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S U M M A R Y
We present a new methodology for detection and space–time location of seismic sources based
on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale
seismic networks and local antennas. The method is designed to enhance coherence of the signal
statistical features across the array of sensors and consists of three steps: signal processing,
space–time imaging, and detection and location. The first step provides, for each station, a
simplified representation of seismic signal by extracting multiscale non-stationary statistical
characteristics, through multiband higher-order statistics or envelopes. This signal processing
scheme is designed to account for a priori unknown transients, potentially associated with a
variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance
in posterior steps. Following space–time imaging is carried through 3-D spatial mapping and
summation of station-pair time-delay estimate functions. This step produces time-series of 3-D
spatial images representing the likelihood that each pixel makes part of a source. Detection
and location is performed in the final step by extracting the local maxima from the 3-D
spatial images. We demonstrate the efficiency of the method in detecting and locating seismic
sources associated with low signal-to-noise ratio on an example of the aftershock earthquake
records from local stations of International Maule Aftershock Deployment in Central Chile.
The performance and potential of the method to detect, locate and characterize the energy
release associated with possibly mixed seismic radiation from earthquakes and low-frequency
tectonic tremors is further tested on continuous data from southwestern Japan.

Key words: Time-series analysis; Earthquake source observations; Seismic monitoring and
test-ban treaty verification; Subduction zone processes.

1 I N T RO D U C T I O N

A key challenge in both fundamental and applied earthquake seis-
mology is to detect and characterize the seismic signature of Earth’s
deformation, and to identify and classify the associated seismic
sources.

The rapid evolution of seismological instrumentation has led, in
the last decades, to the progressive densification of observation and
monitoring systems at all the scales, from micro-earthquake stud-
ies to large plate interface observatories. Modern seismic networks
can today be regarded as arrays, or antennas, of increasing den-
sity and spatial coverage. These systems record time-continuous,
high-sensitivity signals, progressively enlarging the seismic obser-
vation window, and making it possible to explore time and frequency
scales at which seismic sources were essentially unknown. As a re-
sult, spectacular discoveries unveiled the complexity and variety
of seismic sources associated with active deformations in different

tectonic and industrial exploitation contexts over a wide range of
spatial and temporal scales. Among these breakthroughs is the de-
tection of repeating micro-earthquakes on active fault surfaces (e.g.
Nadeau & McEvilly 1999); the discovery of episodic tremor and
slip (e.g. Obara 2002; Rogers & Dragert 2003; Nadeau & Dolenc
2005) and of low and very low frequency earthquakes (Ide et al.
2007; Ito et al. 2007; Beroza & Ide 2011); the observation of long-
period, long-duration seismic events during hydraulic stimulation
in shale reservoirs (Das & Zoback 2013a,b).

Today, seismological monitoring systems generate increasing
volumes of data, challenging the current source detection and ex-
traction methodologies. Thus, development and implementation of
advanced automated and scalable methods continues to be a central
issue. The main focus being on developing innovative schemes that
can fully exploit multiscale coherence of the seismic signal—over
wide range of wavelengths and frequencies—across dense arrays of
stations and improve source detection levels and resolution in the
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case of multiple sources exhibiting wide dynamic ranges and large
spatial extents.

The most common approach to automated earthquake detection
and location is based on a three-step procedure: (1) reduction of
individual waveform records to series of arrival time picks, that is,
phase picking; (2) association of time picks with specific seismic
phases and a potential common source; (3) location of earthquake
sources through traveltime inversion methods. Earthquake location
methodologies based on traveltime inversions have been pioneered
by Geiger (1912). These methods rely on local or global minimiza-
tion schemes of a cost function generally expressed as a term linked
to the data, that is, misfit between the observed and theoretical ar-
rival times of multiple seismic phases, and a regularization term
incorporating a-priori knowledge of the source (see Lomax et al.
2009, and references therein). A significant limitation of such de-
tection and location approaches is that automated picking is often
done on each seismogram individually, making little or no use of
the coherency information between stations. In the case of multiple
and possibly overlapping seismic events, like for example during
foreshock and aftershock sequences or seismic swarms, phase iden-
tification and event association can quickly become a difficult task,
leading to missed detections and/or reduced location resolution.

To address these shortcomings, alternative signal-based strategies
for automated detection and location of seismic sources, which
bypass the picking and association steps, have emerged in recent
years (see Cesca & Grigoli 2015). The general idea of these methods
is to convert seismic signals recorded at different stations into time-
series of 3-D spatial images, through reverse propagation, delay-
and-sum or migration techniques. Depending on the approach, each
3-D image can either represent a snapshot of the full seismic wave
field, an energy function or a likelihood of source location. The
locations of the seismic sources are then extracted as points in
space and time where the reconstructed wave field refocuses, or as
the local maxima of the energy or likelihood function (using peak
search algorithms or Bayesian approaches).

A first class of methods belonging to these alternative strate-
gies makes use of simulated reverse space–time propagation of the
recorded signals to produce time-series of 3-D spatial images of
the full seismic wave field (e.g. McMechan et al. 1985; Gajewski &
Tessmer 2005; Larmat et al. 2006; Xuan & Sava 2010). These meth-
ods are computationally demanding and require accurate knowledge
of the adjoint Green functions and the structure of the medium (e.g.
Baker et al. 2005), which, in case of most passive earthquake mon-
itoring systems, is rather problematic, and becomes the principal
factor limiting the accuracy and robustness of the methods.

A second class of signal-based methods performs, as preliminary
step, a signal transformation at the level of each individual record
(by constructing characteristic functions (CFs) based on a particular
defined transform) to enhance signal features for further spatial con-
version and source extraction processing stages. The transformed
signal is then converted into time-series of 3-D spatial images rep-
resenting an energy or likelihood function, through delay-and-sum
(or migration) techniques, using arrival time prediction combined
with a grid search strategy. Early examples of this second class of
methods involve CFs based on short-term over long-term average
(STA/LTA) in the context of earthquake location at regional and
local scales (Withers et al. 1999), and the Source Scanning Al-
gorithm, initially developed by Kao & Shan (2004, 2007) in the
context of tectonic tremors location, extended by Liao et al. (2012)
to earthquake aftershocks.

Many automated phase pickers or signal-based detection and lo-
cation methods follow the approach of Allen (1978, 1982) in defin-

ing the nonlinear transform of the seismic signal, called character-
istic function (CF). Signal CFs typically rely on the identification
of changes in energy, frequency content, polarization and/or other
characteristics of the seismic signal, with respect to the background
noise (see Withers et al. 1998 for a detailed review). The most fre-
quently used class of CF is based on the ratio between the signal STA
to its LTA (Freinberger 1962; Allen 1978, 1982). Recent works in-
troduced and investigated various alternative CFs, pointing out that
higher-order statistics (HOS), such as skewness and kurtosis, pro-
vide significantly better results than energy-based STA/LTA in the
conditions of low signal-to-noise ratio (SNR), and intense seismic
activity (e.g. Saragiotis et al. 2002; Gentili & Michelini 2006; Ku-
perkoch et al. 2010; Baillard et al. 2014). Different types of CFs,
based on STA/LTA or second and fourth order statistical moments,
have been recently developed and incorporated into the detection
and location schemes applied to data sets from regions with intense
seismic activity, such as induced micro-seismicity (Grigoli et al.
2013), and active volcanic areas (Drew et al. 2013; Langet et al.
2014). Most of these studies are based on an a-priori assumption
of known seismic environment with particular types of the seismic
sources and predominant frequencies of the signals (e.g. Kao &
Shan 2004; Drew et al. 2013; Grigoli et al. 2014; Langet et al.
2014). Such a-priori information remains problematic in the case
of complex seismic environments, with multiple sources spanning
wide spatial scales and high dynamic ranges.

In this paper we present a scalable strategy and several method-
ological contributions that are a first step towards the development
of an advanced automated multiscale framework for extraction (i.e.
detection, location and classification) of multiple sources with a
wide range of dynamic and spatial scales (e.g. earthquakes, tremors,
low-frequency events), minimizing the amount of necessary a-priori
information. The proposed strategy belongs to the class of signal-
based methods and consists in a number of adaptive processing
steps, designed to enhance coherent statistical features of the wave
field recorded across the array of sensors. Through the sequence of
these steps the raw signals are transformed into time-series of 3-D
spatial images, representing the likelihood of each pixel to be the
part of a seismic source.

We evaluate the performance of the proposed method on two
test cases: earthquake records from the International Maule After-
shock Deployment (IMAD) in Central Chile after the 2010 Maule
earthquake (Mw 8.7; Beck et al. 2014); and several earthquakes
and low-frequency tectonic tremors recorded in southwestern Japan
by the dense high-sensitive Hi-net monitoring system (Okada et al.
2004; Obara et al. 2005) operated by the National Institute for Earth
Science and Disaster Prevention (NIED).

2 M E T H O D O L O G Y

We introduce here the main steps of the proposed adaptive strategy
for extraction of multiple seismic sources exhibiting wide dynamic
ranges and spatial scales (Fig. 1a).

In the first step (Fig. 1b), the signal recorded at each station
is transformed into CF, designed to extract and enhance multi-
scale non-stationary statistical features, through multiband HOS
or envelope-based structural components. This stage is designed
to account for a priori unknown transient signals potentially asso-
ciated with a variety of sources, and to prepare data for a better
performance in posterior steps.

In the second step, station-pair time-delay estimate (TDE) func-
tions are evaluated by calculating local cross-correlations (LCCs) of
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Figure 1. Diagram of the detection and location scheme: (a) Overall flow of the method. (b) Step-by-step flow of the signal processing scheme transforming
an input seismic record into broad-band characteristic function (CF).

the transformed signal. The imaging functions are then constructed
through combination of the station-pair TDE functions and their
spatial mapping, according to theoretical phase time difference of
arrivals (TDOA). This step produces time-series of 3-D spatial im-
ages representing the likelihood of each pixel being part of a source.

In the third step, space–time location of the source is evalu-
ated using extraction algorithms, applied to the time-series of 3-D
images.

2.1 Signal transformation and CF

Seismic signals are time sequences regularly sampled and for the
most part non-stationary in time. Non-stationarity may be expressed
in various ways: varying powers from one time instance to the
next, changing correlation between neighbouring time samples, or
even non-stationary statistics, that is, higher moments, of the time
samples. When dealing with such signals, the most widely accepted

approach is to consider them as the realization of some stochastic
process.

The initial step of our detection and location scheme is statistical
signal analysis, aiming to construct a CF that extracts and enhances
the main properties and signatures of the signal non-stationarity. We
are going to deal with two main families of signals: short transients,
possibly associated with impulsive, earthquake-like sources and
emergent signals, characterized by slow variation of energy with
time, such as those related to tremor-like sources. We therefore use
two different signal transformations: higher-order statistics (HOS),
for impulsive signals, and energy envelope, for emergent signals.

HOS of a probability distribution of a random variable X are
given by the standardized central moments, which can be expressed
as

Sn = E[(X − μ)n]

(E[(X − μ)2])
n/2

= mn

m2
n/2

, (1)
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where E[·] is the expectation operator, μ is the mean defined by
μ = E[X ], m2 = σ 2 is the variance (second moment), and mn

is the nth central moment. Most widely used for the detection of
transients in non-stationary random signals are the third and fourth
normalized central moment HOS, known as skewness and kurto-
sis. Nonetheless, some of the recent applications of HOS in signal
processing algorithms (e.g. Lokajı́ček & Klı́ma 2008) demonstrated
that HOS of the fifth and sixth order can provide robust results in
detecting signals corresponding to acoustic emissions in low SNR
conditions. Here we will only focus on the fourth central moment
HOS (kurtosis), leaving the potential extensions to other statistic
moments as subject of future research.

Kurtosis is defined as a fourth moment about the mean normal-
ized by the square of the second moment or variance. Following
eq. (1) it can be written as:

S4 = E[(X − μ)4]

(E[(X − μ)2])
2

= m4

m2
2
, (2)

where m4 is the fourth central moment. The above expres-
sion defines a population kurtosis. For a discrete signal u(t) =
{u(t1), u(t2), . . . , u(tM )}, we define a HOS CF as a sample kurto-
sis, expressed as:

CFHOS (ti ) ≡ Ŝ4 (ti ) =
1
M

∑M
i=1 (u (ti ) − μ̂)4(

1
M

∑M
i=1 (u (ti ) − μ̂)2

)2
, (3)

where M is the number of samples in the chosen window, and μ̂ is
the estimate of the mean for M samples.

As discussed in Saragiotis et al. (2002), presence of transient
changes in the non-stationary statistics of the signal, like phase
arrivals associated with earthquake source, temporally generates
rapidly increasing values of kurtosis function. This makes kurtosis
HOS an efficient CF for extracting the information on the onset
of the short transient signals. However, kurtosis function by itself
cannot be used as the detector of the seismic phases, since the
large values of kurtosis can be associated with any transient pro-
viding a significant change in signal statistics. A following step,
including coherency analysis across the network, is necessary for
differentiating a kurtosis maxima corresponding to an accidental,
non-correlated spike/noise from the arrival of the phase that is co-
herent over the array’s stations.

On the other hand, the signal associated with tremor-like sources
is characterized by slow energy transients, lasting several tens of
seconds and not having clear separate impulsive phases, embedded
within even slower variations of energy with time, of the order
of minutes to hours (e.g. Obara 2002). For this kind of signals a
more appropriate characterization is one based on the amplitude or
energy modulation, that is, the energy envelope (e.g. Obara 2002;
McCausland et al. 2005; Wech & Creager 2008; Maeda & Obara
2009; Suda et al. 2009; Ide 2010), which is sensitive, at the same
time, to the slow-varying background energy level and to the time-
localized energy transients. We shall see, in the next sections, that
the relative timing of localized energy transients can be used to
detect and locate a tremor source.

We thus define an envelope CF based on root mean square (RMS)
envelope, expressed as

CFenv (ti ) ≡ RMS (ti ) =
√∑M

i=1 u(ti )
2

M − 1
, (4)

where M is the number of samples in the analysed discrete signal.

2.1.1 Recursive scheme for CF computation

To improve computation efficiency and to make the approach suit-
able for possible real-time implementations, we estimate the HOS
and envelope CFs using a recursive scheme, similar to the one de-
scribed in Langet et al. (2014), which provides an efficient way for
accumulating time-averaged statistics. An estimate of the recursive
exponential average μ̂(t) for a signal u(t) is expressed as

μ̂ (ti ) = C · u (ti ) + (1 − C) · μ̂(ti−1), (5)

where u(ti ) is the ith sample of the signal, and C : 0 ≤ 1 − C ≤ 1 is
the decay constant.

By directly extending the above definition to the estimates of the
second and fourth central moments defined in eqs (2) and (3) we
obtain following expressions:

m̂2 (ti ) = C · (u (ti ) − μ̂ (ti−1))2 + (1 − C) · m̂2 (ti−1)

m̂4 (ti ) = C · (u (ti ) − μ̂ (ti−1))4 + (1 − C) · m̂4(ti−1). (6)

The final formulation of recursive HOS CF for each time step ti

can then be defined by the ratio of two quantities in eq. (6) according
to the kurtosis definition provided in eq. (2):

CFHOS (ti ) ≡ Ŝ4 (ti ) = m̂4 (ti ) /(m̂2 (ti ))
2

= C · (u (ti ) − μ̂ (ti−1))4 + (1 − C) · m̂4 (ti−1)

(C · (u(ti ) − μ̂(ti−1))2 + (1 − C) · m̂2(ti−1))
2
. (7)

Following the same idea, we define the recursive envelope CF as
a single component recursive RMS envelope of the recorded signal
u(t), using the following expression:

CFenv (ti ) ≡ ̂RMS (ti ) =
√

C · u2 (ti ) + (1 − C) · ̂(RMS (ti−1) )2

(8)

where C is a decay constant, similarly to eqs (5) and (6).
In the above formulations, the decay constant C can be seen

as a smoothing factor, defining how fast the memory of older
data points will be discarded. We express the decay constant as
C = �T/Tdecay, where �T is the data sampling interval and Tdecay

represents the time-length of the averaging scale. Strictly, the lower
limit of time-averaging scale Tdecay is defined by the sampling in-
terval (i.e. Tdecay ≥ �T ). In practice, it should be sufficiently large
to allow a meaningful, stable representation of the signal statistical
properties. The upper limit of Tdecay depends on the type of analysed
data, the time scale of the targeted transients, and the total length
of the signal. In general, this parameter should be set separately for
each particular case study, through a preliminary testing step.

Illustration of the adopted recursive scheme is provided in Fig. 2
on an example of two local earthquakes (Fig. 2a), and a 1 hr tec-
tonic tremor record (Fig. 2c). Fig. 2(b) illustrates how the kurtosis
function (eq. 7) reacts to P-wave arrival onsets, and shows that
the decay tail of the local kurtosis maxima increases with Tdecay. The
amplitude of the kurtosis peak does not depend on the amplitude
of the signal itself—the small and the large event have comparable
values of kurtosis—and is rather related to the information on how
fast and significant the change in the statistics of the signal asso-
ciated with the transient is (e.g. how impulsive is the arrival of the
phase).

Fig. 2(d) shows a comparison of envelope functions (eq. 8) for
different values of Tdecay for the tectonic tremor seismogram. The
envelope reacts to local signal energy and the time-averaging scale
Tdecay acts as a smoothing factor.
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Figure 2. (a) Seismogram of typical earthquakes recorded at a local station. The inset figure shows an enlarged view of preceding smaller event. (b) Kurtosis
HOS CF of the record in panel (a) calculated using the recursive formulation (eq. 7), for different decay constants Tdecay. (c) 1 hr raw seismogram of a typical
energetic tectonic tremor recorded at a Hi-net station in Shikoku (southwestern Japan). (d) Envelope CF of the record in panel (c) calculated using the recursive
RMS scheme (eq. 8) for different decay constantsTdecay.

2.1.2 Time–frequency representation and broad-band CF

Seismic signals are broad-band by their nature. These properties are
better characterized through a time–frequency representation of the
signal (i.e. a spectrogram), like the short-time Fourier transform,
the continuous wavelet transform, or the S-transform (see Tary
et al. 2014 for a review). A signal processing scheme combining
the time-domain and frequency-domain analysis will potentially
yield a more complete representation of the signal, by providing an
estimate of both the time at which a particular transient occurs and
its frequency characteristics, without requiring a-priori knowledge
of its frequency content (e.g. Gibbons et al. 2008).

Figs 3(b) and (f) show an example of spectrograms (S-transform;
Stockwell et al. 1996) calculated for the same signals shown in
Fig. 2: a recording of several local earthquakes (Fig. 3a), and a 1
hr tectonic tremor seismogram (Fig. 3e). The spectrogram of the
earthquake record (Fig. 3b) indicates the presence of an energy
arrival associated with a smaller earthquake preceding the main
event, observable on the original seismic record and detected by
the kurtosis CF, as shown in Fig. 2(b). Some later energy can as
well be identified on the spectrogram within the coda of the large
earthquake. These signals, predominant at frequencies over 10.0 Hz,
are small earthquakes hidden in the coda of the larger event (see inset
in Fig. 3a), and are not detected by the kurtosis CF of the original,
non-filtered record (Fig. 2b). Looking at the spectrogram of the
tectonic tremor record (Fig. 3f), one can identify both the duration
and predominant frequency range of 1.0–15.0 Hz corresponding to
the main tremor event, as well as short duration broad-band energy
spikes corresponding to local earthquakes (e.g. at ∼3000 s).

In order to properly extract non-stationary and frequency-
dependent statistical features of a signal u(t), we seek to extend the
HOS and envelope CFs (eqs 7 and 8) to the time–frequency trans-
form of the signal (U (t, f )). Therefore, a time–frequency HOS CF
(CFHOS(t, f )) is constructed by calculating the kurtosis HOS of the
time–frequency signal U (t, f ) along the time axis for each discrete
frequency f . An example of such CF is shown in Fig. 3(c). The

time–frequency HOS CF clearly depicts late energy arrivals, corre-
sponding to the smaller earthquakes in the coda of the large event,
and appearing as local maxima at frequencies larger than 10.0 Hz
(e.g. at ∼130 s and ∼155 s).

We also define a time–frequency envelope CF (CFenv(t, f )),
which can be seen as a smoothing (through recursive RMS com-
putation) along the time axis of the time–frequency signal U (t, f ).
The effect of this transformation is to enhance significant energy
peaks and reduce background noise (Fig. 3g).

As a final stage of the time–frequency analysis, a single broad-
band CF (CFTF(t)) can be composed from the time–frequency CF
(CF(t, f )). The strategy for performing the composition can differ in
terms of the selected frequency interval [ fmin : fmax], and operator.
Here we use two alternative operators: the maximum and the RMS,
defined respectively as:

CFTF (t) = max
f

CF (t, f ) , f ∈ [ fmin, fmax] (9)

and

CFTF (t) =
√

∫ fmax
fmin

(CF (t, f ))2d f

fmax − fmin
. (10)

Selecting one operator over another depends on the type of infor-
mation to be included into the CF: the RMS operators will provide an
averaged overview for the given frequency interval, while the maxi-
mum is generally a better choice for enhancing narrow-band energy
arrivals hidden in the coda of larger events, or masked by a noisy
background. The choice of frequency interval allows including or
disregarding some parts of the information (e.g. low/high-frequency
noise, impulsive/emergent transients, . . . ).

An example illustrating the influence of selected frequency range
([ fmin, fmax]) is provided in Figs 3(d) and (h). Here, a RMS com-
position operator is applied. The example shows that, including
the higher frequencies into CFTF(t) allows incorporating the en-
ergy arrivals from the later smaller events hidden in the coda of
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Figure 3. (a–d) Time–frequency representation applied to a seismogram of a M 5.2 local earthquake: (a) raw seismogram. The inset figures show the enlarged
views of preceding smaller event, and an early aftershock in the coda of M 5.2 earthquake respectively; (b) spectrogram (S-transform) of the seismogram in
panel (a); (c) time–frequency kurtosis CFHOS(t, f ) of the spectrogram in panel (b); and (d) examples of broad-band CF (CFTF(t)) composed from transformed
spectrogram (c) in different frequency ranges. (e–h) Time–frequency representation applied to a seismogram of a tectonic tremor recorded at a Hi-net station in
southwestern Japan: (e) 1 hr raw seismogram; (f) spectrogram (short-time Fourier transform) of the raw seismogram in panel (a); (g) time–frequency envelope
CFenv(t, f ) of the spectrogram in (f); (h) examples of summary CF recomposed from transformed spectrogram (g) in different frequency ranges.

large earthquake (Fig. 3a) that do not appear on the kurtosis CF
of the original non-filtered record (Fig. 2b). Similarly, in the case
of tectonic tremor (Fig. 3h), since most of its energy is contained
in the lower frequency range, using high frequencies (≥20.0 Hz)
for constructing the CF will result in eliminating from CFTF(t) the
information on tremor’s energy characteristics, and enhancing the
impact of short-duration transients (e.g. earthquakes).

2.1.3 Time–frequency representation using multiband filter
(MBF) algorithm

The problem of estimating the spectrum of a time-limited signal is a
non-trivial issue with multiple trade-offs, depending on the type of
selected transform, and the characteristics of the signal. Moreover,
this problem can become computationally challenging, especially
when it is applied to large data sets.

An efficient alternative to the time–frequency decomposition is a
time-domain analysis scheme making use of filter-banks. Here we
follow the multiband filter (MBF) recursive scheme of Lomax et al.
(2012), detailed in Appendix A1. The MBF algorithm provides

a time–frequency decomposition of the signal as a set of band-
pass filtered time-series (U (t, fn)). This is achieved by running the
original record u(t) through a predefined bank of narrow band-
pass filters covering the interval of interest [ fmin, fmax], and having
n = 0, . . . , Nband central frequencies fn (Fig. A1). Filtering can be
efficiently implemented through a cascade of simple low-pass and
high-pass, one-pole recursive filters.

Examples of the MBF signals U (t, fn) for the two types of the
seismic records, earthquake (Fig. 4a) and tectonic tremor (Fig. 4e),
are given in Figs 4(b) and (f), respectively. Filtered traces in Fig. 4(b)
are obtained by applying twelve logarithmically spaced filters with
central frequencies covering the range of 0.02–50.00 Hz to the
earthquake record shown in Fig. 4(a). For the case of tremor record
(Fig. 4e), a filter-bank of twelve logarithmically spaced filters in the
range of 2.00–40.00 Hz is used. Resulted time–frequency decom-
posed signals U (t, fn) are shown in Fig. 4(f).

Following the same procedure as that presented for the spectral
time–frequency decomposition of the signal, we estimate the time–
frequency CFs using the output of the MBF analysis. Once the set of
filtered signal is generated, a set of CFs (CF(t, fn)) is calculated by
applying the recursive kurtosis (Fig. 4d), or alternatively recursive
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Figure 4. (a–d) Illustration of MBF algorithm and broad-band CFs on an example of a local earthquake: (a) Raw broad-band seismogram. (b) Filtered traces.
(c) Broad-band CF—CFTF(t) composed over all the frequencies according to eq. (9). (d) Kurtosis CFs of filtered signals. (e–h) Illustration of the MBF algorithm
and resulted final CF on an example of a tectonic tremor recorded at a Hi-net station in southwestern Japan: (e) Raw 1 hr seismogram. (f) Filtered traces.
(g) Broad-band CF—CFTF(t) composed over all the frequencies according to eq. (10). (h) RMS envelope CFs of filtered signals.

envelope to each of the signals U (t, fn) (Fig. 4h). A single time
dependent broad-band CF (CFTF(t)) can then be constructed using
one of the operators discussed above (eqs 9 and 10). For the example
in Fig. 4, a maximum operator (eq. 9) is used for the earthquake
dataset, while a RMS summation operator (eq. 10) is used for the
tremor signal.

In general, spectral and time-domain (MBF) time–frequency de-
compositions should provide similar characterization of the signal,
when the number of filters in the MBF filter-bank is equal to the
number of scales in the spectrogram (see e.g. Mill & Brown 2005).
A comparison between the CFs of raw record, the broad-band CFs
obtained from spectral decomposition, and the broad-band CFs ob-
tained from MBF analysis is shown in Figs 5(a) and (b) for the case
of earthquake and tectonic tremor records, respectively. It can be
observed that the spectral and MBF time–frequency representations
provide similar results.

2.1.4 HOS derivative and generalized CF

HOS (including kurtosis) are asymmetric functions that ramp up
quickly and decay with time, when computed over a sliding window
(eq. 3) or with a recursive scheme (eq. 6; Fig. 6). Furthermore, the
HOS maximum is delayed with respect to the onset of the transient,
since a number of samples are required to provide stable statistics.
To reduce this effect, we look at the positive derivative of CFHOS(t),
defined as:

ĊF
+
HOS (t) =

{
ĊFHOS (t) if ĊFHOS (t) ≥ 0

0 elsewhere
(11)

where ĊFHOS(t) is the time derivative of the (broad-band) HOS
CF. This new function has the local maximum corresponding to
the maximum gradient of kurtosis, which is closer to the onset of

the transient (Fig. 6). To account for timing uncertainty, we finally
convolve the positive derivative of HOS CF with a Gaussian window,
having the width equal to the width of the HOS CF (Fig. 6).

We now have all the elements to define a generic CF for our
problem, incorporating both the HOS and envelope CFs:

CF (t) =
{

ĊF
+
HOS (t) ∗ e−t2/4σ 2

CFenv (t)
(12)

where ‘∗’ is the convolution operator and σ = Tdecay/2. In the above
equation, CFHOS(t) and CFenv(t) are either simple or broad-band
CFs.

Such a definition allows for a flexible signal processing scheme in
which representation of the signal can be carried by selecting a sin-
gle transformation that is best suited for the problem, or running the
two transformations in parallel, if a more complex characterization
of the signal is targeted. This can be especially useful for character-
izing and classifying the seismic sources in the environments where
accumulated energy is released through different mixed processes
such as, for example, regular and slow earthquakes in subduction
zones.

2.1.5 Example application of the signal processing scheme

The proposed processing scheme provides an efficient way of signal
characterization that accounts for the broad-band and non-stationary
nature of the recorded signals, as well as for the variability in size
and energy release associated with the seismic sources. The output
of this step is a generic broad-band CF (eq. 12) accounting for a
priori unknown transient signals, and preparing data for a better per-
formance in detection and location steps. In Fig. 1(b), we provide a
summarized block-diagram of the signal processing steps presented
thorough the discussions above. Application of these steps to the
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Figure 5. (a) Comparison of the kurtosis CF (black line) for a raw record-
ing of an earthquake (grey line), and the broad-band kurtosis CFs com-
posed from the transformed spectrogram (blue line), and the MBF analysis
(red line). (b) Comparison of the RMS envelope CF (black line) of a raw
recording of a tectonic tremor (grey line), and the broad-band envelope
CFs composed from the transformed spectrogram (blue line), and the MBF
analysis (red line).

Figure 6. (a) Seismogram of a typical earthquake recorded at a local seismic
station. (b) 50 s zoom on the M 5.2 earthquake record corresponding to the
green window in panel (a). (c) Red line—broad-band MBF kurtosis HOS
CF of record (b) estimated using eq. (7), and decay constant Tdecay = 1.0 s;
green line—derivative of the CF; blue line—generic broad-band MBF kur-
tosis CF, resulted from convolution of the CF positive derivative with the
Gaussian window of σ 2 = Tdecay/2 (eq. 11).

entire seismic network (e.g. Figs 7a and d) will result in replace-
ment of the original raw seismic records (Figs 7b and e) by their
broad-band CFs (Figs 7c and f) extracting a particular feature of
the seismic signal. This provides the desired CFs necessary for ap-
plying coherency-based detection and location methods to the local
and regional wide aperture arrays. The estimated broad-band CFs
serve as input time-series for the detection and location algorithm
(Fig. 1a).

2.2 Space–time imaging for detection
and location problem

2.2.1 Station-pair time-delay estimate (TDE) function

Let’s consider a set of receivers {r i }, i = 1, . . . , N recording the
signal generated by a source at location q. The seismic field due to
this seismic source associated with the traction T operating in the
direction j at q and time t ′, recorded by the ith station (i = 1, . . . ,
N) can be expressed as (e.g. Aki & Richards 2002):

ui (t) = G j i (t ; q, t ′) ∗ T j (q, t ′) + εi (t) (13)

where G j i (t ; q, t ′) is the elastodynamic Green’s function between
the source and the ith station located at r i , εi (t) is additive noise,
and ‘∗’ is the convolution operator.

A correct evaluation of eq. (13) requires detailed knowledge of
the spatiotemporal parameters of the source, as well as of the prop-
agation medium for accurate estimation of the Green’s functions,
which is, seldom the case. The time–frequency signal processing
scheme presented in previous section has an effect of replacing the
observed seismic signals u(t) = [u1(t), . . . , uN (t)]T with a set of
generic CFs cf (t) = [c f 1(t), . . . , c f N (t)]T (eq. 12; Fig. 5). Eq. (13)
can be then modified as:

c fi (t) = CF[G j i (t ; q, t ′) ∗ T j (q, t ′) + εi (t)] (14)

where CF[·] is the time–frequency CF operator corresponding to
the processing scheme illustrated in Fig. 1(b).

The CF defined in eq. (12) is mainly sensitive to phase or energy
arrival times, through its HOS and RMS components, respectively
(see e.g. Fig. 5). We, therefore, simplify eq. (14), assuming that the
propagation term of the CFs of the signal is a simple time shift
τi (q), depending on the distance from the source to receiver and the
effective velocity of the medium. We thus write eq. (14) as:

c f i (t + τi (q)) = s̃(q, t) (15)

where s̃(q, t) is an effective source term, responsible of the phase
or energy arrivals that we are characterizing (incorporating noise
term—ε̃i (t)), and τi (q) ≡ τi (q, r i ) is the traveltime from the source
to the ith station, expressed as τi (q) = ∫ r i

q c−1(r)dr , with c(r) being
an effective propagation velocity in the medium.

We next partition the receivers into pairs, and denote � the set
of independent pairs. For a source s at q and a pair p: [r i , r j ] ∈ �,
the theoretical time difference of arrival (TDOA) is defined as

�τp (q) = τi (q) − τ j (q) (16)

We now define the functions of TDE (TDE functions) at each
time t , for each receiver pair p and source s, as a measurement

(t,�τ ) satisfying the following conditions:

(t,�τ ) ∈ [0, 1] (17)

�τ ∈ [−�τp,max, �τp,max] (18)
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Figure 7. (a–c) Example of MBF signal characterization applied to IMAD post-seismic network in Chile: (a) Map view of central Chile; coloured triangles
indicate the IMAD seismic stations. The colour of triangle corresponds to the institution to which the station belongs. White star shows the epicentre of the
M 5.2 earthquake after Rietbrock et al. (2012). (b) Record section of UD component seismograms corresponding to the 3 min record of M 5.2 earthquake at
the stations. Dark yellow line indicates the P-wave moveout. Grey triangle marks the record presented in Figs 2(a)–6(a), shown in grey. (c) Record section of
broad-band kurtosis HOS CFs from MBF analysis in the frequency range 0.02–50.00 Hz. Dark yellow and grey lines indicate, respectively, the move-out of
P-wave corresponding to M 5.2 event, and later small event in its coda. (d)–f) Example of MBF signal characterization scheme applied to Hi-net stations in
southwestern Japan: (d) Map view of southwestern Japan; grey triangles indicate the Hi-net seismic stations. White stars show the epicentres of earthquakes
during 2100–2200 JST, 2012 May 27, from JMA catalogue. White circle correspond to the position of the tectonic tremor activity during same period reported
by NIED. (e) Record section of 1 hr EW component seismograms of the tremor activity recorded during 2100–2200 JST, 2012 May 27 at Hi-net stations. Red
shadow lines mark the times corresponding to the two earthquakes from JMA catalogue. (f) Broad-band RMS envelope CFs, estimated by applying the MBF
analysis in the frequency range 2.0–40.0 Hz to the records in panel (e).
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where �τp,max is the maximum time delay for a given pair of stations,
depending on the distance between the stations and the velocity of
the medium.

The measurements correspond therefore to a p-dimensional vec-
tor of TDE functions:

y (t,�τ ) = f (�τ, cf (t)) (19)

with

y(t) = [ 1(t, �τ ), . . . , Np
(t,�τ )] (20)

where Np is the total number of station-pairs. Among possible TDE
functions are properly normalized local (i.e. time-dependent) cross-
correlation functions.

Each TDE (t,�τ ) at station-pair p, defines a set
of 3-D potential source locations that, in a case of con-
stant velocity model, are given by hyperboloid objects (Font
et al. 2004). Therefore, at each time t , the TDE function itself,
which is a continuous function, can be the basis of a likelihood
function. Selecting a spatial source location q, and assigning the
TDOA and TDE function to a pair of stations p, the likelihood
position of the source is defined as:

P ( y (t) |s̃ (q)) = (t, τp(q)) ∈ [0, 1] (21)

where P(·|·) represents a conditional likelihood, normalized in
[0, 1].

We refer to the likelihood position of the source expressed by
eq. (21) as the pairwise Spatial Likelihood Function (SLF). Estima-
tion of pairwise SLF relies on TDE functions, which, as mentioned
previously, can be represented by any properly normalized local
cross-correlation (LCC) function, as long as conditions defined in
eqs (17) and (18) are satisfied. Thus, eq. (21) can be written as:

P ( y (t) |s̃ (q)) = CCp(t,�τp(q)) (22)

2.2.2 Local cross-correlation (LCC)

LCC gives a time-dependent measure of similarity between the two
signals by estimating their cross-correlation in the neighbourhood
of each data point (e.g. Hale 2006a; Fomel 2007). This provides an
important advantage when detection and location of multiple, pos-
sibly mixed seismic sources is targeted. Most commonly, estimation
of LCC is performed in a sliding window (e.g. Birchfield & Gillmor
2002; Birchfield 2004), using the following formulation:

CCp(t,�τp(q)) =
∫ t+W/2

t−W/2
c fi (t

′ − τi (q))c fi (t
′ + τ j (q))dt ′

=
∫ t+τ j +W/2

t+τ j −W/2
c fi (t

′ − �τp(q))c fi (t
′)dt ′. (23)

Here, W is the size of the selected time window.
Direct implementation of eq. (23), for each time sample, can

lead to substantial demand of computational resources. We there-
fore use a different approach, based on the algorithm proposed by
Hale (2006a), which achieves better efficiency by avoiding explicit
windowing of the signals for each time sample, implied by eq. (23).
Moreover, calculations can be implemented recursively.

The details on the LCC calculation scheme of Hale (2006a) are
provided in Appendix A2. In general terms, the idea consists in
computing LCC as convolution of a Gaussian filter and the product
of the shifted signals. This results in an entirely recursive implemen-
tation, provided that Gaussian filtering is performed using recursive

scheme (e.g. Young & van Vliet 1995). For a given station-pair
p : [r i , r j ], and corresponding CFs, this can be expressed as:

LCCp(t,�τp (q)) ≡
+∞∫

−∞

c fi

(
t ′ − �τp (q)

2

)
c f j

(
t ′ + �τp (q)

2

)
× v(t − t ′, �τp(q))dt ′ (24)

with v(t − t ′, �τp(q)) being a Gaussian filter, defined as:

v (t, l) ≡ e−�τp (q)2/4σ 2
e−t2/σ 2

(25)

where the variance σ 2 corresponds to the half-width of Gaussian
function used for filtering. The choice of this parameter should
reflect uncertainties incorporated into the velocity model, and in
the method for computing the TDOA (�τp(q)), and thus should be
set for each case separately. The LCC function estimated following
this algorithm is a 2-D function of time t and TDOA—�τp(q)
∈ [−�τp,max, �τp,max] (eq. 18); its values lie in the interval [0, 1],
since both kurtosis HOS and envelope CFs are always positive
functions. Thus, LCC satisfies the condition in eq. (17).

An example of LCC calculated using this scheme for two syn-
thetic traces composed of identical triangular signals, with differ-
ent time-lags, is shown in Fig. 8. The 2-D local cross-correlation
LCC(t,�τ ) —function of time t and discrete time-lag �τ—has
local maxima at the point with coordinates [tLCCmax ; �τLCCmax ] (see
Fig. 8b). Once these coordinates are known, it is possible to identify
the time samples of the cross-correlated signals that correspond to
this LCCmax as:

t1 = tLCCmax − �τLCCmax

2
, and t2 = tLCCmax + �τLCCmax

2
. (26)

We shall see that this property is useful for origin time estimation.
An example of LCC for a pair of actual signals is shown in

Figs 9(a) and (b) using a MBF kurtosis CF, applied to the earthquake
records from IMAD stations in Chile. The example illustrates how
LCC is able to provide a continuous estimation in time of the time-
lag between the two signals.

2.2.3 Imaging function for detection and location problem

Eqs (21) and (22) define the pairwise SLF consisting of weighted
non-overlapping 3-D objects which, in the case of constant veloc-
ity model, are reduced to hyperboloids. The actual location of the
source can be then obtained by combining the pairwise SLFs of
all independent station-pairs in p: [r i , r j ] ∈ �. Among the com-
bination operators of interest are those commutative, monotonic
associative and bounded between [0, 1]. Here we use the summa-
tion operator, which satisfies all the above conditions, and express
the combination of the pairwise SLFs at each time t as:

P ( y (t)|s̃(q)) = 1

Np

∑
p∈� (t,�τp(q))

= 1

Np

∑
p∈�LLCp(t,�τp(q)) (27)

where Np is the number of station-pairs used in summation.
The above equation defines the complete SLF in 4-D space–

time coordinates. In order to simplify the implementation of the
algorithm, we compute eq. (27) over a set of sliding time windows
of size Wp = �τp,max, equal to the maximum possible time delay
for a given pair of stations (p ∈ �). It is possible then to reduce
the TDE function LCCp(t,�τp(q)) for each of the station-pairs
to a single-variable function of time-lag (�τp(q)) over this time

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/205/3/1548/652771 by guest on 20 February 2022



1558 N. Poiata et al.

Figure 8. (a) Example of LCC calculated for two normalized synthetic traces—signal 1 (green line) and signal 2 (yellow line). (b) Zoomed-in view at the
portion of the LCC function and synthetic signals highlighted in panel (a); corresponding time-lag �τ , and picked times of the signals (arrival times) estimated
from maximum LCC are marked by dotted lines. (c) LCCMAX function, corresponding to the TDE function used in the detection and location scheme, estimated
by applying eq. (28).

Figure 9. (a) In black—transformed MBF kurtosis GFs corresponding to seismograms (plotted in grey) from two stations in central Chile. The MBF analysis
is done in the frequency range 0.02–50.00 Hz, and kurtosis is calculated assuming Tdecay = 1.0 s. The green shadowed window highlights the maximum
of CFs corresponding to the P-wave arrival from the M 5.2 earthquake. (b) LCC of the CFs in panel (a). (b′) Zoomed-in view showing the LCC function
highlighted by window in panels (a) and (b), and the corresponding LCCMAX TDE function. (c) One horizontal and two vertical cross-sections through the
centre of 3-D grid of theoretical TDOA for the stations 1 and 2, calculated assuming homogeneous model with the constant P-wave velocity of 6.0 km/s.
(d) One horizontal and two vertical cross-sections passing through the hypocentre location of the M 5.2 (Rietbrock et al. 2012) earthquake, showing the
projection of LCCMAX TDE function (b′) on the theoretical differential traveltime grid (c).
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window Wp . Here we use the maximum operator to construct this
single-variable LCC function:

LCCMAX,p(t̃, �τp(q)) = max{LCCp(t,�τp(q))|t
∈ [t̃ − Wp/2, t̃ + Wp/2]} (28)

where [t̃ − Wp/2, t̃ + Wp/2] is the time window centred at t̃ .
Going further with the simplification, we may use a single time

window for all the station pairs, with size fixed to the largest possible
time-lag:

W = max{�τp,max

∣∣p ∈ �} (29)

This reduces the complexity of TDE functions manipulation
taking, however, into account the move-out corresponding to all
possible source locations q in the 3-D volume of interest.

Fig. 8(c) provides an illustration of LCCMAX,p(t̃, �τp(q)) con-
structed over a given time window on an example case of two
simple synthetic signals (Fig. 8c).

The maximum likelihood location of the source expressed by the
normalized imaging function in eq. (27) at each time t = t̃ will then
be:

P( y(t̃)|s̃(q)) = 1

Np

∑
p∈�

LCCMAX,p(t̃, q) (30)

where LCCMAX,p(t̃, q) corresponds to the LCC function defined in
eq. (28) mapped (projected) onto TDOA estimated in a common
spatial coordinate system, under the assumption of a propagating
phase and a given velocity model.

When working with CFs calculated for real signals (Fig. 9b′),
the LCCMAX,p(t̃, q) function will possibly contain multiple peaks,
and the time delay for the true source may not correspond to the
highest peak. The summation over the multiple pairs of stations
(eq. 30) handles this problem, enhancing the SLFs corresponding
to the sources that are coherent for most of the receivers, and atten-
uating those of incoherent signals.

The LCC-based estimation of the TDE functions proposed here
shares the same foundation with the equal differential time (EDT)
location method formulation used for arrival-time earthquake lo-
cation (e.g. Font et al. 2004; Lomax 2005); or the TDE approach
used for determining the location of sound source in acoustics (e.g.
Birchfield & Gillmor 2002; Birchfield 2004). However, instead of
picking the maximum of cross-correlation over a given time win-
dow, and thus estimating the value of EDT, we stack the entire
maximum LCC function (eq. 30). This allows taking into account
all the available information before deciding on a possible detection,
resulting in more robust behaviour of the method. Such delaying of
decision-making is the base of the principle of least commitment
(e.g. see Birchfield & Gillmor 2002; Birchfield 2004).

In Appendix A3, the presented imaging function is compared
with the traditional beamforming and amplitude stack (often used
in migration), demonstrating the effectiveness of using a cross-
correlation term in constraining the location likelihood.

2.3 Space–time detection and location of seismic sources

2.3.1 Spatial location of seismic sources

The formulation of the detection and location problem provided here
(e.g. eq. 21) implies that theoretical TDOA for assumed phase(s) and
a given velocity model, are estimated in a designed 3-D coordinate
system for all station-pairs before the summation in eq. (30) is

performed. In fact, our SLFs are composed of the TDE functions
projected (or mapped) onto the TDOA assigned to pairs of stations.

Calculation of TDOA is an independent step of our method that
can be done by any available tool. Once defined, a 3-D grid covering
the volume in which potential seismic sources are expected, one can
calculate beforehand theoretical traveltimes for any possible source-
station configuration, under an assumption of a velocity model (1-D,
2-D or 3-D), and propagating phase (e.g. P, S, or P and S). Here we
use the Grid2Time routine of NonLinLoc program by Lomax (2005,
2008) based on the Eikonal finite-difference scheme of Podvin &
Lecomte (1991).

A potential source location (SLF) is then estimated by mapping
the TDE functions according to pre-calculated TDOAs, and sum-
ming them over the pairs of stations. This procedure of mapping
implies the change of support for the TDE function from time-lag
�τp(q) to spatial coordinates q = (x, y, z). An illustration of this
step for a single pair of stations is given in Fig. 9 (and Supporting
Information Fig. S1). The example shows a TDE function (Fig. 9b′)
calculated for a time window containing the P-wave arrival from
a local earthquake that is mapped on the TDOA calculated for a
constant velocity model (Fig. 9c). Resulting SLF (Fig. 9d) cor-
responds to a hyperboloid passing through the hypocentre of the
source, marked by the star (Fig. 9d). When performing the sum-
mation of these SLFs over the increasing number of station-pairs
(Fig. 10), the intersections of hyperboloid objects will define a re-
gion in space representing the total likelihood of source location.
This corresponds to the imaging function in eq. (30). After all the in-
formation has been taken into account, the location with the highest
likelihood is selected as the estimate for the position of the seismic
source. The procedure is repeated for each position of the sliding
window, providing thus a framework for an automated technique
of analysing the continuous data, yielding the information on the
spatial and temporal evolution of the seismic energy sources.

2.3.2 Origin time estimation

The expression of LCC in eq. (24) is independent of the origin time
of the earthquake. Thus, a traditional 4-D problem of hypocentre
location is reduced to a search for a 3-D maximum likelihood spatial
position of the source, provided by the imaging function in eq. (30).
Once the position of the seismic source is determined, we estimate
a posteriori the origin time T0 as the average of the observed arrival
times (ti ) minus the predicted traveltimes (τi (q)) for the peaks of
detection functions that contributed to the corresponding imaging
function. Following Moser et al. (1992) this can be expressed as:

T0 (q) =
∑Np

i=1 wi (ti − τi (q))∑Np
i=1 wi

, (31)

where Np is the number of station pairs and wi are weights attributed
to the observed arrival times ti . The weighting coefficients for each
station can be expressed as, for example, a mean of the pairwise
SLFs to which corresponding station is contributing. However, in
the current version we assume a homogeneous weighting equal to
one for all the arrival times.

Here, the arrival times ti are estimated using eq. (26) for each pair
of stations that contributes to the imaging function, corresponding
to the maximum likelihood location of the source q. Thus, we obtain
(Np − 1) estimates of ti from the same hypocentre for each of the
stations. Although not exploited here, this information has a poten-
tial of providing statistical characteristics and error estimations of
the observed arrival times.
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Figure 10. Examples of imaging functions (eq. 30) for the case of (a) two, (b) three, (c) four and (d) 22 stations.

3 A P P L I C AT I O N E X A M P L E S

We further present several examples illustrating the application of
the proposed detection and location method for regular earthquakes
and tectonic tremor in subduction zones. An example illustrating
the performance of the method on a synthetic dataset is provided in
Appendix A4.

3.1 Detecting and locating earthquakes

As discussed previously (Section 2.1.2), a CF based on broad-band
signal representation and kurtosis HOS, has an advantage of empha-
sizing short transients (e.g. small earthquakes hidden by stronger,
narrow-band noise) that often would be missed by the traditional
signal processing algorithms (e.g. using pre-defined band-pass fil-
ters, and/or STA/LTA as CFs). We already demonstrated the ad-
vantage of such broad-band CFs for enhancing signals associated
with small earthquakes hidden in the coda of the larger event on an
example record corresponding to a local M 5.2 earthquake (Fig. 3a;
Rietbrock et al. 2012) recorded at the IMAD stations from Central
Chile (Fig. 7).

To illustrate the performance of the method in detecting and
locating earthquakes using continuous broad-band records from a
regional network, we selected a subarray of 22 stations of the IMAD
post-seismic network (Figs 7a and 11). The total length of analysed
data is 3 min. First, broad-band kurtosis CFs are estimated apply-
ing the MBF filter algorithm assuming a bank of 12 filters with
logarithmically spaced central frequencies covering range of 0.02–
50.00 Hz. The decay constant for recursive kurtosis calculation,
Tdecay (eq. 6), is set to 1.0 s and is assumed to be constant for all
subbands of the filter. This assumption of the constant Tdecay is a
reasonable simplification, since we are mostly interesting in pick-
ing precise onset time of the phase arrivals corresponding to the
aftershock seismicity recorded at a regional scale, and dominant in
high-frequency seismic energy. For a more general case, were both
low frequency and high frequency energy arrivals should be ac-
counted for, frequency-dependent Tdecay assumption might be more
appropriate. The final generic broad-band HOS CFs (eq. 12) are
shown in Fig. 11(d). For this example, only vertical components of
the records are considered under the assumption of P-wave propa-
gation. Theoretical P-wave traveltimes are calculated using homo-
geneous velocity model with the constant velocity of 6.0 km/s, on
the grid of 200 × 200 × 50 km3. Next, 3-D maximum likelihood
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Figure 11. Detection and location example for regular earthquakes. (a) A horizontal and two vertical sections thorough the maximum of imaging function
corresponding to a small local earthquake not identified in the catalogue of Rietbrock et al. (2012), and shown according to a selected colour scale. Green star
indicates resulted location. White triangles correspond to the location of the IMAD station from central Chile. (b) Same as panels (a), but for the M 5.2 local
earthquake. White star shows the hypocentre of the earthquake after Rietbrock et al. (2012). (c) Same as panels (a) and (b) for of an early aftershock, not listed
in the catalogue. (d) Transformed MBF summary kurtosis CFs (black lines) of the original UD component seismograms (grey lines) of the IMAD stations
used in example. The green rectangle indicates the time windows corresponding to the time intervals of the imaging functions in panels (a)–(c). Vertical red
bars show the theoretical arrival times for determined locations (green stars).
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location of the sources are obtained by stacking the TDE functions
(corresponding to maximum LCCs of normalized CFs, projected on
the theoretical TDOA grids) over sliding windows. The size of the
sliding window, as well as the maximum time-lag for calculating
LCC, is set to 27 s, according to the maximum possible time-lag
for the given station configuration (eq. 29). Simultaneous detection
and location are performed when the value of imaging function,
normalized by the number of station-pairs, exceeds the threshold
value of 0.7. Our method could identify three events within the 3
min of the analysed continuous data. Maximum likelihood loca-
tions, as well as the normalized imaging functions, are shown in
Figs 11(a)–(c). In particular, the result corresponding to the M 5.2
earthquake is presented in Fig. 11(b). Obtained location is in good
agreement with that of Rietbrock et al. (2012), shown by the white
star: the difference between the two locations is of about 3 km in
horizontal and 8 km in vertical direction. Larger hypocentral depth,
found in our case, can be attributed to the simple homogenous ve-
locity model that does not take into account shallow, low velocity
structures. However, it should be noticed, the catalogue location has
a relatively high likelihood of 0.75.

Figs 11(a) and (c) show the locations obtained for an event pre-
ceding the M 5.2 earthquake, and a small event following it, and
hidden in the coda (see e.g. Fig. 2a). Red vertical lines in Fig. 11(d)
mark the corresponding arrivals. These events could not be identi-
fied in the catalogue of Rietbrock et al. (2012).

3.2 Detecting and locating an energetic tectonic tremor

The detection and location approach is further tested on the Nankai
subduction zone in southwestern Japan. This area is characterized
by intense seismic activity, comprising a wide variety of phenom-
ena observed by the dense Hi-net seismic network of NIED. The
tectonic tremors in this area are currently routinely located by NIED
using the hybrid technique of Maeda & Obara (2009), in combina-
tion with clustering method of Obara et al. (2010). Together with
the catalogue of background seismic activity published by JMA,
these offer a perfect case-study for evaluating the capability and po-
tential of the proposed methodology to detect and locate the energy
release associated with possibly overlapping seismic radiation from
earthquakes and low-frequency tectonic tremors.

We first present an example of detecting and locating a high-
energy part of the signal associated with a tectonic tremor using the
MBF envelope CFs (Fig. 4g). The analysis follows the same steps
as in previous example (see diagram in Fig. 1). We first estimate
CFs corresponding to broad-band envelope CFs though the MBF
algorithm assuming a bank of 12 filters with logarithmically spaced
central frequencies covering range of 2.0–40.0 Hz. The decay con-
stant for recursive RMS envelope calculation, Tdecay (eq. 8), is set to
0.5 s for the central frequency band of MBF filter-bank. For other
frequencies, the decay constants are calculated using the following
weighting scheme:

T n
decay = Tdecay · fNband/2/ fn (32)

This provides a frequency-dependent RMS envelope estimation
(e.g. Fig. 4h). The generic broad-band envelope CF is further com-
posed by applying the RMS operator (eq. 10) to the time–frequency
MBF envelopes (Fig. 4g). The resulted detection functions for the
horizontal EW components and a subset of 22 stations, selected
from the overall dataset (Fig. 7f), are shown in Fig. 12. In this ex-
ample we only analysed 20 min of recording corresponding to the
most energetic part of the tremor. Next, 3-D maximum likelihood

locations are obtained by stacking the TDE functions projected on
the theoretical TDOA grids following the steps in Fig. 1(a). Here,
we work under the assumption of S-wave propagation, and calcu-
late theoretical traveltime grids for a homogeneous velocity model
with the constant velocity of 3.5 km/s (Maeda & Obara 2009). Only
station-pairs with inter-station distance not exceeding 80 km were
used. The size of the window and the maximum time-lag for LCC
are set to 60 s, according to the maximum distance between the
stations (eq. 29). The resulting 3-D maximum likelihood location
of the source for a single time window, associated with the high-
energy part of the tectonic tremor within the analysed time interval,
is shown in Fig. 12(a). For comparison we also show the 1 hr av-
eraged tectonic tremor location provided by the NIED catalogue
(white star in Fig. 12a). Our location is compatible with that of
NIED, taking into account that the 1 hr averaged location is associ-
ated with the tremor activity within an aperture of 7 km (Obara et al.
2010), and that the depth of the tremor is fixed to the subduction
plate interface, at 30–40 km.

3.3 Detecting and locating complex events:
tectonic tremors and local earthquakes

It may very often be the case when the tectonic tremor activity
overlaps with the background regular seismicity. To provide an ex-
ample of such application for the described method we selected
a 1 hr record from HI-net, NIED stations in Shikoku (southwest-
ern Japan), covering the period of 2012 May 31 from 21:59:00 to
22:59:00 JST (Japan Standard Time). NIED catalogue indicates a
rather low-energy tremor activity during this hour, located in the
northeast part of Shikoku (blue circle in Fig. 13a). According to the
JMA seismicity catalogue, during the same hour a M 1.2 local earth-
quake occurs in the central part of the region (blue star, Fig. 13a).
Visual inspection of the corresponding record section (Fig. 13b)
indicates that the tectonic tremor and earthquake are overlapping in
time. Tremor activity starts before the earthquake, continuing after
it for several minutes. On the record section, the local earthquake
can be identified as a short transient with high amplitude at around
1000 s.

We applied the detection and location scheme to these 1 hr
records. Envelope CFs were calculated using the same MBF filter-
bank, and decay constant settings as presented above (eq. 32), ap-
plied to the two components of horizontal waveforms (combined
NS and EW). The TDE functions, corresponding to the maximum
LCC functions, were projected according to S-wave theoretical trav-
eltime for a homogeneous velocity model with the constant velocity
of 3.5 km/s. By running a sliding window of 60 s, with a shift of
3 s, across the records, a location corresponding to the maxima of
the normalized imaging function is provided for every time window
for which this maxima exceeds the value of the trigger, set to 0.875.
To avoid including incoherent information into the detection and
location problem by cross-correlating all the available station-pairs,
we divided them in two subarrays: 22 southwest stations and 19
northeast stations. The final locations are obtained by combining
the information from the two subarrays. The results are summa-
rized in Figs 13(a) and (b). The distribution of colour-coded circles
in Fig. 13(a), corresponding to the resulted trigger locations, indi-
cates that the tremor activity, during which the local M 1.2 event
occurs, corresponds to the cluster of locations about 10 km south
from the earthquake’s hypocentre. That tremor event is not reported
in the NIED catalogue. We could as well recover the tremor ac-
tivity that was reported by NIED catalogue and located northeast.
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Figure 12. Detection and location example for an energetic part of a tectonic tremor. (a) A horizontal and two vertical sections thorough the maximum of
imaging function shown according to the selected colour scale. Green star indicates resulted location. White star shows the location of the tremor associated
with the period of 2100–2200 JST, 2012 May 27, reported by NIED. Black triangles show the location of the Hi-net stations in southwestern Japan used in
the example. (b) 1 hr MBF RMS envelope CFs corresponding to the EW component seismograms of the tremor activity (plotted in grey) recorded at selected
Hi-net stations. The green shadow rectangles indicate the time window corresponding to the spatial stack in panel. (a) Vertical red bars show the theoretical
arrival times for determined location (green star).

Analysis of the temporal evolution of the results (Fig. 13b) indicates
that the two tremor episodes are partially overlapping in time. Most
probably the tremor located close to the local earthquake was missed
by the routine procedure of NIED because this part of the record was
disregarded due to the large amplitude arrivals corresponding to the
earthquake. Since in our method records are analysed in continu-
ous manner, it was possible to locate this cluster of tremor activity.
Thus, detection and location schemes based on the analysis of the
coherency of continuous seismic records across the stations, and
making use of efficient signal processing algorithm, can potentially
provide a more complex and revealing picture of seismic energy
release processes and its space–time evolution. This example em-
phasizes the ability of the presented method to detect and locate
overlapping seismic sources in complex environments.

4 D I S C U S S I O N S A N D C O N C LU S I O N S

We presented a new method for detection and location of seismic
sources that lays the ground towards the development of fully auto-
mated multiscale framework for extraction (i.e. detection, location
and classification) of multiple sources with a wide range of dynamic
and spatial scales.

The proposed method is a multistep procedure consisting of sig-
nal processing and detection and location schemes designed to

enhance coherent statistical features of the wave field recorded
across the array of sensors. The employed signal processing scheme
makes use of multiband filter (MBF) algorithm and provides a
frequency-dependent representation of non-stationary statistical
features, through higher-order statistics (HOS) and envelope-based
characteristic functions (CFs). The two types of CF can be either
used separately, or run in parallel in the detection and location
scheme, depending on the type of information one wants to use,
or the type of signals that are targeted. Kurtosis CFs can be suc-
cessfully applied for analysing and extracting short transients, like
earthquakes, possibly hidden within strong, narrow-band noise. For
the analysis of seismic records corresponding to tectonic tremors,
like those from Hi-net stations in southwestern Japan, the use of both
kurtosis and envelope CF can provide interesting complementary in-
formation (e.g. detecting low-frequency earthquakes within tectonic
tremor activity). Thus, the choice of transform used for estimating
the CF will depend strongly on the desired features to be extracted
from the signal, allowing to take into account the variability in size
and energy release associated with the seismic sources. The signal
processing scheme plays a double role of providing a representa-
tion of recorded seismic signal and extracting frequency-dependent
information. The main goal of this step is to account for a-priori
unknown transient signals, potentially associated with different
sources, and to prepare data for a better performance in the de-
tection and location part.
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Figure 13. Detection and location example for mixed tectonic tremor and earthquake sources. (a) Map view of southwestern Japan, and two vertical cross-
sections showing the spatial and temporal distribution of the two tremor episodes and a local earthquake detected and located by analysing the continuous
recordings from Hi-net stations (triangles), covering period of 2200–2300 JST, 2012 May 31. The subarrays of 22 southwest and 19 northeast stations are
shown by green and grey triangles, respectively. The circles correspond to the location of the maxima of 3-D stacked SLF function (value for the trigger was
set to 0.875). The colour of the circles denotes the timing of the triggered time-windows relative to the beginning of the records. Blue circle shows the location
of tremor activity reported by NIED for the analysed time period. Blue star corresponds to the epicentre of the earthquake indicated in JMA catalogue. (b)
Horizontal, EW component, seismograms filtered in 2.0–40.0 Hz frequency band, for Hi-net stations exemplifying the analysed dataset. Coloured rectangles
mark in time the corresponding triggered spatial locations. The colour of the window is related to the colour of the two subarrays of station in panel (a).

The detection and location step of the method is divided in two
parts. First, station-pair time delay estimate (TDE) functions are
evaluated by cross-correlation of the transformed signals. Then, si-
multaneous detection and location is performed by estimating the
array imaging function corresponding to sum of TDE functions
mapped to the corresponding theoretical time difference of arrivals
(TDOAs), calculated in a common 3-D coordinate system, under
the assumption of propagating phases for a given velocity model.

Through the sequence of these procedures, the signal CFs are trans-
formed into time-series of 3-D spatial images, representing the
likelihood of each pixel to be the part of a seismic source. The final
source location is then provided as corresponding to the maxima of
the 3-D spatial time-series maps. Assumed imaging function allows
taking into account all the available information before making the
decision about event detection, resulting in a more robust behaviour
of the method (e.g. Birchfield & Gillmor 2002; Birchfield 2004).
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The capability of the method to detect and locate small events hid-
den in the coda of larger ones (e.g. during an aftershock sequence)
is exemplified on the case of the IMAD post-seismic deployment in
Chile. This example emphasizes the importance of the multiband
signal characterization scheme and the efficiency of HOS in extract-
ing low-energy transients embedded in narrow-band, stronger back-
ground noise. The capability and potential of the method to detect
and locate the energy release associated with overlapping seismic
radiation from earthquakes and low-frequency tectonic tremors is
further tested on the Nankai subduction zone in southwestern Japan.
Both examples confirm that the proposed methodology can provide
significant improvement to existing automated methods.

In the form presented here, the method is based on the assump-
tion of a single phase, either P (earthquake location) or S (tremor
location), using vertical or horizontal components. It can be how-
ever easily extended to include both P and S-phase arrivals at the
same time. Such developments represent an important near-future
expansion that will be presented in the following studies.

Being based on TDE, thus having a cross-correlation term in
the imaging function, the detection and location scheme provides
accuracy similar to that of beamforming (Appendix A3). A main
difference with standard beamforming is that the proposed method
does not require a delay-and-sum process (i.e. performing an explicit
grid-search over all the possible source locations), but rather a direct
mapping of the TDE function onto the 3-D space (i.e. a change of
support). This property, along with a fully recursive implementation,
makes the approach computationally efficient. This, as well, implies
the suitability of the method for future real-time applications and for
a straightforward parallelization. The parallel version of the code
(BackTrackBB) was used for the application example presented
in Section 3.3. It required 22 min to produce the final locations
shown in Fig. 13(a), on a machine with 16 cores (2 x Intel Xeon
E5-2690 2.90 GHz) and 64 GB of RAM. The BackTrackBB code
is distributed on open-source basis, and can be downloaded from
http://backtrackbb.github.io.

The proposed methodology is not limited to large-scale regional
seismic networks, but can be as well applied at much smaller phe-
nomenological scales like, for example: fault zone microseismicity
or artificially induced seismicity associated with mining or fluid
injection activity.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. (a) In black—multiband filtering (MBF) root mean
square (RMS) envelope characteristic functions (CFs) correspond-
ing to the seismograms of a tectonic tremor (plotted in grey)
recorded at two Hi-net stations in southwestern Japan. The MBF
analysis is done in the frequency range 2.0–40.0 Hz, and RMS
envelopes are calculated using the variable Tdecay scaled with the
frequency. The green shadowed window highlights the maximum
of CFs corresponding to the most energetic part of the tremor
during 1 hr. (b) LCC of the CFs in panel (a). (b′) Zoomed-
in view showing the LCC function highlighted by window in
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panels (a) and (b), and the corresponding LCCMAX function. (c)
One horizontal and two vertical cross-sections through the cen-
tre of 3-D grid of theoretical TDOAs for stations 1 and 2, cal-
culated assuming homogeneous model with the constant S-wave
velocity of 3.5 km/s. (d) One horizontal and two vertical cross-
sections through the hypocentre location of the tremor reported by
NIED for 1 hr period of 2100–2200 UT, 2012 May 27, and showing
the projection of LCCMAX function (b′) on the theoretical TDOA
grid (c) (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/
gji/ggw071/-/DC1).

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the paper.

A P P E N D I X E S

A1 Recursive multiband filtering (MBF) algorithm

The MBF formulation implemented here is based on the multiband
processing scheme of Lomax et al. (2012) used in the FilterPicker
algorithm built upon the definition of recursive filters.

Filter recurrence relations provide a way to determine the output
samples of a filter in terms of the input samples and the preced-
ing output. Given a discrete sampled signal u(ti ), simple, one-pole
recursive high-pass and low-pass filters can be defined as follows:

U HP (ti ) = CHP[U HP (ti−1) + u (ti ) − u (ti−1)]

U LP (ti ) = U LP (ti ) + CLP[u (ti ) − U LP (ti−1)] (A1.1)

where CHP = w/(w + �T ) and CLP = �T/(w + �T ) are filter
constants, �T is the sampling rate of the data, w = 1/2π f is
the corner period of the filter, and f , its corner frequency. The
filter constants CHP and CLP—defined by the corner frequency f —
determine how fast will the output of the filter decay, and how
strongly it will be influenced by small changes in the input. The
main advantage of implementing the recursive scheme of (A1.1)
is its computational efficiency since it involves only logical and
arithmetical calculations.

A broad-band characterization of the signal u(ti ) can be achieved
by running the signal through a bank of recursive filters defined by
eq. (A1.1). Following the scheme of Lomax et al. (2012), we define a
filter-bank of narrow band-pass filters with central frequencies fn ∈
[ fmin, fmax], n ∈ [1, Nband] (Fig. A1). The number of frequency
bands Nband depends on the desired sampling of the frequency space:
one can, for instance, use linearly or logarithmically spaced central
frequencies fn . The set of filtered signals Un(ti ) is obtained by
applying a cascade of two high-pass and two low-pass, one-pole
recursive filters (eq. A1.1). This is equivalent to a two-pole band-
pass filter (Fig. A1), and can be expressed in following way:

U HP1
n (ti ) = CHP

n

[
U HP1

n (ti−1) + u (ti ) − u (ti−1)
]

U HP2
n (ti ) = CHP

n

[
U HP2

n (ti−1) + U HP1
n (ti ) − U HP1

n (ti−1)
]

U LP1
n (ti ) = U LP1

n (ti ) + CLP
n

[
U HP2

n (ti ) − U LP1
n (ti−1)

]
U LP2

n (ti ) = U LP2
n (ti ) + CLP

n

[
U LP1

n (ti ) − U LP2
n (ti−1)

]
. (A1.2)

Each of the filters defined in the relation above is equivalent to
a single-pole recursive infinite impulse response (IIR) filter. The
broad-band representation of the signal consists in the set of sig-
nals Un(ti ) ≡ U LP2

n (ti ) corresponding to the output of the last filter

Figure A1. An example of frequency response for a filter-bank composed
of eleven 2 high-pass and 2 low-pass serial recursive filters.

in eq. (A1.2). The overall computational time of MBF increases
proportionally with Nband.

A2 An efficient algorithm for estimating local
cross-correlation (LCC)

The cross-correlation of two continuous signals f (t) and g(t) is
defined by

cc(l) = ( f � g)(l) ≡
∞∫

−∞

f (t)g(t + l)dt (A2.1)

where l denotes cross-correlation lag, and ‘�’ is the correlation
operator. The centred definition of cross-correlation can be obtained
by the change of variable t → t − l/2 :

cc(l) = ( f � g)(l) ≡
∞∫

−∞

f
(

t − l/
2

)
g

(
t + l/

2

)
dt (A2.2)

which is symmetric in lag variable l.
Eq. (A2.1) can be written for two discrete sampled signals, f (ti )

and g(ti ), as:

cc (l) = ( f � g) (l) ≡
∞∑

i=−∞
f (ti )g (ti + l) (A2.3)

LCC has the advantage of allowing to account for variations in
signal features that are not constant for the duration of the signal or
the selected time window, allowing estimating the cross-correlation
in the vicinity of a given point.

A straightforward implementation of LCC would imply that the
signal should be first truncated/tapered to zero outside of the speci-
fied window, and then cross-correlated. The procedure will be then
repeated for a number of times corresponding to the number of as-
sumed (overlapping) windows. An estimation of the LCC of the two
signals f (ti ) and g(ti ) will imply thus a computational complexity
O(Ns × Nw × Nl ), where Nw is the number of non-zero points in
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the time widow, Ns number of samples on which the windows are
centred, and Nl is the number of time lags. This computational
complexity can be high, especially for large windows.

The formulation of Hale (2006a) provides an efficient way of cal-
culating the LCC for every sample of the two signals. This means
that the number of window for which the cross-correlation is cal-
culated is equal to the number of samples in the signals. To obtain
an LCC, a smooth window function ω(t) is applied to each of the
signals f (t) and g(t) before the computation. Hale (2006a) uses
the Gaussian windowing function, due to its specific properties al-
lowing to simplify significantly the LCC estimation algorithm (for
more details refer to the original paper).

Let’s consider that two windowed signals f (t, t ′) and g(t, t ′),
defined as follows:

f
(
t, t ′) ≡ f (t) ω

(
t ′ − t

)
g

(
t, t ′) ≡ g (t) ω

(
t ′ − t

)
(A2.4)

where ω(t ′ − t) = e
−(t ′−t)2

2σ2 is a Gaussian window with the half-width
σ , centred at t = t ′. Getting back to the definition (A2.1), the LCC
(or the cross-correlation of the two windowed signals) is defined
as:

LCC(t ′, l) ≡
∞∫

−∞

f (t, t ′)g(t + l, t ′)dt. (A2.5)

The change of variables t → t − l/2 leads to a centred form of
cross-correlation:

LCC
(
t ′, l

) ≡
∫ ∞

−∞
f

(
t − l

2
, t ′

)
g

(
t + l

2
, t ′

)
dt

=
∫ ∞

−∞
f

(
t − l

2

)
g

(
t + l

2

)
× ω

(
t ′ − t + l

2

)
ω

(
t ′ + t + l

2

)
dt

=
∫ ∞

−∞
f

(
t − l

2

)
g

(
t + l

2

)
v

(
t ′ − t, l

)
dt (A2.6)

where the Gaussian window v(t, l) is defined as:

v(t, l) ≡ ω

(
t + l

2

)
ω

(
t − l

2

)
= e−l2/4σ 2

e−t2/σ 2
. (A2.7)

Eq. (A2.6) shows that for any lag l the local cross-
correlation LCC(t ′, l) can be calculated for all time samples t = t ′

by convolving Gaussian filter v(t, l) with the product of shifted
signals f (t − l

2 ) and g(t + l
2 ).

Here we work with discrete sampled signals f (ti ) and g(ti ), and
thus, we need to compute LCC(t ′, l) for sampled integer values of
t ′ and l. Taking this into consideration, we re-write the discrete
version of eq. (A2.6), avoiding the linear interpolation for the odd
samples of integer time lags l as:

LCC (t, l) =
∞∑

i=−∞
h̃ (ti , l) v (t − ti , l) (A2.8)

where ti is the current time sample, v(t − ti , l) is the Gaussian filter,
and h̃(ti , l) is expressed as :

h̃(ti , l) ≡ ( f (ti − l f )g(ti + lg) + f (ti − lg)g(ti + l f ))/2

with l f ≡ l/2� and lg ≡ �l/2�.

The above suggests that the LCC estimated following the algo-
rithm of Hale (2006a) is a 2-D function of lag l and time t that can
be computed in two steps:

(1) Estimate a sum of the sample by sample product of shifted
signals f and g given by h̃(ti , l).

(2) Filter the sum with a Gaussian window.

With the recursive implementation of the Gaussian filter in
eq. (A2.8) (Young & van Vliet 1995; Hale 2006b), the cost of
computing the LCC is proportional to the number of samples to
be filtered Ns . It is independent of the width of Gaussian window,
meaning that the complexity of computing LCC(t, l) for any single
lag l is O(Ns). Therefore, the complexity of computing Nl lags of
Ns LCC is O(Nl × Ns), the same as that for Nl lags of a single
non-LCC.

Without entering into much detail, we will mention that the recur-
sive Gaussian filtering scheme (Young & van Vliet 1995) resumes
to applying a cascade of two IIR filters (implemented recursively) to
the input data. The corresponding filter constants are being defined
depending of the value of σ in the Gaussian kernel. The value of σ

is in general selected by trial-and-error, depending on the desired
goal of the filtering, and the type of filtered signal. For detailed
explanation please refer to the paper of Young & van Vliet (1995).

A3 Comparison of TDE imaging function
and beamforming

Traditional delay-and-sum beamforming provide the maximum
likelihood location of the source by computing the energy of the
reconstructed signal ui (t) as:

Pbeam (q) =
t0+W∫

t0−W

[
N∑

i=1

ui (t + τi (q))

]2

dt (A3.1)

After some algebraic manipulations, the above expression can be
re-written in the following form:

Pbeam (q) = 2
N∑

i=1

N∑
j=i+1

t0+W∫
t0−W

ui (t + τi ) u j (t + τ j )dt

+
N∑

i=1

t0+W∫
t0−W

ui
2 (t + τi ) dt (A3.2)

The integral under the summation in the first term of the above
equation represents the CCp(�τp(q)) cross-correlation of equation
(e.g. eq. 24); while the second corresponds to the combined energy
that can be attributed to a given source q in all the signals (Ei (τi (q))):

Pbeam (q) = 2
N∑

i=1

N∑
j=i+1

CCp(�τp(q)) +
N∑

i=1

Ei (τi (q)) (A3.3)

Thus, the difference between the method presented in this paper,
and the classical beamforming is the energy term. It can be demon-
strated, however (Birchfield & Gillmor 2002; Birchfield 2004), that
taking into account the total energy of the signal does not provide
better constraint on location, acting more as a scaling factor. A
synthetic example comparing beamforming with the TDE method
based on LCC-functions proposed here (eq. 24) and with amplitude
stacking is presented in Fig. A2. The figure shows how the cross-
correlation term dominates in the beamforming image (Fig. A2a),
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Figure A2. (a) One horizontal and two vertical cross-section illustrating the example of a beamforming energy stack calculated for the synthetic signals in
panel (d). White star corresponds to the assumed location of the source. (b) Same as panel (a) but for the current method using the imaging function based on
stacked TDE functions mapped on theoretical traveltime grids. (c) Same as panels (a) and (b) for the amplitude stack. (d) Synthetic signal corresponding to the
epicentre location shown by white star in (a)–(c), calculated for the stations under consideration.

which has a spatial focusing similar to the LCC image (Fig. A2b).
In contrast, methods based on a simple amplitude stack provide less
spatial constraint (Fig. A2c).

The main difference between the LCC-based methodology pro-
posed here and standard beamforming is that our approach does
not require a—computationally expensive—delay-and-sum process
(i.e. performing an explicit grid-search over all the possible loca-
tions of the source), but rather relies on direct mapping of the LCC
function into the 3-D space (through a change of function sup-
port). This, along with a fully recursive implementation, makes the
approach computationally effective.

A4 Synthetic tests

The performance of the method is tested on a synthetic dataset set-
up for the station geometry of Hi-net in southwestern Japan and
composed of 21 stations (Fig. 12a). We consider four test events
located within the 3-D local XYZ grid with 1 km grid spacing
defined as in Fig. 12a. An isotopic source is associated with each of

the four events. The test is designed to demonstrate the efficiency of
both time–frequency signal processing and the space–time detection
and location schemes.

The synthetic signal at each station corresponds to a Berlage
wavelet (e.g. Aldridge 1990) given by:

w (t) = AH (t) tne−αt cos(2π f0t + φ0), (A4.1)

where H (t) is the Heaviside unit step function (H (t) = 0 for t ≤ t0

and H (t) = 1 for t > t0); A, n, α and φ0 are non-negative adjustable
parameters controlling the shape of the wavelet, f0 is the predomi-
nant frequency, and t0 corresponds to the onset time of the wavelet
given by the propagation time from the location of the test source
to the station. Berlage wavelet respects the condition of causal-
ity required by the physical phenomena of wave propagation, and
provides a suitable approximation of the short transient signal cor-
responding to a phase arrival. The final test signal S(t) is com-
posed by superposition of a band-limited time-series of filtered
white noise, having a flat amplitude spectrum in the frequency
band of 0.5–30 Hz, and the wavelet w(t). The SNR between the
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Figure A3. (a) Synthetic signal used for the test composed of white noise filtered in the frequency range 0.5–30.0 Hz and Berlage wavelet (eq. A4.1).
(b) Synthetic signal filtered in the frequency range 2.0–8.0 Hz. Red dashed line marks the onset of the Berlage wavelet. SNR for this frequency band is 3.
(c) Berlage wavelet calculated using following constants: A = 1, n = 2, α = 20, φ0 = −π/2 and f0 = 5 Hz. The phase arrival time is t0 = 20 s, representing
the onset of the wavelet and marked by red dashed line. (d) Amplitude spectra of synthetic signal in panel (a). Grey dashed line marks the central frequency
(f0 = 5 Hz) of the Berlage wavelet.

noise and the wavelet in the frequency range 2.0–8.0 Hz (around
the predominant frequency of the wavelet) is set to a predefined
value. We generate synthetic signals with SNR = [3.0; 2.0; 1.5;
1.0] for the test. This synthetic signals allow testing the efficiency
of the time–frequency signal processing scheme using MBF ap-
proach, since there will be a narrow frequency band for which
the signal of interest is significantly over the level of the noise.
Fig. A3 illustrates the major features of the synthetic signal de-
scribed above (assumed SNR = 3.0). The application of the MBF
time–frequency signal processing scheme for extracting the infor-
mation on timing (t0) of the wavelet is shown in Fig. A4. The
example compares the kurtosis CF calculated on the original time-
series (Fig. A4e) and the broad-band kurtosis CF obtained through
the MBF algorithm (Fig. A4d). Note the difference in kurtosis CFs
at time t0 = 20 s (onset time of the wavelet), and general improved
SNR for the recomposed broad-band kurtosis CF. This illustrates
the efficiency of MBF scheme in combination with HOS kurtosis
CF for extracting the information on narrow-band transient sig-
nals even if the predominant frequency of the signal of interest is
not known, and there exists at least a narrow band of frequencies
for which signal of interest is over the level of the background
noise.

We further assume a location of a test source (Fig. A5c) and gen-
erate simplified synthetic waveforms following the procedure de-
scribed above for all stations. The Berlage wavelet will be recorded
at station i at a time t0i , corresponding to the traveltime from test
source to the station. We consider a homogeneous constant velocity
model (3.5 km/s) and S-wave propagation. Assumed value of the

threshold for imaging function used in declaring detection is 0.75.
The methodology including MBF signal processing and space–time
detection and location schemes is tested first on this single source
location and synthetic signals with different SNR = [3.0; 2.0; 1.5;
1.0] (eq. A4.1). We could confirm that with the exception of the case
with SNR = 1.0 the source was successfully located. This is mainly
because broad-band kurtosis CFs have clear maxima around the
arrival times of the signals generated by the test source. Retrieved
maximum likelihood locations are consistent with the location of
the test source within the limits not exceeding the grid spacing set
to 1 km (Fig. A6). In the case of synthetic signals with SNR = 1.0,
the maximum of the imaging function is below the detection level
(Fig. A5d), thus no detection was triggered. Concerning the origin
times, the absolute time shifts with the respect to the true origin time
vary in the range 0.02–0.08 s, increasing with the decrease of SNR.
An example of a retrieved location for synthetic time-series with
SNR = 2.0 is shown in Figs A5(a)–(c). It should be noticed that the
real location of the source corresponds to the likelihood (imaging
function) exceeding value of 0.8. We compared as well these results
with the locations obtained using kurtosis CF applied directly to
the original synthetic records skipping the time–frequency MBF
analysis step. In general, we could recover the location of the test
source similar to those that used MBF kurtosis CFs, however with
much smaller values of maximum stack and worse focusing (e.g.
Max_stack = 0.61 for SNR = 2.0). Thus, having the maximum
value of the imaging function below the trigger threshold, in the
example shown in Figs A5(d) and (e), location of the source could
not be determined.
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Figure A4. Illustration of MBF algorithm on an example of synthetic signal in Fig. A3. (a) Traces filtered with filter-bank of narrowband filters covering the
frequency range 0.5–45 Hz. (b) Original raw synthetic signal. Dashed line marks the onset of Berlage wavelet. (c) Kurtosis CFs of filtered signals. (d) Red
line: broad-band kurtosis CF—CFTF(t) composed over all the frequencies according to eq. (9). Blue line: broad-band MBF CF, resulted from convolution of
the kurtosis’ (red line) positive derivative with the Gaussian window of σ 2 = Tdecay/2 (eq. 11). (e) Same as panel (d), only directly on the original raw signal
in panel (b).

Finally, we tested the methodology on four test sources with
different locations, assuming SNR = 2.0 for calculating synthetic
time-series. The results are summarized in Fig. A6. The errors
of recovered locations are around 570 m in horizontal directions,
while in vertical they vary from 450 to 720 m. Errors in origin
times are around 0.08 s. In general, the resolution of the retrieved
locations is limited by the grid discretization (equal to 1 km in
this case). The final refined locations (on the order of meters)
are obtained interpolating the imaging function around the loca-

tion of the maxima by subdividing the 1 km sampled grid into
smaller grid-cells. The most important point of the synthetic test
is that in all of the above cases, the true location of the source
lies in the area with the likelihood exceeding the value of the
threshold.

The above tests confirm the robustness of our approach, and
emphasize the advantage of the signal processing scheme combin-
ing the representation of the signal using HOS and time–frequency
decomposition.
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Figure A5. (a)–(c) Test source detection and location example using our MBF signal representation and space–time detection and location schemes: (a) A
horizontal and two vertical sections thorough the estimated location, corresponding to the maximum of imaging function shown according to a selected colour
scale. White triangles indicate the location of Hi-net stations used in the test. (b) Transformed MBF broad-band kurtosis CFs (black lines) of the synthetic
signals (grey lines) for the stations in panel (a). Vertical red bars show the theoretical arrival times for estimated location. Synthetic signal for each station is
constructed following the scheme illustrated in Fig. A3, with SNR = 2.0, and the onset time of the Berlage wavelets corresponding to the traveltime from the
assumed location of the source (at [−10.0, −30.0, 30.0]) and the stations. (c) Zoomed image of panel (a) comparing the imaging function (maxima provides
the determined location of the source) and the actual assumed source location marked by white circle. (d,e) Same as panels (a) and (b) for the detection and
location scheme without MBF analysis. The transformed CFs are calculated directly on synthetic waveforms.
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Figure A6. (a) Map view comparing the determined locations (red points) recovered using the presented method (MBF signal processing and detection and
location schemes), and the actual location of the test sources (blue dots). (b) Zoomed views of the map in panel (a) for each of the sources S1–S4. Distances
between the recovered and actual locations of the sources in horizontal and vertical planes are shown in metre.
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