral spreading of
a shallow sill of water at the contact plane with the rigid basal boundary is simply the sum of the pressure at
the top of the sill due to elastic deformation plus the pressure due to water weight

P(x, t)shallow = Du
𝜕4h(x, t)
𝜕x4

+ 𝜌wgh(x, t), (7)

where h(x, t) is the flow thickness.
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If a sill intrudes deep into the elastic part of the ice shell, the pressure necessary for lifting the overlying layer
is larger than the pressure necessary for bending the lower layer and the sill makes room for itself prefer-
entially by deforming the lower elastic layer. In the case of a deep sill, we thus assume that the sill intrudes
below a rigid layer and above an elastic layer of thickness dl , rigidity Dl , and flexural wavelength Λl , with Dl

and Λl given by (5) and (6), where du has been replaced by dl .

In this limit, the dynamic pressure available for sill spreading along the rigid bottom of the upper layer is
only the pressure due to the elastic deformation of the lower layer. Pressure due to water weight does not
contribute to sill spreading, as it acts in the opposite direction and balances the restoring force, equal in
amplitude and opposite in direction, applied to the base of the lower deforming elastic layer due to water
displacement in the ocean. Thus,

P(x, t)deep = Dl
𝜕4h(x, t)
𝜕x4

. (8)

3.3. Shape of the Sill
Studies on the spreading of a viscous fluid driven by an elastic overlying layer have shown that the pressure
gradient is small over the bulk of the flow and is largest at the ends of the flow [Flitton and King, 2004]. The
elastic overlying layer acts to distribute the available pressure over the whole length of the layer, despite
the finite viscosity of the fluid. For instance, for a newtonian fluid, the pressure gradient is equal to zero
over the whole flow, except at the very tip [Michaut, 2011; Lister et al., 2013; Michaut et al., 2013; I. J. Hewitt
et al., Elastic-plated gravity currents, submitted to Journal of Applied Mathematics, 2013], and fluid spread-
ing occurs by peeling off the upper elastic layer at the top [Lister et al., 2013]. In that case, the pressure in the
flow can be assumed constant. If gravity is involved as well, this assumption is valid up to a sill length of at
least ∼10 Λu, when gravity largely controls the flow. Pressure gradients are then no longer negligible over
the flow length, and the flow is equivalent to a gravity current [Michaut, 2011; Lister et al., 2013; Thorey and
Michaut, 2014; Hewitt et al., submitted manuscript, 2013].

To derive a simple expression for the flow morphology, for flow length up to at least ∼10 Λu for shallow sills
and for any flow length for a deep sill, for which gravity is not involved, we assume, to first order, that the
pressure available for intrusion varies with time but is uniform in x and solve

P(t)shallow = 𝜌wgh(x, t) + Du
𝜕4h(x, t)
𝜕x4

(9)

to obtain the corresponding flow shape h(x, t) for a shallow sill. The solution to (9), using appropriate bound-

ary conditions
(

𝜕h
𝜕x

)
0
= 0 and h(L) =

(
𝜕h
𝜕x

)
L
= 0, where L is the flow half-length, gives the flow shape h(x, t)

of a shallow sill as a function of the driving pressure P(t)shallow:

h(x, t) = P(t)shallow

𝜌wg

[
1 + Sc + Cs

Sc(Ss − Cc) − Cs(Ss + Cc)
cosh

x√
2Λu

cos
x√
2Λu

− Sc − Cs
Sc(Ss − Cc) − Cs(Ss + Cc)

sinh
x√
2Λu

sin
x√
2Λu

]
, (10)

where

C = cosh
L(t)√
2Λu

c = cos
L(t)√
2Λu

S = sinh
L(t)√
2Λu

s = sin
L(t)√
2Λu

.

For a constant injection rate, conservation of mass requires that

Q0t = ∫
L(t)

0
h(x, t)dx. (11)

Introducing (10) into (11), we obtain

Q0t = P(t)shallow

𝜌wg

[
L(t) +

√
2Λu

Sc
Sc(Ss − Cc) − Cs(Ss + Cc)

cos
L(t)√
2Λu

sinh
L(t)√
2Λu

+
√

2Λu
Cs

Sc(Ss − Cc) − Cs(Ss + Cc)
cosh

L(t)√
2Λu

sin
L(t)√
2Λu

]
, (12)

which relates P(t) to flow length L and time t.
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The same analysis, but in the case of a deep sill, gives

P(t)deep = Dl
𝜕4h(x, t)
𝜕x4

(13)

h(x, t) = P(t)deep

24Dl
L(t)4

(
1 − x2

L(t)2

)2

(14)

Q0t = P(t)deepL(t)5

45Dl
. (15)

Calculations will show that these last equations (13) to (15), where Dl is replaced by Du, also provide a good
approximation for the shape and pressure evolution for a shallow sill when L≪ 4Λu, because the elastic
pressure is then dominant over the weight of the flow. When L ∼ 4Λu, pressure due to sill weight cannot
be neglected and these approximations are no longer valid. Pressure gradient effects are investigated in
Appendix C ; the resulting flow shape is not significantly different from the uniform pressure solution.

As long as the pressure in the sill is large enough to allow for crack propagation, crack opening is not a lim-
iting process and the sill should spread even if cooling and freezing occur at the tip, where the sill thickness
reduces to zero. Injected water will continue to flow into and thicken the sill, and the elastic response of the
layer causes water spreading. We show, in Appendix D, that advection of heat is larger than heat loss in most
of the sill (> 90%) during the entire emplacement process, creating a thermal anomaly in the surrounding
ice and allowing continued spreading of liquid water.

3.4. Spreading Phase
Because water viscosity is low, the inertial term is larger than the viscous term. The Reynolds number
Re = 𝜌wHdL∕dt

𝜇w
, with 𝜇w the water viscosity and H a characteristic thickness for the flow, is thus larger than

103 and the flow is turbulent; this will be verified a posteriori. Hence, as long as the pressure is large enough
for fracturing to occur at the tip, the pressure necessary for bending the overlying layer is balanced by iner-
tia; additionally, friction at the roof and bottom of the intrusion probably occurs and decreases the pressure
available for spreading

P(t) = 1
2
𝜌w

(dL
dt

)2
(

1 + fL
Dh(t)

)
, (16)

where the second term on the right represents friction loss. We modify the expression for friction loss
through a pipe to account for the 2-D geometry of the sill by using Dh = 2h0(t), where Dh is 4 times the
central section area of a sill divided by its perimeter (with this definition for Dh, we recover the expression
for a circular pipe flow) and h0(t) is the thickness at the sill center. Friction loss is given by f , the friction
coefficient, and, for Re > 103, it is given by the Blasius equation [Turcotte and Schubert, 1982]

f = 0.31Reh
−1∕4 = 0.31

(
𝜌wDh

𝜇w

dL
dt

)−1∕4

, (17)

where Reh = (𝜌wDhdL∕dt)∕𝜇w is the modified Reynolds number for a 2-D flow with friction where we use
again Dh = 2h0.

In the case of a shallow sill, using P(t)shallow given by (12) in (16), we obtain a differential equation for the
time evolution of the flow length L(t) of a shallow sill

1
2
𝜌w

(dL
dt

)2
(

1 + fL
2h0(t)

)
= Q0t𝜌wg

[
L(t) +

√
2Λu

Sc
Sc(Ss − Cc) − Cs(Ss + Cc)

cos
L(t)√
2Λu

sinh
L(t)√
2Λu

+
√

2Λu
Cs

Sc(Ss − Cc) − Cs(Ss + Cc)
cosh

L(t)√
2Λu

sin
L(t)√
2Λu

]−1

.

(18)

In the case of a deep sill, using P(t)deep given by (12) in (16), we have

1
2
𝜌w

(dL
dt

)2
(

1 + fL
2h0(t)

)
=

Q0t45Dl

L(t)5
. (19)
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Both equations, which neglect the influence of a pressure gradient within the bulk of the flow, are solved
numerically using a fourth-order Runge-Kutta scheme. The effects of a pressure gradient within the bulk
of the flow are investigated in Appendix C; the resulting flow evolution is close to the one we obtain
here using the assumption of a uniform pressure because pressure gradients are concentrated near the
sill ends.

In the case where friction is neglected, i.e., f = 0 in (16), we obtain an instructive analytical solution for the
evolution of a deep sill morphology with time by introducing the expression for P(t) given by (15) in (16)
with f = 0 and integrating

L(t) =
(7

3

)2∕7
(

90DlQ0

𝜌w

)1∕7

t3∕7. (20)

Then, using (20) in (14) and (15), we obtain

h0(t) =
15
8

(3
7

)2∕7
Q6∕7

0

(
𝜌w

90Dl

)1∕7

t4∕7, (21)

h0(L) =
15
8

(
3Q0

7

)2∕3 (
𝜌w

90Dl

)1∕3

L4∕3. (22)

The scaling law given by (22) shows that the thickness in the sill center will increase with the injection rate
Q0 because the applied pressure on the elastic plate is then larger; see equations (15) as well as (12). Fur-
thermore, the smaller the elastic layer rigidity, the thicker the sill is because the resistance to bending is
then smaller.

During the spreading of a deep sill and the initial spreading phase of a shallow sill, where bending is dom-
inant, the scaling laws provided by (21) and (22) parallel the thickness-to-length and thickness-to-time
evolution calculated numerically when friction and gravity are accounted for, because the elastic pressure
is then the dominant term for sill spreading. The effect of friction loss is to increase the sill thickness by
decreasing the pressure available for bending and peeling off the elastic layer at the tip (Figure 4). When L
reaches 4Λu, gravity is no longer negligible and increases the pressure available for, and hence promotes,
spreading at the expense of thickening for a shallow sill (blue lines in Figure 4). Increasing the injection rate
leads to an increase in the thickness at a given length as predicted by (22), but, for realistic parameter val-
ues, the maximum thickness that can be reached in the case of a shallow sill is at most a few meters because
water weight promotes sill spreading (Figure 4). On the contrary, for a deep sill, because water weight does
not play a role, the sill continues to thicken (Figure 4).

Equation (20) implies a spreading rate

dL
dt

=
(3

7

)5∕7
(

90DlQ0

𝜌w

)1∕7

t−4∕7. (23)

For an elastic thickness dl = 100 m, an injection rate Q0 = 0.5 m2 s−1, and using values for the parameter
listed in Table 1, we calculate that the tip velocity decreases from ∼34 to 0.2 m s−1 from t = 1 s to t = 104 s.
Hence, given the low viscosity of liquid water, we verify that the Reynolds number is ≫ 1 even for very small
flow thicknesses of ∼1 mm, characteristic of the tip.

3.5. Fracture Toughness Limit
As the flow length increases, the pressure in the sill eventually decreases to the critical value equal to the
pressure necessary for fracturing at the tip, Pf . In that case fracturing at the tip might limit sill spreading. The
stress intensity factor KI for a mode I fracture and a uniformly loaded crack situated close to a boundary (i.e.,
d ≪ L) can be approximated by [Dyskin et al., 2000]

KI = KMM0d−3∕2, (24)

where KM is a constant equal to 1.951 [Dyskin et al., 2000] and M0 is the moment about the crack tip given by

M0 = Ed3

12(1 − 𝜈2)

(
𝜕2h
𝜕x2

)
x=L(t)

, (25)
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Figure 4. Evolution of the maximum thickness (i.e., thickness at the center) as a function of (left) sill half-length and (right) time for a spreading sill of water at
shallow depth (blue lines) and deep depth (red lines) for different values of the injection rate Q0, accounting or not for friction. When the sill half-length is less
than 4Λu , gravity is negligible and the scaling laws provided by (21) and (22), red solid line and red dash-dotted line, well represent the evolution of the sill mor-
phology when friction is neglected, even for shallow sills. When L reaches 4Λu, gravity is no longer negligible and increases the pressure available for, and hence
promotes, spreading at the expense of thickening. As a result, the critical pressure at which the stress intensity factor becomes equal to the ice fracture toughness
limits the lateral extent of deep sill (red circles), allowing for sill thickening (red arrows), while it does not in the case of shallow sills, which continue to spread.

which increases with the internal sill pressure. Once KI reaches the fracture toughness limit Kc, i.e., once
the pressure in the sill decreases to a critical pressure such that KI = Kc, fracturing at the tip limits the
sill’s lateral extent. Since freezing is fastest at the tip (h → 0), the crack should close, impeding further sill
spreading. Appendix D shows that the hot thermal anomaly due to injection of water extends at least over
nine-tenths the length of the sill during the entire spreading phase and hence that cooling and freezing at
the tip should not limit propagation during the spreading phase. However, the extent of the cooling front,
which is between one twentieth and one tenth of the sill extent, is probably large enough for a deep sill that
when the fracture toughness limit is reached, water near the sill tip will freeze shut the sill.

Using the expression for h(x, t) as a function of length L(t) and pressure P(t) for a shallow sill given by (14) in
(25) and (24), we find the critical pressure at which fracturing limits sill propagation

Pc(t)shallow =
Kc

1.951

d3∕2
u

Λ2
u

(
− Cs + Sc

Sc(Ss − Cc) − Cs(Ss + Cc)
sinh

L(t)√
2Λu

sin
L(t)√
2Λu

+ Cs − Sc
Sc(Ss − Cc) − Cs(Ss + Cc)

cosh
L(t)√
2Λu

cos
L(t)√
2Λu

)
. (26)

And, in the case of a deep sill, using (14) in (25) and (24), we have

Pc(t)deep =
3Kc

1.951

d3∕2
l

L(t)2
. (27)

The critical length Lc at which the stress intensity factor equals the fracture toughness of ice is then obtained
when the sill’s internal pressure P(t)shallow or P(t)deep becomes equal to Pc. For a deep sill, when friction is
neglected, we obtain an analytical expression for Lc

Lc = d3∕4

(
15KM

Kc

)3∕2 3Q0

7

(
𝜌wE2

90 × 122(1 − 𝜈2)2

)1∕2

. (28)

Equation (28) shows that this critical sill length increases with the injection rate Q0 because the pressure
available for spreading increases. Lc is also strongly controlled by the fracture toughness Kc: larger values of
Kc lead to shorter sill lengths. The value of Kc for ice is well constrained by experiments for the range of tem-
perature and pressure applicable to Europa’s ice shell, between 100 and 300 kPa m−1∕2 [Liu and Miller, 1979;
Litwin et al., 2012]. However, distributed inelastic deformation in the stressed elastic layer could significantly
increase this value and hence decrease the critical sill length at which sill spreading stops.
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Figure 5. Critical sill length Lc when the fracture toughness limit is
reached, as a function of the elastic layer thickness dl of the underlying
layer, for two different injection rates and with or without friction; friction
coefficient f given by (17) or f = 0.

Calculations show that the fracture
toughness limit is reached for shallow
sills only if the injection rate Q0 is in
the lowest possible range of values,
i.e., ≤ 0.2 m2 s−1. Above this limit, grav-
ity promotes spreading and promotes
fracturing at the tip (Figure 4). On the
contrary, for deep sills, the fracture
toughness limit is reached at a critical
length between a few to a few tens of
kilometers (Figures 4 and 5), depend-
ing on the injection rate and elastic
layer thickness. The critical sill length
Lc increases significantly if friction is
accounted for (Figures 4 and 5). Indeed,
when friction matters, the sill is thicker
for a given length and the sill length
must increase for the moment at the
tip M0, which scales as h0∕L2 (25), to
decrease to the value such that KI = Kc.

When this critical length is reached, the sill does not spread further because the crack is closed by freezing,
and the sill can thicken by further injection of water. Eventually, if the pressure in the sill increases to a value
that permits renewed fracturing, elastic stresses in the overlying and underlying elastic layers would favor
upward or downward propagation, possibly creating saucer-shaped sills.

The emplacement of a sill by downward flexure of the lower elastic layer is particularly appealing in the
case of icy satellites, and hence Europa, for mechanical reasons. Water ascent in the ice shell will con-
sume most of the initial water overpressure, since liquid water buoyancy is negative in the ice shell. For
instance, for an initial overpressure in the water source of 105 Pa, the dyke can only ascend through ∼1 km
of ice. Since large overpressure values may be difficult to achieve in the liquid ocean [Manga and Wang,
2007], a deep intrusion seems more reasonable. Furthermore, thickening of the sill by upward deflec-
tion of the upper elastic layer is limited: as shown above, water weight acts against thickening and favors
sill spreading and fracturing at the tip. In contrast, thickening of a deep sill can occur because water
weight does not contribute to the pressure acting in favor of sill spreading and fracturing so that frac-
turing limits the lateral extent of deep sill. Finally, downward flexure of the lower elastic layer provides
a way of keeping the pressure high in the ocean, enhancing water intrusion. Indeed, if the intrusion is
deep, the water volume is transferred to the ice shell without a significant increase in the total volume
of the water plus ice layer: the only increase in volume which could help release the ocean overpressure
comes from the upward deflection of the upper layer, which is negligible compared to the total volume of
the sill. Thus, large volumes of water could be intruded deep into the elastic part of the ice shell. In con-
trast, for shallow sills, water overpressure is not only partially compensated by the water weight but is
also rapidly depleted since the volume of water transferred to the sill is accommodated by uplift of the
overlying layer.

4. The End of Sill Intrusion: Dyke Solidification

As water intrudes the ice shell through a dyke, it heats the surrounding ice as it cools and solidifies. Thermal
boundary layers develop in the ice and water and grow with time until cooling and solidification closes the
dyke. We apply the model of Rubin [1993, 1995] for dykes of magma propagating within rocks and freez-
ing at a unique temperature to the case of a liquid water dyke propagating vertically into the ice shell to
deduce the timescale for dyke solidification and final sill volume. Rubin [1993, 1995] established that the
frozen margin thickness 𝛿m grows with time as

𝛿m = 2Θ
√
𝜅t, (29)
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Figure 6. Timescale for sill emplacement as a function of sill volume for
three different values of the injection rate, 0.1, 1, and 10 m2 s−1. Also indi-
cated are the timescale for dyke solidification and closing for dyke widths
between 0.1 and 1 m [Rubin, 1993, 1995] and the volume of water nec-
essary to produce topographic variations of order 100 m at the surface;
see section 5. Compatible injection rates are between 0.1 and 10 m2 s−1,
corresponding to overpressure values in the water source of >104 to
<106 Pa.

where the thermal diffusivity of water
𝜅 is given by 𝜅 = kw∕𝜌wCw with kw

the thermal conductivity and Cw the
heat capacity and where Θ depends
on Cw as well as on liquid water and
ice temperature Tw and Ti and latent
heat of fusion of ice Lf

Θ =
Cw(Tw − Ti)√

𝜋Lf

. (30)

For an ice shell and ocean at thermal
equilibrium, the liquid water temper-
ature is between 269 and 273 K [Ruiz,
2010] and the temperature in the ice
shell at the equator varies from 110 K
at the surface to the ocean temper-
ature at the shell bottom, with an
average of 163 K. Since we suppose
the sill intrudes relatively deep into
the ice shell, we use an average tem-
perature difference of 60 K between
the liquid water and the surrounding

ice. Using values for the parameters listed in Table 1, we calculate a timescale for dyke arrest by solidification
equal to the timescale necessary for the frozen margin thickness to reach the dyke width; this timescale is
between 4 × 105 and 4 × 107 s for dyke widths between 10 cm and 1 m as calculated in section 3.1.

For injection rates between 0.1 and 10 m2 s−1, dyke widths between 10 cm and 1 m allow for intrusion of a
water volume (per unit length) of 105 to 108 m2 (Figure 6). In section 5, we conclude that the 2-D volume
of water necessary to produce topographic variations of the order of 100 m at the surface is about 106 m2

or more for sill half-length of several kilometers upon emplacement, which is compatible with estimated
injection rate and timescale for water injection (Figure 6).

5. Evolution of the Water Body and Intrusion

Once the sill stops spreading, the subsequent evolution of its morphology and surface expression depend
on the timescale of solidification and on the mechanical behavior of the ice shell. In this section we assess
the consequences of solidification of the ice and how the excess weight of the water is compensated before
it freezes completely.

5.1. Deformation of the Base of the Ice Shell
Intrusion of a deep sill deflects downward the base of the ice shell. The topography at this ice-water inter-
face will relax by viscous flow. The timescale for this relaxation was addressed by Nimmo [2004] and is not
rederived here. For ice with the temperature structure given in Appendix A, the timescale for relaxation by
Newtonian creep is

𝜏relax =
𝜂0𝜆

2

4(𝜌w − 𝜌i)g𝛿3𝜋2
𝛿 = RTbtc∕Q ln(Tb∕Ts), (31)

where 𝛿 = RTbtc∕Q∗ ln(Tb∕Ts) is the length scale over which viscosity changes by a factor of e, Tb and Ts are
the bottom and surface temperatures of the ice shell, Q∗ is the activation energy, R is the gas constant, tc the
shell thickness, and 𝜆 is the wavelength of the deformation which we take as the lateral extent of the sill.
𝜏relax is less than a few hundred years, i.e., less than 1010 s, for viscosities at the base of the ice shell less than
1014 Pa s.

As we show next, relaxation of topography and sill intrusion both occur on timescales much shorter than
the time to solidify the intruded water.
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Figure 7. Solidification time 𝜏solidify as a function of sill thickness,
for sills whose upper surfaces are at depths of 1, 2, and 3 km. Ther-
mal parameters are summarized in Table 1. The dashed curves show
a thickness-squared scaling for these three depths, calibrated to the
solidification time of the thinnest 500 m sill.

5.2. Timescale for Sill Solidification
We assume that cooling is governed by
vertical heat conduction from the sill
to both the overlying and underlying
colder ice

𝜕T
𝜕t

= 1
𝜌iCi

𝜕

𝜕z

(
ki(T)

𝜕T
𝜕z

)
, (32)

where 𝜌i and Ci are the density and
specific heat of ice, respectively. The
latent heat of water will slow cooling.
We account for the latent heat by using
an equivalent specific heat spread over
a 1◦ temperature range [Mottaghy and
Rath, 2006]. We define the solidifica-
tion time 𝜏solidify as the time it takes to
cool the water sill to below its freezing
temperature everywhere. Owing to the
nonlinearity of ki (Table 1), we solve (32)
numerically using an explicit finite dif-
ference method. Convection may occur
within the water sill but will not sig-
nificantly affect the solidification time

(assuming the water is not superheated) because cooling and solidification are limited by heat loss to the
surroundings [Marsh, 1989; Worster et al., 1990]. We account for the possible convection of water in the sill
by assuming a constant temperature within the liquid part of the sill.

Figure 7 shows the cooling times for sills 500 m to 2 km thick intruded into a 10 km ice shell so that their
upper surfaces are at depths of 1, 2, or 3 km. If the sill has a thickness comparable to or thinner than its
emplacement depth, the solidification time is dominated by its thickness and emplacement depth has little
effect. As the sill thickness increases, the solidification time increases roughly quadratically, as expected for
a diffusion problem in an infinite domain. The black dashed curves show a thickness-squared solidification
time, normalized by the solidification time for the 500 m sill. The effect of a finite layer above the sill, and
cooling to the underlying ice modify the solution somewhat from the infinite space solidification problem,
with the former leading to faster solidification.

For the range of sill depths and thicknesses we would require to explain pits and domes, solidification times
are expected to be in the range 1 × 1012 to 3 × 1013 s. We thus verify that this is indeed much longer than
the estimated emplacement times (Figure 6). In addition, the solidification time is much longer than the
timescale for topography at the base of the ice shell to relax; see section 5.1.

5.3. Flexural Support of the Sill Before it Solidifies
An important consequence of heat transfer is that the elastic layers above and below the sill will become
thinner and thus stresses will be enhanced above the sill. Regional and global stresses on Europa are large
enough to create tectonic features such as bands and ridges, and so we expect that stresses are in general
close to those needed for failure. Large stresses in the ice shell are a natural consequence of its formation:
cooling of ice and volume changes upon freezing generate tension near the surface and compression at
greater depths [Nimmo, 2004]. If the sill originated from an overpressured ocean, we also expect large pre-
existing stresses in the ice shell [Manga and Wang, 2007]. The local thinning of the part of the ice shell able
to support elastic stresses will increase the magnitude of those stresses. Even though the ice above the sill
is warm, cracks formed at shallower depths will still be able to penetrate to depths of a few kilometers and
through this warm ice because the ice will behave elastically on the timescale for crack formation [Rudolph
and Manga, 2009]. We assume, for now, that stress concentrations become large enough to disrupt the layer
of ice above the sill and that this layer is strengthless. Any overpressure in the sill will dissipate at this point,
and the disrupted ice will float on top of water in the sill.
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Figure 8. Sill thickness and corresponding volume required (at the
end of intrusion) to arrive at a surface depression equal to 100 m as
a function of elastic thickness of the bottom layer dl for two different
sill half-lengths of 5 and 10 km. The two volume scales on the right
correspond to the two different sill half-lengths.

Because the weight of the sill is no longer
compensated by a thickened ice shell
(section 5.1), the additional weight of
water relative to ice is compensated by
downward flexure of the lower elastic
layer, whose thickness is reduced owing
to heat transfer from the overlying ice
(Figure 2, stages 3 and 4).

Downward flexure of the ice shell should
satisfy (Figure 2, stages 3 and 4)

Dl

𝜕4hf (x)
𝜕x4

= (𝜌w − 𝜌i)ghf (x) − 𝜌wghf (xb)

for 0 < x ≤ xb (33)

Dl

𝜕4hf (x)
𝜕x4

= −𝜌ighf (x) for xb ≤ x < L,

(34)

where hf (x) is the (downward) displace-
ment of the lower elastic layer, and xb is

the new sill length (as the lower layer bends, the sill thickens and shortens). The downward displacement
of the elastic layer is large enough to accommodate the total weight of liquid equal to 𝜌w ∫ Lc

−Lc
h0(x)dx and

induces a surface depression. Since the upper layer is now assumed to be strengthless, the liquid water
surface is flat and at a depth z = −hf (xb), which corresponds to the observed depression at the surface.

In addition, the mass of water is conserved

∫
xb

0
(hf (x) − hf (xb))dx = ∫

Lc

0
h(x)dx = 8

15
h0Lc, (35)

where we assume that the sill retains its bell shape by elastically deforming the underlying layer while it
thickens after the fracture toughness limit is reached.

For given values of the sill length Lc, flexural rigidity Dl and surface depression hf (xb), we numerically solve
(33) to (35) to find, by iteration on xb, the pair of solutions (xb, h0). The initial maximum thickness of water
and corresponding volume given by (35) required to create a 100 m depression at the surface increases with
the elastic thickness of the lower layer dl (Figure 8).

Compensation acts to decrease the aspect ratio (length/thickness) of the water body. After compensation,
the sill changes shape and its apparent radius might decrease significantly, in particular if dl is small and the
sill volume is large. We take two different examples, both leading to a depression of 100 m at the surface and
characterized by two different sill lengths, Lc = 5 and 10 km, and volumes, V = 3.0×106 m2 and 5.6×106 m2,
and two different elastic thicknesses for the underlying layer, dl = 72 and 170 m, respectively; these two
cases could, for instance, correspond to intrusion of water at a rate of ∼1 m2 s−1 (Figure 5, no friction) if no
thinning by heating of the underlying elastic layer has occurred in between sill emplacement and compen-
sation. For these examples, the final sill lengths after compensation xb are, respectively, 2.7 km and 5.2 km.
Because water weight is now concentrated over approximately two thirds of the layer, the large downward
central flexure of the elastic layer is accommodated by an adjacent upraised annulus 32 m high. The appar-
ent half-length of the resulting pit structure at the surface is only about two thirds of the initial half-length
(Figure 9). The surface topography is relatively flat within the pit, though the actual surface topography will
differ somewhat from that shown in Figure 9 because the overlying ice layer is considered strengthless in
the calculation.

Thus, compensation of liquid water emplaced as a sill into the ice shell can induce pit formation at the sur-
face, with a negative relief of 100 m or more, if the sill emplacement depth is within, though deep into, the
elastic part of the ice shell. For typical timescales necessary for sill emplacement, which allow for injection
of less than ∼107 m2 of water, the elastic thickness of the bottom layer at the time of compensation must be
less than ∼200 m, for initial sill half-lengths of 5 to 10 km and initial thicknesses of the order of a kilometer.
The final apparent radius of the pit at the surface would then be between 3 and 6 km (Figure 9).
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Figure 9. Shape of the sill after compensation in two different cases (two different elastic thicknesses, dl , two different initial half-lengths Lc = 5 or 10 km and
volumes, indicated on the figures), both leading to a surface depression of 100 m. For the sake of illustration, an upper layer with thickness du = 10dl is
represented on top of the sill. The zone filled with water is blue.

5.4. Diapiric Descent of the Sill
If the ice underneath the sill is heated to the point that it can no longer provide elastic support for the
weight of the sill, the water will sink through the underlying viscous ice as a diapir. Owing to the low vis-
cosity of water relative to ice, stability analysis indicates that a single diapir will form [Whitehead and Luther,
1975]. The timescale to create a diapir from a sill-shaped body can be estimated from the analogous prob-
lem of a spreading low-viscosity diapir as a gravity current—an appropriate geometry because the lateral
dimension of the sill Lc is much greater than its thickness h0. The problems are analogous geometrically,
but the driving forces are in the opposite direction; owing to the reversibility of creeping flows, for a given
geometry the sign of the velocities can simply be reversed in the solution. The long-term, large-deformation
evolution will not be reversible, however, because the free boundary between the water and ice intro-
duces a nonlinearity through the boundary conditions. For small deformations, however, the spreading and
thickening problems are analogous except for a sign change in the velocity.

Griffiths and Campbell [1991] found, using scaled laboratory experiments, that for a low-viscosity diapir
(𝜂w ≪ 𝜂i) spreading below a rigid boundary (appropriate when the overlying ice remains elastic),

h(t) = (0.96 ± 0.11)V1∕3
r

[
Δ𝜌gV1∕3

r

𝜂i
t

]−0.48±0.03

, (36)

where Vr is the 3-D volume of the sill (in m3). This empirical scaling is consistent with expected scaling and
numerical results [Koch and Koch, 1995].

The time tdiapir for h to increase by a factor of 2, for example, will thus be

tdiapir =
0.92𝜂iV

0.36
r

Δ𝜌g

[(
1

h0

)2.08

−
(

1
2h0

)2.08
]
. (37)

For illustrative purposes we consider a sill with h0 = 1000 m, Lc = 10 km, a cylindrical geometry, and a
volume 𝜋h0L2

c∕4. The time for h to increase by a factor of 2 is 2.9 × 10−5 Pa−1𝜂i. To obtain less deforma-
tion within the upper range of solidification times 3 × 1013s (solidification removes the buoyancy driving
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diapirism) requires viscosities >1018 Pa s, corresponding to temperatures <190 K for the rheological param-
eters in Table 1. The viscosity structure in the ice underlying the sill is strongly depth dependent and
time-evolving as heat is lost from the sill. However, temperatures warmer than 190 K are plausible. Thus,
provided that all the underlying ice is warmed to the point that none of it can provide flexural support over
solidification timescales, corresponding to temperatures less than 150 K for the largest sills, the sill may form
a diapir and descend partially or completely to the ocean before complete water solidification.

5.5. Consequences of Water Freezing and Disruption of Ice
During solidification, the sill volume increases because of the lower density of ice compared to that of the
liquid water. If the layer of ice above the sill has been disrupted, the expansion of ice freezing in the sill will
be accommodated by a combination of water being expelled into cracks and other pore space within the
disrupted ice and increasing the sill thickness.

We return to the initial 2-D geometry. The total volume (in m2) of intruded liquid water is V = 8
15

h0Lc, where
h0 and Lc were the sill initial thickness and length upon emplacement. Upon cooling, the volume of the
intruded water increases by an additional volume ΔV and the depressed surface is uplifted by Δhup:

ΔV =
𝜌i − 𝜌w

𝜌i
V = 8

9 × 15
h0Lc =

8
15

Δhupxb. (38)

We examine the two examples considered in section 5.3 where topographic relaxation at the base of the ice
shell was complete and sill weight is compensated by downward flexure of the lower layer. After compen-
sation, for a surface depression of 100 m, the sill thickness is 1849 m both for half-lengths xb of 2.7 to 5.2 km
(corresponding to initial sill half-lengths after emplacement of 5 and 10 km, respectively, and a lower layer
elastic thickness of 72 and 170 m, respectively). In the first case (initial half-length of 5 km before compensa-
tion above a 72 m thick elastic layer), the total volume of the sill is 3.0 × 106 m2 corresponding to an initial
sill thickness of ∼1100 m, while in the second case (initial half-length of 10 km above a 170 m thick elastic
layer), the total volume is 5.6 × 106 m2 corresponding to an initial sill thickness of ∼1050 m. Hence, the addi-
tional volume after expansion is, respectively, 3.3× 105 and 6.2× 105 m2; it is accommodated by uplift of the
overlying layer with a maximum of 220 to 230 m, i.e., a maximum topography of 120–130 m above 0, since
the initial water level was depressed by 100 m relative to its initial emplacement depth.

If topographic relaxation of the water sill has not occurred at the base of the ice shell, then the additional
weight of water is not flexurally compensated. Cooling and solidification of the sill leads to a volume
increase of the sill and surface uplift. The additional volume caused by water solidification is still given by
(38) and would result in a final uplift or final topography of 115 to 125 m above zero in the cases examined
above (initial sill half-lengths of 5 km and 10 km). However, in this case, there is no pit stage.

6. Discussion

A successful model should explain several features of pits, domes, and small chaos. We list these observa-
tions and then address each in turn, identifying both successes and limitations of sills in accounting for the
observations.

1. Diameters are typically ∼3–15 km with regional means in the range of about 3–6 km [Singer et al., 2010];
some can be a few tens of kilometers in diameter [Schmidt et al., 2004].

2. Pits and domes are sometimes associated with chaos and resurfacing to cover preexisting features.
3. There are more pits than domes [Singer et al., 2010].
4. Relief is up to a few hundred meters [Schmidt et al., 2004], with the mean relief between about 100 and

130 m [Singer et al., 2010].
5. Relief increases as diameter increases [Singer et al., 2010].
6. Pits and domes are among the younger features on the surface as they are rarely disrupted by other

tectonic features [Pappalardo et al., 1998].
7. Pits and domes are generally, though not always, constrained by apparent faults and ridges.

6.1. Diameters
The lateral dimensions of pits and domes are consistent with sills emplaced deep in the ice shell. If sills
are in fact the origin of these features, the lateral dimensions are controlled by the mechanical properties
of ice rather than dimensions of convective features in the ice shell [Pappalardo et al., 1998; Nimmo and
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Manga, 2002; Showman and Han, 2004] or plumes in the ocean [Thomson and Delaney, 2001; Greenberg
et al., 2002]. If the water source is associated with rising diapirs in the ice shell [Schmidt et al., 2011], the loca-
tion and spacing of pits and domes may still be controlled by solid state convection. The lateral dimensions
of the pits are also controlled by the elastic thickness of the lower layer below the sill but are between about
2/3 and 1 times the initial sill length. Because domes are generated by expansion of water following the
pit/compensation stage, the model predicts similar lateral dimensions for the pits and domes.

The origin of the water that makes sills in our model is not specified, only that there must be a source of
overpressured water. The formation of a water sill at a depth of a few kilometers into the ice shell implies
overpressures of one to several times 105 Pa in order for the water to ascend through one to several
kilometers of ice. Upper values in this range of overpressures are larger than those predicted to develop in
the ocean by cooling and freezing of the ice shell, assuming overpressure is limited by tensile stresses reach-
ing the tensile strength of ice anywhere in the ice shell [Manga and Wang, 2007], though in the absence
of failure, tensile stresses can get much larger than the tensile strength of ice [Nimmo, 2004]. Alternatively,
buoyancy from gas exsolution may allow water to rise further into the ice shell [Crawford and Stevenson,
1988] and these gases would separate from the water once the sill is emplaced. Freezing of isolated water
bodies [Fagents, 2003], including water generated in or above diapirs [Sotin et al., 2002; Pappalardo and Barr,
2004; Schmidt et al., 2011], should be able to produce overpressures up to values comparable to the tensile
strength of ice, about 1 − 3 × 106 Pa [Schulson, 2006], and hence large enough to make the hypothesized
sills. However, the water reservoir must also be large enough to supply enough water while maintaining
a high pressure.

6.2. Formation of Small Chaos
Schmidt et al. [2011] explain how the disruption of ice above lenses of water could explain many, if not
most, of the features of small chaos tabulated by Collins and Nimmo [2009], even though they did not esti-
mate the thermal viability of their proposed eutectic melting model. Readers are referred to their analysis
and discussion.

6.3. More Pits Than Domes
In our proposed model, pits indicate the presence of liquid water at depth. The final stage in the model is
an uplifted topography following solidification of the intruded water. Given that the water stage has a finite
lifetime, and domes may last forever, we might expect to see more domes than pits. A greater number of
pits would thus imply that the formation of these features is recent and ongoing.

6.4. Relief
Relief of ∼102 m implies sill thicknesses of ∼103 m. Such thick sills, for diameters of a few km to 10 km, could
form at relatively large depths in the ice shell, above a layer of ice with an elastic thickness of less than a few
hundred meters.

The expected scaling of relief with diameter is complicated because, during the compensation stage, the
radius of compensation xb as well as the apparent radius at the surface decreases relative to the initial sill
length, in a way that depends on the total sill volume and elastic layer thickness (and ice viscosity if a diapir
forms). Hence, the apparent radius at the surface may become similar for different initial sill lengths. How-
ever, the critical length Lc increases with the injection rate, and this should also be the case for the total sill
volume, since large sill volumes imply larger timescales for sill emplacement and hence larger dykes and
larger injection rates; thus, we expect the apparent relief at the surface to increase with increasing injection
rate and diameter.

6.5. Age
If the water source is ocean water, the thicker the shell, the more overpressure in the ocean. If the water
originates from diapirs in the ice shell, thicker ice may be needed for convection. Sills are thus more likely to
form when the shell is thickest.

6.6. Interaction With Other Features
If a fault or a ridge affects the whole elastic lithosphere down to the emplacement level of the water sill,
then the propagation of the sill might be stopped by such a fault. Indeed, a large pressure is then required
to start a new crack and allow further propagation. The pressure might be sufficiently large only if the sill
is still in the spreading regime and has not spread very far. Hence, large ridges and faults should generally
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limit sill propagation and the resulting surface features such as depressions, domes, and small chaos should
be generally constrained by large ridges and faults.

7. Summary

Our objective was to explore some of the mechanical and thermal constraints of the emplacement of water
sills inside Europa’s ice shell. We do find that water sills would have dimensions similar to those of pits and
domes and could produce the observed relief. Whether there is a plausible source of the needed over-
pressure and volume of water is unclear (and was not modeled in the present study). The hypothesis is
testable with radar, and we predict that pits should be located above bodies of liquid water, as does Schmidt
et al. [2011]. These sills are likely to be located at depths of a few to several kilometers, depending on the
total thickness of the ice shell. Provided that ocean pressure is large enough or gases can exsolve from the
ascending water, the emplacement of sills provides a mechanism to transfer large volumes of water from
the ocean into the ice shell.

Appendix A: Relaxation Timescales of the Ice Shell

The surface deformation produced during and after sill injection depends on the mechanical deformation
of the ice shell in response to stresses. Ice deformation will be brittle, elastic, or ductile depending on tem-
perature and depth in the ice shell. The uppermost part of the ice shell is cold, brittle, and likely fractured.
Its strength is governed by friction. The warm ice at the base of the ice shell is ductile and accommodates
stresses by creep. In between the ductile ice and brittle surface layer, ice is elastic and supports internal and
surface loads by flexure. The thickness of the elastic layer depends on time: the viscoelastic relaxation time is

𝜏relax = 𝜂∕E, (A1)

where E is Young’s modulus and the ice viscosity 𝜂 is

𝜂(T) = 𝜂0 exp

[
Q∗

RT

(
Tm

T
− 1

)]
, (A2)

with Q∗ the activation energy, Tm the melting temperature, and 𝜂0 the viscosity at Tm [Goldsby and Kohlstedt,
2001]; see Table 1 for the parameters.

Figure A1 shows the temperature distribution and 𝜏relax for an ice shell with thickness Zc in which heat trans-
port occurs by thermal conduction. If convection occurs in the shell, our results apply to the conductive
part of the shell only, with Zc representing the thickness of the conductive part of the shell. The nonlinearity
of temperature arises from the temperature dependence of thermal conductivity ki(T) (Table 1). The rele-
vant thickness of the elastic layer will vary over relevant timescales: on injection timescales it will be thicker

Figure A1. Steady state conductive temperature distribution and relaxation time (𝜂∕E) as a function of depth z
normalized by the ice shell thickness Zc for the parameters listed in Table 1.
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than that for subsequent evolution of the sill including flexural support after emplacement and final solid-
ification. We have neglected the effects of heating from tidal dissipation on the temperature distribution.
However, tidal heating occurs in the warmest ice at the base of the ice shell [Nimmo et al., 2007] where the
relaxation time is already short and comparable to the tidal periods.

Appendix B: Scaling Laws for a Deep Axisymmetric Sill

Since lenticulae are circular to elliptical, considering an axisymmetric geometry for the spreading of water
sills might be more appropriate. However, an axisymmetric geometry implies water injection through a cir-
cular conduit of diameter 2w, a geometry less probable than an elongated fracture such as a dyke. Terrestrial
laccoliths are indeed usually elliptical and generally result from feeding through elongated dykes [Rocchi
et al., 2002].

Using a range of upward flow velocities of ∼1 to 10 m s−1 and conduit radius of 1 to 10 m, the injection rate
Qr

0 takes values between ∼3 and 3000 m3 s−1. These values are in good agreement with 3-D injection rates
deduced from 2-D values obtained in section 3.1.

Here we develop the analytical solution for the spreading of an axisymmetric deep sill of water, neglecting
friction loss, and discuss the implications for the morphology of a shallow axisymmetric sill.

In the case of a deep sill of water, emplaced below a rigid boundary, the driving pressure for the sill is the
elastic pressure required for bending the lower elastic layer of ice:

P(t)deep = Dl∇4
r h(r, t), (B1)

where ∇4
r = 1

r
𝜕

𝜕r

(
r 𝜕

𝜕r

(
1
r
𝜕

𝜕r

(
r 𝜕

𝜕r

)))
. As for the 2-D case, for simplicity, the pressure is assumed constant

over the sill radius, which gives the shape h of the sill as a function of the sill radius R, using the boundary

conditions h(R) =
(

𝜕h
𝜕r

)
R
= 0

h(r, t) = P(t)deep

64Dl
R(t)4

(
1 − r2

R(t)2

)2

. (B2)

Conservation of mass for a constant injection rate Qr
0 (in m3 s−1) (B3) gives the expression that relates the

pressure in the sill to the sill radius and time t (B4)

Qr
0t = 2𝜋 ∫

R(t)

0
h(r, t)rdr, (B3)

Qr
0t = P(t)deep

𝜋R(t)6

192Dl
. (B4)

As for the 2-D case, at the tip, the pressure necessary for bending the lower elastic layer is balanced by inertia

1
2
𝜌w

(dR
dt

)2

= P(t)deep
, (B5)

which, by integration, gives the evolution of the radius R and maximum sill thickness-with-time, using (B4),
as well as the thickness-to-radius relationship during the spreading phase

R(t) = 2
√

2
(2Qr

0Dl

3𝜋𝜌w

)1∕8

t3∕8, (B6)

h0(t) =

(
35(Qr

0)
3𝜌w

213𝜋3Dl

)1∕4

t1∕4, (B7)

h0(R) =

(
34(Qr

0)
2𝜌w

213𝜋2Dl

)1∕3

R2∕3. (B8)
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Figure B1. (left) Morphology of an axisymmetric sill during the spreading phase, with model parameters indicated on the graph. (right) Critical radius at which
the sill stops spreading as a function of the underlying layer elastic thickness for different values of the injection rate. Friction is neglected in these calculations.

Sill spreading stops once the stress intensity factor for a mode I fracture KI = KMM0d−3∕2
l reaches the fracture

toughness limit Kc, where KM = 1.932 and M0 is the moment about the crack tip and is given by [Bunger and
Detournay, 2005; Dyskin et al., 2000]

M0 =
Ed3

l

12(1 − 𝜈2)

(
𝜕2h
𝜕r2

)
r=R(t)

=
Ed3

l

12(1 − 𝜈2)
8h0(t)
R(t)2

. (B9)

The critical radius of the sill Rc at which the fracture toughness limit is reached is thus

Rc =
(

KM

Kc

)3∕4 (𝜌w

6

)1∕4
(

Qr
0E

𝜋(1 − 𝜈2)

)1∕2

d3∕8
l . (B10)

For emplacement above an elastic layer of a few hundred meters thick, the critical radius of an axisymmet-
ric sill at which the ice fracture toughness is reached and spreading stops is between ∼1 and 10 km, when
friction is assumed negligible (Figure B1), similar to the case of a 2-D sill. The thickness of the sill is then
about 1 order of magnitude smaller than for a 2-D sill. As for a 2-D shallow sill, the spreading of an axisym-
metric shallow sill will be promoted because of sill weight when the sill radius reaches 4Λu, with Λu the
flexural parameter of the overlying elastic layer. For an elastic layer a few hundred meters thick, the radius
at which gravity becomes dominant for sill spreading is a few kilometers (Figure B1) and the sill thickness is
then less than a meter. Our conclusions regarding spreading of shallow versus deep sills thus still hold for an
axisymmetric geometry.

Appendix C: Pressure Gradient Within the Sill

Here we examine the effects of a pressure gradient within the bulk of the flow. When friction is dominant
and the friction factor evolves with Re−1∕4 (17), we can obtain from (16) that the mean horizontal velocity
within the flow ū varies with the horizontal pressure gradient ∇P = 𝜕P

𝜕x
as

ū = −5
(

h5

𝜇w𝜌
3
w ∣ ∇p ∣3

)1∕7
𝜕P
𝜕x

, (C1)

which is equivalent to equation (8.c) from Lister and Kerr [1991] by a factor 1.6. In order to evaluate the effect
of a pressure gradient on the evolution of the flow morphology, we assume that the velocity varies linearly
with the pressure gradient and hence that ∣ ∇p ∣ is constant, as for dyke propagation in Lister and Kerr [1991].
In our problem, we approximate the value of ∣ ∇p ∣ by

∣ ∇p ∣ ≈
Dl

Λ4
l

= 𝜌wg. (C2)

In that case, the effects of a pressure gradient within the flow are overestimated, since ū evolves with(
𝜕P
𝜕x

)4∕7
while in the “uniform pressure” solution, these effects are underestimated.
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Using the expression for the pressure in a deep sill (8) to calculate the pressure gradient and the conserva-
tion of mass 𝜕h

𝜕t
= − 𝜕

𝜕x
(ūh), we obtain the following equation

𝜕h
𝜕t

=
5Dl

(𝜇w𝜌
3
w ∣ ∇p ∣3)1∕7

𝜕

𝜕x

(
h12∕7 𝜕

5h
𝜕x5

)
. (C3)

This equation is of the form 𝜕h
𝜕t

=  𝜕

𝜕x

(
hn 𝜕5h

𝜕x5

)
, with  = 5Dl

(𝜇w𝜌3
w ∣∇p∣3)1∕7 and n = 12∕7. The flow of a Newtonian

fluid below a thin elastic plate, when gravity is negligible, also respects this equation with  = D
12𝜇

and
n = 3 [Michaut, 2011; Lister et al., 2013]. These types of equations have been mathematically analyzed in
detail by Flitton and King [2004]. We follow the proof of Flitton and King [2004] and suppose that (C3) has a
solution with a propagating contact line with an asymptotic traveling-wave behavior h(x, t) ∼ A(t)(L(t) − x)𝛼
as x → L(t), where A and 𝛼 are strictly positive and h = 0 for x ≥ L(t). At the front, the time derivative is
dominated by its convective part and the dominant balance is

dL
dt

A(t)𝛼(L(t) − x)𝛼−1 = A(t)19∕7𝛼(𝛼 − 1)(𝛼 − 2)(𝛼 − 3)(𝛼 − 4)
(19

7
𝛼 − 5

)
(L(t) − x)19𝛼∕7−6. (C4)

By equating the exponent of L(t) − x, we have 𝛼 = 35∕12 and obtain

dL
dt

= 0.46A(t)12∕7, (C5)

which is positive. Hence, (C3) has a spreading contact line solution (i.e., dL∕dt > 0), as shown by Flitton and
King [2004], for 5∕3 < n = 12∕7 < 5∕2. In that case, there is no need to invoke a specific physical process
for spreading to occur at the front such as a prewetting film or a fluid lag, as in the case of a Newtonian fluid.
Spreading occurs because of the pressure gradient within the bulk of the flow, and the large-time behav-
ior is given by the mass-preserving similarity solution as shown by Flitton and King [2004] for a constant
volume flux.

In the case of a constant volume flux, as considered here, the mass-preserving similarity solution is found by
introducing the variable 𝜂 = x∕t𝛼 and decomposing h into

h(x, t) = f (𝜂) t𝛽 , (C6)

where 𝜂 and 𝛽 are to be determined. Conservation of mass (15) requires that 𝛽 = 1 − 𝛼, and using (C6) in
(C3), we obtain

t−𝛼
(
(1 − 𝛼) f − 𝛼𝜂

df
d𝜂

)
= t19∕7−61∕7𝛼 d

d𝜂

(
f 12∕7 d5f

d𝜂5

)
, (C7)

which gives, by equating the exponent of t, 𝛼 = 19∕54, and hence the length and thickness of the flow
evolve as

h(𝜂, t) = f (𝜂)t35∕54 (C8)

L(t) = 𝜂Lt19∕54 (C9)

h0 ∝ L35∕19. (C10)

The shape function f (𝜂) and constant 𝜂L have to be solved numerically.

We numerically solved (C3) using the method described in Michaut [2011]. To stabilize the numerical results,
we use a prewetting film of negligible thickness of 10−4 to 10−3H, where H is the characteristic thickness of

the flow given by H =
(

𝜇wΛ7
l

Q7
0

𝜌w g4

)1∕19

. The characteristic flow length is given by the flexural wavelength Λl and

the characteristic time by HΛl∕Q0. The prewetting film thickness does not have an influence on the results
as predicted by Flitton and King [2004].

We verify that the spreading, over the time interval that we can obtain numerical solutions, tends to the
similarity solution given by (C10) for a constant injection rate (Figures C1a and C1b). Although this solution
accounts for, and overestimates the effects of, pressure gradients in the flow, it remains close to the simple
“uniform pressure” solution. The shape of the flow is also close to the “uniform pressure” solution (14)
(Figure C1c). This is because the pressure gradient is largest at the ends of the sill as is typical of flows below
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Figure C1. Sill maximum thickness as a function of (a) time and (b) sill half-length, comparison between the numerical solution accounting for pressure gradient
effects in the bulk of the flow (thick black line), which follows, at large time, the similarity solution (black dashed line) described by (C10) and the simple numerical
solution assuming a uniform pressure within the flow described in the main text with or without friction (red solid line and red dashed line, respectively). Parame-
ters are indicated on the graphs. All the different solutions give consistent and similar results. (c) The shape of the flow calculated numerically and accounting for
friction and a pressure gradient is well fitted by (C11) and is close to the solution for a constant pressure given by (14). (d) The second derivative of the flow thick-
ness with horizontal coordinate calculated using the full numerical solution accounting for friction and pressure gradient is well fitted by the second derivative of
(C11). At the tip, it is of the same order of magnitude as the second derivative of (14).

an elastic layer [Flitton and King, 2004; Lister et al., 2013]. The uniform pressure solution provides a good
approximation that allows the evolution of flow morphology and pressure to be derived over the timescale
of intruding the sill.

Furthermore, the shape of the flow is very well fitted by the sixth-order polynomial

hp(x) = h0

(
−0.5

x6

L6
+ 1.9

x4

L4
− 2.4

x2

L2
+ 1

)
, (C11)

whose second and fourth derivatives as a function of x also fit very well the second and fourth derivatives of
the flow thickness calculated numerically (see Figures C1c and C1d). The dimensionless value of the second
derivatives of the flow thickness L2

h0

𝜕2h
𝜕x2 obtained from these simulations is also similar to the one obtained

using the “uniform pressure” solution, though smaller by a factor of ∼2 at the tip (Figure C1d). However, the
ratio h0

L2 also becomes larger by an equivalent factor for the case accounting for pressure gradient in the bulk
of the flow, since the thickness grows more rapidly with sill length (see Figure C1b), and the moments at the
tip are thus similar for a given thickness and sill length of approximately a few kilometers.

Appendix D: Thermal Anomaly in a Spreading Sill

We consider the cooling of a deep sill. As the sill spreads, it advects heat while heat is being conducted
to the surrounding ice. Here we investigate the position within the sill as a function of time where the
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heat advected with the liquid water and the heat loss by conduction are of similar magnitude in order to
deduce the evolution of the size of the thermal anomaly (where heat advection dominates over cooling)
and associated cooling front (where cooling dominates over advection).

The equation for heat transport within the sill is given by

𝜌wCw
d(hT)

dt
= −kw

dT
dz z = 0

+ kw
dT
dz z = h

, (D1)

where the terms on the right are heat loss by conduction at the top and bottom of the sill. To estimate these
terms, we assume a parabolic vertical temperature profile, as the parabolic contribution is dominant over
higher-order terms when estimating heat loss by conduction [Bercovici and Lin, 1996]. Neglecting heating
of the wall during sill intrusion, we use a constant temperature condition at the bottom and top of the sill,
equal to T0, i.e., Tz=0 = Tz=h = T0 and a (maximum) temperature equal to the injection temperature Tm at the
flow center, and calculate

T(z) − T0 = 4ΔT
h2

(hz − z2), (D2)

where ΔT = Tm − T0.

Introducing (D2) into (D1), we obtain

d(hT)
dt

= −8𝜅ΔT
h

. (D3)

We identify the position xf in the intrusion where heat loss by conduction balances the heat advected with
water. For x < xf we assume d(hT)

dt
≈ ΔT dh

dt
, and we have

ΔT
dh
dt

≡ 8𝜅ΔT
h

. (D4)

From the shape of the sill given by (14), we deduce

dh
dt

=
(

1 − x2

L(t)2

)[
dh0

dt

(
1 − x2

L(t)2

)
+ 4h0(t)

x2

L3

dL
dt

]
. (D5)

The thermal diffusivity of liquid water is relatively small and hence, for thicknesses h larger than ∼1 cm, the
term on the right side of (D3) is small during sill spreading, and cooling is limited to a small zone of size(

1 − xf

L

)
at the tip of the sill. Assuming 𝜉 =

(
1 − xf

L

)
≪ 1, i.e., that xf ∼ L, we obtain

ΔT
dh
dt

≈ ΔT𝜉
4h0(t)

L(t)
dL
dt

≡ 8𝜅ΔT
h(xf , t)

. (D6)

With
(

1 −
x2

f

L2

)
=
(

1 − xf

L

)(
1 + xf

L

)
≈ 2𝜉, we have h(xf , t) ≈ 4h0(t)𝜉2 from (14) and

𝜉3 = 𝜅
L(t)

4h0(t)2

(dL
dt

)−1

. (D7)

Using the expressions for h0, L and dL∕dt as a function of time given by equations (20), (21), and (23), we
obtain the evolution of the front size relative to the sill half-length 𝜉.

𝜉(t) =
( 4

15

)2∕3 (7
3

)11∕21
(

90Dl

𝜌w

)2∕21

Q−4∕7
0 𝜅1∕3t−1∕21. (D8)

The relative front size 𝜉 decreases as the injection rate increases, because heat advection is then more
important; it increases with the flexural rigidity of the elastic layer Dl since the flow is then thinner and cools
more rapidly. Because the sill inflates over its whole area, the front size 𝜉 also decreases with time. However,
the exponent characterizing the temporal evolution of 𝜉 is very small (−1∕21) and the relative front size is
thus quite stable: for t = 1 to 105 s, Q0 = 0.5 to 1 m2 s−1, dl of a few hundred meters, and 𝜉 is between
one twentieth and one tenth of the sill half-length L. Hence, the hot thermal anomaly grows with the sill,
extending at least approximately nine tenths of its length.
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If freezing occurs at the tip of the sill, and the spreading is not limited by fracture toughness but governed
by bending of the elastic layers, heat advection within the sill should allow the sill to continue to spread.
If friction is important, freezing could also decrease the aperture for the flow at the front, decreasing its
propensity to spread (see, for instance, (C3)); this effect could be counterbalanced by an accompanying
increase in the pressure gradient 𝜕5h

𝜕x5 since freezing is more important where the thickness is smaller.
However, this depends on the exact shape of the front and the potential feedback between freezing and
spreading requires a more detailed solution. However, the extent of the cooling front can be estimated at
approximately one twentieth to one tenth of the intrusion length. When the pressure in the sill is then such
that the stress intensity factor equals the fracture toughness of ice and the sill half-length is larger than
1 km, the cold front is likely to be large enough to allow for total freezing and closing of the crack, impeding
further lateral growth of the sill.
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