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S U M M A R Y
We study a model of lava flow to determine its thermal and dynamic characteristics from
thermal measurements of the lava at its surface. Mathematically this problem is reduced to
solving an inverse boundary problem. Namely, using known conditions at one part of the
model boundary we determine the missing condition at the remaining part of the boundary.
We develop a numerical approach to the mathematical problem in the case of steady-state
flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of
the model domain, we determine the flow characteristics in the entire model domain using
a variational (adjoint) method. We have performed computations of model examples and
showed that in the case of smooth input data the lava temperature and the flow velocity can
be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data
results in a less accurate solution, but still acceptable below some noise level. Also we analyse
the influence of optimization methods on the solution convergence rate. The proposed method
for reconstruction of physical parameters of lava flows can also be applied to other problems
in geophysical fluid flows.

Key words: Numerical solutions; Inverse theory; Numerical approximations and analysis;
Effusive volcanism.

1 I N T RO D U C T I O N

Modern remote sensing technologies (e.g. air-borne or space-borne
infrared sensors) allow for detecting the absolute temperature at
the Earth’s surface (e.g. Flynn et al. 2001; Fig. 1). The absolute
temperature is a measure of the average kinetic energy of charged
particles within matter in motions. Collisions of the particles result
in changes of energy emitted as thermal (electromagnetic) radiation,
which can be detected by remote sensors. The Stefan–Boltzmann
law relates the total energy radiated per unit surface area of a body
across all wavelengths per unit time to the fourth power of the
absolute temperature of the body. Hence the absolute temperature
can be determined from the measurements by remote sensors (e.g.
Harris et al. 2004). The heat flow could be then inferred from the
Stefan–Boltzmann law using the temperature.

Is it possible to use the surface thermal data so obtained to con-
strain the thermal and dynamic conditions beneath the surface? In
this paper we propose a quantitative approach to reconstruct tem-
perature and velocity in the steady-state lava flow. The knowledge

of the thermal and dynamic characteristics of lava is important, par-
ticularly, for lava flow hazard and risk assessments (Wadge et al.
1994) and disaster risk reduction (Cutter et al. 2015).

Many thermal/dynamic problems can be described by mathe-
matical models, that is, by a set of partial differential equations,
boundary and initial conditions defined in a specific domain. If a
direct mathematical problem concerns an analysis of the effects of
surface dynamic processes, an inverse problem intends to determine
causes of the processes from their effects.

The problem of reconstruction of lava thermal and flow charac-
teristics is considered here in the case when the temperature and the
heat flow are known on the lava surface, but the lava temperature
and velocity are unknown. The problem is reduced to determination
of temperature and velocity as the solution to the model of steady-
state flow of viscous fluid with prescribed conditions for velocity
and temperature at the boundary � = ∂� of the model domain �.
At a part of the model boundary the conditions are abundant (e.g.
both temperature and heat flow are known), and at another part of
the boundary there is a lack of information on the temperature
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Figure 1. Surface temperature of lava can be extracted from the satellite
measurements, for example, from LANDSAT 7 ETM+ thermal and infrared
bands (the satellite image is courtesy of USGS).

(because of no direct measurements at this part of the boundary).
This mathematical problem is reduced in its turn to solving the in-
verse problem for determination of the temperature at the bottom of
the lava and for subsequent search for the temperature and velocity
of the lava.

For clarity of subsequent discussion, we introduce a few math-
ematical definitions used in the paper. A mathematical model for
a geophysical problem has to be well-posed in the sense that it
has to have the properties of existence, uniqueness and stability
of a solution to the problem (e.g. Hadamard 1923; Tikhonov &
Arsenin 1977; Kirsch 1996). Problems for which at least one of
these properties does not hold are called ill-posed. If a problem
lacks the property of stability then its solution is almost impos-
sible to compute because numerical computations are polluted by
unavoidable errors. If the solution of a problem does not depend
continuously on the initial data, then, in general, the computed so-
lution may have nothing to do with the true solution.

The problem of temperature and flow reconstruction in a lava
from the temperature and heat flow data at the lava surface is an
ill-posed because of a lack of the solution stability as a small pertur-
bation of the conditions at the lava surface may lead to significant
errors in the solution to the problem. To solve ill-posed problems,
special methods, sometimes called data assimilation techniques, are
required (e.g. Ismail-Zadeh & Tackley 2010). The techniques can
be used to constrain the condition at the lower boundary of the lava
from observations at the lava surface. Assimilation of data in this
case can be defined as the incorporation of observations at rele-
vant boundaries of a model domain in an explicit model to provide
coupling among the physical fields (e.g. velocity, temperature). The
basic principle of this assimilation is then to consider the condition
at the lava bottom as a control variable and to optimize this condi-
tion in order to minimize the misfit between the observations at the
lava surface and the model solution at the same surface.

Figure 2. Model geometry.

In this study, we assimilate measured temperature and heat flux
from the upper boundary into the interior of the model domain to
constrain the thermal condition at the lower boundary. This type
of data assimilation belongs to optimal boundary control prob-
lems (e.g. Zou et al. 1995). Thacker & Long (1988) suggested
to investigate open-boundary control in ocean models from a data
assimilation perspective, pointing out that open-boundary condi-
tions are analogous to initial conditions and should be determined
as part of fitting dynamics to data. Le Dimet (1988) formulated
open-boundary control in a general mathematical framework. With
a limited-area shallow-water equations model, Zou et al. (1993)
examined the performance of variational data assimilation via both
open-boundary and initial condition controls.

The goal of this research is to develop a numerical approach
and algorithm for stable numerical solution of the optimal bound-
ary control problem in lava flow models. In Section 2, we present
a mathematical statement of the 2-D problem for reconstruction
of temperature and flow pattern in a model of lava. In Section 3,
a variational (adjoint) method to solve the problem is discussed.
The method is based on the reduction of the problem to mini-
mization of a specially constructed cost functional describing the
difference between heat flow inferred from measurements and that
from the model (similar techniques were developed, e.g. by Ismail-
Zadeh et al. 2004, 2006; Korotkii & Kovtunov 2006; and Korotkii &
Starodubtseva 2015a). The algorithm for a search of the minimum
of the cost functional is described in the section, and the numerical
approach to solve the problem is presented in Section 4. In Sec-
tion 5, we show how this approach can be applied to a lava model
and how the temperature and flow velocities can be reconstructed
from the surface measurements as well as how the errors in obser-
vations can influence the results of the reconstruction. We discuss
the challenges of the reconstructions and present conclusions in
Section 6.

2 S TAT E M E N T O F T H E
M AT H E M AT I C A L P RO B L E M

We study the problem of lava flow in model domain � ⊂ R
2 (Fig. 2)

and assume that the lava behaves as a Newtonian incompressible
fluid with a temperature-dependent viscosity and thermal conduc-
tivity. This flow is governed by the physical laws of the conservation
of momentum, mass and energy, and is described by motion, conti-
nuity and heat equations (e.g. Hidaka et al. 2005). Although a lava
flow is non-stationary depending on an effusive rate, for simplicity
of the mathematical problem’s description we assume a steady-state
lava flow in the modelling. Considering a constant effusion rate, the
lava flow in the vicinity of the volcanic vent can be approximated
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as a steady-state (see Appendix A). In this assumption and in the
Boussinesq approximation, the dimensionless Stokes, continuity
and heat equations take the following form:

∇ · (
μ(T )

(∇u + ∇uT
)) = ∇ p − Ra T e2, (1)

∇ · u = 0, (2)

∇ · (κ(T )∇T ) = 〈u,∇T 〉, (3)

where x = (x1, x2) ∈ � are the Cartesian coordinates; u =
(u1(x), u2(x)) is the vector velocity; p = p(x) is the pressure;
T = T (x) is the temperature; μ = μ(T ) is the viscosity; κ =
k(T )/(ρref cp) is the thermal diffusivity; k = k(T ) is the heat con-
ductivity; ρref is the typical density; and cp is the specific heat capac-
ity. The Rayleigh number is defined as Ra = αgρref�T h3μ−1

ref κ
−1
ref ,

where α is the thermal expansivity; g is the acceleration due to grav-
ity; μref and κref are the typical viscosity and thermal diffusivity,
respectively; �T is the temperature contrast; h is the typical length;
e2 = (0, −1) is the unit vector; ∇, T and 〈·, ·〉 denote the gradient
vector, the transposed matrix and the scalar product of vectors, re-
spectively. Length and temperature are normalized by h and �T,
respectively.

We assumed the following conditions for temperature and veloc-
ity at the model boundary � = �1 ∪ �2 ∪ �3 ∪ �4. The temperature
T1 and the velocity u1 are prescribed at the left boundary �1:

T = T1, u = u1. (4)

No slip condition is prescribed at the lower boundary �2 (un-
known temperature is to be found):

u = 0. (5)

At the right boundary �3, the temperature T3 is prescribed (a
strong assumption, which might be omitted, but will complicate
the problem solution), the velocity gradient and the pressure are
vanishing:

T = T3, σ n = 0, p = 0. (6)

At the upper surface �4, the temperature T4 and heat flow ϕ are
given, and no normal flow and free-slip tangential conditions are
used:

T = T4, k 〈∇T, n〉 = ϕ, 〈u, n〉 = 0, σn − 〈σ n, n〉 n = 0,

(7)

where σ = μ(∇u + ∇uT ) is the deviatoric stress tensor, and n is
the outward unit normal vector at a point on the model boundary.

The principal problem is to find the solution to eqs (1)–(3) with the
boundary conditions (4)–(7), and hence to determine the velocity
u = u(x), the pressure p = p(x) and the temperature T = T (x)
in the model domain � when temperature T4 and heat flow ϕ =
k ∂ T/∂ n are known at boundary �4.

In addition to the principal problem, we define an auxiliary prob-
lem, which is formulated as, to find solution to eqs (1)–(3) (i.e. to
determine u, p and T in �) with the following boundary conditions,

�1 : T = T1, u = u1, (8)

�2 : T = T2, u = 0, (9)

�3 : T = T3, σ n = 0, p = 0, (10)

�4 : T = T4, 〈u, n〉 = 0, σn − 〈σ n, n〉 n = 0. (11)

The auxiliary problem (1)–(3) and (8)–(11) is a direct problem
compared to the problem (1)–(7), which is an inverse problem. We
note that the conditions at �1 and �3 are the same in the direct
and inverse problems, but the temperature T2 is known at �2 and
no heat flow is prescribed at �4 in the auxiliary problem compared
to the inverse problem (1)–(7). The well- and ill-posedness of the
similar problems have been studied by Ladyzhenskaya (1969), Lions
(1971), Temam (1977), Korotkii & Kovtunov (2006) and Korotkii
& Starodubtseva (2015a).

Let us assume now the (measured) heat flow ϕ = k(T ) ∂ T/∂ n at
model boundary �4 be related to some (unknown as yet) temperature
T = T2 = ξ ∗ at model boundary �2. Let the temperature T ∗ be a
component of the solution (T ∗, u∗, p∗) to the auxiliary problem,
when the temperature T = T2 at �2 equals to ξ ∗ (see eq. 9), and
hence ϕ = k(T ∗) ∂ T ∗/∂ n at �4.

Now consider the following cost functional for admissible func-
tions ξ determined at �2:

J (ξ ) =
∫
�4

(
k(Tξ )

∂Tξ

∂n
− ϕ

)2

d�, (12)

where Tξ is the component of the solution (Tξ , uξ , pξ ) of the auxil-
iary problem with the condition T = ξ at �2 in eq. (9). The func-
tional has its global minimum at value ξ = ξ ∗ and J (ξ ∗) = 0, that
is, temperature ξ = ξ ∗ attains a minimal value of the functional

J (ξ ) → min : ξ ∈ �, (13)

where � denotes a set of admissible temperatures at boundary �2.
Therefore, we reduce the inverse problem to a minimization of the
functional or to a variation of the function ξ at �2, so that heat flow
k∂T/∂n at �4 becomes closer to the prescribed value ϕ at �4.

3 S O LU T I O N T O T H E M I N I M I Z AT I O N
P RO B L E M

To minimize the cost functional (12), we use the Polak–Ribière
conjugate-gradient method (Polak & Ribière 1969; Polak 1997):

ξ (n+1) = ξ (n) + γ (n) d (n), n = 1, 2, 3, . . . , (14)

d (n) =
{

−∇ J (ξ (n)), n = 1

−∇ J (ξ (n)) + β (n) d (n−1), n = 2, 3, . . .
, (15)

β (n) =
∫
�2

∇ J (ξ (n))
(∇ J (ξ (n)) − ∇ J (ξ (n−1))

)
d�

/
∫
�2

(∇ J (ξ (n−1))
)2

d�, n = 2, 3, . . . , (16)

and the descent step length γ (n) can be found from the Wolfe con-
ditions (Wolfe 1968, 1969, 1971):⎧⎪⎨
⎪⎩

J (ξ (n) + γ (n)d (n)) ≤ J (ξ (n)) + c1 γ (n)
∫
�2

∇ J (ξ (n))d (n)d�,∫
�2

∇ J (ξ (n) + γ (n)d (n))d (n)d� ≥ c2

∫
�2

∇ J (ξ (n))d (n)d�,
(17)

where the search for the descent step length is based on a number of
iterations (e.g. Fletcher 2000). Here ∇ J is the gradient of the cost
functional; ξ (n) is the n-iteration of the admissible function ξ ; and
0 < c1 < c2 < 1. We assume c1 = 0.001 and c2 = 0.01 in the case
of the conjugate-gradient method (and c1 = 0.01 and c2 = 0.9 in the
case of the limited-memory Broyden–Fletcher–Goldfarb–Shanno,
L-BFGS method; see Section 6).
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The gradient of the cost functional

∇ J (ξ ) =
(

k(Tξ )
∂ z

∂ n

)∣∣∣∣
�2

, (18)

can be found as the solution (z, w, q) to the adjoint problem (see
Appendix B for derivation of the adjoint problem)

∇ · (
μ (Tξ )

(∇w + ∇wT
)) = ∇q + z∇ Tξ , (19)

∇ · w = 0, (20)

∇ · (
κ (Tξ )∇z

) + 〈
uξ , ∇z

〉 + Ra 〈e2, w〉

= κ ′(Tξ )
〈∇Tξ , ∇z

〉 + μ′(Tξ )
[
(∇w + ∇wT ), ∇uξ

]
, (21)

with the following boundary conditions

�1 : z = 0, w = 0, (22)

�2 : z = 0, w = 0, (23)

�3 : z = 0, σ̃n = 0, q = 0, (24)

�4 : z = 2

(
k(Tξ )

∂Tξ

∂ n
− ϕ

)
, 〈w, n〉 = 0,

σ̃n − 〈σ̃ n, n〉 n = 0, (25)

where σ̃ ≡ ∇w + ∇wT ; the square brackets [A, B] =
m∑

i, j=1
ai j bi j

denote the convolution of two m × m matrices A = (ai j ) and B =
(bi j ); and sign ′ means the derivation. The solution is a triplet
(z, w, q) of quasi-temperature (z), quasi-velocity (w) and quasi-
pressure q.

The algorithm for solving the principal problem can be presented
using the following steps (at the initial iteration we assume some
guess function ξ (1) = ξ (1)(x) ∈ � determined at �2):

Step 1. Consider ξ (i) = ξ (i)(x), x ∈ �2 (i = 1, 2,. . . ) as the bound-
ary condition (9) of the auxiliary problem (eqs 1–3 and 8–11) and
determine the solution (Tξ (i) , uξ (i) , pξ (i) ) of this problem in �.

Step 2. Insert the components Tξ (i) and uξ (i) of the solution into
the adjoint problem (eqs 19–25) and determine the solution (z =
zξ (i) , w = wξ (i) , q = qξ (i) ) of this adjoint problem in �.

Step 3. Determine the gradient of the cost functional ∇ J (ξ (i))
from eq. (18) and then d (i), β (i) and γ (i) from the conditions (15)–
(17), respectively.

Step 4. Determine the value ξ (i+1) from eq. (14).
Step 5. If J (ξ (i+1)) + ‖∇ J (ξ (n)‖2 < ε, where ε > 0 is a given

small number, terminate the minimization problem. Otherwise, the
procedure is repeated until the inequality is satisfied.

The performance of the algorithm is evaluated in terms of the
number of iterations n required to achieve a prescribed relative
reduction of ξ (n). Fig. 3 presents the evolution of the cost func-
tional J (ξ (n)) and the norm of the gradient of the objective func-
tional ‖∇ J (ξ (n))‖ = (

∫
�2

(∇ J (ξ (n)))
2
d� )1/2 versus the number of

iterations.
Implementation of the minimization algorithm requires the eval-

uation of both the cost functional (12) and its gradient (18). Each
evaluation of the objective functional requires an integration of the
model eqs (1)–(3) with the appropriate boundary conditions (8)–
(11), whereas the gradient is obtained through the integration of
the adjoint problem (eqs 19–25). We note that information on the
properties of the Hessian (∇2 J ) is important in many aspects of
minimization problems (Le Dimet et al. 2002). To obtain sufficient

Figure 3. Relative reductions of the objective functional (dashed line 1)
and the norm of the gradient of the objective functional (solid line 2) as
functions of the number of iterations.

conditions for the existence of the minimum of the problem, the
Hessian operator must be positive definite.

A viscous dissipation has been neglected in the modelling as
the adjoint problem becomes more complicated otherwise. How-
ever, the dissipation number, Di = μrefκref/(cpρref�T h2), is small
enough (about 10−7 for the lava), so that the viscous dissipation term
can be neglected. Thus, the solution of the minimization problem
is reduced to solutions of series of well-posed (direct and adjoint)
problems.

4 N U M E R I C A L A P P ROA C H

To implement the algorithm for solving the minimization
problem, a numerical code was developed using OpenFOAM
(http://www.openfoam.org). The finite volume method (e.g. Ismail-
Zadeh & Tackley 2010; chapter 3) is used in this software to solve a
wide spectrum of fluid dynamic models using multiprocessor com-
puters. Particularly, it includes the codes for numerical solution of
the Stokes and advection-diffusion problems with various boundary
conditions and model geometries.

The model domain � was discretized by 1500 hexahedral fi-
nite volumes (60 and 25 volumes in the horizontal and verti-
cal directions). The SIMPLE method (Patankar & Spalding 1972;
Ismail-Zadeh & Tackley 2010, chapter 6.5.2) was used to determine
velocity and pressure at a given temperature (the relaxation param-
eters are chosen to be 0.7 and 0.3 for the velocity and pressure,
respectively). To implement the SIMPLE method, we employ the
conjugate-gradient method (Ismail-Zadeh & Tackley 2010, chap-
ter 6.3.3) to solve a set of linear algebraic equations (SLAE) with
positive-definite and symmetric matrices, which are obtained after
the discretization of the Stokes equation. In the case of the heat
equation, SLAE were solved by the biconjugate gradient stabilized
method (van der Vorst 1992) with the pre-conditioner of incomplete
LU-decomposition. The relative accuracy of the numerical solutions
to the derived SLAE (i.e. the ratio between the norm of the residual
to the norm of the right-hand-side of the SLAE) is 10−3 in the case
of the model domain discretization by 1500 finite volumes. The
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Figure 4. Reconstruction of the temperature at the boundary �2 (a). The red curve corresponds to the target temperature, the green curve to the guess
temperature, the brown curve to the temperature after 5 iterations and the blue curve to the temperature after the 10 iterations. The reconstructed temperature
after 10 iterations (b) in the case of no noise in the heat flow at the upper boundary of the lava (solid line; the blue curve in panel a) and in the case of the noise
magnitude δ = 0.1 in the heat flow (dashed line).

linear Gaussian scheme with a flow control was used to discretize
the Laplace operator. To approximate the convective operator, we
employed the total variation diminishing method with the minmod
limiter (Sweby 1984; Wang & Hutter 2001; Ismail-Zadeh et al.
2007).

All computations were performed using one CPU Intel Core i5
2.6 GHz with 16GB memory, OS X 10.10. An average computa-
tional time for 80 iterations in the inverse problem was 75 min: this
included the time required for minimization of the cost functional
by the conjugate gradient method, and the time to solve the direct
and adjoint problems (normally 4–5 times) to determine the descent
step length.

5 M O D E L R E S U LT S

We consider a model of lava advancing down the slope (Fig. 2)
and assume that temperature and heat flow are available from re-
mote thermal measurements. The boundary of the model domain
consists of the following parts: �1 is a line segment connecting
points xA = (x A

1 , x A
2 ) = (0, 2.5) and xB = (x B

1 , x B
2 ) = (0, 1.5); �2

is a circular arc connecting points xB , xC = (xC
1 , xC

2 ) = (1.5, 0.5)
and xD = (x D

1 , x D
2 ) = (3.0, 0.0); �3 is a line segment connecting

points xD and xE = (x E
1 , x E

2 ) = (3.0, 0.5); and �4 is a circular arc
connecting points xE , xF = (x F

1 , x F
2 ) = (1.5, 1.2) and xA.

The following dimensional parameters are used in the modelling:
α = 10−5 K−1, g = 9.8 m s−2, h = 1 m, ρref = 3000 kg m−3, μref =
3.5× 106 Pa s, Tref = 300 K, T∗ = 1473 K, �T = T∗ − Tref , κref =
10−6 m2 s−1, cp = 1200 J kg−1 K−1, kref = ρref cpκref = 3.6 W m−1

K−1, and therefore, the Rayleigh number is Ra = 100. We consider
the dimensionless temperature-dependent viscosity (Griffiths 2000)

μ(T ) = exp (0.039 (4.91 − T )) (26)

and the dimensionless temperature-dependent thermal conductivity
(Hidaka et al. 2005)

k(T ) =
{

0.32 + 4.92 · 10−5(T − 4.91)2, T < 4.91,

0.32 + 8.08 · 10−4(T − 4.91)2, T > 4.91.
(27)

At �1 we prescribe the temperature T1(x1, x2) = 5.0 − 0.5(x2 −
x B

2 ), x2 ∈ [x B
2 , x A

2 ], and the velocity u1(x2) = U (x2)n1, where n1 =
(
√

2/2, −√
2/2) and U (x2) is the parabola passing through the

following three points: U (x A
2 ) = 10, U (x B

2 ) = 0 and U (0.5(x A
2 +

x B
2 )) = 7.25. The temperature is T3(x1, x2) = 3.5 − 2(x2 − x D

2 ),
x2 ∈ [x D

2 , x E
2 ] at �3 and T4(x1, x2) = 4.5 − 2(x1 − x A

1 )/3, x1 ∈
[x A

1 , x E
1 ] at �4. Considering guess temperature ξ (1) = ξ (1)(x) at �2,

we use the algorithm described in Section 3 (steps 1–5) to find the
temperature at �2. Doing so, we assimilate the thermal data from
the boundary �4 to �2 through the model domain by solving the
inverse problem (1)–(7).

The cost functional is reduced to about 10−5 after 30 iterations
(Fig. 3). The reconstruction of the temperature at the boundary �2

versus the number of iterations is presented in Fig. 4(a). We note
that the number of iterations to get a given accuracy in reduction of
the cost functional depends on the initial ‘guess’ temperature at �2.
The closer is the guess temperature to the target temperature, the
less number of iterations is needed.

Fig. 5 shows the reconstruction process of the lava temperature
and flow velocity from the initial iteration to the 80th iteration.
The temperature and velocity residuals, that is, the difference be-
tween the temperature and velocities predicted by the forward model
(with the target temperature at �2) and those reconstructed, are also
presented in Fig. 5. The results of this modelling show that the
restoration works quite well: the temperature residuals are very low
already after 80 iterations within the almost entire model domain.

The comparison between ‘measured’ (modelled) and recon-
structed lava temperature is quite natural from the computational
point of view, but not from the geophysical point of view, because
the measurements (observations) are polluted by errors. The accu-
racy of temperature measurements and inferred heat flux density
can be attributed to the accuracy of the calibration curve of remote
sensors and the noise of the sensors. Considering these sources of
errors of measured temperatures, the errors would range from 0.1 K
to 1 K (Short & Stuart 1983). The heat flow errors inferred from the
Stefan–Bolzmann law can be then estimated between 0.6 and 6 W
m−2 at the reference temperature Tref = 300 K, which are related to
dimensionless error values from 0.0013 to 0.013 (normalized with
respect to heat flow at the reference temperature).

Hence, we perform numerical experiments introducing a noise on
the ‘measured’ data and study how well the problem can be resolved.
Particularly, we introduce a disturbance on the heat flow ϕ(·) at the
boundary �4 as ϕδ(·) = ϕ(·) + δγ (·), where δ is the magnitude of
the disturbance; γ (·) is the function generating numbers that are
uniformly distributed over the interval [−1, 1]; and ϕ(·) is obtained
from the solution of eqs (1)–(3) with the conditions at the boundaries
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Figure 5. Reconstruction of the lava temperature (a) and the flow velocity (c) after 20 and 80 iterations. The relevant residuals of the temperature (b) and the
velocity (d) indicate the quality of the reconstruction.

(8)–(11) for T2 = ξ (1) at �2. We choose three values for the noise
magnitude δ (0.001, 0.01 and 0.1) to approximate the possible noise
level of the remote thermal measurements.

We analyse the influence of the noise on the reconstruction of
the temperature at the boundary �2 (Fig. 4b), on the temperature
and velocity residuals (Fig. 6) and on the reduction of the cost
functional and the norm of its gradient (Fig. 7). The computations
show that the errors (temperature and velocity residuals, Fig. 6)
get larger with increase of the noise of the input data. Meanwhile
for some range of the noise (δ ≤ 0.01) the reconstructions are still
reasonable as the temperature and velocity residuals are not high
(Fig. 6). Namely, if we consider MT = max

x∈�
|T30(x) − T 0(x)| and

Mu = max
x∈�

‖u30(x) − u0(x)‖R2 , where T 0(x) and u0(x) are the solu-

tion of the direct problem (1)–(3) and (8)–(11), then MT = 0.095,
0.096, 0.099 and 0.265, and Mu = 0.0073, 0.0074, 0.0075 and
0.01526 for δ = 0, 0.001, 0.01 and 0.1, respectively.

6 D I S C U S S I O N A N D C O N C LU S I O N

We have proposed a numerical approach to solving the optimal
boundary control problem arising in studies of lava dynamics. This
approach is stable to numerical errors in the input data and permits
reconstructing the thermal state of the lava flow based on the mea-
sured temperature and inferred heat flow information at the lava’s
surface. The measured data can be assimilated to the lava’s lower
part using direct and adjoint lava flow models. The efficiency of
two optimization techniques—the conjugate gradient and the L-
BFGS algorithms—has been compared, and the convergence to the
solution has been analysed.

A rapid development of ground-based thermal cameras, drones
and satellite data allows getting repeated thermal images of the sur-

face of the lava flow (Calvari et al. 2005). Available instrumentation
allows getting a large amount of data during a single lava flow erup-
tion. For example, lava flow emplacement between 2010 December
4 and 6 at Tungurahua volcano (Ecuador) was recorded with a ther-
mal Forward Looking InfraRed camera; about 90 recorded thermal
images of the lava flow (Kelfoun & Vargas 2015). These data re-
quire development of appropriate quantitative approaches to link
subsurface dynamics with observations. Our approach permits to
link the observations with the dynamics of lava flow and is a step
forward to determine a heat budget of the active lava flows.

Earth orbiting radiometers can measure spectral radiance at a
lava surface to be converted then into thermal anomalies. Lava tem-
perature and heat flow can be inferred from the detected anomalies.
However, a spatial resolution of many satellites is coarse enough
to allow for high-resolution monitoring and precise measurements.
This gives a rise to uncertainties in thermal measurement as well
as in the inferred parameters. Hence, if the measured temperature
and heat flow data are biased, this information can be improperly
assimilated into the lava flow models. According to Zakšek et al.
(2015) to reduce major sources of uncertainties in thermal anomaly
monitoring, satellite instruments should allow for (i) fine spatial res-
olution (e.g. less than 50 m), (ii) short revisit time (less than 15 min),
(iii) multiple spectral bands, (iv) high radiometric accuracy (<0.1 K)
and (v) observations at different instrument gain settings to deter-
mine high and low temperature anomalies. If surface temperature
and heat flow data are of high resolution and radiometric accuracy,
the temperature and velocity in the lava’s interior can be deter-
mined properly from measured data using the proposed numerical
approach.

The proposed approach can become important in studies of nat-
ural lava flows, especially in the cases of thick lava flow. Synthetic
Aperture Radar satellite observations on lava thickness, volume
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Figure 6. Residuals of temperature (the left panels) and velocity (the right panels) at different noise magnitudes δ.

and flow extent (e.g. Kubanek et al. 2015), together with thermal
measurement at the lava surface, facilitate research and data-driven
modelling of lava flow. Moreover, the proposed approach to assim-
ilate measured data into the model brings a unique opportunity to
estimate thermal budget of the lava flow. Widely used assumptions
that basal heat flux is much smaller than the flux to the atmosphere
can be validated if the whole temperature field inside the lava flow
is known.

To model numerically a lava flow, boundary and initial conditions
should be known. Meanwhile the temperature or heat flux at the
lava’s bottom is unknown as it is almost impossible to measure it.
Airborne and space measurements of temperature (heat flux) at the
surface of lava flows, being almost instantaneous compared to the
duration of lava flows, allow to search for thermal conditions at
the lava’s bottom. Once the boundary conditions at the lava bottom
are determined, the steady-state problem can be replaced by a non-
stationary problem, and the lava flow can be modelled forward in
time to determine its extent, lava’s temperature and flow rate as well

as backward in time using variational or quasi-reversibility methods
(e.g. Ismail-Zadeh et al. 2009) to search for the initial temperature
of the lava flow and for the evolution of the effusion rate.

In this study, two thermal conditions at the upper surface of
the model domain have been required to assimilate these data
to the lower boundary of the model domain. We have used the
known temperature at the upper surface to solve the direct problem
and the known heat flow at the same surface to solve the adjoint
problem. Meanwhile the thermal conditions at the upper surface
can be permuted, namely: heat flow can be prescribed (instead of
temperature) and temperature (instead of heat flow) at the upper
surface to solving the direct and the adjoint problems, respectively
(Korotkii & Starodubtseva 2015b).

The effusion rate, at which lava is erupted, controls the way in
which a lava body grows and extends influencing its dimensional
properties. Estimations of effusion rates based on radiated heat flux
(Harris et al. 2004) is at the moment based on a very crude model
that does not account for basal heat flux. To test a sensitivity of the
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Figure 7. Relative reductions of the objective functional (dashed lines) and
the norm of the gradient of the objective functional (solid lines) as functions
of the number of iterations for several values of noise magnitude δ: black
lines stand for δ = 0, red lines for δ = 0.001, blue lines for δ = 0.01 and
green lines for δ = 0.1.

approach to changes in flow patterns, we varied the magnitude of the
velocity |U | at the left-side boundary �1 of the model domain be-
tween 1 and 25, and the Rayleigh number, Ra, between 1 and 10000.
The approach is rather robust to changes in the velocity magnitude
and in Ra. (Note that in the case of a lava flow the Rayleigh number
is small enough and in many applications considered to be close to
zero. Higher Ra were used here to test the stability of the numerical
algorithm.)

A performance of the numerical approach depends on optimiza-
tion methods employed. In the presented approach we used the
conjugate-gradient method. To compare its performance with other
optimization methods, we have employed the L-BFGS method of
Liu & Nocedal (1989), based on the L-BFGS algorithm described
by Nocedal (1980). To minimize the cost functional (12) using the
L-BFGS method, components d (n) in eq. (14) are determined as
d (1) = −∇ J (ξ (1)) and d (n) = −B(n) ∇ J (ξ (n))(n = 2, 3, . . .), where
B(n) is the approximated inverse Hessian operator.

When the L-BFGS method is used, the average computational
time to perform 80 iterations for minimization of the cost functional
is reduced to 15 min (by the factor of 5) compared to the case of the
conjugate-gradient method used. The computational time reduction
is achieved because the descent step length in the iteration scheme
is determined much faster. The reduction of the objective functional
and the norm of the gradient of the objective functional with the
number of iterations is faster than in the case of the conjugate-
gradient method (Fig. 8), although the dependence of the solution
on the noise magnitude is similar in the both cases (compare Figs 7
and 9).

Limited-memory quasi-Newton (LMQN) methods represent a
class of algorithms, which use a low amount of storage to accelerate
the convergence rate, which is important in cases of large-scale
problems. Several comparative studies were performed to clar-
ify the best-performance methods/algorithms among LMQN and
conjugate-gradient methods, for example, Navon & Legler (1987),
Gilbert & Lemarichal (1989), Liu & Nocedal (1989) and Zou et al.
(1993) indicated that the L-BFGS method, belonging to the LMQN

Figure 8. Relative reductions of the objective functional (dashed lines) and
the norm of the gradient of the objective functional (solid lines) in the case
of the conjugate gradient method (black lines) and in the case of the L-BFGS
method (red lines).

Figure 9. The influence of noise on model solutions in the case of the
L-BFGS method used: relative reductions of the objective functional (dashed
lines) and the norm of the gradient of the objective functional (solid lines)
versus the number of iterations. Red lines stand for δ = 0, blue lines for
δ = 0.001, brown lines for δ = 0.01 and green lines for δ = 0.1.

family (e.g. Nocedal & Wright 1999), was one of the best algorithms
for several problems examined. Meanwhile the conjugate gradient
method with guaranteed descent developed later (Hager & Zhang
2006) shows in some cases higher performance compared to the
L-BFGS and other gradient methods (Alekseev et al. 2009).

There are several simplifications in the presented model of
lava flow that can be overcome in future, but require further
development of the algorithm and increase in computational re-
sources. For example, the proposed numerical approach allows also
for reconstructing the temperature at the right boundary of the model
domain (if heat flux is negligible at its lower boundary) or at lower
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and right boundaries simultaneously. In the present model, the shape
of the lava is prescribed (the position of the right boundary �3 is con-
stant). In reality, the lava flows and its right boundary should also be
reconstructed during the solution with an extra boundary condition
related to the absence of tangential stress at the free surface.

The problem can be extended to the non-steady-state flow, but this
will complicate the mathematical and computational approaches.
Meanwhile, as the measurements on absolute temperature are dis-
crete in time (e.g. depending on the location of Landsat satellites),
a problem of non-stationary flow can be reduced to a number of
steady-state flow problems with varying boundary conditions at the
upper model surface (where the discrete-in-time measurement are
available).

A more complicated lava rheology with formation and disintegra-
tion of solid crust (e.g. Tsepelev et al. 2016) should be considered.
The influence of the shape of the crust and the degree of its disin-
tegration on the radiated heat flux (Neri 1998) can be significant.
Proposed algorithm and its numerical implementation have a wide
range of applications in other problems of reconstruction of the
flows of fluids with strongly temperature dependent viscosity, for
example, in chemical technology or oil industry.
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A P P E N D I X A : F LU I D F L OW H E I G H T A S S E S S M E N T

In this study we use a steady-state condition for the temperature field. In order to validate this assumption, we employ the self-similar solution
for a fluid flow by Huppert (1982). A temperature field can be considered as steady-state if the effusion rate is constant, and the lava flow
height and its velocity do not change significantly with time. Consider an intruding fluid (lava) of density ρ and viscosity μ (Fig. A1). In the
case of the constant discharge rate of lava q, the flow height z(x, t) in point x and time t can be found from the self-similar solution as:

z(x, t) = 1.247

(
q2μ

ρg

)1/5

t1/5φ (ξ ), ξ = x

xN
, xN = 0.804

(
ρgq3

μ

)1/5

t4/5, (A1)

φ (ξ ) = 1.3387(1 − ξ )1/3 (1.0104 − 0.0104ξ ), (A2)

where g is the acceleration due to gravity. All other flow characteristics are functions of the height and its special derivatives, thus, small
changes in the flow height in a particular part of the flow with time on the timescale of temperature equilibration guarantees steady-state
conditions. We normalize equations in (A1) by the following change of variables x = x̃h, z = z̃h, ρ = ρ̃ρref , μ = μ̃ρref ghtref , t = θ tref

and q = q̃h2/tref . For validity of the lubrication-theory approximation we assume ρ̃ = 1, μ̃ = 10−4, and q̃ = 50. Omitting tilde from the
dimensionless variables, we obtain the dimensionless equations: z(ξ, θ ) = 0.9478θ1/5φ(ξ ), xN = 53.05θ4/5.

Considering that the thermal equilibrium is attained at time tref = h2/κref , we analyse the lava height at dimensionless times θ ≥ 3. The lava
tip xN = 128 at θ1 = 3 and 280 at θ2 = 8. Fig. A2 shows the evolution of the lava height at some distances from the vent (x = 0). The relative
change of the height expressed by the formula (z(θ2) − z(θ1))/(z(θ1)(θ2 − θ1)) is about 4.6 per cent at x = 6.84, 5.9 per cent at x = 34.22 and
16.1 per cent at x = 102.66. With a desired accuracy, the steady-state approach for the temperature field can be then valid in the area close to
the vent.

Figure A1. A sketch of the flow field and coordinate system (modified after Huppert 1982).
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Figure A2. Evolution of the lava height with time at three distances x from the vent.

A P P E N D I X B : C O S T F U N C T I O NA L J A N D I T S G R A D I E N T

Here we derive the adjoint problem. Let the triplet (Tξ+χ , uξ+χ , pξ+χ ) be the solution of the auxiliary problem (1)–(3), (8)–(11) for the
prescribed condition T = T2 = ξ + χ at the boundary �2 (see eq. 9) and the triplet (Tξ , uξ , pξ ) be the solution of the same problem for
the prescribed condition T = T2 = ξ at the same boundary, where χ is an admissible increment of the boundary element ξ . The difference
of the two solutions T = Tξ+χ − Tξ , u = uξ+χ − uξ and p = pξ+χ − pξ should satisfy the following boundary value problem for x ∈ �:

∇ · (
δμ(Tξ ) (∇u + ∇uT )

) + ∇ · (
μ(Tξ ) (∇u + ∇uT )

) + ∇ · (
δμ(Tξ ) (∇uξ + ∇uξ

T )
) = ∇ p − Ra T e2, (B1)

∇ · u = 0, (B2)

∇ · (
δκ(Tξ ) ∇T

) + ∇ · (
κ(Tξ ) ∇T

) + ∇ · (
δκ(Tξ ) ∇Tξ

) = 〈u,∇T 〉 + 〈
uξ , ∇T

〉 + 〈
u,∇Tξ

〉
, (B3)

with the following boundary conditions

�1 : T = 0, u = 0, (B4)

�2 : T = χ, u = 0, (B5)

�3 : T = 0, σ n = 0, p = 0, (B6)

�4 : T = 0, 〈u, n〉 = 0, σn − 〈σ n, n〉 n = 0, (B7)

where δμ(Tξ ) = μ(Tξ+χ ) − μ(Tξ ) and δκ(Tξ ) = κ(Tξ+χ ) − κ(Tξ ). We note that

J (ξ + χ ) − J (ξ ) =
∫
�4

(
k(Tξ+χ )

∂Tξ+χ

∂n
− ϕ

)2

d� −
∫
�4

(
k(Tξ )

∂Tξ

∂n
− ϕ

)2

d�

= 2
∫
�4

(
k(Tξ+χ )

∂Tξ+χ

∂n
− k(Tξ )

∂Tξ

∂n

)(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� +

∫
�4

(
k(Tξ+χ )

∂Tξ+χ

∂n
− k(Tξ )

∂Tξ

∂n

)2

d�

= 2
∫
�4

(
k(Tξ+χ )

∂Tξ+χ

∂n
− k(Tξ )

∂Tξ

∂n

)(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� + o(‖χ‖),
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and accounting for k(Tξ+χ ) = k(Tξ ) + k ′(Tξ )T + o(‖T ‖) = k(Tξ ) + k ′(Tξ ) T + o(‖χ‖), we obtain

2
∫
�4

(
k(Tξ+χ )

∂Tξ+χ

∂n
− k(Tξ )

∂Tξ

∂n

)(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� + o(‖χ‖)

= 2
∫
�4

(
k(Tξ )

∂ T

∂n
+ k ′(Tξ )T

∂Tξ

∂n
+ k ′(Tξ )T

∂T

∂n
+ o(‖χ‖)

)(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� + o(‖χ‖)

= 2
∫
�4

(
k(Tξ )

∂ T

∂n
+ k ′(Tξ )T

∂Tξ

∂n
+ o(‖χ‖)

)(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� + o(‖χ‖)

= 2
∫
�4

(
k(Tξ )

∂ T

∂n
+ k ′(Tξ )T

∂Tξ

∂n

)(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� + o(‖χ‖),

and hence

J (ξ + χ ) − J (ξ ) =
∫
�4

(
k(Tξ )

∂ T

∂n
+ k ′(Tξ ) T

∂Tξ

∂n

)
2

(
k(Tξ )

∂Tξ

∂n
− ϕ

)
d� + o(‖χ ‖). (B8)

We assume that a test function w = w(x), x ∈ � satisfies the incompressibility condition

∇ · w = 0 (B9)

and the following boundary conditions

�1, �2 : w = 0, (B10)

�3 : σ̃ n = 0, (B11)

�4 : 〈w, n〉 = 0, σ̃n − 〈σ̃ n, n〉 n = 0. (B12)

Now we multiply eq. (B1) by a test function w = w(x) and integrate the resultant equation over �. Considering eqs (B9)–(B12) and after
integrating by parts, we obtain∫
�

〈
u, ∇ · (

μ(Tξ )
(∇w + ∇wT

))〉
dx −

∫
�

μ′(Tξ ) T
[∇w + ∇wT , ∇uξ

]
dx +

∫
�

Ra T 〈w, e2〉 dx = o(‖χ‖), (B13)

where the relation [∇w + ∇wT ,∇uξ ] can be represented in a symmetric form as [∇w + ∇wT ,∇uξ + ∇uξ
T ]/2. We multiply eq. (B2) by

a test scalar function q = q(x), x ∈ �, and integrate by parts the resultant equation over �. Assuming that the function q = 0 at �3 and
considering boundary conditions (B4)–(B7) for the vector function u, we obtain∫
�

〈u , ∇q〉 dx = 0. (B14)

We multiply eq. (B3) by a test scalar function z = z(x), x ∈ �, and integrate by parts the resultant equation over �. Considering boundary
conditions (B4)–(B7) for the function T and assuming that the function z satisfies the following boundary conditions: z = 0 at �1, �2, �3, and
z = 2(k(Tξ ) ∂Tξ

∂n − ϕ) at �4, the modified equation can be presented as∫
�

T
{∇ · (

κ(Tξ )∇z
) − κ ′(Tξ )

〈∇Tξ ,∇z
〉 + 〈

uξ , ∇z
〉}

dx −
∫
�

〈
u,∇Tξ

〉
z dx

+
∫
�4

(
κ(Tξ )

∂ T

∂n
+ κ ′(Tξ ) T

∂Tξ

∂n

)
z d� −

∫
�2

κ(Tξ )
∂ z

∂n
χ d� =o(‖χ‖). (B15)

Adding eq. (B15) to eq. (B13) and deducting eq. (B14), we obtain∫
�

〈
u,

{∇ · (
μ(Tξ )

(∇w + ∇wT
)) − z∇Tξ − ∇q

}〉
dx +

∫
�

T
{∇ · (

κ(Tξ )∇z
) − κ ′(Tξ )

〈∇Tξ ,∇z
〉 + 〈

uξ , ∇z
〉

− μ′(Tξ )
[∇w + ∇wT ,∇uξ

] + Ra 〈w, e2〉
}

dx +
∫
�4

(
κ(Tξ )

∂ T

∂n
+ κ ′(Tξ )T

∂Tξ

∂n

)
z d� −

∫
�2

κ(Tξ )
∂ z

∂n
χ d� = o(‖χ‖). (B16)
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Figure B1. Verification of the calculation of the gradient of the cost function J.

Now assuming that the expression in braces in eq. (B16) equals to zero, we obtain two equations for w and z, x ∈ �, as well as the equality
for two boundary integrals (to be used for determination of the increment and gradient of the functional):

∇ · (
μ(Tξ )

(∇w + ∇wT
)) − z ∇Tξ − ∇ q = 0,

∇ · (
κ(Tξ )∇z

) − κ ′(Tξ )
〈∇Tξ , ∇z

〉 + 〈
uξ , ∇z

〉 − μ′(Tξ )
[∇w + ∇wT , ∇uξ

] + Ra 〈w, e2〉 = 0,

and∫
�4

(
k(Tξ )

∂ T

∂n
+ k ′(Tξ )T

∂Tξ

∂n

)
z d� =

∫
�2

k(Tξ )
∂ z

∂n
χ d� + o(‖χ‖). (B17)

Finally, we obtain the adjoint problem (x ∈ �)

∇ · (
μ(Tξ )

(∇w + ∇wT
)) = ∇ q + z ∇Tξ ,

∇ · w = 0,

∇ · (
κ(Tξ )∇z

) + 〈
uξ , ∇z

〉 + Ra 〈w, e2〉 = μ′(Tξ )
1

2

[∇w + ∇wT ,∇uξ + ∇uξ
T
] + κ ′(Tξ )

〈∇Tξ , ∇z
〉
,

with the boundary conditions

�1 and �2 : z = 0, w = 0,

�3 : z = 0, σ̃n = 0, q = 0,

�4 : z = 2

(
k(Tξ )

∂Tξ

∂n
− ϕ

)
, 〈w, n〉 = 0, σ̃n − 〈σ̃n, n〉 n = 0.

The derived adjoint problem provides the formulae for increment and gradient of the functional (see eqs A8 and A17):

J (ξ + χ ) − J (ξ ) =
∫
�2

χ∇ J (ξ ) d� + O
(‖χ‖2

)
,

where ∇ J (ξ ) = k(Tξ ) ∂ z
∂ n |�2 . We have performed the χ -test by Navon et al. (1992) to verify the quality of the gradient of the cost functional

with respect to the control variable. For this aim we choose the following increment χ = ε∇ J (ξ )/‖∇ J (ξ )‖, where ε is small. We rewrite then
the last equation introducing a function of ε as

ϕ(ε) = J (ξ + ε∇ J (ξ )/ ‖∇ J (ξ )‖) − J (ξ )

ε ‖∇ J (ξ )‖ = 1 + O(ε).

For values of ε that are small but not too close to the machine zero, one should expect to obtain a value for ϕ(ε) that is close to 1. For
ξ = ξ (1) ∈ � (see the main text) the values of ϕ(ε) are shown in Fig. B1. It is clear that for a value of ε between 10−3 and 10−10, a near unit
value of ϕ(ε) is obtained. This validates the quality of the adjoint model for use in obtaining the gradient of the cost function with respect to
the control variable.
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