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Article history: Recent studies (Ben-Yosef et al, 2009; Shaar et al, 2011) propose extreme archeomagnetic intensity
Received 23 July 2013 changes (termed spikes) in the range ~4-5 jT/year c.a. 1000 BC in the Near East, around 40 to 50 times
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consistent with a model of the source region of the magnetic field, namely the fluid flow at the surface of
Earth’s core, we construct upper bounds for instantaneous magnetic intensity change at an arbitrary site
on the Earth’s surface. These bounds are constrained by the amount of kinetic energy available to sustain

Keywords: the change, taken here to be a prescribed value for the root-mean-squared surface velocity of 13 km/yr as
archeomagnetism inferred from the current state of the core. Further, we focus attention on two end-members of optimised
intensity spike core surface flow structure: unrestricted and purely-toroidal. As the derivation of the bounds demands
geodynamo complete knowledge of the geomagnetic field at the core surface, we model the unknown field by means
core-flow of a Monte Carlo approach, extending to high degree the CHAOS-4 (epoch 2010 AD) and CALS10k1.b
upper bounds (epoch 1000 BC) geomagnetic field models.

Using 2000 realisations for each family of stochastic field models, we find that optimised core flows
are always large-scale and that they tend to generate a non-dipole, quadrupole-dominated secular
variation at the Earth’s surface. The dependence of the upper bounds as a function of site location
reflects the large-scale structure of the intensity itself: stronger field permits more rapid change. For
the site in the Near East, purely-toroidal flows have upper bounds of approximately 0.62 &+ 0.02 pT/year,
whereas unrestricted flows increase this bound to 1.20 + 0.02 pT/year. We favour the former as more
geophysically sound, on the account of a large body of previous results from core surface flow inversions
and consistency with the existence of a stratified layer at the top of the core. Even if we allow for a
generous threefold increase in the prescribed rms velocity (and a concomitant threefold increase in the
bound), we conclude that the reported occurrences of extreme intensity changes as suggested in the
Near East are not compatible with the commonly accepted structure of core-surface flow. However, it
may be that an explanation for spikes lies beyond our current perception of core-dynamics and future
work would be further motivated by seeking corroborative evidence of rapid intensity change from sites
elsewhere on Earth’s surface; we therefore also discuss the form that the secular variation would take in
the case of simultanenous archeomagnetic spikes.

© 2013 The Authors. Published by Elsevier B.V. Open access under CCRY license.

1. Introduction 2013), as well as for the Middle East, where many opportuni-
ties of sampling recently allowed the recovery of the geomagnetic
Over the last few years there has been considerable effort fo-  intensity fluctuations over the past millennia BC (e.g., Thébault

cused on studies of geomagnetic field intensity (F) variations over ~ and Gallet, 2010; Gallet et al, in press). The results highlighted
the past several millennia, mainly analysing the thermoremanent @ series of regional centennial-scale intensity maxima. In partic-
magnetization carried by archeological artifacts heated at the time  ular, Genevey et al. (2009, 2013) showed the existence in West-
of their manufacture or use. These studies led to the emergence of ~ €rn Europe of three intensity peaks during the last millennium

increasingly detailed composite intensity variation curves for Euro- (during the 12th century, the second half of the fourFeenth cen-
pean regions (e.g. De Marco et al., 2008; Kovacheva et al., 2009; tury and around 1600 AD) that the reconstructed time-varying
Gomez-Paccard et al, 2012; Genevey et al, 2013; Hervé et al, global archeomagnetic field models are unable to capture, be-

cause of their still limited temporal resolution (Korte et al., 2011;

Licht et al, 2013). The peaks observed in Western Europe are

* Corresponding author. associated with intensity variation rates of dF/dt ~ 5-10 pT per
E-mail address: p.w.livermore@leeds.ac.uk (PW. Livermore). century (or 50-100 nT/yr), comparable to variation rates presently
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Fig. 1. Contours of (a) F and (b) dF /dt from CHAOS-4 at epoch 2010 to degree 13 on the Earth’s surface. The maximum rate of change of intensity is currently ~100 nT/yr.

prevailing in many regions (as shown in Fig. 1). This rate from
Genevey et al. (2009, 2013) is determined from an averaged
curve and the existence of episodes with larger intensity varia-
tion rates cannot be excluded. Such a possibility was proposed
by Goémez-Paccard et al. (2012) for Western Europe from rough
comparisons between pairs of intensity data, although the derived
rates did not take into account uncertainties in the intensity or
age. These authors suggested variation rates larger than ~10 uT
per century (100 nT/yr) during the Medieval era with values up
to 50-80 T per century (500-800 nT/yr) — such high rates obvi-
ously not persisting for the entire period.! While variations close
to ~100 nT/yr presently exist only in the Indian ocean and the
Americas, values larger than ~150 nT/yr appear very unusual.
The best evidence for very rapid intensity variations at a rate
much larger than ~100 nT/yr was most probably provided by
archeointensity data obtained from the Near East. Recent archeo-
magnetic studies conducted in Anatolian, Syrian and Levantine re-
gions made it possible to assemble the main intensity variation
patterns over the last three millennia BC: see Fig. 2(a); (Genevey
et al, 2003; Gallet and Le Goff, 2006; Gallet et al., 2006, 2008,
in press; Gallet and Al-Maqdissi, 2010; Ben-Yosef et al., 2008,
2009; Shaar et al, 2011; Ertepinar et al, 2012). These changes
are marked by several relative intensity maxima, among which
three occurred during the Bronze Age (~3000-1200 BC), with vari-
ation rates again of ~50-100 nT/yr (e.g. Thébault and Gallet, 2010;
Gallet et al, in press). But the latter appear very minor com-
pared to the rates reported for the very beginning of the first
millennium BC (beginning of the Iron Age; Fig. 2(b)). These data
were principally obtained from paleomagnetic analyses of metal-
lurgical residues (slag) in the Levant (Ben-Yosef et al., 2008, 2009;
Shaar et al., 2011), and more recently from baked-clay fragments
collected from a kiln discovered at Arslantepe (Turkey; Ertepinar
et al., 2012). Furthermore, a selection of the available data over
a wider geographic area (see Fig. 1 in Shaar et al., 2011, with
data selected between 20° N and 50° N in latitude and between
10° E and 50° E in longitude) does not change the main mes-
sage conveyed by Fig. 2: the beginning of the first millennium
BC was characterised in the Near East (and elsewhere) by the
highest geomagnetic field intensities ever observed during the
Holocene and beyond. There was a suggestion of this phenomenon
in the analysis of global and regional compilations of geomagnetic
field intensity data (e.g. Yang et al, 2000; Genevey et al., 2008;
Knudsen et al,, 2008), but not with such a high intensity level.
The key information obtained by Ben-Yosef et al. (2009) and
Shaar et al. (2011) is that these extreme geomagnetic intensi-
ties, larger than 100 pT, were reached in a very short time in-

1" Although we have reported intensity variation rates expressed per century to be
consistent with the cited literature, in view of the short time-scales under consid-
eration in this study, hereafter we will only refer to rates expressed per year.

terval (~10-20 years), which led to the concept of a “geomag-
netic intensity spike” (Ben-Yosef et al., 2009). Two such events
have been proposed so far, at ~980 BC and ~890 BC (Fig. 2(b);
from Fig. 7 by Shaar et al., 2011). Fig. 2(b) shows that regional
intensity variations as extreme as ~30 uT (Shaar et al., 2011, con-
sidering solely the data from archeological site Timna-30), even
possibly ~50 uT (Ben-Yosef et al., 2009, further considering the
data from site Khirbat en-Nahas, abbreviated in what follows to
“KEN”), beyond the previously assumed intensity level (~75 uT)
would have occurred in approximately a decade. Figs. 2(c) and 2(d)
show smooth fits? through the data (orange curve: Timna-30 and
KEN datasets, red: Timna-30 only); we present separate analyses
as only the intensity recorded at Timna-30 is independently veri-
fied by a measurement of comparable magnitude nearby (Ertepinar
et al,, 2012). In both cases Fig. 2(d) shows similar rates of change
of intensity of up to 4-5 pT/yr during the two proposed spike-
events.

These archeomagnetic spikes, which have not been found else-
where, in particular in eastern Europe (for instance neither in the
Bulgarian nor Greek data sets; De Marco et al., 2008; Kovacheva
et al,, 2009; Tema and Kondopoulou, 2011), pose a number of
questions, in particular on the precise geographical extension and
time-scale of the spike events, on the relative contribution of the
dipolar and non-dipolar field components to these features, as well
as on the reliability of the extreme intensity data, although the
latter have met strict quality criteria, or on the dating precision of
these data. The kiln studied by Ertepinar et al. (2012) at Arslantepe
yielded a spike-like intensity value (~100 uT), thereby confirming
the extremely high intensity level during the early Iron Age. How-
ever, Ertepinar et al. (2012) emphasized the fact that the dating
uncertainties for this kiln are 300 yr. It may be that the date at
which the oven was fired happened to coincide with the proposed
20-30 yr spike, although this may be regarded as too much of a
coincidence. Should the dates not coincide, this would favour not
a spike but a centennial-scale intensity peak, albeit extreme, like
other maxima so far observed in the Near East and in Europe.

Considering the importance of intensity spikes, and more gen-
erally of episodes characterised by rapid intensity changes for deci-
phering the geomagnetic field behaviour during the Holocene, we
decided in the present study to approach the topic from a differ-
ent perspective: that of asking what intensity variation rates in the

2 We generated 100 realisations (thin blue lines) of data bootstrapped from Shaar
et al. (2011) and Ben-Yosef et al. (2009), based on a uniform distribution of ages
(within the bounds given) and normally distributed intensity (with the mean and
standard deviation as given). We fitted uniformly-weighted cubic splines through
the data using the Matlab routine SPAPS, where the tradeoff between the fit to the
data and the smoothness was chosen so that the maximum [dF/dt| was at most
10 puT/yr, a factor of 100 higher than typical archeomagnetic intensity change. The
solid orange line shows the average spline, the red shows the equivalent average
restricted to the Timna-30 dataset.
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Fig. 2. Centennial to millennial-scale geomagnetic field intensity variations in the Near East as recovered from recent archeointensity data sets. (a) Temporal distribution of
archeointensity data covering the last three millennia BC obtained from Turkey (red circles, Ertepinar et al., 2012), Syria (blue circles, Genevey et al., 2003; Gallet and Le Goff,
2006; Gallet et al., 2006, 2008, in press; Gallet and Al-Maqdissi, 2010) and from the Levantine region (green squares, Ben-Yosef et al., 2008; green open circles, Ben-Yosef et
al., 2009 with age calibration according to Shaar et al., 2011; green solid circles, Shaar et al.,, 2011). All data were reduced to the latitude of Ebla/Tell Mardikh (~35.8° N).
(b) Composite high resolution geomagnetic field intensity record between 1050 and 850 BC reconstructed by Shaar et al. (2011) from archeointensity results obtained from
two early Iron Age archeological sites, Khirbat en-Nahas (KEN) (open circles, Ben-Yosef et al., 2009) and Timna-30 (closed circles, Shaar et al., 2011). All data were reduced
to the latitude of site Timna-30 (~29.8° N). The age calibration is provided by '4C dates and stratigraphic constraints. Two spikes in geomagnetic intensity were proposed
by Shaar et al. (2011) around 980 BC and 890 BC (blue shaded zones). (c) as (b) but over-plotted with cubic-spline fits to 100 realisations of this dataset (thin blue lines),
each constrained by a maximum intensity change of 10 pT/yr; orange shows the average curve, the red is the equivalent average restricted to the Timna-30 dataset. (d) The
values of dF /dt for each curve in (c) as a function of time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Near East (specifically at the site Timna-30 used in Shaar et al,,
2011) are consistent with the process of magnetic field generation
in Earth’s core.

We adopt an optimisation approach, and ask, “what is the
largest rate of change of intensity, dF/dt, at a site on the Earth’s
surface consistent with a reasonable description of the physics of
magnetic field generation?”. The physics to which we refer is that
of magnetic induction on the core-mantle-boundary (CMB), the
principle ingredient of which on short time-scales is the action
of the core-flow, advecting and shearing magnetic field-lines. We
constrain the flow amplitude to be broadly consistent with our
current understanding of the geodynamo, which we take to be the
condition that the root-mean-squared flow speed on the CMB is
13 km/yr (Holme, 2007). Such a constraint is vital since, as faster
flows generate more rapid secular variation, the maximum value
of dF/dt would be formally unbounded if the flow was uncon-
strained (i.e. allowed to become infinitely large). Subject to this
rms constraint we optimise over all possible configurations of flow
on the CMB, encompassing every possible state of the geodynamo
consistent with this assumption. Within this well-defined frame-
work, the upper bounds on dF /dt will allow us to critically assess
the likelihood of the suggested extreme intensity changes.

We remark briefly that an alternative method is to run geo-
dynamo models, recording the intensity changes with time and
noting the largest and fastest variations. These models (see e.g.
Christensen and Wicht, 2007, for a review) are now arguably able

to reproduce the main features of the observed geomagnetic field,
provided the time-scales of rotation, advection by fluid flow, and
magnetic diffusion, are in approximate geophysical proportions
(Christensen et al., 2010). However, although the models are ex-
pected to provide a reasonably good approximation of the secular
variation on time-scales of the order of a century and longer, they
cannot resolve the interannual to decadal time-scales, the very
features of interest in this study (consult Finlay et al., 2010, for
further reading on this topic).

A full description of our method is laid out in Section 2, fol-
lowing which we provide a pedagogical example in Section 3. In
Section 4 we describe our Monte Carlo models of magnetic field,
and in Section 5 we present our main results with concluding re-
marks in Section 6. We end with a discussion in Section 7.

2. Methodology

We consider an observation site S on the Earth’s surface (radius
a = 6371 km), at colatitude and longitude (6, ¢s). Changes in this
magnetic field structure everywhere outside the core (assuming an
electrically insulating mantle), including at S, are slaved to changes
in the magnetic field on the CMB (Jackson and Finlay, 2007). Thus,
for the purposes of constructing upper bounds we do not require
a complete model of magnetic field generation inside the core, but
only a description of its changes on the edge of the region where
the geodynamo operates.
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The optimisation methodology that we describe below requires
complete knowledge of the magnetic field, B, on the CMB: this
point is discussed further within the framework of Monte Carlo
methods in Section 4. Further, we neglect radial diffusion of
the magnetic field on the CMB as it would also require knowl-
edge of gradients of B which are observationally unconstrained;
we discuss this limitation in Section 7. We begin by describing
the method in the limit of frozen-flux (Roberts and Scott, 1965;
Jackson and Finlay, 2007), in which magnetic diffusion is neglected
on the CMB; adding in horizontal diffusion is then a simple exten-
sion.

At S, the intensity is given by

F=|B|=,/B+B2+B2, (1)

so that
dF . 1 g, 2Br dB; 4B dByg 4B dBy ] B dB 2)
d —F\"de %de "% dr )T F\ dt )

Ignoring diffusion, the radial-component of the instantaneous
rate of change of magnetic field on the CMB (r =c, c = 3485 km)
is
dB;

— =—Vy - (uyB;), 3
™ H - (upBy) (3)
where uy denotes the horizontal flow and Vg =V — f'a'ir is the
horizontal part of the gradient operator. Modelling B and hence
oB/dt as a potential field in the mantle r > ¢, we adopt the usual
representation

9B a 1+1 . o
E=_W§(F) Y6, $)B; (4)

where ﬂlm = (g;“,h;") is the vector of Gauss coefficients of the
secular variation, and Y™ are Schmidt quasi-normalised spherical
harmonics. This equation is simply the description of the upwards-
continuation of the magnetic field (or rather its rate of change)
from r=c to r =a. By (4) and (3), each ﬂ,’" depends linearly
on u, from which it follows that all three components of 9B/dt
at r =a, and indeed ‘Zif, depend linearly on u at r = c. The relation
is trivially also homogeneous as if u =0 there can be no secular
variation.

We can exploit this elementary relation to express dF/dt as a
linear homogeneous function of the flow,

dF
dt
for some column vector G (which needs to be computed), and

where the flow is written as an expansion over a set of modes,
u, whose coefficients are stored in the vector q:

u= quuk. (6)
k

=G'q, (5)

In simple terms, element G gives the contribution to the rate of
change of intensity at S from flow mode u, and encapsulates in-
formation about the background field, the coordinates of S and
also the structure of the flow mode. All flows we will consider are
divergence-free, and within this class we will consider the most
general set which we term unrestricted, comprised of both toroidal
and poloidal modes, respectively

Vx Y@, o, Vy[rsTYme, ¢)]. (7)

up to a fixed spherical harmonic degree Ly, where uy, is defined by
the vector of coefficients (¢, s]") of zeros except for a one in the

kth position. We will also consider flows which are also purely-
toroidal, describing flows that are everywhere horizontal.

For a given site location and prescribed magnetic field (to de-
gree L), the vector G is then straightforward to assemble, one el-
ement at a time. Each mode of flow was taken in sequence and we
calculated (i) the spherical harmonic spectrum to degree Lg + Ly
of dB;/dt at r = c using a standard transform methodology based
on Gauss-Legendre quadrature and the fast-Fourier transform, and
then (ii) using (4) the contribution to dF /dt at S. All elements of
G are exact to machine precision.

The statement of the problem we need to solve then is rather
succinct: maximise GTq subject to constraints on the flow. One
feature of core-flows on which inverse studies broadly agree is the
root-mean-squared (rms) velocity:

1
— / lui2ds2
4
r=c

where d$2 is the element of solid angle, for which we take Tg =
13 km/yr (Holme, 2007) as a (typical) target value. In our repre-
sentation of flow, this constraint may be written

47 2

Zl(l+1) & [m]Z)TH = T2 9)

where E is a diagonal matrix with elements I(I+1)(2] + 1)~ 1.
Expressing the rms constraint using a Lagrange multiplier A, we
therefore seek the constrained maximum

dF
dt

To = (8)

TEq_

=mc1ax[GTq—k(qTEq— T3)]. (10)

max

At a local maximum, the gradient with respect to each component
of the vector q is zero, giving

G—2)Eq=0, (11)
and so

_lg1g (12)
=5 ’

where A > 0 is found by scaling the flow to the target rms. Note
that changing the sign of A corresponds to the flow —u which
minimises (rather than maximises) dF /dt. Finally, it is worth re-
marking that although the intensity depends nonlinearly on B,
here we only need optimise a linear quantity subject to a quadratic
constraint, whose (unique) solution is given above. More complex
constraints on the flow may not lead to such a straightforward so-
lution.

The inclusion of magnetic diffusion is a simple extension of the
above methodology. Eq. (3) now becomes
%Z_VH'(UHBr)‘an"VZBv (13)
in which 1 denotes the magnetic diffusivity and f the unit position
vector. The last term is independent of the flow and can be split
into two parts, stemming from either horizontal or radial diffusion
of the magnetic field. We consider only horizontal diffusion, which,
at r =c, may be written

I(1+1
Vi =~ Y o B (14)

I,m

where [B]qm denotes the Y,m component of B;. Since B is
assumed known, (14) provides an additional term, independent
of u, to (10) and has no bearing on the optimising flow. We
take 7 = 0.7 m?/s, based on a core electrical conductivity of
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Fig. 3. Assuming a geomagnetic field of an axial dipole with g(]) = —30000 nT, contours of dF /dt maximised for an observation site at 52° N, 0° E (labelled by the star) with
the optimal flow pattern for (a) unrestricted flows (b) and purely-toroidal flows. Each flow is normalised to have a rms value of 13 km/yr; the local flow speed is shown

both by the coloured contours and the arrow size relative to the scale shown.

0=1.1x10% Q@ 1m™! (Pozzo et al., 2013). This value, the small-
est such compatible with current theory, provides us with a high-
est estimate of the upper bounds and is discussed further in Sec-
tion 4.2.

Finally, it is worth remarking that the geometric attenuation of
the magnetic field through the mantle, far from being an obstacle
in our analysis, actually makes feasible the optimisation procedure
as described above. A theoretical observation site on r = ¢ would
have an optimising flow, and associated secular variation, non-zero
only at this point and consequently infinite in size. In contrast,
sites on the Earth’s surface are sensitive primarily to large-scale
secular variation (since the smallest scales are strongly attenu-
ated in the mantle), which we find generated by large-scale flows.
Thus we anticipate (and find) that the optimisation procedure is
well-posed, the optima of dF/dt are finite and the resulting flows
large-scale.

3. A pedagogical example: optimal change in an axial dipole field

We now illustrate the analysis as described above by consid-
ering the idealised example of a purely axial dipolar geomagnetic
field that is described by the Gauss coefficient g? = —30000 nT.
The flow is expanded to degree Ly = 25, which ensures conver-
gence.

Consider an observation point in London (latitude 52° N, longi-
tude 0°), at which we optimise dF /dt. Fig. 3 shows a contour map
of dF /dt on the Earth’s surface along with the optimising flow at
the core surface r = ¢, for both (a) unrestricted and (b) purely-
toroidal flow cases.

A striking feature of the plots is the localisation of dF/dt, fo-
cused into quasi-circular contours, taking maximum values of (a)
887 nT/yr and (b) 171 nT/yr at the observation site. Away from
the observation site, much of the Earth’s surface has small and
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negative values of dF/dt showing that the rapid increase in in-
tensity at S comes at the expense of slower decreases elsewhere.
Another point of note is that the maximum value of dF/dt does
not coincide with the site location. This is not an error, but sim-
ply reflects the fact that with the flow optimised for site S, the
(different) structure of the magnetic field elsewhere is such that
it produces a greater value of dF/dt than at S. In (a), the back-
ground field is stronger at higher latitudes, which explains why
the maximum of dF/dt is shifted to the north of London. How-
ever, in (b) it is the horizontal gradient of B, that is important:
dF/dt = —uy - VyB; (from Eq. (3)); since the largest horizontal
gradients of B, are at the equator, the high is to the south of
London. The values of the upper bounds themselves evaluated at
London are really only of pedagogical value, as it turns out that the
upper bounds change as we introduce more complex field struc-
tures. However, one persistent feature is the relative disparity of
the optimum bounds from the two types of flow. Since purely-
toroidal flows are a subset of the unrestricted flows, it follows that
their associated maxima must be smaller. Yet, this simple state-
ment tells us nothing about the actual difference: here, they vary
by a factor of 5; as we will see later, in the more general case a
factor of 2 is more typical.

The structure of the flows is very instructive, and illustra-
tive of the more general case. Both flows, and their associ-
ated secular variation, are large-scale (see also supplementary
Figs. 11(a-b)). The unrestricted flow is dominated by its high
horizontal-convergence very close to, but not coincident with, the
radial-projection of the observation site. Horizontally-convergent
flow (with an associated down-welling) is a very efficient method
of concentrating and amplifying magnetic flux, and thus results in
a rapid change of intensity. By contrast, because it is everywhere
horizontal the purely-toroidal case has to rely on a much less op-
timal method of creating intensity changes, that of advection of
the poloidal field (in this case, due south beneath S, by means
of a pair of counter-rotating vortices). Lastly, it is interesting that
although both flows have rms values of 13 km/yr, they have max-
imum speeds of approximately 50 km/yr. Although in line with
estimates of the maximum speed in the core (Finlay and Amit,
2011), for more complex magnetic fields the associated optimising
flows are also more spatially complex and have greater maximum
speeds than we see here. The results presented here contain hori-
zontal diffusion, although its contribution to dF /dt turns out to be
very small: —0.18 nT/yr, around 0.1% of the total.

4. Stochastic magnetic fields
4.1. Magnetic models

To address the question of intensity variability at the begin-
ning of the first millennium BC, our framework formally requires
complete knowledge of the main geomagnetic field at that epoch.
This information is unfortunately not available, mainly because of
the crustal concealing of the small-scale core field (approximately
from harmonic degree 14 and beyond). In addition, our ability to
describe accurately the theoretically visible large-scale core field
at that epoch is further hampered by the poor geographical and
temporal distribution of the existing data sets for this period (e.g.,
Donadini et al., 2009; Korte et al., 2011; Licht et al, 2013). We
therefore study two types of model that attempt to characterise
the structure of the field. Model ST_CALS (STochastic CALS10k1.b)
is based upon the CALS10kl.b model (Korte et al., 2011), which
provides a set of spherical harmonic coefficients to degree 10 (with
standard deviations) over the entire Holocene. We use only the
more robustly determined coefficients up to degree 4 and extend
to higher degree using a stochastic extrapolation technique as de-
scribed below. The second model, ST_CHAOS, is based upon the
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Fig. 4. A comparison of 10 realisations of the Mauersberger-Lowes energy spectrum
on the CMB as a function of degree I, for the two models ST_CHAOS and ST_CALS.
The extrapolation is based on the expected spectra of the form A(2l+1)~".

geomagnetic model CHAOS-4 (Olsen et al.,, 2010), providing the
magnetic field at epoch 2010 (see Fig. 1). While the magnetic field
has undoubtedly changed in the intervening 3010 years, the basic
structure is much the same: a dominant dipole and high-latitude
flux lobes (Korte et al.,, 2011). We exploit the fact that CHAOS-4
is known to a much greater accuracy since it is constructed from
high-quality satellite data of almost uniform coverage, and use it
as a tightly constrained proxy for the magnetic field in 1000 BC. In
this model, we assume that the magnetic field is given exactly to
degree 13, above which crustal contamination forces us to adopt a
stochastic extrapolation.

We assume that the unknown Gauss coefficients of degrees 5 to
Lg in ST_CALS and degrees 14 to Lg in ST_CHAOS are distributed
normally with mean zero and degree-dependent standard devia-
tion o;. Our treatment of the low degrees is model-dependent:
in ST_CHAOS, we assume that degrees 1-13 are known exactly,
whereas in ST_CALS degrees 1-4 are treated as random vari-
ables, with mean and standard deviation taken from CALS10k1.b.
Choosing o; appropriately, and by generating pseudo-random val-
ues from this distribution, we then are able to construct mul-
tiple Monte Carlo realisations of the magnetic field. We statis-
tically analyse all the optimised solutions, each calculated using
a single realisation. We determine o; by using the fact that the
Mauersberger-Lowes energy spectrum (Backus et al., 1996) of the
magnetic field, where R; denotes the contribution from degree [ to
f B2 ds2 over the CMB, has the expected value

E(R) = E[G)Ma +D M)+ o’]]

a 2l+4
:(E) (+ 1@+ Dof. (15)

We then assume that this follows the profile A(2I+ 1)~ (McLeod,
1996), where A is calculated by a least-squares fit to the non-
dipolar spectra of the base models (i.e. to the spectrum of degrees
2-13 for ST_ CHAOS and the expected spectrum for degrees 2-4
for ST_CALS). Fig. 4 illustrates the magnetic-energy spectra of ten
realisations from each family of stochastic models. A significant
point of note is that although the dipole component is stronger in
CALS10k1.b than in CHAOS-4, degrees 2-4 are weaker, a possible
consequence of the regularization imposed on the archeomagnetic
field models, owing to the limited spatial coverage of the data sets.
The lower energy available in the non-dipole spectrum has an im-
portant influence on the maximum dF /dt, as we shall see below.
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stochastically extrapolated to degrees 20, 50 and 135. In each case, the mean and
unbiased standard deviation are marked by the blue square with black error bars.
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4.2. Truncation

In both stochastic models for the magnetic field, we built up a
suite of computations using ever larger truncations Lg on the max-
imum spherical harmonic degree. From this set of upper bounds,
how do we choose which is most relevant for the Earth? There are
two issues here. Firstly, the spectral form A2l + 1)~! cannot de-
scribe the geodynamo for arbitrarily high degree as the associated
total (expected) magnetic energy is divergent (i.e. >, R; is infinite),
so there must be a threshold beyond which the spectra decreases
more rapidly. Secondly, as Lp increases, the upper bounds of dF /dt
at the site increase because ever smaller scales (and ever larger
gradients) in the magnetic field make it easier for a flow to create
secular variation. This behaviour is shown in Fig. 5, for a variety
of truncations Lg (20, 50, and 135). As we populate the concealed
part of the geomagnetic spectrum, we observe a monotonic (al-
beit slow, quasi-logarithmic) increase in the maximum attainable
dF/dt.

We exploit the fact that the upper bounds increase with Lg by
choosing the maximum truncation that is consistent with the du-
ration of the archeomagnetic spikes of ~30 yr (Shaar et al., 2011)
— that is, we assume that the magnetic field structure does not
diffuse within the lifetime of the spike. This maximum Lp then
gives us a highest estimate of the upper bounds. If the small-scale
magnetic field changes only through horizontal diffusion, we con-
strain the e-folding time for magnetic field harmonics of degree I,
by c2(I(14+ 1))~ < 30 yr. Taking n = 0.7 m?/s, this condition is
satisfied for every I < Lp = 135. Note that larger values of n (con-
sistent with historical, rather than very recently published, values
of electrical conductivity of the core) give smaller values of Lp
and so Lg = 135 provides a “greatest” upper bound over all past,
present, and hopefully future, estimates of core conductivity. In ad-
dition, the slow, logarithmic increase displayed in Fig. 5 is such
that multiplying this truncation by a factor of (say) 2 is likely to
induce only a minor change in the estimated upper bounds.

Having noted above that the magnetic field diverges as Lp in-
creases, we check that Lg = 135 still gives geophysically reasonable
values for the expected field. Associated with this truncation is the
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Fig. 6. Normalised histograms giving the discrete probability density function of the
upper bound of dF/dt at Timna-30 with models ST_CHAOS and ST_CALS, for both
unrestricted and purely-toroidal flows. In all cases 2000 realisations of the magnetic
field extrapolated to degree 135 are used. The purely-toroidal assumption leads to
a considerably lower mean upper bound compared to unrestricted flows: 620 nT/yr
compared with 1200 nT/yr for ST_CHAOS; 460 nT/yr compared with 950 nT/yr
for ST_CALS. The bounds derived from ST_CALS have significantly more variability
than those derived from ST_CHAOS, with unbiased standard deviation of 46 nT/yr
compared to 17 nT/yr for unrestricted flows, and 88 nT/yr compared to 16 nT/yr
for purely-toroidal flows.

(expected) rms value of B, = 0.39 mT and an (expected) minimum
Ohmic dissipation of 1.5 GW (see Jackson and Livermore, 2009), all
within geophysical bounds. Lastly, we adopt a truncation for the
flow of Ly = L + 10 which provides well-converged solutions, as
the optimising flows we find are always predominantly large-scale
(see below).

5. Results

Fig. 6 shows normalised histograms of upper bounds derived
at the site Timna-30 using 2000 realisations of the magnetic field,
for both families of field models (ST_CALS and ST_ CHAOS) and
for unrestricted and purely-toroidal flows. The bounds derived
from ST_CHAOS are displaced to the right of those from ST_CALS
by 150-300 nT/yr, owing to the stronger non-dipolar magnetic
field. Thus the bounds from ST_CHAOS provide a “greatest” bound
of dF/dt over both models. For both ST_CHAOS and ST_CALS,
the mean purely-toroidal flow bounds are about half those us-
ing unrestricted flows (620 nT/yr compared with 1200 nT/yr for
ST_CHAOS; 460 nT/yr compared with 950 nT/yr for ST_CALS).
These bounds are greater than (and therefore consistent with)
the largest values of intensity change typical of the present-day
(~0.1 pT/yr), although they are well below those suggested for
the archeomagnetic spikes of 4-5 pT/yr.

Another feature of Fig. 6 is the relatively broad peaks of the
bounds from ST_CALS: this stems from the fact that all the model
coefficients are randomised, whereas those in ST_CHAOS are ran-
dom only for degrees 14 and above. The narrow distribution of
bounds for ST_CHAOS shows that, as already illustrated by Fig. 5,
degrees 1 to 13 are the main contributors to an optimised dF /dt.
In all cases, the contribution from diffusion is small, supplying ap-
proximately —0.3 nT/yr to the optima. Note that from additional
analysis (supplementary Fig. 12) we concluded that 2000 realisa-
tions sufficed to produce converged statistics.

Figs. 7(a-b) show velocity power spectra of the flow for both
classes of magnetic models. In each plot, 10 random representative
realisations associated with purely-toroidal and unrestricted flows
are shown. Figs. 7(c-d) show the energy spectrum of the associ-
ated secular variation; the inset in (c) shows a zoomed version of
the figure at very low degree. In all cases, the optimal flows are
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Fig. 7. Velocity power spectra of both unrestricted and purely-toroidal flows for 10 realisations of (a) ST_CHAOS and (b) ST_CALS magnetic models, for which dF/dt is
optimised for Timna-30; both the energy per degree | and cumulative energy (up to degree I) are shown. Parts (c-d) show the energy spectrum for ST_CHAOS of the secular
variation at the CMB and Earth’s surface; the inset in (c) shows the data of the main plot at very low degree.

large-scale (converging by approximately degree 10). This obser-
vation justifies a posteriori the choice of 13 km/yr as a consistent
constraint for the rms flow speed, a value which is based on core-
flow inversions which themselves assume a large-scale flow. The
optimal secular variation at the core surface increases with degree
I until around degree 100 where it reaches a plateau, before an
exponential decrease around degree Lg = 135. Due to attenuation
in the mantle, only the large-scales dominate the spectrum at the
Earth’s surface which is around 4 times higher in the unrestricted
flow case than the purely-toroidal flows case, giving the factor of
two in the secular variation, or rather, dF/dt, itself. Interestingly
the secular variation is quadrupole-dominated (I = 2), as is the cur-
rent geomagnetic field (Hulot et al., 2007).

For the observation site of Timna-30, Fig. 8 shows contours of
dF /dt (in both global and regional views), along with the structure
of the optimising flow, for the median realisation of the ST_CHAOS
model for both unrestricted and purely-toroidal flows. As seen pre-
viously in Section 3, the location of the maximum value of dF/dt
is close to S but does not coincide exactly. Although the optimis-
ing flows were normalised to have a rms value of 13 km/yr, both
are strong only in the vicinity of S and have maximum speeds of
approximately 130 km/yr. It is also clear just how specialised the
optimal flow is to the specific structure of the magnetic field, and
that although still large-scale (according to Fig. 7), it differs from
the typical core-flows obtained from inversion (e.g. Holme, 2007)
by the notable lack of global-scale features. On a related point,
Shaar et al. (2011) remarked that it was unclear whether dipolar
(by which they mean “global”) or non-dipole field (i.e. “localised”)
change is responsible for the archeomagnetic intensity spikes. In
all our optimised cases, the intensity change is strongly localised
(and therefore “non-dipolar”), although formally since magnetic in-
tensity is a nonlinear quantity, such a separation into dipolar and
non-dipolar components is not possible.

It is also of interest to compute comparable upper bounds
on dF/dt for other sites. Fig. 9 shows the mean of the upper
bounds for the model ST_CHAOS, for both purely-toroidal and un-
constrained flows, as a function of site location on the Earth’s
surface. For graphical clarity, the plots use different scales. For both
flow types, the main features are not only themselves similar, but
also strikingly share many features of the magnetic intensity F it-
self (Fig. 1): pairs of high-latitude intensity patches, a strong low
in the Pacific and moderately low equatorial values. This link is
simply explained by the fact that high rates of change occur pref-
erentially in regions where the field intensity is high, since the
secular variation is linear and homogeneous in the magnetic field
itself.

Lastly, future archeomagnetic studies may seek to find archeo-
magnetic spikes contemporaneous with that at Timna-30. We now
ask what form the secular variation would take on the Earth’s
surface in the case of a dual-spike, by considering two possible
(illustrative) dual-sites in (i) Xian, China and (ii) San Lorenzo, Mex-
ico (i.e. in Mesoamerica), where archeology is particularly rich.
Mathematically, we seek the maximum value of dF/dt that occurs
(equally) at two sites, S and S, subject to the same rms constraint
on the flow as before, which becomes

max[6'q - [6"q — G3a] - 1(a" Ea - T5)], (16)

where G; is the analogue of G at site S, and A and p are Lagrange

multipliers enforcing the constraints. As before, the (unnormalised)
optimum flow is

1
q=—E7'[(1 - WG+ uG]

= (17)
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Fig. 8. Contours of dF/dt (in nT/yr) on the Earth’s surface (left), a regional view (middle) and contours of |u| with indicative arrows showing the structure of the optimal
flow (right) for the realisation of ST_CHAOS giving the median value of upper bounds for (a) unrestricted (top row) and (b) purely-toroidal (bottom row) flows, optimised for
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Fig. 9. Contour plot of the mean (over 2000 realisations) of the upper bound of dF/dt as a function of position of the observation site on the Earth’s surface, for the magnetic
field model ST_CHAOS for (a) unrestricted and (b) purely-toroidal flows. Note that the plots have different scales.
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Fig. 10. Contour plot of dF /dt over the Earth’s surface, for the dual-site calculations: (i) Timna-30 and Xian, China; (ii) Timna-30 and San Lorenzo, Mexico. The magnetic field
is a single realisation of model ST_CHAOS. The flows (unrestricted and purely-toroidal) are chosen to give a maximal and equal value of dF /dt at both sites.

where the required value of the weighting, i, ensuring equal val-
ues of dF/dt at both sites, is found using a simple bisection algo-
rithm.

Fig. 10 shows contours of dF/dt for both dual-site problems
with unrestricted and purely-toroidal flows, for a single (arbitrar-
ily chosen) realisation of the magnetic field model ST_CHAOS. In
case (i), where the two sites are relatively close, there is a sin-
gle peak of dF/dt which is in between the sites. By contrast, in
case (ii) where the two sites are of sufficient distance apart, the
flows and corresponding intensity changes are quite separate. Thus,
in the event of case (i), the same archeointensity spike would nec-
essarily be realised over much of Asia but in (ii) the spikes may
not be realised except in the vicinity of the two sites. Note that
this analysis does not preclude potential localised spikes in (i) for
flow structures different to the optimal cases derived here. In each
case, the maximum values of dF /dt are about 70% of those for the
single-site case.

Lastly, we commented earlier that, just as the present-day mag-
netic field, the one-site case had a secular variation dominated by
I = 2. Here, of the four cases presented, only case (i)(a) has a sec-
ular variation on the Earth’s surface dominated by degree 2, all
other cases have a dipole-dominated spectrum.

6. Concluding remarks on the results

In this study we have described a methodology for comput-
ing the maximum value of intensity change, dF/dt, at any site
on the Earth’s surface subject to knowledge of the magnetic field
(which we handled using statistical methods) and a rms con-
straint on the core-surface flow of 13 km/yr, a consensual figure
from the core-flow inversion literature. For the site of Timna-30,

of the two magnetic field models used, that based on CHAOS-4
had a higher mean upper bound (~1.2 puT/yr) than that based on
CALS10k.1b (0.95 uT/yr). Restricting attention to purely-toroidal
flows, the mean upper bounds are lowered by about a factor of
2 to 0.62 uT/yr and 0.46 pT/yr. None of these bounds are con-
sistent with (i.e. greater than) the values of dF/dt required by
the archeomagnetic spikes of ~4-5 uT/yr suggested for the Near
East (recall Fig. 2). A further point of note is that the largest, but
poorly constrained, variation rates of up to 0.8 uT/yr in European
regions during the Medieval period suggested by Gomez-Paccard
et al. (2012) are either barely consistent (in the unrestricted case)
or inconsistent (in the toroidal case) with our upper bounds.

The extent of the discrepancy between the upper bounds and
the severity of the archeomagnetic spikes depends on which flow
assumption we take to be the most physically meaningful. The
two choices of flow structure we studied were deliberately cho-
sen as end-members of a spectrum of permissible poloidal flow
structures in the core: at one end they are unrestricted, at the
other constrained to be zero. It is well-known that a purely-
toroidal flow can adequately explain the observed secular variation
within the observational uncertainties. But due to the inherent
nonuniqueness of the core-flow problem, many flows with a non-
zero poloidal component provide as good a fit (see e.g. Holme,
2007). However, a large body of work in the core-flow literature
points to a predominantly toroidal large-scale flow structure, even
when the toroidal constraint is relaxed during the inversion. In-
deed, in many such studies the ratio of the toroidal to poloidal
flow energy is reported to be at least ten (Eymin and Hulot, 2005;
Holme and Olsen, 2006; Pais and Jault, 2008; Gillet et al., 2009;
Lesur et al., 2010). Furthermore, very recent work on the physi-
cal properties of the core itself suggests that the outermost part
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of the liquid core is stratified (see Hirose et al., 2013, for a re-
cent review), thereby admitting only toroidal flows. This motivates
us to adopt the upper bounds derived from purely-toroidal flows,
as the most physically compelling. The archeomagnetic spikes then
require a rate of change of intensity of around 6 to 8 times larger
than what our most favourable toroidal flows can account for.

A generous threefold increase (up to a flow rms of 40 km/yr)
allows the toroidal bound to reach 1.5 pT/yr, but this still falls
short of 4-5 pT/yr. Furthermore, and from a geometrical stand-
point, this issue is compounded by the fact the optimising flows
are very much more spatially focused than the global-flows in-
ferred for the present-era. It would be rather fortuitous indeed if
the only strong flow were to occur locally beneath Timna-30 at
1000 BC. Indeed, it is likely that such localised flows would never
arise in the core, since due to the important role of the Coriolis
force (and associated quasi-geostrophic flow), any rapid dynam-
ics would be expected to be equatorially symmetric (Jault, 2008;
Gillet et al., 2011), a property that our specialised optimal flows
do not have.

Regarding the possibility of contemporaneous spikes of the
same severity at Timna-30 and at another site (e.g. Xian or San
Lorenzo), the upper bound is about 70% of that only for Timna-30.
This reduction in the bound is simply a reflection of the fact that
the kinetic energy available is spread more thinly over the CMB,
and less is then available to drive rapid change at any one site.
Thus simultaneous dual spikes of ~5 pT/yr are even more unlikely
than a spatially localised spike in the Near East. Furthermore, con-
firmation of the Near-East spikes could likely only be attempted in
the immediate vicinity (see Fig. 8). It is however interesting to note
that a spike in Xian, China, around 1000 BC would require either
an even more intense contemporaneous spike in an intermediate
region between the Near East and China, or for the two events to
be completely independent and asynchronous in time (for which
the more generous single-site bounds, rather than the lower dual-
site bounds, would apply). The site in San Lorenzo is sufficiently
far away from Timna-30 that two simultaneous spikes could occur
without any signal in intermediate regions.

7. Discussion

We finish by briefly discussing how the discrepancy in our com-
putations and the archeomagnetic intensity spikes might be recti-
fied.

A simple resolution is to reduce the rate of change of archeo-
magnetic intensity found in the data, either by reassessing (and
then reducing) the intensity itself or by making the duration of
the intensity spike longer. Using our preferred upper bound of
0.62 uT/yr, this would necessitate a spike lasting several centuries
rather than a few decades. The gap in the archeointensity data ob-
tained from Syria admits such a possibility of an extreme intensity
peak between 1100 BC and 800 BC. Moreover a longer duration
would be more consistent with the fact that a spike-like feature is
also observed at Arslantepe from a kiln with age uncertainties of
300 yr. However, increasing the duration of the spike (which would
then become a “simple” archeointensity maximum) would severely
contradict the stratigraphy and age models proposed by Ben-Yosef
et al. (2009) and Shaar et al. (2011) in their archeological sites. It is
further surprising that spike-like events have not been recorded in
the Greek and Bulgarian data sets, although dF /dt there should be
~0.55 uT/yr according to the results from ST_ CHAOS (Fig. 8(b)).
However, it is possible that this is due solely to the poor documen-
tation of such an era, rather than the non-occurrence of a spike:
this time interval in Eastern Europe and Near East corresponds to
the ancient Dark Age (~1100-800 BC) after the sudden demise of
the flourishing Late Bronze societies, and thus a scarcity of arche-
ological artifacts.

Alternatively, since a faster flow leads to more rapid intensity
change, our preferred purely-toroidal bounds could become consis-
tent with the archeomagnetic intensity changes if we increased our
rms flow by a factor of 8 to ~100 km/yr. However, such a flow is
far away from what we consider to be the current dynamics of the
core, requiring significant changes in the core-flow since 1000 BC.
Furthermore, such a strong flow is not consistent with the under-
standing gained over the past few years from scaling laws: the
rms flow speed inside the core is controlled by the available con-
vective power (e.g. Christensen, 2010), which itself varies on the
time-scales of the secular cooling of the Earth, and can be consid-
ered constant throughout the Holocene. Although fluctuations to
this constant time-averaged flow are possible, deviations of up to
8 times the mean would be required here, which we deem not
possible.

As a further alternative, it is conceivable that the magnetic field
in 1000 BC was similar to none of our Monte Carlo realisations,
and that our computed upper bounds significantly underestimate
dF /dt for this epoch. One possibility is that the geomagnetic field
models based on CALS10k1.b and CHAOS-4 are simply too weak:
the values of dF/dt (linear and homogeneous in the magnitude
of B) therefore being too small. However, a magnetic field stronger
by a factor of 8 (as required in the purely-toroidal case) is not con-
sistent with records of the axial dipole moment over the Holocene
(Knudsen et al., 2008). Another possibility is a strong small-scale
magnetic field, but this surely would have been realised, at the
very least, in the ST_CALS stochastic model. Although it is true
that ST_CALS showed a higher variance than ST_CHAOS, 5 uT/yr is
around 100 standard deviations above the most optimistic bound
of 0.95 + 0.046 uT/yr (with unrestricted flows). The most likely
shortcoming of our CHAOS-4 models is the fact that the axial
dipole field moment was stronger at the beginning of the first mil-
lennium BC than in more recent times (e.g. Knudsen et al., 2008).
For this reason, we performed extra calculations assuming that the
axial dipole coefficient in CHAOS-4 was twice that of its nomi-
nal value. This change led to an increase of the upper bounds
by approximately 35% and 10% for the unrestricted and toroidal
core-flow patterns, respectively. These rather moderate variations,
in particular in the case of our preferred toroidal flows, are clearly
not sufficient to reconcile the spike data with our computations.

Lastly, we concede that an explanation for the spikes may lie
outside the scope of this study. With this in mind, we briefly ex-
amine the only physics of magnetic induction that our treatment
neglects: that of radial diffusion of field. Although it is tempt-
ing to argue that diffusion in the radial and horizontal directions
should have a comparable effect, this may be too simplistic. Mag-
netic features with short radial length scale would diffuse rapidly
through the CMB and therefore, plausibly, could be important. The
dynamic origin of these localised features is far from obvious how-
ever. One possibility are upwellings that carry strong, deep field
to the surface, the concentrated flux then being expelled through
the CMB by diffusion. Such a mechanism was for instance consid-
ered by Chulliat et al. (2010) to explain the recent acceleration of
the north magnetic pole drift during the 1990s. However, a flux-
expulsion event (Bloxham, 1986) not only requires a non-stratified
outer core, but it remains to be seen whether it can deliver the re-
quired change in intensity over ~one decade, very short compared
to a core-overturn time-scale of ~one century. Modelling of these
dynamics and whether or not such a mechanism can explain the
spikes is a future extension of our analysis. Looking more broadly,
further data from the Near East would of course be highly benefi-
cial in order to add to (and perhaps to refute or corroborate) the
existing studies of Shaar et al. (2011) and Ben-Yosef et al. (2009).
Moreover, it would be very useful to extend the analysis to di-
rectional data: the datasets that motivated this study contain only
records of archeomagnetic intensity and not directional data, since
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the slag materials are, in most cases, displaced from their cooling
position. Should the observation of extreme rapid intensity change
stand up to scrutiny, its implications would be far reaching, and
may require consideration of yet poorly known core processes.
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