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Lepidocrocite, a widespread environmentally relevant iron oxyhydroxide, has been

investigated for decades using 57Fe Mössbauer spectroscopy and magnetic

measurements. However, a coherent and comprehensive interpretation of all the data

is still lacking due to seemingly contradictory interpretations. On one hand, temperature

dependence of magnetic susceptibility and Mössbauer spectra resemble those of

superparamagnetic nanoparticles with diameters less than 10 nm even though physically

particles are lath-shaped with lengths on the order of 100–300 nm. On the other hand,

in-field Mössbauer spectra show that lepidocrocite is an antiferromagnet and becomes

paramagnetic above 50–70 K, a temperature close to the blocking temperature deduced

from susceptibility data. The present study investigates a well-characterized synthetic

sample of lepidocrocite, includes modeling of Mössbauer spectra and dc and ac

magnetization data, and proposes a solution to this paradox. The new data are coherent

with the presence of two entities in lepidocrocite: a bulk antiferromagnetic matrix and

sparse ferrimagnetic nanosized inclusions (d = 3.4 nm), akin to maghemite, embedded

within. The presence of nanosized ferrimagnetic inclusions is confirmed for the first time

by Mössbauer spectroscopy.

Keywords: lepidocrocite, Mössbauer, magnetic properties

INTRODUCTION

Iron oxides and oxyhydroxides are widespread magnetic minerals in geologic records.
Quantifying the magnetic assemblage of natural samples allows deciphering past geologic,
environmental, climatic, pedogenic, or diagenetic conditions (e.g., Liu et al., 2012). Among
these minerals, lepidocrocite (γ-FeOOH) has been less studied from a magnetism point of
view than other iron-bearing minerals. It is commonly found in hydromorphic soils where
there is seasonal alternation of reducing and oxidizing conditions, and has been shown to
be a precursor of more magnetic phases such as maghemite or magnetite (eg., Fitzpatrick
et al., 1985; Gehring and Hofmeister, 1994; Cornell and Schwertmann, 2003; Gendler et al.,
2005; Till et al., 2014). Lepidocrocite is a ferric oxyhydroxide, orange in color, with an
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orthorhombic crystal structure (e.g., Ewing, 1935). The
structural model consists of double chains of edge-sharing
FeO3(OH)3 octahedra running along the c-axis. These double
chains share edges to form layers, which are connected by
hydrogen bonds (e.g., Eggleton et al., 1988). Natural and
synthetic samples occur as needle shaped crystallites or
platelets with one of their dimensions that can reach a few
nanometers, the other two being much larger. Lepidocrocite
is an antiferromagnet with a Néel temperature, TN , ranging
from 50 to 70 K depending on crystallinity and possibly water
content (Johnson, 1969; De Grave et al., 1986). Although
the Mössbauer spectra resemble those of an ensemble of
superparamagnetic nanoparticles, it is clearly established,
in particular through in-field Mössbauer spectra (De Grave
et al., 1986), that lepidocrocite is paramagnetic above TN and
that the shape of the Mössbauer spectra reflects an unusually
broad distribution of Néel temperatures. Another puzzling
feature of lepidocrocite is that the Field Cooled (FC) and Zero
Field Cooled (ZFC) branches of the low field direct current
(dc) susceptibility (Lee et al., 2004) are also akin to those
encountered in ensembles of superparamagnetic nanoparticles
(Tronc et al., 1995), although lepidocrocite laths or needles
cannot be considered, from a magnetism point of view, as
nanometric particles. Hirt et al. (2002) proposed several
interesting hypotheses to explain the low temperature magnetic
behavior of lepidocrocite, but did not provide a definite picture.
They proposed the existence of a defect moment and a rather
large range of TN-values, but observed the presence of shifted
magnetic hysteresis loops below TN and the persistence of a
low temperature remanent magnetization (acquired in 2.5 T
while cooling from 300 to 5 K) well above TN during thermal
demagnetization. The first observation was attributed to either
a minor loop (as the maximum field was not enough to saturate
the sample) or exchange bias arising from defective regions
behaving like ferrimagnets, while the second observation was
attributed to the presence of a small inducing field in the
instrument. This persistence of a remanent magnetization
at temperatures higher than TN was also observed in other
samples (Till et al., 2014), suggesting that it is inherent to
lepidocrocite. Till et al. (2014) also showed that nanoparticles of
maghemite formed within the larger particles of lepidocrocite,
during the early stage of lepidocrocite dehydroxylation
achieved through moderate heating under oxidizing
conditions.

In the present study, a comprehensive interpretation of 57Fe
Mössbauer spectroscopy and magnetization (in zero, constant,
or alternating field) data acquired on synthetic lepidocrocite
is presented. It is demonstrated that the occurrence of two
magnetic behaviors can be tracked in all measured quantities,
one due to the antiferromagnetic (AFM) bulk material and the
other to sparse (probably) ferrimagnetic nanoparticles similar to
(but in lesser content) those observed during moderate heating
of lepidocrocite. Supporting evidence is provided from modeling
efforts. We discuss the possible form of this coexistence, which
seems to be inherent to lepidocrocite although the concentration
of ferrimagnetic nanoparticles appears to be sample
dependent.

MATERIALS AND METHODS

Sample Synthesis
A batch of lepidocrocite was prepared by mixing a 0.228M
solution of FeCl2 · 4H2O with a 0.4M solution of NaOH
to precipitate an Fe(II) hydroxide (Ona-Nguema et al., 2002).
The resulting suspension was aerated at 25◦C by continuous
magnetic stirring to oxidize the precipitate, leading to a change
in color of the suspension from dark green to orange. The
reaction was also monitored through recording of Eh and
pH values. The precipitate was subsequently removed from
the suspension by centrifuging, washed with Milli-Q R© water
to remove electrolytes and vacuum-dried in a desiccator. A
representative transmission electron microscope (TEM) image
of the resulting sample is shown in Figure 1, displaying platy
particles with an approximate length of 100 nm, and irregular
terminations. An X-ray diffraction (XRD) pattern of the sample
was obtained using Co (Kα) radiation on a Panalytical XPert
PRO MPD diffractometer, displaying all the diffraction peaks
of lepidocrocite and confirming the absence of contamination
(Figure 2). The lepidocrocite sample has an orthorhombic
symmetry for which cell parameters are a = 3.88 Å, b = 12.60 Å
and c = 3.07 Å when the space group is Vh17 – Amam. These
parameters are similar to those previously obtained by Ewing
(1935).

Magnetic Characterization Methods
The 57Fe Mössbauer spectra were recorded using a constant
acceleration electromagnetic drive to which is attached a 57Co/Rh
commercial γ-ray source. Spectra were obtained in the 4.2–
77 K temperature range. Isothermal magnetization curves were
measured on dry powder in a Cryogenic Ltd Vibrating Sample
Magnetometer up to 7 T in the 10–250 K temperature range.
Low field direct curent (dc) susceptibility (i.e., measured in
constant magnetic field) was measured on dry powder from 10
to 300 K using a Cryogenic Ltd SQUID magnetometer, in the
Zero Field Cooled (ZFC) and Field Cooled (FC) procedures.

FIGURE 1 | Transmission electron micrograph of the lepidocrocite

sample.
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FIGURE 2 | X-ray diffractogram of the lepidocrocite sample.

In the ZFC procedure, the sample is cooled in zero external
magnetic field and the dc magnetic susceptibility measured
using a 5 mT magnetic induction, while in the FC procedure
the sample is cooled in a 5 mT magnetic induction prior
to measurement. Alternating current (ac) susceptibility (i.e.,
measured in an alternating magnetic field) was measured in
a Quantum Design MPMS (Magnetic Properties Measurement
System) with a magnetic induction of amplitude 0.2 mT and
frequencies of 1, 10, 100, and 1000Hz. The MPMS was also used
to measure the temperature variation of the isothermal remanent
magnetization (IRM) imparted with a 2.5 T magnetic induction
at 10 K, either after cooling the sample from 300 K in zero field
(ZFC IRM) or in a 2.5 T magnetic induction (FC IRM). The
zero field in the MPMS used for these experiments is better than
0.5 µT. Additionally, a Cisowski test was performed using the
MPMS at 10 K (e.g., Cisowski, 1981; Moskowitz et al., 1997),
which consisted in stepwise acquisition of the IRM up to 2.5 T,
followed by the stepwise demagnetization using backfields exactly
opposite to those used for the acquisition.

RESULTS
57Fe Mössbauer Spectroscopy
TheMössbauer spectra obtained at 4.2, 40, and 77 K are shown in
Figure 3. These spectra are similar to those presented inDeGrave
et al. (1986) with amagnetic hyperfine pattern at low temperature
(blue line in Figure 3) whose lines broaden and whose relative
weight decreases on heating, to the profit of a paramagnetic two-
line sub-spectrum (green line in Figure 3). The mean hyperfine
field at 4.2 K is 44.9(1) T, close to the previously published values
of 44.4 T (De Grave et al., 1986) and 46 T (Johnson, 1969). At
higher temperature, the magnetic sub-spectrum was fitted to a

FIGURE 3 | 57Fe Mössbauer spectra in lepidocrocite at selected

temperatures; the lines are fits and show the decomposition in

sub-spectra. The close-up of the 77 K spectrum focuses on the presence of

the small (red line) component

hyperfine field histogram. The thermal variation of the relative
intensity of the doublet spectrum, which corresponds to the
paramagnetic fraction of the sample, is represented in Figure 4.
One can define the Néel temperature (TN) as the temperature
at which half the sample is paramagnetic, which in our case
leads to TN = 46.5 K. Our lepidocrocite sample shows a broad
coexistence region of about 20 K around TN (i.e., an unusually
broad distribution of Néel temperatures) that could be linked to
different degrees of crystallization or different contents of excess
structural water (De Grave et al., 1986) in the crystallites.

A small intensity component (red line in Figure 3) with
a hyperfine field of 51.0(5) T at 4.2 K is also visible in the
spectra, which is still present with a slightly decreased hyperfine
field at 77 K (close-up of the 77 K spectrum in Figure 3).
This small intensity component could easily be overlooked if
Mössbauer spectroscopy is only conducted at room temperature.
Its relative weight is estimated at 1.5(5) at.% from its relative
area. Its saturated hyperfine field value matches that of ferric
oxides like ferrimagnetic maghemite γ-Fe2O3 or oxyhydroxides
like antiferromagnetic goethite α-FeOOH (e.g., Greenwood and
Gibb, 1971; Murad and Cashion, 2004). As shown in several
previous studies, lepidocrocite transforms to maghemite through
dehydroxylation (e.g., Gehring and Hofmeister, 1994; Cudennec
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and Lecerf, 2005; Till et al., 2014). The presence of a small amount
of maghemite in the sample would thus not be surprising.

Isothermal Magnetization
Isothermal magnetization curves are shown in Figure 5. At
all temperatures, these curves show a pronounced downward
curvature, which can be attributed to a Langevin-like behavior,
superimposed to a variation linear with the field. This linear
component is characteristic of an antiferromagnetic (AFM)
structure below the spin-flip field. Its slope, referred to as χAFM,
shows a small variation with temperature (Figure 6), with an
asymptotic value of 5.34× 10−7 m3/kg.

FIGURE 4 | Thermal variation of the paramagnetic fraction (green

sub-spectrum in Figure 3); the line is a fit to an erf function.

FIGURE 5 | Isothermal magnetization curves in lepidocrocite at

selected temperatures; the dashed lines are fits of the magnetization

curves to a linear law: M = M0 + χAFM µ0 H. Inset: close-up of the

hysteresis loop at 10 K.

In the framework of a simple two-sublattice three-
dimensional mean field theory, the values of χAFM and TN

are linked through the single ion molecular field constant λ:

χAFM =
1

3|λ|
and TN = |λ|µB

S(S+ 1)

3
g2

µB

kB
,

with the Landé factor g = 2 and spin S = 5/2.

In this expression, µB is the Bohr magneton and kB the
Boltzmann constant. The χAFM-value determined for our
lepidocrocite sample, 5.34 × 10−7 m3/kg, leads to TN = 392 K.
For comparison, χAFM in goethite is 3.96 × 10−7 m3/kg (Coey
et al., 1995), which corresponds to a theoretical value of TN =

532 K, close to the actual Néel temperature of about 400 K (e.g.,
Özdemir and Dunlop, 1996). In our lepidocrocite sample, the
Néel temperature (ca. 50 K) obtained byMössbauer spectroscopy
is much lower than the theoretical value. Furthermore, contrary
to usual antiferromagnets, the shape of the χAFM(T) curve does
not show a clear anomaly at TN . Both observations could be due
to the bi-dimensional character of the Fe layers in this material.
It has been known for a long time that the Heisenberg model
for exchange interactions shows no magnetic ordering in a bi-
dimensional lattice (Mermin and Wagner, 1966). Long range
ordering can be restored at low temperature by (usually weak)
inter-plane interactions, resulting in a reduced Néel temperature,
although the in-plane exchange can be quite strong.

The intercept of the linear part of M with the ordinate axis,
M0, can be considered as the saturation magnetization of a
ferrimagnetic component in lepidocrocite (Figure 5). Its value
decreases on heating, more slowly above about 50 K than below,
and a rough extrapolation of its thermal variation shows that
it should go to zero well above room temperature (Figure 6).
Identifying this component with the small intensity (1.5 at.%)
phase observed in the Mössbauer spectra, the saturatedM0-value
of 1.1 Am2/kg corresponds to a saturated magnetizationMs = 73
Am2/kg (assuming that lepidocrocite and the extra phase have
similar Fe mass %). As it will be presented in the next section,

FIGURE 6 | Thermal variations of the quantities M0 and χAFM. Note that

the ordinate scale for χAFM does not start at 0.
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the dc susceptibility curves show that the FC/ZFC irreversibility
temperature Tirr attributed to this component is close to 80
K. Therefore, one can consider that its magnetization obeys a
Langevin law above 80 K. Figure 7 shows its field variation,
obtained by subtracting the linear law (χAFM × µ0H) from the
magnetization curves, at selected temperatures above Tirr. The
lines are fits to a Langevin law with a log-normal distribution
of particles with a mean diameter d0 = 3.4 nm and a log-
normal dispersion σ = 0.22, assuming a 1.5% mass fraction
of the ferrimagnetic phase. For a given particle volume V, the
argument of the Langevin function L(x) = 1/tanh x− 1/x is x =

MsVH/kBT, resulting in a strong dependence of the curvature of
the Langevin law on themean volume<V> ormean diameter d0
of the particles. The fit of the field variations in Figure 7 indicates
that the ferrimagnetic particles are quite small, with a mean
diameter d0 = 3.4 nm. The agreement with the experimental
data is quite good, the Ms(T) values corresponding to the M0

(T) values shown in Figure 6 (Ms = M0/0.015). Furthermore,
the M/Msat vs. B/T curves are found to superpose quite well,
confirming the superparamagnetic behavior of this system. This
interpretation leads us to consider that nanosized ferrimagnetic
inclusions are embedded in the lepidocrocite matrix.

This picture is in line with the observed hysteresis visible at
10 K (insert of Figure 5), which disappears above 30 K. The
loop is slightly asymmetric, with coercive fields H+

c = 0.066
T and H−

c = −0.084 T. It is shifted along the field axis by an
additional −0.020 T after field cooling under 3 T, while there is
no shift of the loop along the magnetization axis. This behavior
is typical of exchange-bias, a well-documented phenomenon
observed in nanoparticles with a ferrimagnetic core and an
antiferromagnetic outer shell (e.g., Iglesias et al., 2008), where
the exchange field at the interface acts to shift the ferrimagnetic
hysteresis loop. A similar observation was reported in Hirt et al.
(2002), where it was attributed either to an under-saturation
of the sample (and thus a minor loop was measured) or to
exchange bias between the bulk of the lepidocrocite particles
(antiferromagnetic) and defective regions with uncompensated

FIGURE 7 | Ferrimagnetic contribution to the magnetization at 125,

150, 175, and 200 K; the lines are fits to a Langevin law. Inset:

Normalized magnetization curves scaled with temperature.

spins behaving like ferrimagnets. Considering our observations
based on both Mössbauer and magnetometry measurements of
the coexistence of antiferromagnetism (with TN around 46.5
K) and ferrimagnetism (with Tirr around 80 K), the observed
asymmetric loop in lepidocrocite is more likely due to the
exchange bias exerted by the antiferromagnetic matrix on the
ferrimagnetic nano-inclusions.

dc and ac Magnetic Susceptibility
The thermal variation of the low field dc susceptibility is shown
in Figure 8. The overall shape of these curves corresponds
to the response of an ensemble of ferrimagnetic nanoparticles
(Gittleman et al., 1974; Tronc et al., 1995) or of uncompensated
antiferromagnetic particles (Gilles et al., 2000). The irreversibility
temperature (Tirr) between the FC and ZFC branches is around
80–100 K and the blocking temperature (with respect to the
characteristic time of the magnetic measurements, τ = 100 s)
is about 50 K (maximum of the ZFC curve). The rather flat
character of the FC curve below 50 K suggests the possible
presence of inter-particle interactions (Tronc et al., 1995). The
presence of interactions is also suggested by the Cisowski test
(e.g., Cisowski, 1981; Moskowitz et al., 1997) performed at 10
K. The crossover point between the appropriately normalized
IRM acquisition and demagnetization curves occurs at 0.45,
close to but slightly less than the value of 0.5 expected for
non-interacting systems. If one neglects these interactions as
a first approximation, it is possible to simulate a ZFC curve
using the formalism developed by Gittleman et al. (1974) for an
ensemble of volume distributed particles. Once the mean particle
diameter d0 is known, the anisotropy density K can be deduced
since the temperature of the maximum of the ZFC curve is
proportional to the product Kd30. Identifying the susceptibility in
excess of the antiferromagnetic susceptibility (taken to be 5.34×
10−7 m3/kg) with that of the ferrimagnetic nano-inclusions,
with mean diameter d0 = 3.4 nm, and assuming a log-normal
diameter distribution, we obtain a good reproduction of the
ZFC curve with an anisotropy density K = 3.2×105 J/m3 and
a log-normal deviation of the diameter distribution σ = 0.22
(red curve in Figure 8). With a ferrimagnetic mass content
of 1.5%, the obtained saturation magnetization of the particle
Ms = 77 Am2/kg is very close to the Ms-value determined
from the magnetization curves (73 Am2/kg), measured on
a different instrument. We note that the deduced K-value
must be considered as an estimate since the inter-particle
interactions were neglected in the calculation. Therefore, the dc
magnetic responses in lepidocrocite, both low field and high field,
after subtraction of the AFM susceptibility of the bulk phase,
correspond to those of ferrimagnetic nanoparticles of 3.4 nm
mean diameter and low temperature magnetization of about 70
Am2/kg.

The thermal variation of the in-phase χ ′ and out-of-phase
χ ′′ components of the ac magnetic susceptibility are shown
in Figure 9. Frequency dependence of the amplitude of χ ′ is
clearly observed from about 20 to 100 K. This region is larger
than the one in the sample L89 measured by Hirt et al. (2002),
where it can only be observed below 60–70 K. In Till et al.
(2014), this frequency dependence was also observed in the two
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FIGURE 8 | ZFC and FC branches of the susceptibility vs. temperature

in lepidocrocite measured with a field of 5 mT and cooled with the

same field in the FC procedure. The red curve is a calculation of the ZFC

susceptibility using a model of independent volume distributed particles (see

text). The blue points represent the AFM susceptibility

samples of their study. Both samples were synthesized using
the same method as in the present study, the only difference
being the precipitate oxidation rate. In their study, the frequency
dependence in χ ’ was observed below about 100 K in the
rapid synthesis sample and below about 150 K in the slow
synthesis sample. This phenomenon thus appears to be sample
dependent. Furthermore, in our sample, the temperature Tmax of
the maximum of χ ′(T) is seen to slightly increase as frequency
increases, from 54 K at 1Hz to 60 K at 1000Hz. This is
characteristic of an ensemble of superparamagnetic particles
(Dormann et al., 1997), although the Tmax variation is quite
small. This variation is small enough that it would not have been
observed if measurements were taken every 10 K, as in previous
studies (Hirt et al., 2002; Till et al., 2014). For an ensemble of
non-interacting particles with a mean anisotropy barrier Ea =
K<V>, the relationship between Tmax and the frequency f is
an Arrhenius law: f = 1/τ0 exp(−Ea/(kBTmax)) (Néel, 1949),
where τ0 appearing in the pre-exponential factor is τ0 is an
attempt time characteristic of the material, which should be
of order 10−9–10−12 s. Using this law to fit our data leads to
τ0 = 10−35 s, which is considered to be unrealistically small
and possibly due to magnetic interactions (e.g., Dormann et al.,
1997). In the present case, such interactions could be dipolar
in nature if locally the concentration of ferrimagnetic nano-
particles was large enough. Alternatively, considering 3.4 nm
diameter γ-Fe2O3 ferrimagnetic nanoparticles embedded in a γ-
FeOOH antiferromagnetic matrix, one can expect the surface
spins of the ferrimagnetic nanoparticles to be strongly dependent
on the magnetic state of the lepidocrocite matrix. Magnetic
exchange interactions between the antiferromagnetic matrix
and the ferrimagnetic particles (as suggested by the exchange
bias evidenced in Figure 5), could lead to the existence of a
surface anisotropy rapidly varying when heating through TN .

FIGURE 9 | Low-temperature alternative current (ac) magnetic

susceptibility curves (χ′). The out-of-phase magnetic susceptibility (χ′′) is

displayed in the inset.

In Figure 10, we compare two models of in-phase ac magnetic
susceptibility, one using only the bulk anisotropy and one
using a combination of bulk and surface anisotropy. Following
Gittleman et al. (1974) the ac magnetic susceptibility can be
written as:

χac =
(µ0VM

2
s /3kBT)+

(

µ0M
2
s /3K

)

iωτ

1+ iωτ
,

with ω = 2πf and τ = τ0exp(KV/kBT)

In these expressions, f is the alternating field frequency, τ0 the
pre-exponential time constant,Ms the saturation magnetization,
µ0 the permeability of free space, and kB the Boltzmann constant.
The magnetic anisotropy K can be taken as the bulk anisotropy
value, K = Kbulk, or a combination of bulk and surface
anisotropy, K = Kbulk + Ksurf (S/V), for particles of volume
V and surface area S. To this expression, we added the thermal
variation of χAFM, using a fit to the results of Figure 6. Thermal
variations of MS were also assumed to follow those depicted in
Figure 6. An initial MS-value of 75 Am2/kg was used to scale
appropriately the model. The values of χ ′ were calculated by
taking the real part of χac, after integration over the whole range
of nanoparticles volumes. Figure 10A shows the results of this
model using Kbulk = 3.2 × 105 J/m3. As expected, the model is
quite different from the measured data shown in Figure 9, as the
modeled peaks are broader and their positions quite different. In
Figure 10B, we usedKbulk = 3×104 J/m3 and a thermal variation
of the surface anisotropy similar to that of MS, assuming that
the surface anisotropy would be changing significantly between
0 and 50 K, as the lepidocrocite matrix would reach its Néel
temperature. The initial value of Ksurf was taken as 5.1 × 10−5

J/m2 (at T = 0 K) and its asymptotic value as 1.2 × 10−6 J/m2

(at T = 300 K). The shape of the modeled χ ′ closely resemble
that of themeasured in-phase susceptibility, both in terms of peak
shapes and positions.
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FIGURE 10 | Models of low-temperature alternative current (ac)

magnetic susceptibility curves (χ′) for 3.4 nm superparamagnetic

particles with an effective anisotropy of 3.2 × 105 J/m3 (A) and two

component anisotropy with a volume anisotropy of 3 × 104 J/m3 and a

surface anisotropy of 5.1 × 10−5 J/m2 (at 10 K) (B).

Low Temperature Remanent
Magnetizations
The thermal evolution of the remanent magnetizations obtained
through the zero field cooling (ZFC IRM) and field cooling (FC
IRM) procedures in a 2.5 T induction are displayed in Figure 11.
The two curves are separated for temperatures below about 100
K, which implies that a 2.5 T magnetic induction applied at 10
K is not sufficient to magnetize the sample after cooling in zero
field. Such phenomenon has been observed in previous studies
on lepidocrocite (Hirt et al., 2002; Till et al., 2014), although
the temperature at which the FC and ZFC IRM curves merge is
different. In the study by Hirt et al. (2002), the ZFC and FC IRM
curves of their pure lepidocrocite sample L89 merge at 250 K.
In Till et al. (2014), the curves merge at 100 and 150 K for the
slow and rapid syntheses, respectively. This can be attributed to
differences in the size distribution of the ferrimagnetic regions,
which are likely to be sample dependent. Unblocking of the
magnetization is rather rapid at low-temperature, reflecting

FIGURE 11 | ZFC (in blue) and FC (in red) isothermal remanent

magnetization (IRM) curves obtained using a 2.5 T magnetic induction

applied at 10 K after cooling in zero field (ZFC) or in 2.5 T (FC). Inset:

temperature evolution of the difference between the FC and ZFC dc

susceptibility curves of Figure 8.

what was already observed in the FC/ZFC dc susceptibility
measurements. For comparison, the difference between FC and
ZFC dc susceptibility data (Figure 8), normalized by the value
at 10 K, is represented in the inset of Figure 11. The thermal
variation of this calculated difference, which should correspond
to the remanent magnetization acquired by nanoparticles during
cooling in a 5mTmagnetic induction (e.g., Dormann et al., 1997),
is nearly the same as that of the FC IRM curve.

DISCUSSION

The two magnetic components present in lepidocrocite are
expressed differently in the different types of measurements
performed. The Mössbauer signal is predominantly due
to the antiferromagnetic γ-FeOOH matrix, the isothermal
magnetization at moderate field contains equivalent
contributions from both components and the dc and ac
susceptibility signals are predominantly due to the ferrimagnetic
nano-inclusions. These circumstances can be quite misleading.
Indeed, since both the Mössbauer spectra and the susceptibility
curves resemble those of superparamagnetic particles, one could
be tempted to attribute both signals to the same entity, i.e., a
volume distributed ensemble of lepidocrocite nanoparticles.
However, the blocking temperatures for both techniques would
then be almost the same: for Mössbauer spectroscopy, the
temperature for which half the spectrum is paramagnetic-like
(46.5 K for our sample), and for the dc magnetic measurements,
the temperature for which the ZFC curve has its maximum
(50 K for our sample). But their characteristic times are very
different: τχ ≈ 100 s for the magnetic measurements and τM
≈ 10−8 s (the hyperfine Larmor precession time) for 57Fe
Mössbauer spectroscopy. This leads to a ratio of blocking
temperatures: TM

b
/Tχ

b
= ln(τχ/τ0)/ln(τM/τ0), where τ0 =
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10−9–10−12 s, equal to 3–4, and consequently the two techniques
cannot show the same Tb-value. Assigning T

χ

b
= 50 K to the

ferrimagnetic nano-inclusions, its TM
b

should then be ∼150 K,
which explains why the Mössbauer sub-spectrum attributed to
the nano-inclusions is a fully split hyperfine pattern at 77 K, i.e.,
it is in the “frozen” regime below TM

b
. The fact that the Néel

temperature of bulk lepidocrocite and the blocking temperature
of the nano-inclusions are close (even almost the same in our
sample) may thus be a coincidence.

We can tentatively identify this ferrimagnetic phase as
maghemite γ-Fe2O3, or a phase closely related to maghemite,
possibly located close to the rough surfaces of lepidocrocite
particles. The mean particle size of 3.4 nm is close to the lower
values of maghemite crystallite size (3–7 nm) determined by Till
et al. (2014) initially formed during heating at low temperature
of lepidocrocite. The saturation magnetization we obtain (ca.
75 Am2/kg) is close to the expected value for maghemite (74.3
Am2/kg at 300 K; Dunlop and Özdemir, 1997). The anisotropy
density of 3.2 × 105 J/m3 estimated from the ZFC data alone is
larger than the effective anisotropy in maghemite (ca. 1.5 × 104

J/m3; Hendriksen et al., 1994), but of the same magnitude as that
found in other γ-Fe2O3 nanoparticles (Martinez et al., 1998),
attributed to surface effects. Using a rather simple model of
the ac magnetic susceptibility, we estimate the bulk anisotropy
around 3 × 104 J/m3, closer to that of Hendriksen et al. (1994)
and the low-temperature surface anisotropy around 5 × 10−5

J/m2. Using these values for a measurement time of 100 s would
lead to a peak at 50 K as observed in the ZFC dc susceptibility
measurements. Our model based on the presence of sparse nano-
sized ferrimagnetic regions with less structural water, analogous
to those observed by Till et al. (2014) during moderate heating,
explains both the existence of the exchange bias and the limited
range of the frequency dependence in χ ′. Nonetheless, the values
reported here are only estimates, as inter-particles interactions
were not taken into account. Indeed, because the ferrimagnetic
nano-particles are not directly observable (with only around
20 nanodots per 100 × 50 nm lepidocrocite particle), it is

difficult to determine their spatial distribution and thus average
inter-particles distances. Results are also likely dependent on
the sample crystallinity. Due to the interplay of ferrimagnetic
nanoparticles concentration, size distribution and interactions,
the magnetic properties are expected to vary between samples. In
the present study, the peak in χ ′ is around 60 K and the ZFC/FC
IRM curves merge at 100 K. In contrast, Hirt et al. (2002) report
a peak in χ ′ at 51.6 K, and ZFC/FC IRM curves merging at 250
K in their sample L89. In Till et al. (2014), the peaks in χ ′ are
located at 40 and 50 K, and the ZFC/FC IRM curves merge at 100
and 150 K for the slow and rapid syntheses, respectively. During
the course of this study, we also examined by Mössbauer the
lepidocrocite samples of Till et al. (2014). In the rapid synthesis
sample, the ferrimagnetic particle mass fraction was estimated
at 2% with a saturated M0-value of 0.90 Am2/kg. In the slow
synthesis sample, the ferrimagnetic particle contribution was not
detectable in the Mossbauer spectra, but the saturated M0-value
was only 0.28 Am2/kg, much smaller than in the other samples.
Therefore, the relative weight of the ferrimagnetic Mössbauer
sub-spectrum does vary among samples, in good correlation with
theM0-value.
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