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Abstract Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity.
However, this method is usually limited to volcanoes equipped with large and dense networks of broadband
stations. The single-station approach may provide a powerful and reliable alternative to the classical
“cross-station” approach when measuring variation of seismic velocities. We implemented it on the Piton de
la Fournaise in Reunion Island, a very active volcanowith a remarkablemultidisciplinary continuousmonitoring.
Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation
technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations
located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic
eruption in the 1–2Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at
volcanoes equipped with a single three-component seismometer.

1. Introduction

Volcanoes are studied and monitored using diverse instrument networks. Data recorded by the instruments
are generally turned into proxies to assess the state of the volcano. The ultimate goal of volcano observa-
tories is to identify changes in a volcanic edifice as far ahead in time of an eruption as possible. The efficiency
of this monitoring is critically related to the detection and understanding of slight changes in the edifice
long before the start of the magma transport during active volcanic episodes. During volcanic eruptions,
magma transport causes gas release, pressure perturbations in the plumbing system [Patane, 2006], and
potential surface deformation that can be detected using geodetic techniques [e.g., Peltier et al., 2009,
2016; Staudacher et al., 2009]. However, the sensitivity of these techniques to deep changes can be limited
[e.g., Chaussard et al., 2013], leaving room for a better early warning solution.

Alternatively, deep mechanical processes associated with magma pressurization and/or migration and their
spatial-temporal evolution can be monitored with volcanic seismicity and yield precise locations and
mechanisms for earthquakes and volcanic tremor [e.g., Battaglia et al., 2005; Massin et al., 2011; Lengliné
et al., 2016]. Yet seismicity only provides information on short-term phenomenon (few seconds to few days)
and is inadequate to expose early aseismic processes such as magma pressurization [Brenguier et al., 2008b].

Seismic interferometry uses the multiple scattering of seismic vibrations by heterogeneities in the crust.
Implemented on coda waves of earthquakes or seismic ambient noise, this technique allows to retrieve
the Green's function for surface waves between two stations by cross correlating these diffuse wavefields
[e.g., Lobkis and Weaver, 2001; Derode et al., 2003; Snieder, 2004; Wapenaar, 2004]). This technique is increas-
ingly used as a nondestructive way to continuously monitor small seismic velocity changes (~0.1%)
associated with variations of heat, pressure, or water saturation in the subsurface [Grêt et al., 2006; Sens-
Schönfelder and Wegler, 2006]. Seismic velocity changes are typically measured from the cross-correlation
functions (CCF) for each pair of stations and eventually averaged over the whole network to yield more stable
results. The cross-correlation (CC) technique has been extensively described over the past decade, with many
available reviews [e.g., Larose et al., 2006; Bensen et al., 2007; Wapenaar et al., 2010a, 2010b; Sens-Schönfelder
and Wegler, 2011]. Seismic velocity variation measurements using the CC technique are used for monitoring
[Snieder and Hagerty, 2004; Brenguier et al., 2008b; Hadziioannou et al., 2011] with applications for volcanoes
[e.g., Sens-Schönfelder and Wegler, 2006; Duputel et al., 2009; Mordret et al., 2010; Caudron et al., 2015], large
magnitude earthquakes in the far field [Wegler and Sens-Schönfelder, 2007; Brenguier et al., 2008a; Ohmi
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et al., 2008; Wegler et al., 2009; Hobiger
et al., 2012; Minato et al., 2012], and
smaller magnitude earthquakes at smal-
ler distances [Maeda et al., 2010; D'Hour
et al., 2015]. In most cases, relative velo-
city changes have been evidenced
using a large number of stations and of
station pairs. The technique is also
applicable to single stations, using one
(or all) component of a one-component
(or three-component) seismometers.
The single-station approach has been
successfully applied to study earth-
quakes [Sens-Schönfelder and Wegler,
2006; Wegler and Sens-Schönfelder,
2007; Hobiger et al., 2014; Nakahara,
2014; D'Hour et al., 2015].

In this study, we apply this approach to
volcano monitoring using a small net-

work. In addition, we explore the possibility to exploit higher frequencies than traditional ambient noise
monitoring approaches and eventually open the path to systematically make use of short-period seism-
ometers for seismic velocity monitoring on volcanoes. We focus on the Piton de la Fournaise (PdF), a basaltic
shield volcano located in the ESE part of Reunion Island (France) in the Indian Ocean. It is one of the world's
most active volcanoes with, on average, one eruption every year. The PdF is extensively monitored with a
broad range of instruments, and many studies use the seismic noise cross-correlation method with multiple
stations to measure seismic velocity changes associated to its activity [Brenguier et al., 2008b, 2011; Duputel
et al., 2009; Clarke et al., 2013; Rivet et al., 2014, 2015; Sens-Schönfelder et al., 2014]. We studied data acquired
by three seismic stations in 2014, containing one eruption in June and several environmental perturbations
recorded throughout the year. This background provides a consistent base of comparison to test the
robustness of the single-station approach.

2. Data and Method
2.1. Data

We used seismic data from the Piton de la Fournaise Volcano Observatory Network (OVPF, Institut de
Physique du Globe de Paris), Reunion island, acquired in 2014 (Figure 1). At that time, themonitoring network
of the PdF was composed of 25 continuously recording stations, i.e. 8 short period and 17 broadband. This
data set covers a 1 day eruption on 21 June 2014 that followed 4 years of quiescence. We focused our analysis
on broadband stations CSS, FJS, and FOR, which are at similar distances from the crater Dolomieu, the main
crater of the PdF. Among them, station FOR is the closest to the 2014 fissure eruption (Figure 1). In parallel, we
analyzed a catalogue of earthquakes located manually along with the rainfall measured at a meteorological
station next to station FOR.

2.2. Method

Seismic velocity changes are measured from seismic noise cross correlation following a workflow similar to
Lecocq et al. [2014]: Seismic records for all components are preprocessed by carefully checking for their tim-
ing (sample alignment), gaps (interpolating or tapering between gaps), then bandpass prefiltered between
0.01 and 8.0 Hz and resampled to 20Hz prior to whitening and cross correlation.

Traditionally, ambient seismic noise is cross correlated between pairs of stations. This approach was adopted
in an earlier study by Rivet et al. [2015] and is compared with our results in section 3.4. In contrast, we per-
formed two types of processing based on the single-station approach: Single-station cross component (SC)
and each component with itself or autocorrelation (AC). The spectral whitening that sets the amplitude of
the signal to 1 for all frequencies was not applied for AC since only the phase of the signal would remain
and the autocorrelation of such a signal does not contain information on the medium anymore. For both

Figure 1. Map of the stations used for this study (red triangles) and the
OVPF seismic network (triangles). The yellow triangles represent
short-period seismometers, the remaining are broadband seismometers.
Station FOR is closer to the 2014 fissure eruption (circle).
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AC and SC the data were then filtered in different frequency ranges (0.01–1.0 Hz, 0.5–1.0 Hz, 1.0–2.0 Hz, and
2.0–4.0 Hz) and the performance of 1-bit normalization as well as clipping at 3 times the RMS of each time
window was tested as time domain normalization. Clipping eventually provided the most stable results
and was therefore chosen for this study.

The cross correlation and autocorrelation were then computed for each individual day, between all the pos-
sible combinations of components (three SC and three AC for each station) and for all the different filters,
before being averaged with a 5 day linear stacking to maximize the signal-to-noise ratio (Figure 2).

The plot of CCFs over time shows coherent phases in the late part of the coda for different days (e.g., +10 s
time lag). Shifts in time from these coherent phases, even if not visible on Figure 2, are interpreted as changes
of seismic velocity in the crust that can be measured. With the assumption of a homogeneous change in the
medium, we considered that the relative differences in travel time dt are due to the change in the seismic
velocity dv as �dt/t=dv/v [Ratdomopurbo and Poupinet, 1995].

Temporal velocity variations in the medium are measured on both the negative and the positive sides of the
CCF, for time lags between 5 and 35 s, preventing direct wave contamination. Each individual CCF (daily) is
compared to a reference CCF that averages the results for the whole period of study. The travel time changes
are measured in the frequency domain using the Multiple-Window Cross-Spectral Analysis method with a
quality control using coherency and the error of the linear regression in the time domain [Poupinet et al.,
1984; Brenguier et al., 2011]. The velocity variations calculated with the SC and the AC are then ultimately
averaged by station for each frequency band.

3. Results and Discussion
3.1. Frequency Dependence

Comparing dv/v curves for station FOR in Figure 3 shows that the SC (a) is significantly more stable than the
AC (b) at the lowest frequencies. The AC exhibits a very strong variability with a higher signal-to-noise ratio
starting from the 0.5–1.0 Hz frequency band. The SC already shows a distinct preeruptive seismic velocity
drop in the 0.1–1.0 frequency band (Figure 3a). In the 1.0–2.0 Hz frequency band the SC (Figure 3e) is sensitive
to both heavy rainfall events and the volcanic eruption (blue and red vertical lines, respectively) with a larger

Figure 2. Plot of the cross-correlation functions (CCF) with time for station FOR, components pair ZE and 5 day stack. The
data were filtered between 1 and 2 Hz and clipped in the time domain at 3 times the standard deviation. Stable phases can
clearly be identified up to about 30 s of lag time.
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drop before the eruption (~0.3%, station FOR) than for the rainfall (~0.15%, station FOR). The AC (Figure 3f) is
also sensitive to rainfall and the volcanic eruption in that frequency band. However, a larger-amplitude
perturbation affects the observation between 10 and 20 May and in early July. This perturbation is consistent
for all three stations and seems to have little effect on the SC processing. No rainfall or seismic activity (blue
and yellow vertical lines, respectively) seems to correspond to this seismic velocity change. The contamina-
tion of the AC by high-amplitude events such as earthquakes is a known issue since no spectral whitening can
be used tomitigate them. Here the perturbation was probably caused by storms and very strong winds which
were recorded those days [Meteo-France Direction Interrégionale Océan Indien, 2014] and are known to affect
high frequencies [Withers et al., 1996]. Differences between AC and SC are again more pronounced in the
2.0–4.0 Hz frequency band with an increased variability for the SC (Figure 3g) opposed to the AC (Figure 3
h), which exhibits less variability but also a smaller signal-to-noise ratio.

Figure 3. Variation of seismic velocity for three stations (CSS, FJS, and FOR) and four frequency ranges (from top to bottom,
(a, b) 0.1–1.0 Hz, (c, d) 0.5–1.0 Hz, (e, f) 1.0–2.0 Hz, and (g, h) 2.0–4.0 Hz) measured using single-station cross components
(SC; Figures 3a, 3c, 3e, and 3g) and autocorrelation (AC; Figures 3b, 3d, 3f, and 3h). The vertical lines represent high rainfalls
(blue), increasing seismicity (yellow), and the eruption day (red). The 95% confidence limits are shown in Figure S2.
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The SC clearly provides better results than AC in terms of stability and clarity for the preeruptive decrease of
seismic velocity. For all three stations, the preeruptive velocity drop is clearly detected. The best results are
obtained in the 0.5–1Hz and the 1–2Hz frequency bands (Figures 3c and 3e), with the highest signal to
noise ratio being reached in the 1–2Hz frequency band. The best performance at these frequency bands
could be caused by a higher power at these frequencies of the ambient noise field (Figure S3 in the sup-
porting information).

3.2. Seismicity

Figure 4 shows our results (a and b) along with the rainfall (c) and the seismic activity (d). SC (Figure 4a) and
AC (Figure 4b) the 1.0–2.0 Hz and 0.5–1.0 Hz frequency bands respectfully show the best signal-to-noise ratio
and sensitivity to the noteworthy events that occurred during the studied period. Considerable rainfall (blue
vertical lines, the value exceeds 3 times the RMS) caused a drop in seismic velocity of similar magnitude at all
three stations which are always observed, except in April with the AC approach. Another drop precedes the
21 June eruption (red vertical line) and could indicate a preeruptive decrease in seismic velocity.

Before 9 June, the seismicity remained at a very low level with less than 30 earthquakes per day, a vast major-
ity of which were identified as rockfalls. On 11 June the drop in seismic velocity seems to have begun inde-
pendently from the number of earthquakes (less than five per hour) and their magnitudes. The seismicity
eventually increased due to summit activity and as the seismic velocity dropped it finally reached a peak
the day before the eruption (955 earthquakes; 846 from summit activity). After the eruption, the seismicity
became very low, dominated by rockfalls again (Figures 4 and S1).

A large number of volcano-tectonic earthquakes at PdF volcano were relocated by Lengliné et al. [2016] for
2014 and 2015. They identified a persistent shallow (~700m above sea level) preeruptive ring-shaped
cluster under the summit crater associated with a westward migration of its southern part before the
eruption. They interpreted the repetitive occurrence of earthquakes along this structure as possible preex-
isting zones of weakness within the edifice that are triggered by static stress changes linked to an overpres-
surization of the magma chamber or dike intrusions in the volcanic edifice. The same process likely caused
the preeruptive seismic velocity drop, which was therefore concomitant to the increase of seismic activity.
Although we interpreted the preeruptive velocity drop as a result of the buildup of pressure in the

Figure 4. Seismic velocity variations calculated using (a) single-station cross components (SC, 1.0–2.0 Hz) and (b) autocorrelation (AC, 0.5–1.0 Hz) at Piton de la
Fournaise volcano (5 days stacking) along with (c) the rainfall and (d) the seismic activity between March and July 2014. The vertical lines represent high rainfalls,
increasing seismicity and the day of the eruption in blue, yellow, and red, respectively. Results digitized from Rivet et al. [2015] are shown for comparison.
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subsurface, we cannot completely preclude an influence of the simultaneous increase of seismic activity or
migration of earthquakes.

The seismicity could ultimately contaminate our observation in the microseismic frequency band but
only affecting direct waves when we are looking further in the coda. It could also be assumed that high seis-
micity is required to perform good observations of seismic velocity variation with this technique. However,
lower seismicity did not prevent us from observing rainfall-associated velocity drops (blue vertical lines;
Figure 4), ruling out this assumption.

3.3. Station by Station Comparison

The station geographically closest to the fissure eruption (FOR) clearly displays a significantly larger drop
(~0.3%) than the two others (<0.1%) for both processing approaches. By contrast, the three stations display
the same amplitude for the rainfall-associated drop (0.05–0.1%). We interpreted this as a larger-scale distribu-
tion of rainfall which, unlike the volcanic eruption, affects the three stations in the same way. This noteworthy
difference could provide a way to discriminate the causes of seismic velocity change when the single-station
approach is used.

3.4. Comparison With Rivet et al. [2015]

Rivet et al. [2015] studied the temporal variation of seismic velocity using seismic noise correlation in the tra-
ditional CC approach with all the 27 stations of the OVPF network. They used only vertical components band-
pass filtered between 0.25 and 2Hz combined with 1 bit normalization, 8 days stacking, “long-term variation
removal”(sic.), and network-wide averaging to observe the preeruptive drop of seismic velocity. They
extended their observation to the preceding low-activity period and highlighted seismic velocity variations
highly correlated with rainfall episodes and subsequent pore pressure perturbation.

Figure 4 shows the results from Rivet et al. [2015], before and after they were corrected for the rainfall effect,
along with our results for SC and AC processing. Their results unsurprisingly do not seem to exhibit the same
temporal resolution as our results because they averaged the pairs from all the network stations, used 8 days
stacking and possibly also some extra fitting/sliding mean [Brenguier et al., 2008b; Clarke et al., 2013].

There is a striking correlation between their results obtained with the CC and all the pairs from the 27 stations
network and our results obtained with one station at a distance up to 3.6 km from the eruptive vent. The
single-station approach clearly appears as a promising alternative when the CC cannot be efficiently imple-
mented. These unfavorable scenarios include volcanoes equipped with only one or too few seismic stations
as well as analysis where the CC provides across-correlation coefficient between the CCFs and the reference
that is too low. Additionally, short-period instruments are not always used for cross-correlation analysis
due to strong attenuation of high frequencies between far apart station pairs that affect the measurement
of seismic velocity variations. The frequency bands used in our analysis are dominated by microseismic
energy and would therefore likely work everywhere for seismic velocity monitoring, including with short-
period instruments.

4. Conclusions

Like the traditional cross-correlation approach implemented by Rivet et al. [2015], both the single-station
cross component (SC) and the autocorrelation (AC) approaches successfully detected the preeruptive seismic
velocity drop along with other extreme climatic perturbations in 2014. The good performance of the single-
station approaches opens the possibility to use noise cross-correlation techniques on volcanoes equipped
with only one of too few instruments or poorly correlated station pairs.

The AC exhibits poorer results than the SC in terms of stability, a lower preeruptive velocity drop, and a
sensitivity to strong-amplitude events that the SC does not have. More work is still required to better mitigate
the contamination of strong amplitude events on the AC with solutions such as using phase cross correlation
over the classical cross correlation [Schimmel, 1999; Schimmel and Gallart, 2007; Schimmel et al., 2011; D'Hour
et al., 2015] which will be left to a future study. The best performance for the SC and the AC are obtained in
the 1–2Hz and the 0.5–1Hz frequency bands, respectively. The good performance at high frequencies could
be associated to the higher amplitude of those frequencies in the ambient noise content that “illuminates”
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the change in the medium, providing a clear, stable observation of the velocity drop. These results also show
that short-period seismometers could probably be used with the single-station approach.

The volcanic eruption and the rainfall have a different effect on the seismic velocity measured at distinct
stations. The rainfall has a similar impact on all the stations, while the volcanic eruption has a greater effect
on the closest station. Still, it should be noted that even the most distant station (station CSS, 3.65 km from
the eruptive site) clearly detected the preeruptive velocity drop using both the SC and the AC. These results
open new perspective to monitor volcanoes using seismic velocity variations where the traditional cross-
correlation analysis cannot be performed.
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