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S U M M A R Y
Receiver functions are a powerful tool to isolate and interpret receiver-side structure effects
in teleseismic seismic records. They are easily constructed by deconvolving one component
of a seismogram by another. Deconvolution is the inverse of convolution, and hence can be
mathematically viewed as an inverse problem. It is a numerically unstable procedure that needs
to be stabilized (i.e. regularized). This points to a recurring problem in geophysical imaging:
there is a trade-off between variance and resolution, where the user needs to arbitrarily define
a level of compromise. Here we propose a novel misfit function for inversion of converted
phases that avoids deconvolution. In this way, the choice of regularization parameters (e.g.
water level, width of a low pass filter) is avoided, and statistics of data errors can be correctly
accounted for. We use this misfit measure to construct a likelihood probability function and
carry out a transdimensional Bayesian inversion for shear wave structure. After illustrating
the method with a synthetic test, a real data application is shown where teleseismic signals
recorded at HYB station (Hyderabad, India) and surface wave dispersion measurements are
jointly inverted to provide a probabilistic 1-D seismic model beneath the station. The results
help address the debate on the thickness of the lithosphere in this region. We show that the
sharp negative velocity jump at 110 km that was previously interpreted as the lithosphere–
asthenosphere boundary (LAB) is actually a mid-lithospheric discontinuity. The actual LAB
is seen deeper as a milder gradient between 150 and 200 km.

Key words: Time-series analysis; Inverse theory; Probability distributions; Body waves;
Surface waves and free oscillations; Cratons.

1 I N T RO D U C T I O N

The coda of teleseismic P waves contains a large number of phases,
generated at interfaces beneath the receiver, that contain a signif-
icant amount of information on seismic structure. However, these
phases are difficult to identify as they are buried in microseismic
noise, and convolved with the source–time function (Fig. 1). Hence,
the vertical V(t) and horizontal (radial) H(t) components of a seis-
mogram for a plane P wave can be written using convolutions:

V(t) = s(t) ∗ v(t) (1)

H(t) = s(t) ∗ h(t), (2)

where s(t) is the source–time function, which may be quite compli-
cated since it is related to dislocation time history and source area
reverberations, and v(t) and h(t) are the vertical and radial impulse
response functions of the near receiver structure.

The problem of isolating the structure effect is overcome by a
method developed in the 1970s following the pioneering work by

Phinney (1964) now widely used in seismology. The idea is to
deconvolve the vertical component from the horizontal components
to produce a time series called a ‘receiver function’ (RF; Vinnik
1977; Burdick & Langston 1977; Langston 1979).

Robs(t) = H(t)

V(t)
∗ G(t) = h(t)

v(t)
∗ G(t), (3)

where the fraction refers to a deconvolution (or spectral division).
In this way the influence of source and distant path effects are elimi-
nated, and hence one can enhance conversions from P to S generated
at boundaries beneath the recording site. Note that the receiver func-
tion is smoothed with a Gaussian filter G(t) in order to eliminate
high frequency errors introduced during the deconvolution (Fig. 2).
The smoothed receiver function waveform can be directly inter-
preted by visual inspection (e.g. Li et al. 2002; Audet et al. 2009;
Nikulin et al. 2009; Abt et al. 2010; Tauzin et al. 2010; Levander
et al. 2011; Leahy et al. 2012; Rychert et al. 2013). However, the
waveform needs to be migrated to depth (Kosarev et al. 1999;
Bostock 2002) which requires knowledge of the velocity model,
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1026 T. Bodin, H. Yuan and B. Romanowicz

Figure 1. Synthetic waveform computed for an incident plane P-wave arriv-
ing with incidence angle of 27◦ (ray parameter = 0.066 s km−1), and travers-
ing a layered earth model, where the last layer is an infinite half-space. The
source–time function is a box car function (1 s duration) and some white
Gaussian noise has been added with standard deviation of 3 per cent the
maximum amplitude. For simplicity, we have not convolved the synthetic
waveform with an instrument response function, and acknowledge that the
resulting signal might seem different from an observed seismogram.

and interpretation might be subjective. Furthermore, in the case of
P-receiver functions, the solution is blurred with multiple reflec-
tions from the surface that produce apparent discontinuities (Kind
et al. 2012).

Alternatively, receiver functions can be directly inverted in the
time domain for an S-wave velocity model of the crust and upper-
most mantle beneath the receiver (Kind et al. 1995; Sandvol et al.
1998; Vinnik et al. 2006; Darbyshire et al. 2009; Piana Agostinetti
& Malinverno 2010; Stipčević et al. 2011; Shen et al. 2013; Srini-
vas et al. 2013). In this case a misfit function is constructed by
comparing the observed receiver function with a receiver function
predicted for some earth model.

‘Migration’ and ‘inversion’ of receiver functions are two differ-
ent ways to interpret converted phases in terms of seismic structure.
In both cases interpretation is non-unique, and some information
on absolute velocities needs to be added. In the case of migra-
tion, a background velocity model is used to migrate waveforms.
For inversion, surface wave dispersion measurements are typically
inverted jointly with receiver functions. Both approaches have ad-
vantages and drawbacks. Inversion is more quantitative, as a forward
model will take into account all possible reflections and conversions,
whereas caution and experience is needed when qualitatively inter-
preting migrated waveforms. However, in the migration approach
the user is directly looking at data, which for example allows one to
get an intuitive feeling of the level of noise. Finally, migration tech-
niques are computationally cheap and allow construction of 2-D or
3-D sections. Inversions are usually done with expensive sampling
methods (e.g. Monte Carlo), and hence are limited for the moment
to the 1-D case.

Although both migration and inversion of RFs have been ex-
tensively used for the last 30 yr, there are two well known draw-
backs: (1) The deconvolution is an unstable numerical procedure
that needs to be damped. This results in a loss of resolution and
introduces errors in the receiver function, with a trade-off between
the two effects as shown in Fig. 2. (2) It is difficult to estimate the

Figure 2. Receiver functions computed from waveforms in Fig. 1 for two
Gaussian filters, with parameters a = 2 (top), and a = 6 (bottom), compared
with ‘true’ receiver functions. True receiver functions are computed with
a Dirac source function and with no noise added to the waveform. This
illustrates the trade-off between resolution and variance. Smoothing the
waveform stabilizes the deconvolution at the cost of losing resolution. There
is no mathematical model for the noise introduced by deconvolution.

nature and level of uncertainties in the observed receiver function.
That is, there is no clear way to theoretically propagate the noise
present in different components of the seismogram into errors in
the deconvolved waveform (Di Bona et al. 1998). These two issues
have been well documented in the literature, and have been the sub-
ject of much work in the last decades (Oldenburg 1981; Ligorrı́a &
Ammon 1999; Park & Levin 2000; Helffrich 2006; Gurrola et al.
2007). Following ideas of Menke & Levin (2003), here we present
a novel approach to RF inversion that avoids deconvolution, and
hence directly overcomes these two problems.

2 A C RO S S - C O N V O LU T I O N M I S F I T
F U N C T I O N

Here we use the cross-convolution misfit function that was proposed
by Menke & Levin (2003) for inversion of SKS splitting measure-
ments. If vp(t, m), and hp(t, m) are predicted structure response
functions for a given earth model m, we can convolve eq. (1) by
hp(t, m) and (2) by vp(t, m):

hp(t, m) ∗ V(t) = s(t) ∗ v(t) ∗ I(t) ∗ hp(t, m) (4)

vp(t, m) ∗ H(t) = s(t) ∗ h(t) ∗ I(t) ∗ vp(t, m). (5)

The misfit function is then defined as the difference between the
left-hand sides of (4) and (5).

�(m) = ‖vp(t, m) ∗ H(t) − hp(t, m) ∗ V(t)‖2 (6)

which is minimized when vp(t, m) = v(t) and hp(t, m) = h(t).
This misfit function is equivalent to the distance between the

observed and predicted receiver functions. It does not make the
inverse problem more linear or more unique. However, (1) it does not
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require any deconvolution procedure, no damping parameter needs
to be chosen, and hence no processing errors are introducedand (2)
the chi-squared χ 2 (or log- likelihood) probability density function
can be easily derived from errors statistics in seismograms V(t),
and H(t).

Since discrete convolution in time is a simple summation, and
since seismograms can be seen as corrupted by random errors, each
sample of the signal obtained after discrete convolution is then a
sum of random variables, whose statistics are straightforward to
calculate with algebra of random variables. This is not the case with
deconvolution schemes.

For example, let us assume as shown in Fig. 1 a simple case
where V(t), and H(t) contain independent, and normally distributed
random errors (i.e. Gaussian white noise) with standard deviation
σ . It can be shown easily that the chi-squared statistic for the misfit
function �(m) is:

χ 2 = �(m)

σ 2
[ ∑n

i=1 (hi
p)2 + ∑n

i=1 (vi
p)2

] , (7)

where n is the number of samples in the signal. Note that the chi-
squared function can also be computed for more complicated noise
models, such as correlated noise in time (which occurs when fil-
tering waveforms), or correlation between components (Yuan et al.
2008).

3 B AY E S I A N I N V E R S I O N

A correct mathematical form for the chi-squared distribution allows
us to properly write the likelihood function which measures the
probability that the predicted and observed data are consistent given
a mathematical model for the random noise distribution (Box & Tiao
1973; Smith 1991; Gelman et al. 1995; Sivia 1996).

Assessment of variability in the data and in the misfit function
is not indispensable in optimization based inversion, that is, where
one only seeks the maximum likelihood model. This is because
uncertainty estimates do not affect the best-fitting solution, or peak
of the likelihood function. For example, the solution to a linear
regression does not change when changing the length of error bars
around data points (Bodin et al. 2012b).

However, noise levels and statistics become crucial in a Bayesian
sampling framework, where the goal is to quantify the full range
of possible models compatible with data. This is because data un-
certainty estimates strongly determine the shape (and width) of the
likelihood function in model space (Dettmer et al. 2007, 2009). In
this way, the cross-convolution misfit function enables us to carry
out a proper Bayesian inversion which correctly propagates errors
in the data toward model uncertainties. Data are taken as they are,
with no need of arbitrarily defined stabilization parameters (i.e. wa-
ter level, or width of Gaussian filters), which may bias the solution
in a statistical sense.

We use a Bayesian formalism, and tackle the problem probabilis-
tically. The goal is to estimate the posterior probability distribution
p(m|d), which describes the probability of having a discontinuous
model m given the observed measurements d=[V(t), H(t)] (Taran-
tola & Valette 1982; Duijndam 1988a,b). Bayes’ theorem (Bayes
1763) is used to combine prior information on the model with the
observed data to give the posterior probability density function:

posterior ∝ likelihood × prior (8)

p(m | d) ∝ p(d) | m)p(m), (9)

where p(m) is the a priori probability density of m, and describes
the level of knowledge we have about seismic structure before con-
sidering d. In this study we set priors to uniform distribution with
relatively wide bounds, and hence impose little constraints to the
final solution. The likelihood function p(d | m) is the probability of
observing the data given a particular model. The form of this proba-
bility density function is given by what we think about uncertainties
on d. That is, the form of the error statistics for d must be assumed to
derive p(d | m). Assuming independent, and normally distributed
random errors for the the two components of the seismogram, the
likelihood distribution for our cross-convolution misfit function in
(6) writes

p(d | m) =
exp

(
−χ2

2

)
√[

2πσ 2
(∑n

i=1 (hi
p)2 + ∑n

i=1 (vi
p)2

)]n
. (10)

Here we sample the posterior distribution with the reversible
jump algorithm (Green 1995, 2003) as implemented in Bodin et al.
(2012c). For examples of recent application of this algorithm in
Earth sciences, see Malinverno (2002), Hopcroft et al. (2009),
Gallagher et al. (2011), Luo (2010), Dettmer et al. (2010), Pi-
ana Agostinetti & Malinverno (2010), Minsley (2011), Ray & Key
(2012), Iaffaldano et al. (2012), Bodin et al. (2012a), Tkalčić et al.
(2013), Sambridge et al. (2013), Young et al. (2013) and Iaffaldano
et al. (2013).

This class of algorithm treats the number of model parameters
(i.e. number of layers) as an unknown in the problem. Of course
the data can be fit better as we increase the dimension of the model
(i.e. the number of variable parameters), but the procedure naturally
prevents the data to be fitted more than the given level of noise. That
is, between two models that fit the data equally well, the simpler one
(in terms of number of parameters) will be favoured in Bayesian
sampling (MacKay 2003). A Markov chain Monte Carlo (MCMC)
scheme is used to generate a collection of S-wave velocity profiles
mi with variable number of layers, whose statistical distribution is
proportional to the posterior distribution. For a detailed description
of the model parameterization and the algorithm, we refer the reader
to Bodin et al. (2012c).

This direct search algorithm requires solving the forward prob-
lem a large number of times. We use the Thomson-Haskell ma-
trix method (Thomson 1950; Haskell 1953) to compute the spec-
tral response of a stack of isotropic layers to an incident planar
P wave. Multiple conversions and reflections are considered with
this method, which enables us to properly model the full P coda.
Although this algorithm does not account for anisotropy or dipping
layers, it is fast and has been widely used in Monte Carlo algorithms
(e.g. Shibutani et al. 1996; Sambridge 1999).

We first inverted synthetic waveforms calculated after propagat-
ing a plane wave through the model in Fig. 1. Three cases with
different ray parameters were tested. The same amount of noise was
added in the three cases (i.e. 3 per cent of maximum amplitude of
the vertical component). Results are shown in Fig. 3. For each case,
transdimensional sampling was carried out allowing between 2 and
35 interfaces. Bounds for the uniform prior distribution were set to
2.3–4.9 km s−1 for S-wave velocity values.

Posterior inference was made using an ensemble of 7 × 106 1-D
models with a density representing the probability of the model
given the data. The density plot of the ensemble allows us to vi-
sualize the posterior probability for Vs a at each depth (left-hand
panels of Fig. 3). The resolution of seismic discontinuities can be
examined by plotting the marginal distribution on the location of
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1028 T. Bodin, H. Yuan and B. Romanowicz

Figure 3. Synthetic waveforms, obtained after propagating a plane wave
through the model in Fig. 1, are inverted for a layered Vs model with a
transdimensional Bayesian Inversion using cross-convolution. Three sepa-
rate inversions are carried out for different incidence angles. (A and B) Ray
parameter at 0.08 s km−1. (C and D) Ray parameter at 0.066 s km−1. (E and
F) Ray parameter at 0.04 s km−1. Data used for the middle panels is shown
in Fig. 1. The solution is a large ensemble of 1-D profiles representing the
probability of the model given the data. Left-hand panels: the density plot
of this ensemble of models shows the probability for Vs at each depth (the
true model is shown in black). Right-hand panels: probability of having a
discontinuity at each depth.

interfaces in the ensemble of sampled models (right-hand panels).
Note how the number and location of seismic discontinuities are
well recovered.

In the top panels the plane wave is arriving with a large incidence
angle (large ray parameter), conversions are strong, and the struc-
ture is well recovered. As the incidence angle decreases (middle
and bottom panels), conversions become weaker, and the ability
to resolve structure vanishes to zero. This effect is well seen by
the algorithm as posterior distributions become flatter and wider
when the ray parameter decreases. This illustrates the ability of the
Bayesian algorithm to quantify uncertainties.

4 A P P L I C AT I O N T O DATA F RO M H Y B
S TAT I O N, I N D I A

4.1 Data

In order to demonstrate how this novel approach to receiver-side
structure imaging fares on real data, we apply it to waveforms
recorded at the Hyderabad station (HYB). The station belongs to the
Geoscope network since 1987 (Romanowicz et al. 1991), and hence
provides a large number of useful recordings (Fig. 4). The site is lo-
cated on the late Archean granite-gneiss terrain of the eastern Dhar-
war craton, formed at 2.5 Gyr and stabilized in early Proterozoic
(Kiselev et al. 2008; Sarkar et al. 2003). A total of N = 323 events
collected between 1997 and 2007 were used with backazimuths
between 255◦ and 310◦ and with epicentral distances between 37◦

and 70◦ (i.e. ray parameters between 0.056 and 0.075 s km−1). Only
events with magnitude 6.0 were used.

Seismograms were cut for the same time window (starting
12 s before first P arrival, and with a total length duration of
72 s), normalized to equal energy, and rotated to radial and tan-
gential components. We note, as explained below, that events
do not need to be aligned to theoretical arrival, or maximum
amplitude.

The observed vertical and horizontal waveforms needed for in-
version were obtained by simply stacking all events. Influence of
the receiver structure is common to all records and is enhanced by
summation (Shearer 1991; Kind et al. 2012). Hence we have:

V(t) =
N∑

i=1

Vi (t) (11)

H(t) =
N∑

i=1

Hi (t), (12)

where the recorded signal for each event [Vi (t), Hi (t)] can be written
as the product of the structure and the source si (t) plus some random
noise n:

Vi (t) = si (t) ∗ v(t) + ni (t) (13)

Hi (t) = si (t) ∗ h(t) + ni (t). (14)

Figure 4. Map showing HYB station (blue square) and the 323 events used
to construct the observed waveform [V(t), H(t)].
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Inversion of receiver functions without deconvolution 1029

Figure 5. Waveforms obtained by stacking all events in Fig. 4, and used for
Bayesian inversion in Figs 6 and 7.

For simplicity we have dropped the instrument response term. Since
the convolution is a distributive law, (11) and (12) can be written:

V(t) = v(t) ∗
N∑

i=1

si (t) +
N∑

i=1

ni (t) (15)

H(t) = h(t) ∗
N∑

i=1

si (t) +
N∑

i=1

ni (t) (16)

with the second term vanishing to zero as the number N of events
increases. Indeed, if ni (t) is a vector of Gaussian random num-
bers with variance σ 2, the variance of our waveform [V(t), H(t)] is
σ 2/N. In this way, by directly averaging measured waveforms with
different source–time functions, we obtain a signal with enhanced
signal-to-noise ratio (Fig. 5), that would be recorded for a source
equal to the average of all sources. Since the convolution opera-
tor is linear, there is no need to adjust timing of different events
and align waveforms. However, it is clear that alignment of events
by maximum amplitude will help increase the signal-to-noise ratio
(e.g. Shearer 1991; Kumar et al. 2010). Although alignment (or
not) of events does not change the nature of the inverse problem
(non-linearity, resolution), this will change the data uncertainty, and
hence the final model uncertainty.

In receiver function analysis, the time arrival of converted phases
is a function of slowness (called the moveout). Here our for-
ward model is computed for a given ray parameter, and hence we
only invert rays arriving around this given slowness (i.e. 0.056–
0.0755 s km−1). We note that at increased computational cost, one
could jointly invert different ‘bins’ for different ray parameters.
Note also that (15) and (16) hold only if the receiver-side structure
sampled by each event is identical. We therefore choose only events
in a given range of back azimuths (i.e. 255–310◦). In this way we
neglect possible Moho dip and anisotropy, which are only second-
order effects in the context of deriving 1-D models of the crust and
upper mantle. As we increase the quadrant defining the range of
ray parameters and backazimuths, more events are included which

results in ambient and instrumental noise reduction. However, 3-D
and moveout effects also become more significant which may result
in data incoherence, particularly for deep conversions. Hence there
is a trade-off between ‘data noise’ and ‘theoretical noise’ due to 3-D
structure (i.e. errors in the forward model). A compromise needs to
be found when defining the range of incident rays. For each experi-
ment, the optimal interval depends on the number and distribution
of available events, as well as the level of 3-D heterogeneities and
anisotropy. Here the range of ray parameters and backazimuths was
chosen by an ad hoc trial and error procedure.

4.2 Results

4.2.1 Inversion of converted body waves

The posterior solution obtained with the transdimensional Bayesian
algorithm is shown in Fig. 6. Results are in strong agreement with
Kiselev et al. (2008) who jointly inverted RF data with traveltime
residuals in the same region. The crust is well resolved with both
positive and negative transitions. A sharp Moho is clearly visible at
30 km depth, with an S velocity positive jump within the crust at a
depth of 25 km. The H discontinuity (Revenaugh & Jordan 1991) is
well imaged at 75 km. This is most plausibly attributed the transition
to from spinel to garnet facies in aluminous peridotite (Hales 1969).
The inverted velocity structure correlates also well with both P–S
and S–P migrated receiver functions shown in Kumar et al. (2007)
and Saul et al. (2000) for the same station. They observed a high
velocity mantle lid with an underlying low velocity zone and a

Figure 6. Probabilistic solution obtained with the trans-dimensional
Bayesian algorithm under HYB station, using P to S converted phases only.
Density plot of the ensemble of models in the solution showing the proba-
bility for Vs at each depth, given the data.
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1030 T. Bodin, H. Yuan and B. Romanowicz

boundary between them at a depth around 100 km, also seen here.
Multiple Moho reflections (e.g the PpMs phase commonly seen in
receiver functions at 14 s) which usually pollute the signal in the
lower lithosphere are well handled by the inversion scheme, and not
shown as a spurious interface. Note that the width of the posterior
probability distribution increases with depth. This is due to the
fact that rays have more separated paths with depth, and hence
3-D and moveout effects become more important resulting in data
incoherence and increased uncertainty.

4.2.2 Joint inversion with surface waves

Although P to S converted phases are particularly suited to con-
strain the depth of discontinuities, they are only sensitive to relative
changes in S-wave velocities in different layers, and poorly constrain
absolute values. More information about the Earth structure can be
brought by independent data types, such as surface wave dispersion
measurements. With increasing computational power, methods to
jointly invert RF and dispersion data are gaining in popularity (e.g.
Ozalaybey et al. 1997; Du & Foulger 1999; Julia et al. 2000; Chang
et al. 2004; Lawrence & Wiens 2004; Tkalčić et al. 2006; Yoo
et al. 2007; Moorkamp et al. 2010; Salah et al. 2011; Bailey et al.
2012; González et al. 2012). When these different data types are
inverted together, the complementary constraints are likely to better
resolve structure. However, most of these studies are based on a
regularized optimization scheme: they provide a best fitting model
which depends on user-defined parameters, and quantification of
uncertainties is difficult.

Here we use the transdimensional Bayesian inversion algorithm
described in Bodin et al. (2012c), and jointly invert our summed
seismograms with fundamental mode phase velocity measurements
of Rayleigh waves (25–150 s) given by Ekström (2011). The long
period dispersion measurements allow us to invert structure down
to 350 km depth, and results are shown in Fig. 7. Dispersion mea-

surements allow us to get the correct velocity amplitudes, which
‘migrates’ the Moho down to 35 km. This Moho depth is very con-
sistent with Zhou et al. (2000), Rai et al. (2006) and Julià et al.
(2009), who jointly inverted the same data types at the same sta-
tion. We note that the probability has been degraded in the depth
range 40–80 km. In particular the discontinuity at 75 km is no longer
clear. We think that this reflects some level of incompatibility be-
tween the surface waves and converted phases in this depth range
which is probably due to anisotropic structure, and to our fixing the
Vp/Vs ratio to 1.7 in this inversion. This however, can be addressed
in the future by including other types of data, such as Sp conver-
sion data, relaxing the constraint on the Vp/Vs ratio, and inverting
for anisotropy by incorporating the transverse component of the P
waveforms (e.g. Vinnik et al. 2012) .

At depths greater that 160 km, the resolution of converted phases
is lower due to 3-D and moveout effects, and hence the structure
is mostly constrained by Surface wave dispersion. However, a clear
advantage of the class of algorithm used here is that it allows to
jointly invert in a consistent manner different data sets that have
different depth sensitivities, and this without having to make arbi-
trary choices. In particular, no explicit ‘tuning’ is needed to weigh
different data-sets.

The results shown in Fig. 7 help address the debate on the thick-
ness of the lithosphere on that part of the Indian craton. Indeed,
Kumar et al. (2007) observed a consistent negative velocity jump
at 110 km for Hyderabad station. They argued that this was the
signature of the lithosphere–asthenosphere boundary (LAB), and
concluded that such a thin continental lithosphere could explain
the relatively fast velocity of the Indian plate as reconstructed from
palaeomagnetic data. They subsequently inferred that the plume that
partitioned Gondwanaland might also have melted the lower half
of the Indian lithosphere, thus permitting faster motion. However,
this model strongly disagree with the study of Mitra et al. (2006)
who inverted Rayleigh wave velocity dispersions measurements and

Figure 7. Joint Inversion of converted body waves and surface wave dispersion data from Ekström (2011). (a) Posterior probability distribution for Vs at
each depth. (b) Grey line: expected earth model. Black: maximum of the distribution at each depth. Red: 95 per cent credible interval. Right: probability of
discontinuities.
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Inversion of receiver functions without deconvolution 1031

found a much thicker lithosphere, with a clear low velocity zone at
200 km. Furthermore, Oreshin et al. (2011) recently jointly inverted
P-RFs, S-RFs and traveltime residuals, and their results also imply
a thicker lithosphere under the station.

In this study, we observe the sharp negative velocity jump at
110 km that was interpreted as the LAB by Kumar et al. (2007).
However, this is clearly not the LAB but rather a mid-lithospheric
discontinuity, and the actual LAB is seen as a milder gradient be-
tween 150 and 200 km. It is important to note that the LAB and
associated low velocity zone was detected by inversion of surface
waves alone (Mitra et al. 2006), but could not be imaged with joint
inversion of surface waves and RFs by Zhou et al. (2000), Rai et al.
(2006) and Julià et al. (2009). This is because they were using stan-
dard optimization algorithms, where the unique solution obtained
is not fully representative of the information contained in the data.
We also note that such a model of a thick cratonic lithosphere com-
prising a mid-lithospheric low velocity zone was recently observed
in the cratonic region of central North America by Abt et al. (2010),
Yuan & Romanowicz (2010) and Yuan et al. (2011), and in the
Australian craton (Ford et al. 2010). With the flexibility of the pro-
posed inversion, we may look for this feature within other cratons
around the world. We refer the reader to Fischer et al. (2010) and
Rychert et al. (2010), for a discussion about upper-mantle negative
discontinuities.

Second order discontinuities are visible in the asthenosphere,
which could potentially be interpreted in terms of known global
discontinuities, such as the L discontinuity (Lehmann 1961) at the
bottom of the low velocity zone. Another positive discontinuity at
300 km could be associated with the X discontinuity at 300 km,
which is usually observed with SS and PP precursors (Deuss 2009).

Although our analysis of the geological and geodynamical impli-
cations is rather limited, the aim here is to show that the ensemble
solution produced with the cross-convolution misfit function can
reconcile different observations reported in previous studies be-
neath the receiver.

5 D I S C U S S I O N A N D F U T U R E W O R K

Analysis of receiver functions is now a well-established seismo-
logical technique, and a number of algorithms have been proposed
to infer seismic structure beneath broad-band stations. In the last
decade, the intrinsic non-uniqueness of the problem has been ad-
dressed by adding surface wave dispersion data into the problem.
However, a recurring issue is the definition of the misfit function
one tries to minimize, and particularly the role of the data noise in
this function. Here we have presented a novel norm to quantify the
distance between observed and estimated measurements. This func-
tion is based on cross-convolution, and hence avoids deconvolution
and the need to arbitrarily choose stabilization parameters.

This allows us to pose the problem with a proper Bayesian for-
malism. A posterior probability distribution is produced that fully
describes our knowledge about the Earth. The variance of the pos-
terior is directly determined by the noise on seismograms, and can
be used to assess uncertainty. The posterior can be examined from
several points of view to infer different properties of the model (e.g.
depth of transitions, mean or most probable Vs value at one depth,
etc.).

We only inverted for S-wave velocity structure while considering
Vp/Vs ratio constant throughout the velocity model. An obvious
improvement of the algorithm would be, albeit at increased compu-
tational cost, to also consider Vp/Vs ratios, in each layer. In addition,

layers have been assumed homogeneous and horizontal and it would
be possible to treat anisotropy, slope of discontinuities, and lateral
variations as unknowns in the problem. These improvements could
be achieved by using densely spaced arrays, by including earthquake
waveforms from a wide range of back-azimuths, and using more
sophisticated forward solvers. Teleseismic P traveltime residuals
could be added as in Kiselev et al. (2008) to obtain P-wave velocity
constraints. Finally, S to P conversions (e.g. Vinnik et al. 2004;
Geissler et al. 2010; Miller & Piana Agostinetti 2012; Rychert et al.
2012) could also be used with a similar misfit measure.

Here we have limited this study to P to S conversion, and focused
on demonstrating the benefits of a cross-convolution misfit measure.
This study is more a proof of concept, or study of feasibility which
opens a full range of potential applications. We illustrate its power
in the context of the debate on the thickness of the lithosphere under
cratons.
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