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Abstract Prior information in ill-posed inverse problem is of critical importance because it is conditioning
the posterior solution and its associated variability. The problem of determining the flow evolving at the
Earth’s core-mantle boundary through magnetic field models derived from satellite or observatory data is
no exception to the rule. This study aims to estimate what information can be extracted on the velocity field
at the core-mantle boundary, when the frozen flux equation is inverted under very weakly informative, but
realistic, prior constraints. Instead of imposing a converging spectrum to the flow, we simply assume that
its poloidal and toroidal energy spectra are characterized by power laws. The parameters of the spectra,
namely, their magnitudes, and slopes are unknown. The connection between the velocity field, its spectra
parameters, and the magnetic field model is established through the Bayesian formulation of the problem.
Working in two steps, we determined the time-averaged spectra of the flow within the 2001–2009.5 period,
as well as the flow itself and its associated uncertainties in 2005.0. According to the spectra we obtained,
we can conclude that the large-scale approximation of the velocity field is not an appropriate assumption
within the time window we considered. For the flow itself, we show that although it is dominated by its
equatorial symmetric component, it is very unlikely to be perfectly symmetric. We also demonstrate that its
geostrophic state is questioned in different locations of the outer core.

1. Introduction

The geomagnetic field is sustained by the dynamo process acting in the Earth’s outer core. The strong degree
of turbulence the magnetohydrodynamic flow is exhibiting, the fast rotation of the Earth, and the intense con-
vection [see Kono and Roberts, 2002; Christensen et al., 2010] make it a dynamical system extremely difficult
to model and study. In addition, and in contrast with the Earth’s atmosphere, directly measuring the velocity
field associated with the fluid motions in the outer core is technically excluded. Nevertheless, thanks to satel-
lite and observatory measurements of the magnetic field, probing the outer core becomes feasible. Indeed,
assuming the mantle to be insulating, core field models deriving from satellite or observatory data can be
estimated everywhere outside the core. At the core-mantle boundary, the radial component of the magnetic
field, which is the only component that can continuously cross the jump in electrical conductivity between
the mantle and the outer core [see Roberts and Scott, 1965; Jault and Le Mouël, 1991], is advected by the two
dimensional fluid motions (the flow is only two dimensional because it cannot penetrate the solid boundary
formed by the mantle). Yet this process can be described by the frozen flux (FF) approximation, an equation
where diffusion effects are neglected [see Backus et al., 1996]. Therefore, by inverting this equation, the flow
at the core-mantle boundary (CMB) can be recovered. Unfortunately, the operation is not straightforward,
the problem being ill posed for two reasons. First, only one equation is connecting the two components of
the velocity field to the radial component of the magnetic field, leading to an underdetermined problem. The
second reason arises from the nature of the available core field. Indeed, when measured at the Earth’s surface,
the magnetic field is composed of different contributions, in particular, the external field, the lithospheric or
crustal field, and the core field. Whereas recent models derived from satellite or observatory data are able to
extract the external contribution from the total field, the core and lithospheric field cannot be separated. The
lithospheric field being dominant above degree l =13 when expanded in spherical harmonics (SH), the core
magnetic field and secular variation are undetermined at scales smaller than l=13. Yet any velocity field
scales are likely to produce large-scale secular variation when interacting nonlinearly with the magnetic field.
So once again the number of independent equations (one per secular variation spectral component) is lower
than the velocity scales populating the flow in the outer core, leading to an underdetermined problem.
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Because the inverse problem is ill posed, it is necessary to impose prior velocity constraints to solve it. To build
such constraints, different options can be considered. One possibility is to rely on physical assumptions on the
outer core dynamics to analytically construct some constraints. Such an approach led to various formulations,
including tangential-geostrophy, tangential-magnetostrophy, general, steady, columnar, helical, or purely
toroidal flow (see Holme [2007] and Finlay et al. [2010] for reviews of the underlying assumptions leading to
such constraints). However, these constraints being only sufficient to reduce the degree of nonuniqueness
of the velocity field, the solution of the inverse problem still needs to be regularized [see Chulliat and Hulot,
2000], an operation which is usually achieved by a priori imposing a certain power law behavior for the total
kinetic energy spectrum of the flow [see Holme, 2007]. Another possibility to built prior velocity constraints
is to rely on the statistical properties of three-dimensional simulations of the geodynamo, as proposed by
Aubert and Fournier [2011], Fournier et al. [2011], and Aubert [2013, 2014]. One of the main advantages of
this method is that the full statistical picture of the outer core velocity field and magnetic field is available.
Therefore, through their cross correlations, a knowledge of the velocity and the magnetic field at the
core-mantle boundary is sufficient to reconstruct them in the entire outer core. Nevertheless, the method has
some drawback, the principle one being certainly that up to now, the degree of turbulence reachable in such
simulations remains very low. As a consequence, the regimes which are obtained may not allow for a proper
reproduction of the geodynamo’s dynamical behavior, and the statistical properties of the simulated flow may
not be consistent with the real ones.

Yet to obtain realistic posterior statistics, prior assumptions have to reflect the effective knowledge available
for the velocity field at the CMB. Since it can also be argued that any of the physical assumptions previously
mentioned could describe the dynamics of the fluid motions at the CMB (or the entire outer core), but since
these constraints are not all consistent with one another, imposing them in a strong manner is certainly not
the best option if one wants to evaluate the reliability of certain features the flow is exhibiting. As an example,
if one a priori forces the velocity field to be equatorial symmetric, it will be impossible to a posteriori assess
how likely deviations from this symmetric state are. In a similar manner, using unrealistic spectra parameters
for the regularization process will undoubtedly lead to erroneous posterior statistics.

This is why we propose to consider that the flow evolving at the CMB is completely general and only char-
acterized by independent poloidal and toroidal power law energy spectra. Although it is believed that the
velocity field has dominant large scales [see Holme, 2007] so that it presents a decaying energy spectrum, this
hypothesis has only been reinforced, as in Celaya and Wahr [1996], but it has never been proven. Therefore,
we assume that the poloidal and toroidal energy spectra are characterized by power laws, with slopes and
magnitudes a priori unknown. Whereas incorporating such information in a traditional least squares approach
would be impossible, the flexibility of Bayesian methods allows for it. Because of the complexity of the
system to be solved, we will proceed in two steps. The energy spectra of the velocity field at the CMB will be
first determined, to be then used as a prior information to construct the posterior distribution of the flow.

The article is organized as follows. In section 2 the statistical parametrization of every quantity entering
the inverse problem is detailed, and the connection between these quantities is established in a Bayesian
framework. In section 3, we first evaluate, with synthetic data, the formalism we developed as well as the
numerical approach we proposed to solve the inverse problem. We then apply our method to determine the
time-averaged poloidal and toroidal energy spectra of the flow at the CMB for the period 2001–2009.5. These
spectra are then used as a prior information to study the flow itself and its possible variations for the epoch
2005. Finally, we give some concluding remarks in section 4.

2. Mathematical Formulation of the Inverse Problem
2.1. The Magnetic Field and the Flow at the Core-Mantle Boundary
In the Earth’s outer core, the dynamical evolution of the magnetic field B is prescribed by the induction
equation:

𝜕tB = 𝛁 × (u × B) − 𝛁 × (𝜂𝛁 × B), (1)

where 𝜂 is the magnetic diffusivity and u is the velocity of the electrically conducting fluid. As mentioned
previously, because of the low electrical conductivity of the mantle [see Velímský, 2010; Jault, 2015], the con-
nection between magnetic field models derived from satellite or observatory data and the magnetic field
sustained by dynamo action in the outer core can be formalized at the level of the core-mantle boundary.
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At this location, since magnetic field models such as GRIMM-3 of Lesur and Wardinski [2012] only provide the
spatiotemporal evolution of the large-scale part of the field (the small-scale field being obscured by litho-
spheric field at the Earth’s surface), and since the diffusion effects on these large scales are negligible in
comparison to the advection effects [see Holme, 2007], the radial component of the induction equation can
be simplified into the frozen flux (FF) equation:

𝜕tBr = −𝛁H(uBr) , (2)

where ∇H is the horizontal divergence operator.

In spectral space, the radial component of the magnetic field as well as the secular variation 𝜕tBr can be
expanded in spherical harmonics such as

Br = −
l=+∞∑

l=1

(l + 1)
m=+l∑
m=−l

gl,m(t)Yl,m , (3)

𝜕tBr = −
l=+∞∑

l=1

(l + 1)
m=+l∑
m=−l

𝜕t(gl,m(t))Yl,m , (4)

with Yl,m the Schmidt seminormalized spherical harmonics (SH) of degree l and order m, and gl,m the spherical
harmonics coefficients of the magnetic field outside the core. According to this decomposition, two vectors
b and 𝛾 , respectively, containing the spherical harmonics coefficients associated with Br and 𝜕tBr are built. In
a similar manner, vectors b0 and 𝛾0 are defined and filled with the spherical harmonics coefficients associated
with the GRIMM-3 magnetic field and secular variation.

The velocity field u at the CMB is decomposed into a poloidal scalar field𝜙 and a toroidal scalar field𝜓 such as

u = er × 𝛁H𝜓 + 𝛁H𝜙 . (5)

In spectral space, the poloidal and toroidal fields, respectively, derive from the coefficients 𝜙l,m and 𝜓l,m

through the formulation:

𝜙 =
l=+∞∑

l=1

m=+l∑
m=−l

𝜙l,mŶl,m , (6)

𝜓 =
l=+∞∑

l=1

m=+l∑
m=−l

𝜓l,mŶl,m , (7)

where Ŷl,m are orthonormalized spherical harmonics. The coefficients𝜙l,m and𝜓l,m are then inserted in a vector
referred to u.

The frozen flux approximation can now be expressed for the vectors 𝛾 , b, and u as follows:

𝛾 = −Abu = −Aub , (8)

where the linear operators Ab and Au allow us to calculate the SH coefficients associated with the advection
term 𝛁H(uBr) when they are, respectively, applied to u and b.

2.2. Usual Formulation of the Inverse Problem
Models of the Earth’s secular variation and magnetic field can be used to estimate the flow at the CMB through
the inversion of the FF equation. In a Bayesian formalism [see Jackson, 1995; Baerenzung et al., 2014], this
operation consists of determining the maximum of the posterior distribution p(u|𝛾0) defined as follows:

p(u|𝛾0) =
1

p(𝛾0) ∫ p(𝛾0|u, b)p (u) p (b)db , (9)

where p(u) and p(b) are, respectively, the prior distributions of the velocity field and the magnetic field, 𝛾0 is
the secular variation model with its associated distribution p(𝛾0), and p(𝛾0|u, b) is the likelihood distribution.
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In this method p(u) is prescribed and usually chosen as a Gaussian distribution with a mean E[u]=0 and a
covariance E[uuT ]=Σu. The derivation of Σu is commonly based on two assumptions: the flow at the CMB
is isotropically distributed, and its energy spectrum Eu(l) is characterized by a certain power law, which, for
orthonormalized spherical harmonics gives the following:

Eu(l) = l(l + 1)
m=l∑

m=−l

(
𝜙2

l,m + 𝜓2
l,m

)
,

∼ A2l−P ,

(10)

where A is the magnitude of the spectrum and the exponent P determines the strength of the penalty on
the high-degree flow components [Holme, 2007]. Whereas the parameter P is generally prescribed, Pais and
Hulot [2000] proposed to estimate A a posteriori. This latter operation is performed by evaluating the flow
maximizing p(u|𝛾0) with different values for A and keeping the one which is consistent with both the secular
variation uncertainties and the prior belief on the flow energy.

2.3. General Prior Information on the Flow Behavior
In reality, if the spectrum of the flow at the CMB is characterized by a certain power law, neither its magnitude
nor its slope are a priori known. Furthermore, the poloidal and toroidal parts of the flow certainly present
distinct spectral behavior. To account for these particular aspects of the velocity field in its prior distribution,
we assume the following:

1. The poloidal and toroidal part of the total velocity field are uncorrelated and isotropically distributed over
the CMB.

2. The poloidal and toroidal spectra are individually characterized by power laws with possibly different
spherical harmonics ranges, where the slopes of the spectra may vary from one range to the other.

3. The velocity field is normally distributed over the CMB with a 0 mean and a covariance depending on the
above statements.

Under these latter hypothesis, the poloidal and toroidal spectra of the flow can be written as follows:

E𝜙(l) = C𝜙i
A2
𝜙

l−P𝜙i for l ∈ Δ𝜙i
, (11)

E𝜓 (l) = C𝜓j
A2
𝜓

l
−P𝜓j for l ∈ Δ𝜓j

, (12)

where A𝜙 and A𝜓 are, respectively, the magnitude of the poloidal and toroidal energy spectra and P𝜙i
and

P𝜓j
are the slopes of the spectra within the spherical harmonics ranges Δ𝜙i

and Δ𝜓j
. The number of ranges

characterizing the poloidal and toroidal spectra, respectively, N𝜙 and N𝜓 , may differ from one case to the other.
Finally, the constant C𝜙i

and C𝜓j
which allow the spectra to be continuous between two different ranges are

given by

C𝜙i
=

a=i∏
a=2

exp
(

log
(

l𝜙a−1

) (
P𝜙a

− P𝜙a−1

))
, (13)

C𝜓j
=

a=j∏
a=2

exp
(

log
(

l𝜓a−1

) (
P𝜓a

− P𝜓a−1

))
, (14)

l𝜙a
and l𝜓a

being the spherical harmonic degrees where transitions in slopes occur.

With the assumptions on the flow we detailed at the beginning of this section and with the energy spectra
given in equations (11) and (12), the covariances of the poloidal and toroidal fields can be expressed as follows:

E[𝜓l,m𝜓l′ ,m′ ] =
E𝜓 (l)

l(l + 1)(2l + 1)
𝛿ll′𝛿mm′ (15)

E[𝜙l,m𝜙l′ ,m′ ] =
E𝜙(l)

l(l + 1)(2l + 1)
𝛿ll′𝛿mm′ (16)

E[𝜙l,m𝜓l′ ,m′ ] = 0 ∀l, l′,m,m′ . (17)
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These correlation functions depend directly on the poloidal and toroidal spectra of the flow; they are therefore
connected to the spectra parameters referred to the following:

 =
{

A𝜙, P𝜙i
,Δ𝜙i

,A𝜓 , P𝜓j
,Δ𝜓j

}
. (18)

Since the covariance matrix of the flow can only be constructed once the parameters  are known, we
express it as Σu|. As a consequence, the prior distribution of the velocity field is also conditioned by  and
reads as follows:

p(u|) =  (0,Σu|) . (19)

2.4. Joint Posterior Distribution of the Flow, the Magnetic Field, and the Spectra Parameters
The different quantities entering the inverse problem are connected together through the joint distribution
p(u, b,, 𝛾0). According to Bayes [1763], and neglecting a priori the correlations between the magnetic field
and the velocity field, p(u, b,, 𝛾0) can be split as follows:

p(u, b,, 𝛾0) = p(u, b,|𝛾0)p(𝛾0) (20)

= p(𝛾0|u, b,)p(b)p(u|)p() , (21)

where p(u, b,|𝛾0) is the joint posterior distribution of the flow, the magnetic field, and the spectra
parameters. The remaining distributions entering equations (20) and (21) are detailed in the following.
2.4.1. Likelihood Distribution
The uncertainties on the secular variation model being assumed to be normally distributed with a 0 mean
and a covariance Σ𝛾 , the likelihood distribution p(𝛾0|u, b,) reads as follows:

p(𝛾0|u, b,) =
exp

[
− 1

2

(
𝛾0 + Abu

)T Σ−1
𝛾

(
𝛾0 + Abu

)]
(2𝜋)

d
2 |Σ𝛾 | 1

2

, (22)

where d is the dimension of the secular variation vector. The construction of the secular variation covariance
matrix is based on an estimated spectrum of the secular variation uncertainties at the level of the Earth’s
surface. This spectrum is chosen to be flat (as would be the spectrum of spatially uncorrelated measurement
errors), with a magnitude of A2

𝛾
= 0.01 (nT/yr)2, a value approximately corresponding to the energy of the

secular variation at SH degree l = 14, where the noise level of high-latitude data starts to generate significant
artifacts. At the CMB the covariance matrix is therefore diagonal with the following structure:

E
[(
𝛾0(l,m) − 𝛾(l,m)

) (
𝛾0(l′,m′) − 𝛾(l′,m′)

)]
=

A2
𝛾
(RS∕R)(2l+4)

(l + 1)(2l + 1)
𝛿ll′𝛿mm′ , (23)

with RS = 6371.2 km the radius at the Earth’s surface, R = 3485 km the core radius, and 𝛾 the real secular
variation.
2.4.2. Conditional Prior Distribution of the Velocity Field Given the Spectra Parameters
As already expressed in section 2.3, we recall that the conditional prior distribution of the velocity field given
the spectra parameters , p(u|), is assumed to be normally distributed with a 0 mean and a covariance
Σu| such as

p(u|) =
exp

[
− 1

2
uTΣ−1

u|u
]

(2𝜋)
du
2 |Σu| | 1

2

, (24)

with du the dimension of the velocity field vector.
2.4.3. Prior Distribution of the Spectra Parameters
To reflect the complete lack of information we possess on  =

{
A𝜙, P𝜙i

,Δ𝜙i
,A𝜓 , P𝜓j

,Δ𝜓j

}
, we suppose that

all these parameters are independent from one another and uniformly distributed over infinite or semi-infinite
ranges such as the prior distribution p() reads as follows:

p() = p(A𝜓 )p(A𝜙)
i=N𝜙∏
i=1

(
p(P𝜙i

)p(Δ𝜙i
)
) j=N𝜓∏

j=1

(
p(P𝜓j

)p(Δ𝜓j
)
)
, (25)
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with

p(P𝜙i
) = p(P𝜓j

) =  (−∞,∞) , (26)

p(A𝜓 ) = p(A𝜙) =  (0,∞) , (27)

p(Δ𝜙i
) = p(Δ𝜓j

) =  (1,∞) , (28)

and where the notation  (a, b) stands for uniformly distributed between a and b.

2.4.4. Prior Distribution of the Magnetic Field
The magnetic field is assumed to be normally distributed with a mean b0 corresponding to the field provided
by models fitting satellite or observatory data (in our case the GRIMM-3 model of Lesur and Wardinski [2012]),
and a covariance Σb such as

p(b) =
exp

[
− 1

2

(
b − b0

)T Σ−1
b

(
b − b0

)]
(2𝜋)

db
2 |Σb| 1

2

, (29)

where db is the dimension of the vector b.

To build the covariance matrix Σb, one has to analyze the possible variations of the magnetic field around its
mean b0. These variations mainly arise from two phenomena. At large scales (1 ≤ l ≤ 13), magnetic field mod-
els such as GRIMM-3 predict a biased core field since this latter is contaminated by the lithospheric field. The
model also contains uncertainties due to measurement errors. However, the fact that the spectrum associated
with the difference between the GRIMM3 model and the CHAOS-3 model of Olsen et al. [2010] is generally
below the lithospheric spectrum (except for the SH degree l = 1, an issue which will not be considered here)
indicates that uncertainties due to measurement errors can be neglected. At small scales (l> 13), because at
the Earth’s surface the intensity of the lithospheric field is larger than the core one, this latter field is completely
obscured.

To account for this uncertain nature of the available magnetic field in the inverse problem, we split it into two
parts as b = b<+b> , where b< and b>, respectively, correspond to the large- and small-scale parts of the total
field. Each part of the field is then treated statistically in a distinct manner. Whereas the average value of b<

is given by E[b<] = b0, the expectation of b> is assumed to be E[b>] = 0. The covariance matrices associated
with each field are built accordingly to two different spectra.

For the large-scale field, the theoretical spectrum of the lithospheric field proposed by Thébault and Vervelidou
[2015] is considered. The latter expressed in Tesla2 reads as follows:

EL(l) =
1
2
(l + 1)

(
𝜇0|M|Fl (𝜖)

)2
l−𝛾Cl, (30)

with |M| = 0.45 A m−1 the mean apparent induced magnetization, 𝜖 = 27 km the equivalent magnetized
layer thickness, and the constants 𝜇0=4𝜋10−7 m kg s−2 A−2 and 𝛾=1.4. The two functions Fl (𝜖) and Cl are
given by

Cl =
l(20l3 + 8l2 − 13l + 3)

3(2l + 3)(2l + 1)(2l − 1)

Fl(𝜖) =
1 − (1 − 𝜖∕RS)(l−1)

l − 1
.

From this spectrum the covariance matrix Σb< of the large-scale field b< is defined by

Σb< = E
[(

b< − b0

) (
b< − b0

)T
]

=
EL(l)(RS∕R)(2l+4)

(l + 1)(2l + 1)
,

(31)
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For the small-scale field, an extrapolation of the resolved scale spectrum Eb0
is used to buildΣb> , the covariance

matrix of b>. To extrapolate Eb0
, the analytical formulation of the magnetic field spectrum at the CMB from

Buffett and Christensen [2007] is employed. It reads the following:

Eb> (l) = C1𝜒
l, (32)

where 𝜒 = 0.99 and where the constant C1 is determined by fitting Eb0
between the SH degrees 2 < l ≤ 13.

The covariance matrix of b> is therefore given by

Σb> = E
[

b>b>T
]
=

Eb> (l)
(l + 1)(2l + 1)

. (33)

The total covariance of the magnetic field Σb is finally obtained by combining Σb< and Σb> .

2.5. Posterior Distribution of the Flow Spectra Parameters
Before evaluating the flow at the CMB, we wish to determine the optimal parametrization its poloidal
and toroidal energy spectra are exhibiting. Therefore, we have to evaluate the maximum of the posterior
distribution p(|𝛾0), defined as follows:

p(|𝛾0) =
1

p(𝛾0) ∫ ∫ p(𝛾0|u, b,)p(b)p(u|)p()dbdu

= p(𝛾0|)
p()
p(𝛾0)

.

(34)

The analytical calculation of this integral is extremely complicated, and the resulting distribution would
be very hard to handle numerically. Therefore, we propose to approximate the marginalized likelihood
distribution p(𝛾0|) by a normal distribution, where the mean 𝛾0 and the covariance Σ𝛾| are given by

𝛾0=∫ ∫ ∫ 𝛾0p(𝛾0|u, b,)p(b)p(u|)dbdud𝛾0 (35)

Σ𝛾|=∫ ∫ ∫
(
𝛾0 − 𝛾0

) (
𝛾0 − 𝛾0

)T

× p(𝛾0|u, b,)p(b)p(u|)dbdud𝛾0 .

(36)

Introducing the third-order tensor Aijk such as

Aijkujbk =
(

Abu
)

i
=
(

Aub
)

i
(37)

the solutions of integrals (35) and (36) are the following, respectively,

𝛾0 i = 0 , (38)

(
Σ𝛾|

)
ij
=
(
Σ𝛾

)
ij
+
(

Ab0
Σu|AT

b0

)
ij

+ Aimn

(
Σu|

)
mr

(
Σb

)
ns

Ajrs .

(39)

The posterior distribution p(|𝛾0) is then approximated by

p(|𝛾0) ∼
exp

[
− 1

2
𝛾T

0 Σ
−1
𝛾|𝛾0

]
(2𝜋)

d
2 |Σ𝛾| | 1

2

×
p()
p(𝛾0)

. (40)

Note that if the magnetic field was exactly known, and given by b0, the last term on the right-hand side of
equation (39) would vanish and relation (40) would be exact.
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3. Evaluation and Results
3.1. Numerical Method
To evaluate the flow at the CMB and its posterior variability, the first step consists in determining the optimal
parameters (magnitudes and slopes), its poloidal, and toroidal energy spectra are exhibiting. These param-
eters are referred to ̂ and obtained with a gradient method approximating the maximum of distribution
p(|𝛾0) given in equation (40).

Once the optimal spectra parameters are determined, they are used as a prior information for the estimation
of the flow at the CMB. The distribution to be considered is therefore the posterior distribution of the velocity
field u, conditioned by the secular variation model 𝛾0, and the spectra parameters ̂, namely, p(u|𝛾0,̂).
This probability density function can be obtained by marginalizing with respect to the magnetic field b, the
following distribution:

p(u, b|𝛾0,̂) = p(𝛾0|u, b,̂)p(b)p(u|̂)∕p(𝛾0) . (41)

The result, presented by Baerenzung et al. [2014] without the ̂ dependency, reads as follows:

p(u|𝛾0,̂) = (2𝜋)−
3d
4

|Σ�̃� | d
4

exp
[
−1

2

(
𝛾0 + Aub0

)T Σ−1
�̃�

(
𝛾0 + Aub0

)]
× 1|Σu| du

2

exp
[
−1

2
uTΣ−1

u|̂u
]
× 1

p(𝛾0)

(42)

Σ�̃� = Σ𝛾 + AuΣbAT
u . (43)

To sample this distribution, Baerenzung et al. [2014] proposed to use a Markov chain Monte Carlo algorithm.
Unfortunately, this method is numerically costly and necessitate a fine tuning of the velocity field random
walk. Here we propose another approach, much more efficient numerically, and requiring no tuning; it is
referred to the Gibbs sampling algorithm [see Gamerman and Lopes, 2006]. Instead of sampling p(u|𝛾0,̂),
this latter method is used to draw pairs of magnetic field and velocity field from the joint posterior distribu-
tion p(u, b|𝛾0,̂) = p(𝛾0|u, b,̂)p(b)p(u|̂)∕p(𝛾0). To do so, the algorithm proceeds iteratively such that at
each step n, a velocity field un is randomly drawn from the conditional probability distribution:

p(un|bn−1, 𝛾0,̂) =  (
ûn,Σun

)
(44)

with

ûn = −
(

AT
bn−1Σ−1

𝛾
Abn−1 + Σ−1

u|̂
)−1

AT
bn−1Σ−1

𝛾
𝛾0 (45)

Σun =
(

AT
bn−1Σ−1

𝛾
Abn−1 + Σ−1

u|̂
)−1

(46)

and a magnetic field bn is randomly drawn from the following:

p(bn|un, 𝛾0,̂) =  (
b̂n,Σbn

)
(47)

with

b̂n =
(

AT
unΣ−1

𝛾
Aun + Σ−1

b

)−1 (
Σ−1

b b0 − AT
unΣ−1

𝛾
𝛾0

)
(48)

Σbn =
(

AT
unΣ−1

𝛾
Aun + Σ−1

b

)−1
. (49)

Note that the Gaussian nature of distributions (44) and (47) allows efficient sampling them numerically.
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Table 1. Flow Spectra Parameters  Imposed and Estimated in the
Evaluation Phasea

Case Δ𝜙 A𝜙 P𝜙 Δ𝜓 A𝜓 P𝜓

a [1 26] 5 1 [1 26] 20 2

b [1 26] 5.02 0.99 [1 26] 19.91 1.95

c [1 26] 2.98 0.62 [1 26] 16.8 1.78

d [1 26] 34.57 3 [1 26] 34.57 3
aCase a: parameters prescribed to randomly generate velocity fields

in both tests of section 3.2; case b: average values of the recovered
parameters; case c: estimated parameters ̂ associated with the pair
of magnetic field and secular variation selected in section 3.3; case d:
same as case c, but with imposed spectral slopes and estimated total
magnitude.

Calculating the expectation of some function f (u) using the posterior ensemble is similar to evaluating E[f (u)]
according to the distribution p(u|𝛾0,̂) since

E[f (u)] = ∫ ∫ f (u)p(u, b|𝛾0,̂)dbdu

= ∫ f (u)
(
∫ p(u, b|𝛾0,̂)db

)
du

= ∫ f (u)p(u|𝛾0,̂)du .

(50)

Numerically, all computations are performed on a discrete CMB as in Baerenzung et al. [2014], and the
evaluation of the different mathematical operators is performed through a pseudospectral code.

For every simulation, the prescribed magnetic field b0 and the secular variation 𝛾0 are defined up to SH degree
l = 13, the magnetic field is extrapolated up to SH degree l=26 accordingly to the formulation of Buffett and
Christensen [2007], and the velocity field is expanded up to SH degree l=26.

3.2. Reliability of the Spectra Parameters Evaluation
In this section, we test, with artificial data, the ability of the approximated distribution p(|𝛾0) given in
equation (40), and the algorithm which determines its maximum, to provide the spectra parameters of the
flow at the CMB. To do so, the maximum of the posterior distribution p(|𝛾0) is evaluated numerically for an
ensemble of Ne =5000 artificially generated velocity fields, magnetic fields and secular variations.

For each realization, a velocity field is randomly drawn from p(u|) = (0,Σu| ) where the spectra param-
eters  are prescribed and given in Table 1. Note that in this evaluation phase both poloidal and toroidal
energy spectra are characterized by unique slopes, therefore the indices of the spherical harmonics ranges
Δ𝜙i

andΔ𝜓j
, and slopes P𝜙i

and P𝜓j
can be dropped, such that these spectra parameters become, respectively,

Δ𝜙, Δ𝜓 , P𝜙, and P𝜓 .

The large-scale magnetic field b0 is taken from the GRIMM-3 model at the epoch 2002.0. It is contaminated by
a lithospheric field bL randomly drawn from the distribution p(bL) = (0,Σb< ) discussed in section 2.4.4. To
generate small-scale magnetic fields, the energy spectrum associated with b0 is extrapolated up to SH degree
l = 26. From this spectrum, the covariance matrix Σb> is built as shown by equation (33). The ensemble of
small-scale magnetic fields are then randomly drawn from the distribution p(b>)= (0,Σb> ).

For each pair of artificially generated magnetic field and velocity field, the associated secular variation is calcu-
lated and contaminated by a Gaussian noise with a 0 mean and a covariance Σ𝛾 . The maximum of p(|𝛾0) is
then numerically approximated for every artificial secular variation and large-scale magnetic field and referred
to ̂=

{
Â𝜙, P̂𝜙, Â𝜓 , P̂𝜓

}
.

The results of the numerical simulations are shown in Figure 1 (top row) through the two-dimensional his-
tograms p(Â𝜙, P̂𝜙) (top left) and p(Â𝜓 , P̂𝜓 ) (top right). As it can be observed, the maximum of p(|𝛾0) does
not always point toward the exact values of the spectra parameters chosen for the experiment and given in
Table 1. Instead, they spread around these values. Nevertheless, when averaged over the entire ensemble
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Figure 1. Histograms (color maps) and marginalized distributions (side plot) of the (left column) poloidal and
(right column) toroidal spectra magnitudes and slopes estimated with (top row) synthetic secular variations and
(middle and bottom rows) truncated velocity fields. The truncation scales are set to spherical harmonic degree
l=10 (Figure 1, middle) and l=5 (Figure 1, bottom) for the poloidal field and to l=9 (Figure 1, middle) and l=5
(Figure 1, bottom) for the toroidal field. We recall that the spectra parameters imposed in the experiment are{

A𝜙, P𝜙,A𝜓 , P𝜓
}
={5, 1, 20, 2}.

of solutions we found, the mean values of the estimated parameters
{

E[Â𝜙], E[P̂𝜙], E[Â𝜓 ], E[P̂𝜓 ]
}

=
{5.02, 0.99, 19.91, 1.95} become very close to the prescribed ones

{
A𝜙, P𝜙,A𝜓 , P𝜓

}
={5, 1, 20, 2}, indicating

that the parameter estimator is not biased.

Two mechanisms may explain why the estimated parameters can strongly deviate from the imposed ones.
First, the posterior variance of the parameters is large, and the deviations are coming from the combination
between data uncertainties and parameters prior variability. Another possibility is directly linked to the design
of the experiment. Indeed, when a velocity field is randomly drawn from the distribution p(u|), the energy
associated with any of its component will usually not be equal to the prior variance of the component. As a
consequence, the slopes and magnitudes the poloidal and toroidal energy spectra exhibit may differ from
the ones chosen a priori. If, in addition, only a portion of the velocity field scales contributes enough to the
large-scale secular variation to be detected, the variations in the observed flow spectra will even be larger.
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In other words, the slope and the magnitude a poloidal or a toroidal energy spectrum exhibit may also depend
on the size of the spectral range which is considered. To measure the importance of these effects, we per-
formed a second test. There, Ne=20, 000 velocity fields are randomly drawn from p(u|) according to the
parameters  given in Table 1. Instead of conditioning the distribution of  to the secular variation, we
directly connect it to the randomly generated velocity fields. Furthermore, we take into account the depen-
dency between the spectral parameters and the amount of velocity field scales considered. Therefore, for
every realization we evaluate numerically the maximum ̂l𝜓

l𝜙
=
{

Â
l𝜙
𝜙
, P̂

l𝜙
𝜙
, Â

l𝜓
𝜓 , P̂

l𝜓
𝜓

}
of distribution:

p(l𝜓
l𝜙
|u) = p(u|l𝜓

l𝜙
)p(l𝜓

l𝜙
)∕p(u) , (51)

where l𝜓
l𝜙

corresponds to the spectra parameters of the poloidal and toroidal fields, respectively, truncated

at spherical harmonic degree l𝜙 and l𝜓 . Estimating ̂l𝜓
l𝜙

is similar to evaluating the parameters of power laws
(slopes and magnitudes) which fit best the poloidal and the toroidal energy spectra between, respectively,
l=[1, l𝜙] and l = [1, l𝜓 ].

The ensembles of Ne =20, 000 estimated parameters indicate that whereas the averaged values of the param-
eters do not depend on l𝜙 and l𝜓 and are in any case very close to the imposed ones; the higher the truncation
degree, the lower the variance of the parameters, and conversely. By comparing the statistical properties of
the recovered parameters for every value of l𝜙 and l𝜓 with the statistical properties of the parameters esti-
mated through the artificial secular variation, we could observe a close match when the truncation degrees
were set to l𝜙=10 and l𝜓 =9. Figure 1 (middle row), which displays the two-dimensional histograms p(Â10

𝜙
, P̂10

𝜙
)

(middle left) and p(Â9
𝜓
, P̂9

𝜓
) (middle right), illustrates this result. To highlight the difference between optimal

and suboptimal solutions, the two-dimensional histograms p(Â5
𝜙
, P̂5

𝜙
) and p(Â5

𝜓
, P̂5

𝜓
), where l𝜙= l𝜓 =5, are also

shown in Figures 1 (bottom left) and 1 (bottom right), respectively.

The combination of the two numerical tests we presented in this section shows that both the approximated
posterior distribution p(|𝛾0) and the numerical approach we employed to determine its maximum are well
suited to evaluate the spectral characteristics of the flow at the Earth’s CMB. Nevertheless, restrictions on the
method abilities have to be considered. In particular, the range of validity of the recovered parameters is not
infinite and is certainly conditioned by the real nature of the poloidal and toroidal fields themselves as well as
the level of uncertainties on the secular variation model.

3.3. Sampling of the Posterior Distribution of the Velocity Field According to Optimal and Imposed
Flow Spectra Parameters
In usual inversions of the frozen flux equation, prior constraints are imposed. Here contrary to this approach,
we propose a formalism to estimate parameters of the flow energy spectra in order to construct a realistic
prior distribution of the velocity field. To highlight the impact of imposed or derived prior constraints on the
posterior statistics of the flow, the two approaches are now compared on synthetic data.

To do so, a pair of magnetic field and secular variation is taken from the previous test. The optimal spectra
parameters ̂ associated with these fields, the ones we numerically approximated and which are given in
Table 1, case c, are considered to construct the prior covariance of the velocity field following the develop-
ment given in equations (11)–(17). According to the associated prior distribution, a first ensemble of 50,000
pairs of velocity and magnetic fields {uep, bep} is randomly draw from the posterior distribution p(u, b|𝛾0,̂)
using the Gibbs sampling algorithm presented in section 3.1, equations (44)–(49). This ensemble is referred
to the ep ensemble. A second ensemble {uip, bip} of the same size is drawn from the posterior distribution
p(u, b|𝛾0,ip). In this case, the slopes belonging to the spectra parameters ip are imposed and set to

P𝜙 = P𝜓 = 3, and the magnitudes A𝜙 and A𝜓 are forced to be equal. Only the total amplitude A =
√

A2
𝜙
+ A2

𝜓

is evaluated such that p(ip|𝛾0) is maximized. The resulting spectra parameters are given in Table 1, case
d. Note that except for the estimation of the magnitude A, such a prior parametrization of the velocity field
has already been employed in the inversion of the frozen flux equation, as in Eymin and Hulot [2005]. This
ensemble is referred to the ip ensemble.

Before comparing the two subensembles {uep} and {uip} of, respectively, {uep, bep} and {uip, bip} with u0, the
velocity field used to construct the artificial secular variation, we check that both {uep} and {uip} are able to
explain the secular variation at the right level of uncertainty. In usual least squares inversions, the balance
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Figure 2. Spectrum of the artificial secular variation 𝛾0 at the Earth’s surface (black lines), together with the imposed
spectrum of secular variation errors (blue lines). The gray lines correspond to some spectra of fit residuals to the artificial
secular variation 𝜖i

𝛾
=𝛾0 + ∇H(uibi), where pairs of magnetic field and velocity field (ui, bi) are taken from the ensembles

(top) {uep, bep} deriving from estimated prior constraints and (bottom) {uip, bip} deriving from imposed prior
constraints. The red lines correspond to the average spectra (over the entire ensembles) of the fit residuals to the
artificial secular variation.

between fit to the observed secular variation and prior belief on the flow energy, is controlled by a scalar
factor 𝜆 which is a priori unknown. In general, inversions are performed with different values of 𝜆 until an
optimal balance is reached [see Pais and Hulot, 2000]. In the Bayesian method we propose that the quantity
which can be associated with the balance factor of the least squares approach is the magnitude of the total

kinetic energy spectrum A =
√

A2
𝜙
+ A2

𝜓
with 𝜆∼1∕A2. Yet, in our case this quantity is determined before esti-

mating any velocity field. For A to be consistent with the synthetic secular variation 𝛾0, the secular variation
𝛾 i = −∇H(uibi) which is reconstructed accordingly to any given element (ui, bi) of the ensembles {uep, bep}
or {uip, bip} has to fit 𝛾0 at the right level of uncertainty. This means that the residual to the artificial secular
variation, 𝜖i

𝛾
= 𝛾0 − 𝛾 i , has to present similar statistical properties to the imposed measurement errors. We

recall that the latter were assumed to present a flat spectrum at the Earth’s surface with a squared magnitude
A2
𝛾
=0.01 nT2∕yr2, as illustrated with a blue line in both Figures 2 (top) and 2 (bottom). Looking at the same

figure, one can observe that the spectra displayed with gray lines are spreading around this imposed error
spectrum. They correspond to the spectra of the residuals 𝜖i

𝛾
associated with some pairs of velocity and mag-

netic field (ui, bi) taken from the ensembles {uep, bep} (Figure 2, top) and {uip, bip} (Figure 2, bottom). So
qualitatively, both ensembles seem to produce pairs of magnetic field and velocity field consistent with the
synthetic data. When the spectra of the residuals are averaged over the entire ensembles, the result, shown
with red lines in Figure 2 and referred to the global fit residual to the secular variation, become very close to
the imposed error spectrum. To quantify the degree of consistency of our ensembles with the synthetic data,
we define the average normalized misfit as

𝜒2
𝛾
= 1

d
E
[(
𝛾0 + ∇H(ub)

)T Σ−1
𝛾

(
𝛾0 + ∇H(ub)

)]
post

, (52)

with d, the dimension of the secular variation vector, Σ𝛾 , the covariance of the synthetic secular variation,
and where the expectation E[…]post is performed over the joint posterior distributions of the velocity and the
magnetic field. The values of this misfit are of 𝜒2

𝛾
= 0.9997 and 𝜒2

𝛾
= 1.06 for, respectively, the ensembles
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Figure 3. (left column) Toroidal and (right column) poloidal spectra, associated with the artificial velocity field u0 and with the ensemble averaged velocity fields
(top row) ûep and (bottom row) ûip. Thick black lines: spectra of the artificial field u0. Thin black lines: prior spectra. Thick grey lines: spectra of the ensemble
averaged velocity fields ûep (Figure 3, top) and ûip (Figure 3, bottom). Grey dashed lines: rescaled scale-by-scale variances estimated with the velocity field
posterior ensembles. Crosses: spectra of the error fields 𝜖ep = ûep − u0 (Figure 3, top) and 𝜖ip = ûip − u0(Figure 3, bottom).

{uep, bep} and {uip, bip}. The fact that these quantities are very close to 1 indicates that both velocity field
models are able to accurately explain the synthetic secular variation. However, as we will see in the following,
the two flow solutions are not equivalent.

The velocity fields of both ensembles {uep, bep} and {uip, bip} are now examined in spectral space and com-
pared to u0, the artificial velocity field of this test. The average velocity field of {uep, bep} is referred to ûep,
whereas the average velocity field of {uip, bip} is referred to ûip. Figure 3 displays the spectra of different
quantities which derive from the toroidal (left) and poloidal (right) parts, of the velocity field u0 and the
subensemble {uep} (top), and of the velocity field u0 and the subensemble {uip} (bottom). The thick black
lines correspond to the spectra of the artificial toroidal and poloidal fields, whereas the spectra of the esti-
mated fields ûep and ûip are shown with thick grey lines in Figures 3 (top row) and 3 (bottom row), respectively.
The first observation one can make is that whereas at large scales, ûep and ûip present comparable levels of
energies to the ones u0 exhibit, at small scales, the energy spectra of ûep and ûip are decaying much faster than
the ones associated with u0. Comparing the two graphics on the right side of Figure 3 seems to indicate that
the poloidal spectrum of ûip fits much better the poloidal spectrum of u0 than the poloidal spectrum of ûep.
However, when computing the error fields 𝜖ep = ûep−u0 and 𝜖ip= ûip− u0, one can observe through their spec-
tra (shown with crosses in Figure 3) that the energy they contain in any scale is of the same order for both
average velocity fields. Even for the poloidal fields, where the energy associated with the degrees l=2, 3, 4 is
lower for 𝜖ip than for 𝜖ep but larger for degrees l=1, 5, 6, 7.

From the subensembles {uep} and {uip} predictions on the uncertainties associated with ûep and ûip should
be available. Here these predictions are computed in terms of scale-by-scale posterior variances. After being
rescaled by the factor l(l+1), they are plotted in Figure 3 with grey dashed lines. From the comparison between
this quantity and the rescaled scale-by-scale prior variances (shown with thin black lines in Figure 3 and also
referred to prior spectra) two spherical harmonics ranges can be identified. One where data have an influence
on the posterior distribution of the flow, up to SH degree l =8 to l =13, and one where the prior distribution
completely dominates posterior statistics, typically above SH degree l =13. For the part where data still have
an influence on the estimated flow, one can see that the spectrum associated with the error field 𝜖ep = ûep−u0,
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Figure 4. Comparisons between the artificial velocity field u0 and the ensemble solution ûep deriving from estimated
prior spectra parameters. Black arrows: (top row) artificial velocity field u0 and (bottom row) ensemble averaged velocity
field ûep, through their (left column) toroidal and (right column) poloidal components. The color maps in Figure 4
(top row) correspond to the absolute value of the difference in orientation between the artificial u0 and estimated
ûep fields, whereas in Figure 4 (bottom row), they are associated with the 90% confidence interval on flow orientation
according to the posterior velocity field sample {uep}.

spreads around the scale-by-scale posterior variances, meaning that the prediction on flow uncertainties is
consistent with the effective error. This is not the case anymore for the prediction associated with the {uip}
subensemble, where the prior distribution is imposed. Here the predicted errors are clearly underestimating
the effective errors with even a toroidal scale-by-scale posterior variance lower than the toroidal error spec-
trum at any SH degree. To quantify the departure or consistency of the flow predictions with the synthetic
velocity field, one can evaluate the following normalized velocity field misfit:

𝜒2
u = 1

du
E
[(

û − u0

)T Σ−1
u|𝛾0 ,

(
û − u0

)]
post

, (53)

where du is the size of the velocity field vector andΣu|𝛾0 ,=E
[(

u − û
) (

u − û
)T
]

post
is the posterior covariance

of the velocity field. Note that to evaluate 𝜒2
u , only components of the poloidal and toroidal fields up to SH

degree l=13 are taken into account since above this limit data have no more influence on the posterior veloc-
ity fields. The values 𝜒2

u is exhibiting confirm the visual diagnosis we established with the different spectra in
Figure 3. Indeed, for the velocity field ensemble deriving from the estimated prior distribution, the value of
𝜒2

u = 1.07 is close to one, indicating that the prediction of the uncertainties associated with ûep is consistent
with the effective error 𝜖ep = ûep−u0. The value of𝜒2

u =3.05 associated with the velocity field generated accord-
ingly to the imposed prior distribution indicates that the error 𝜖ep= ûep−u0 is not consistent with the posterior
covariance of the velocity field. The error predictions are therefore strongly underestimated in this case.

Comparison between {uep}, {uip}, and u0 is now performed in physical space. Since above SH degree lc=13
data have almost no influence on the estimated flows at the CMB, the posterior distributions of the velocity
field being completely dominated by the prior distributions, the different velocity fields ({uep}, {uip}, and u0)
are truncated at degree lc. Here we present an evaluation of the ability of the method to correctly estimate
the flow orientation, and if not to predict its possible deviations. Note that the results we will present are simi-
lar for the flow magnitude. Figure 4 is associated with the velocity field subensemble {uep} depending on the
estimated spectra parameters. It displays the toroidal (left) and poloidal (right) parts of the artificial velocity
field u0 (top) and estimated velocity field ûep (bottom) with black arrows. The color maps in Figure 4 (top row)
correspond to the absolute value of the angle (in degree) between u0 and ûep; it is therefore a measure of
the error on the orientation of ûep. In Figure 4 (bottom row), the color maps are associated with the 90%
confidence interval (according to the velocity ensemble) on the flow orientation. These latter maps must be
read as follows. At a given location, the ensemble predicts that the orientation of the real flow is given by
the orientation of the average velocity field vector ûep, plus or minus the value associated with the color at
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Figure 5. Same as Figure 4, but comparing the artificial velocity field u0 and the ensemble solution {uip} deriving from
imposed prior spectra parameters.

this place, and this, with a 90% confidence. Globally, most of the locations where the ensemble is predicting
little uncertainties in flow orientation (violet and blue colors) correspond to locations where the direction
of ûep remains close to the direction of u0. Conversely, locations where the orientation of ûep strongly devi-
ates from the effective flow orientation (red patches) are usually belonging to areas of large orientation
uncertainty.

The same analysis in physical space is now performed for the subensemble {uip} deriving from imposed
prior spectra parameters. When looking at Figure 5 which displays the same quantities as Figure 4 but for
{uip}, identical conclusions to the ones we just mentioned can be drawn. However, the comparison between
Figures 5 and 4 provides much more interesting information.

Reflecting what we already observed in spectral space, the poloidal and toroidal parts of the average fields
ûep and ûip are very close to one another. The orientation errors associated with these fields are also sharing
similar locations and present comparable levels of intensity. Nevertheless, the orientation error is lower for
the poloidal and toroidal parts of ûep than the poloidal and toroidal parts of ûip on, respectively, 50.9% and
54.8% of the surface of the core-mantle boundary.

The most striking differences between Figures 4 and 5 appear in the color maps associated with the 90%
confidence interval on the flow orientation. Although predictions of reliable or uncertain flow orientation
are located in similar places, the intensity of these predictions strongly varies from one case to the other.
According to Figures 4 and 5 the velocity field ûip presents weaker posterior variability in orientation than ûep.
However, when providing the 90% confidence interval on flow orientation, one has to expect that on approx-
imately 90% of the surface of the CMB, the real velocity field orientation belong to the predicted interval.
This is the case for predictions provided by the {uep} subensemble, where the real poloidal and toroidal field
orientations (the one associated with u0) are lying within the predicted interval on, respectively, 92.6% and
88.5% of the total core surface. For predictions arising from the {uip} subensemble, these proportions are
strongly dropping to, respectively, 77.7% and 70.4% of the area of the CMB, indicating that this ensemble
clearly underestimates the appropriate posterior variability of the velocity field.

From this synthetic test, two main conclusions can be drawn. First, the method we developed to estimate
the spectra parameters in order to build prior constraints for the flow allows us to generate velocity fields
which are consistent with the observed secular variation. Second, we demonstrated that although the spectra
parameters chosen to construct the prior distribution of the flow do not strongly affect the average velocity
field of the posterior ensemble (at least with the parameters we chose), taking appropriate values for these
parameters is mandatory to obtain accurate estimations of flow uncertainties. Yet the parameters evaluation
we propose in this study is very well suited to obtain realistic posterior statistics of the flow evolving at the
Earth’s core-mantle boundary.
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3.4. The Poloidal and Toroidal Energy Spectra at the Core-Mantle Boundary
The method tested in the two previous sections is now applied to the GRIMM-3 secular variation and mag-
netic field model for the period 2001–2009.5. Instead of calculating the spectra parameters at a single epoch,
we propose to evaluate their time-averaged values within the 2001–2009.5 period. To do so, the magnetic
field and secular variation time series are sampled every 0.1 years. The likelihood distribution of each secular
variation 𝛾i taken from the sample is given by

p(𝛾i|) =
exp

[
− 1

2
𝛾T

i Σ
−1
𝛾i |𝛾i

]
(2𝜋)

d
2 |Σ𝛾i | | 1

2

. (54)

Neglecting the temporal dependency of both the secular variation and the magnetic field, the posterior dis-
tribution of the spectra parameters given the ensemble of NS = 86 secular variations 𝛾i and magnetic fields
bi becomes the following:

p(|𝚪 = 𝛾1,… , 𝛾i,… , 𝛾NS
) =

[
n=NS∏
n=1

p(𝛾n|)
p(𝛾n)

]
× p() . (55)

The maximum ̂ of this distribution is then numerically approximated for different cases. In the simulations
we performed, up to two spherical harmonics ranges are used to characterize the toroidal and poloidal energy
spectra. This choice was dictated by recent studies as in Aubert [2013], Baerenzung et al. [2014], and Gillet et al.
[2015] showing that the flow at the core-mantle boundary was exhibiting a very energetic large- scale eccen-
tric gyre. Yet the spectral signature of this structure may differ from the one associated with the remaining
part of the flow. Therefore, by modeling the spectra with two ranges, if they exist, the two different spectral
regimes will be distinguishable. Numerically, only the slopes and the magnitudes of the toroidal and poloidal
energy spectra are evaluated, the separation of the spectra in different SH ranges being prescribed a priori. To
determine at which scales the optimal changes in spectral slopes should occur, a large set of possible config-
urations are compared to one another through the maximum posterior probability density they exhibit. This
operation is relevant since we a priori assess equal chances to any possible decomposition of the poloidal and
toroidal energy spectra. Table 2 summarizes the different parameters we employed in the simulations as well
as the results we obtained.

In this parametric study we proceeded gradually. In the first simulation (referred to I), the poloidal and toroidal
spectra are both assumed to be characterized by unique slopes. The result we obtained shows that the toroidal
field strongly dominates the poloidal one in the entire spectral range we modeled (i.e., between SH degree
l=1 and l=26). In addition, whereas the poloidal spectrum is increasing, the toroidal one is decaying with a
slope of the order of P𝜓 ∼ 1. This first result contradicts results of Celaya and Wahr [1996] who deduced that
the total energy spectrum of the flow at the CMB should decay as l−2 or faster. In the second set of simulations
(simulations II to VIII), the poloidal spectrum is described by a single slope whereas the toroidal one is decom-
posed into two ranges. The degree where the transition in slope of the toroidal energy spectrum occurs is
varied between l = 2 and l = 8. For each case the magnitudes of both the poloidal and the toroidal spectra
are evaluated as well as their different slopes. From Table 2, one can observe that shifting the toroidal transi-
tion scale toward small scales coincides with a diminution of the spectral slope within the spherical harmonic
range Δ𝜓1

, whereas the slope associated with the spectrum at small scales remains always close to 0. This
phenomenon may indicate that the toroidal field can be separated into two parts, one very energetic at large
scales (probably the large-scale eccentric gyre), and another one presenting an almost flat spectrum at small
scales. The computation of log(p(̂|𝚪)) for each simulation, indicates that the degree where the transition
in slope is most likely to happen is l = 3, corresponding to simulation III. In the final ensemble of simulations
(simulations IX to XX), both the poloidal and toroidal energy spectra are assumed to present two different
ranges. Whereas the change in slope in the toroidal case is always prescribed around SH degree l = 3, values
between l=4 and l=9 are tested for the poloidal case. It can first be observed that splitting the toroidal spec-
trum into the two ranges 1≤ l≤3 and 3≤ l≤26 always present a higher posterior probability density than any
other decomposition. Then, the most probable scale at which the slope of the poloidal spectrum is changing
is SH degree l=8.
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Table 2. Optimal Spectra Parameters ̂ for Different Prior Decompositions of the Time-Averaged Toroidal and Poloidal
Energy Spectra Within the 2001–2009.5 Perioda

Simulation Range Index i Δ𝜙i
A𝜙 P𝜙i

Δ𝜓i
A𝜓 P𝜓i

log
(

p(̂|𝛾0)
)
+ c

I 1 [1 26] 1.24 −0.76 [1 26] 20.2 0.92 0

II 1 [1 26] 1.36 −0.65 [1 2] 26.2 2.19 21.3

2 − − − [2 26] 15.37 0.65

III 1 [1 26] 1.61 −0.44 [1 3] 34.05 2.78 89.5

2 − − − [3 26] 7.45 0.01

IV 1 [1 26] 1.66 −0.42 [1 4] 27.45 1.95 63.2

2 − − − [4 26] 6.92 −0.04

V 1 [1 26] 1.68 −0.37 [1 5] 25.67 1.69 57

2 − − − [5 26] 5.5 −0.23

VI 1 [1 26] 1.68 −0.4 [1 6] 23.2 1.39 31.6

2 − − − [6 26] 5.55 −0.2

VII 1 [1 26] 1.61 −0.44 [1 7] 22.23 1.23 21.5

2 − − − [7 26] 5.66 −0.17

VIII 1 [1 26] 1.65 −0.43 [1 8] 21.73 1.17 19.9

2 − − − [2 26] 4.74 −0.29

IX 1 [1 4] 0.28 −3.31 [1 3] 33.75 2.77 107.3

2 [4 26] 3.28 0.23 [3 26] 7.26 −0.03

X 1 [1 5] 0.3 −2.94 [1 3] 33.98 2.8 117.9

2 [5 26] 5.99 0.77 [3 26] 7.1 −0.05

XI 1 [1 6] 0.37 −2.54 [1 3] 34.15 2.82 129

2 [6 26] 13.78 1.51 [3 26] 6.96 −0.07

XII 1 [1 7] 0.43 −2.23 [1 2] 25.86 2.22 54.5

2 [7 26] 26 1.98 [2 26] 14.46 0.54

XIII 1 [1 7] 0.48 −2.14 [1 3] 34.64 2.87 136.1

2 [7 26] 51.51 2.68 [3 26] 6.76 −0.1

XIV 1 [1 7] 0.5 −2.07 [1 4] 27.42 1.98 107.7

2 [7 26] 49.98 2.65 [4 26] 6.24 −0.16

XV 1 [1 8] 0.52 −1.96 [1 2] 25.87 2.22 54.8

2 [8 26] 192.21 3.73 [2 26] 14.37 0.53

XVI 1 [1 8] 0.62 −1.77 [1 3] 34.67 2.87 136.7

2 [8 26] 427.59 4.52 [3 26] 6.76 −0.1

XVII 1 [1 8] 0.64 −1.72 [1 4] 27.46 1.97 108.6

2 [8 26] 387.53 4.43 [4 26] 6.24 −0.16

XVIII 1 [1 9] 0.74 −1.53 [1 2] 25.82 2.22 50.5

2 [9 26] 17471.7 7.63 [2 26] 14.25 0.51

XIX 1 [1 9] 0.77 −1.45 [1 3] 35.23 2.91 136

2 [9 26] 174982 9.77 [3 26] 6.61 −0.13

XX 1 [1 9] 0.84 −1.38 [1 4] 27.89 2.02 110.4

2 [9 26] 193315 9.85 [4 26] 5.97 −0.21
aA corresponds to the magnitudes and P to the slopes of the poloidal (with 𝜙 subscripts) and toroidal (with 𝜓

subscripts) energy spectra. The last column provides the posterior probability density of the spectra parameters
(the larger the density, the most likely the decomposition), and the constant c is given by − log

(
p(̂|𝛾0)

)
of simulation

I. Note that for poloidal and toroidal fields expanded in Schmidt seminormalized spherical harmonics, the magnitudes
given in this table have to be divided by a factor of

√
4𝜋 (the slopes remain similar). Bold data are associated with the

optimal decomposition.
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Figure 6. (top) Toroidal and (bottom) poloidal, energy spectra (black lines), prior spectra (grey lines), and rescaled
scale-by-scale variances (circles), associated with the velocity field û at the epoch 2005.0.

To provide confidence intervals on the spectra parameters of simulation XVI (the one presenting the highest
posterior probability density), we numerically evaluated the standard deviation:

𝜎 =
[
∫

( − ̂)2
p(|)d] 1

2

(56)

with a Monte Carlo integration algorithm. Combining this uncertainty estimation to the results of simulations
I to XX, the following conclusions on the spectral behavior of the poloidal and toroidal flows can be drawn:

1. The toroidal energy spectrum has a magnitude of 34.7 ± 2.7 and can be characterized by two ranges, one
between 1 ≤ l ≤ 3 where the spectrum is decaying with a slope of 2.9 ± 0.2 and one between 3 ≤ l ≤ 26
where the spectrum is almost flat with a slope of −0.1 ± 0.1.

2. The poloidal energy spectrum which is characterized by a magnitude of 0.6 ± 0.1 is first increasing with a
slope of 1.8 ± 0.2 to reach its maximum at SH degree l = 8 where it starts to decay with a strong slope of
4.5 ± 1.1.

3.5. The Velocity Field at the Core-Mantle Boundary and Its Uncertainties in 2005.0
The optimal spectra parameters found in the previous section, and referred to ̂, are now used as a prior
information for the estimation of the flow at the CMB at the epoch 2005.0. For this study we generated an
ensemble of N = 42, 500 (u, b) fields. The average velocity field of this ensemble is referred to û.

In spectral space, the posterior variances of the poloidal and toroidal fields are computed for each degree l.
These latter are then rescaled by the factor l(l + 1) and plotted in Figure 6 (circles) together with the spectra
of û (black lines) and with the prior spectra of the velocity field (gray lines). In comparison with the results of
Baerenzung et al. [2014], where the same analysis was performed, the posterior variance of both poloidal and
toroidal fields is much more important in this study. This is certainly due to the choice of the prior information
on the flow, which in Baerenzung et al. [2014] was imposing a much stronger slope to the kinetic energy spec-
trum than in the present case. Note that the strength of the penalty on the small scales imposed by the prior
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Figure 7. (top) Toroidal field (black arrows) and (bottom) poloidal field (black arrows) for the epoch 2005.0 together
with the 90% confidence interval on their orientation (color maps). The blue and violet contours, respectively, correspond
to the boundary of patches within which the tangential-geostrophic constraint and the surface incompressible
quasi-geostrophic constraint are violated with a 90% confidence. The white circles in the Northern and Southern
Hemispheres correspond to the intersections between the tangent cylinder and the CMB.

velocity field spectrum is not the only possible factor reducing the posterior variability of the solution; indeed,
forcing the flow to fulfill some physical constraint will also affect the posterior variance of the velocity field.
This effect can be observed in the flow obtained by Gillet et al. [2015], where although their ensemble of flow
solution suggests a flat prior spectrum, the quasi geostrophic constraint applied to the velocity field seems
to drastically reduce the variability of the solution. Going back to Figure 6, one can observe on its upper part
that only a few scales of the toroidal field (SH degree l=1, 2, 4, 6) present a lower or equivalent variance level
than the energy they exhibit. For the poloidal field (Figure 6, bottom) the situation is even more dramatic,
since the energy contained in any scale is always lower than the variance. In the best case (SH degree l =7
and l=8), these two quantities are of the same order of magnitude. Another observation one can make with
Figure 6 is that above SH degree l = 13, the posterior distribution of the flow is completely dominated by
prior properties. This is why the velocity field in physical space will only be expanded up to SH degree l=13.

In physical space, Figure 7 displays, with black arrows, the average toroidal (top) and poloidal (bottom) fields,
together with the 90% confidence interval on their orientation in degree (color maps). The color transition
from violet to red is associated with, respectively, reliable to uncertain flow orientations. The locations of reli-
able or uncertain flow patterns strongly differ between the poloidal and the toroidal fields. Indeed, the most
robust feature of the toroidal field is the large planetary scale eccentric gyre already identified in previous
studies with various prior constraints [see Pais and Jault, 2008; Gillet et al., 2009; Aubert, 2013], whereas only
part of the poloidal field in the Eastern Hemisphere can be accurately estimated. In agreement with the results
of Baerenzung et al. [2014], the flow at the level of the CMB below the Pacific Ocean, the northern and southern
part of the Atlantic and Europe cannot be precisely determined through the inversion of the FF equation.
This means, in particular, that the counterclockwise gyre below the tip of Africa or the clockwise gyre east
of Québec, recurrently reported [see Finlay et al., 2010; Aubert, 2013], and which are also present in the flow
we recovered, are not necessary to explain the observed secular variation. The toroidal field we obtained
also contradicts many prior physical assumptions usually employed in the inverse problem. In particular, the
extremely robust parts of the flow crossing the equator below India and Brazil violate the condition imposed
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by quasi-geostrophy, or tangential-geostrophy, which are forcing the polar component of the velocity field to
vanish at the equator. Another feature contradicting the geostrophic assumption is the clear flow penetration
of the cylinder tangent to the inner core (in both the Southern and Northern hemispheres) whose intersec-
tions with the CMB are represented with white lines in Figure 7. Finally, the property of equatorial symmetry of
the flow requested by quasi-geostrophy is also not fulfilled by the velocity field we calculated, the intensity of
the flow in the Southern Hemisphere below Africa and below the Atlantic, being larger than in the Northern
Hemisphere. Note that this feature is usually observed when equatorial symmetry is not a priori imposed to
the velocity field as in Amit and Pais [2013].

Recently, Aubert [2013]; Aubert et al. [2013] has shown that the eccentric nature of the planetary scale gyre
was due to a difference in buoyancy release between the Eastern Hemisphere and the remaining part of the
inner core boundary (ICB). In their 3-D simulations of the geodynamo, they observed that imposing a longi-
tudinal anomalous mass flux on the ICB presenting a maximum beneath Indonesia, allowed them to recover
the particular localizations of the geomagnetic secular variation. This heterogeneous forcing of the flow leads
to fast upwelling movements of fluid particles above locations where it is applied. A signature of this mecha-
nism can be observed in the flow we estimated. Indeed, upwelling movements of the fluid in the outer core
are converted into poloidal field when meeting the core-mantle boundary. Yet the poloidal field we obtained
in eastern regions is much more energetic, with some velocities reaching 7 km yr−1, than in the remaining part
of the CMB, where the poloidal velocities do not excess 2 km yr−1. The presence of such intense and reliable
poloidal fields indicates that if there were to be a stratified layer at the top of outer core, as proposed by Pozzo
et al. [2012] and Gubbins and Davies [2013], the latter would have only weak effects on large-scale upwelling
and downwelling motions in the outer core and would only impact small-scale structures as predicted by
Vidal and Schaeffer [2015].

Thanks to the ensemble of velocity fields we possess, we can estimate that the reliability of particular features
û is exhibiting. In the following we measure the posterior probability of different properties characterizing
some particular behaviors of the flow.

Equatorial Symmetry. The toroidal part of û clearly presents strong equatorial symmetries. The range of
[0.72; 0.84] corresponding to the 90% confidence interval on the ratio between the energy of the equatorial
symmetric and total toroidal field confirm this aspect of the flow. This particular behavior of the velocity field
is less pronounced for its poloidal part. Indeed, the 90% confidence interval for the ratio between the energy
of the equatorial symmetric and total poloidal field is of [0.47; 0.67].

Northern and Southern Intensity of the Westward Drift. We define the westward drift intensity as the root mean
square azimuthal velocity lying between longitudes ±60∘ and colatitudes ±30∘, its northern part uN and
southern part uS being delimited by the equator. For 94.2% of the velocity fields belonging to the posterior
ensemble, uS is greater than uN. To quantify the departure from symmetry of the westward drift, the posterior
distribution of the ratio uN∕uS has been computed. The fact that this distribution is characterized by a max-
imum at uN∕uS = 0.8, and a 90% confidence interval of [0.63; 1.00], confirms that the westward drift is very
likely to be more intense in the Southern Hemisphere than in the northern one.

Geostrophy. To evaluate if the geostrophy assumption is valid everywhere in the outer core, we studied the
posterior distribution of the following two quantities: ∇H(u cos 𝜃) associated with the tangential-geostrophy
(TG) constraint and ∇H(ues cos2 𝜃), where ues is the equatorial symmetric part of the velocity field, associated
with the surface incompressible quasi-geostrophic (SIQG) constraint. For the TG or the SIQG constraints to be
fulfilled, either ∇H(u cos 𝜃) or ∇H(ues cos2 𝜃) has to vanish at the core-mantle boundary. Contours of patches
in which the 0 value does not belong to the 90% confidence intervals of ∇H(u cos 𝜃) and ∇H(ues cos2 𝜃) are
shown in Figure 7 (bottom). Blue and violet contours, respectively, correspond to locations in which the TG
and SIQG constraints are violated. These locations mostly coincide with areas of intense upwelling or down-
welling motions of the outer core fluid. This may indicate that the difference in buoyancy release between the
Eastern Hemisphere and the remaining part of the inner core boundary could break the geostrophic state of
the outer core.

4. Conclusion

In this study, we proposed a consistent formalism to determine both the poloidal and toroidal energy spec-
tra of the velocity field evolving at the Earth’s core-mantle boundary. We showed that using these spectra
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as a prior information in the inversion of the frozen flux approximation, together with employing an appro-
priate sampling algorithm, allowed recovering realistic posterior statistics of the flow. Applying our method
to real data allowed us to extract different information on the velocity field at the core-mantle boundary.
First, the large-scale approximation as it is usually considered cannot be applied in a Bayesian framework to
determine the flow between 2001.0 and 2009.5. Indeed, the toroidal field, which dominantly contributes to
the total velocity field, exhibits an energy spectrum characterized by two ranges: one between spherical har-
monic degrees l = 1 and l = 3 where the spectrum is strongly decaying, in agreement with the large-scale
approximation, but also one above degree l = 3, contradicting the assumption. The large-scale assumption is
also violated by the poloidal field which presents an energy spectrum increasing between spherical harmon-
ics degrees l = 1 and l = 8. Then, we could estimate the reliability of certain features of the flow. Whereas the
toroidal part of the velocity field is dominantly equatorial symmetric, it is very unlikely to be perfectly sym-
metric, as reflected by the difference in intensity between the northern and southern part of the westward
drift. Finally, we could demonstrate that if the flow was to be geostrophic in the outer core, this property is
probably breaking in locations where intense upwelling and downwelling motions of fluid particles occur.

From the results of this study, improvements on the methodology could be considered. In particular, the
strong degree of equatorial symmetry of the flow suggests that its symmetric and antisymmetric parts could
be treated distinctively a priori. Accounting for the temporal dependency of the velocity field in the inverse
problem is also clearly lacking in this study. If well characterized, time correlations would certainly improve
the quality of the flow solution by reducing its posterior variability. The method we propose, because of its
numerical efficiency and mathematical consistency, could provide a solid basis to tackle the time-dependant
problem.
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