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Hélène Brion, 75013 Paris, France
3Observatoire Royal de Belgique, 3 avenue Circulaire, 1180 Bruxelles, Belgium

Accepted 2013 April 24. Received 2013 April 24; in original form 2012 July 27

S U M M A R Y
This paper investigates the precision of the estimation of geophysical fluid load deformation
computed from GRACE space gravity, GPS vertical displacement and geophysical fluids
models [Global Circulation Models (GCMs) for ocean, atmosphere and hydrology], using the
three-cornered hat method. This method allows the estimation of the variance of the errors of
each technique, when the same quantity is monitored by three instruments with independent
errors. Applied on a network of stations, several points of view can be considered: the technique
level (in order to determine the error of each technique: GRACE, GPS and GCMs), the solution
level (allowing to compare the precision of the same technique when different strategies/models
are used), and the station level (in order to emphasize local anomalies and geographical
patterns). In particular, our results show a precision of the loading vertical displacement at the
level of 1 mm when using GRACE or the fluid models, and of 2 mm using GPS. We do not
find significant differences between the precision of different solutions of the same techniques,
even when there are strong differences in the data processing.

Key words: Time-series analysis; Space geodetic surveys; Time variable gravity; Global
change from geodesy; Europe.

1 I N T RO D U C T I O N

Since 2002, the GRACE satellite mission has been measuring the
temporal variations of the Earth’s gravity field, reflecting the mass
redistributions associated with the dynamics of the Earth and its
climate system, with an optimal sensitivity to the global water cycle
(Tapley et al. 2004). Results from GRACE have opened the way
to the use of space gravimetry for monitoring water resources and
improving hydrological models (Ramillien et al. 2005; Güntner
et al. 2007; Rodell et al. 2007; Schmidt et al. 2008; Syed et al.
2008; Famiglietti et al. 2011), as predicted by Wahr et al. (1998).
The availability of various geoid models however raised the question
of understanding to which extent one of the GRACE solutions would
be more suited than others for this purpose, stressing the importance
of the quantitative assessment of the precision of these different
solutions. Beyond the propagation of formal errors as done by Wahr
et al. (2006), precision estimates are based on intercomparisons of
the different GRACE geoid solutions (de Viron et al. 2008; Tesmer
et al. 2011) or comparisons with in situ measurements (Chambers
2006; Swenson et al. 2006).

In addition to the gravity changes, water mass redistribution also
causes the Earth’s surface to deform, impacting the time-series

of displacements. Various studies have investigated the consistency
between deformation measured by GPS and modelled from GRACE
models (Blewitt et al. 2001; Blewitt & Clarke 2003; van Dam et al.
2007), and more recent studies have shown that this consistency
improves with the quality of the GPS data processing (Tregoning
et al. 2009; Tesmer et al. 2011). The agreement between GPS and
GRACE has been demonstrated on the annual cycle while much
remains to be done at interannual timescale.

Here, we assess the precision of the load vertical deformation as
measured by GPS, and as computed from the GRACE time variable
gravity and from the climatic Global Circulation Models (GCMs),
with emphasis on the interannual timescale. Quantitatively com-
paring the GRACE geoid time variations with time-series of GNSS
surface displacements and model water loads is not straightforward,
because GRACE and GNSS sense the effect of the water displace-
ment through their own transfer function, and because observations
and models have different spatial and spectral properties. GRACE
provides geoid models, GCMs provide mass distribution, and GPS
data are surface displacement. Nevertheless, everything can be con-
verted into the same physical observable, in our case the vertical
displacement, using the elastogravity theory of the Earth defor-
mation under surface load (Farrell 1972). The space resolution is
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1442 P. Valty et al.

different for the three data sets; nevertheless the vertical surface dis-
placements transfer function emphasizes the load signal of medium
to large space scale, that is, at a spatial resolution close to that of
GRACE. The effective spatial resolution of the displacements as-
sociated to the signal contained in the models is close to that of
GRACE. Note that we used the vertical displacement only, because
the horizontal displacements associated to large and medium scale
load are generally much smaller, and, over all, because they are not
significantly consistent with the GPS ones on a large number of
stations. This has already been shown by several authors, see for
instance Tregoning et al. (2009).

Our approach is based on the three-cornered hat (TCH) method,
which was proved efficient at estimating the precision of space
geodesy techniques (Koot et al. 2006; Feissel-Vernier et al. 2007),
and allows us to estimate the average precision of each technique,
and to assess the impact of the modelling strategy on the precision
by comparing several solutions for GRACE and GPS and different
GCM combinations. We focus on Southern Europe, where (1) a
dense network of GPS stations is available, (2) the Glacial Isostatic
Adjustment (GIA) is negligible and (3) no strong non-tidal effects
are expected (Boy & Lyard 2008).

The paper is organized as follows. We first describe the data sets
and their processing in Section 1, and present the TCH method in
Section 2. We then apply the method to the data and present the
results in Section 3. Finally, in Section 4, we discuss our results,
just before the conclusion in Section 6.

2 DATA U S E D A N D P RO C E S S I N G

Farrell (1972) shows how to convert a global load distribution into
ground displacement and gravity. As GRACE and GCMs models,
unlike the GPS network used, are global, we convert them both into
surface displacement using Farrell method, and using a spherical
harmonic decomposition.

2.1 GPS

We use two GPS solutions over Europe. The first one, called here
European combined, is a combination of a weekly reprocessing
of the regional EUREF Permanent Network (EPN; Bruyninx 2004)
performed at the Royal Observatory of Belgium, with weekly global
International GNSS Service solutions (IGb, Paul Rebischung, per-
sonal communication, June 2011). The characteristics of these two
solutions are summarized in Table 1. This combination is neces-
sary as Legrand et al. (2012) demonstrated that the size of the
network in regional GPS solutions induces an underestimation of
the seasonal component up to about 30 per cent. As recommended
by Collilieux et al. (2011), in order to mitigate network effects for
this combination, no scale factor was estimated, and a stable well-
distributed subnetwork, namely the IGS core network, was used
during a two-step combination. The European reprocessing uses
the Niell mapping function (Niell 1996), which has been proved to
create spurious annual signals (Tregoning & Watson 2009). On the
other hand, Fund et al. (2011) and Boehm et al. (2007) found that
bias larger than 4 mm in Europe between solutions using Niell
mapping function and up-to-date Vienna Mapping Function (VMF;
Boehm et al. 2006), are concentrated at high latitudes. Conse-
quently, the impact on this study should be limited. The second
GPS solution is the ULR4 one (Santamaria-Gomez et al. 2011)
from the Université de la Rochelle. It is a global, homogeneously
reprocessed solution that uses up-to-date processing parameters,
with a better-suited tropospheric delays mapping function, but has

a sparser spatial distribution. Technical information for the two so-
lutions are provided in Table 1. Note that we only keep the stations
with less than 25 per cent of gaps over the study time period (2002
August to 2009 May), for a total of 110 stations for the European
combined solution and 36 for the ULR4 solution.

2.2 Space gravimetry

We use four GRACE geoid models solutions, produced by the
Groupement de Recherches en Géodésie Spatiale (GRGS), Geo-
ForschungsZentrum (GFZ), Center of Spatial Research (CSR) and
Jet Propulsion Laboratory (JPL) teams. Their main characteristics,
the pre-processing applied, and relevant references are described in
Table 2. Except for the GRGS, the GRACE solutions are affected
by striping noise (Chen et al. 2005), which needs to be filtered out.
This filtering process was accomplished by applying to the original
spherical harmonic geoid fields a Gaussian filtering of 500 km radius
(Jekeli 1981; King et al. 2006), in addition to the decorrelation filter
detailed by Swenson & Wahr (2006) with parameters from Duan
et al. (2009). The atmosphere and ocean dealiasing (AOD) products,
representing the non-tidal contributions of ocean and atmosphere,
are added back into the GRACE spherical harmonic fields in order
to be consistent with the GPS and GCM data. To ensure the con-
sistency between the different geoid solutions, we also replaced the
C20 coefficients from the CSR, JPL and GFZ models by a value
obtained from SLR data, as suggested by Cheng & Tapley (2004).
In the GRGS solution, the C20 coefficient is constrained from SLR
measurements, and has consequently not been changed.

We then convert the geoid models into surface displacements at
the GPS station positions, using the method described by Farrell
(1972), using elastic load Love numbers in the Earth’s centre of
figure, computed for the PREM earth model (Pagiatakis 1990).

2.3 Loading models

The total load is estimated by the sum of the hydrology, ocean,
and atmosphere contributions. We used two hydrological models
(GLDAS and WGHM), two baroclinic ocean models (ECCO and
Mercator) and the ground displacements computed from the NCEP
reanalysis atmospheric model by Petrov & Boy (2004). Their char-
acteristics and relevant references are summarized in Table 3. For
GLDAS, the total water load is the sum of the soil moisture of the
four layers and of the snow cover. Oceanic load in kg m–2 is directly
estimated from Ocean Bottom Pressure data by dividing by a mean
value of the gravity in m s–2. Periods shorter than 1 month have been
smoothed out by applying a running window average filter.

2.4 Reference frame

If the displacement estimates from GRACE, from GPS and from
GCMs are not referred to the same origin, it generates errors, which
can reach the same level as the precision we want to achieve. The
GPS solutions are centred on the centre of the stations network,
assumed to be the Earth’s centre of figure. As described for example
by Davis et al. (2004), the GRACE models have their origin at
the Earth’s centre of mass, and they have to be translated to the
Earth’s centre of figure. Here, we use for this translation the degree
1 coefficient of the load from the Swenson et al. (2008) geocentre
model, following the procedure described, for example, by Nahmani
et al. (2012) or Tregoning et al. (2009). We applied this same
procedure to ensure the GCMs combinations to be referred to the
Earth’s centre of Figure.
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Assessing the precision in loading estimates 1443

Table 1. Main characteristics of the GPS solutions. Our European combined solution is a combination of the European and IGb solutions.

GPS solution ULR4 European solution IGb

Computation centre Université de la
Rochelle

Royal Observatory of
Belgium

Institut National de
l’Information

Géographique et
Forestière

Strategy Ionosphere-free
double differences,

using dynamic
subnetworks

Ionosphere-free double
differences

Weekly combination of
ionosphere-free

solutions from 11
analysis centres

Software Gamit 10.34 Bernese 5.0 The combination uses
CATREF. The analysis
centres use Bernese,

Gamit, Gipsy-OASIS,
EPOS, GINS or

NAPEOS

Global or regional Global Regional Global

Mapping function VMF1 Niell Most analysis centres
use VMF1 or GMF

A priori zenithal hydrostatic
delays

ECMWF Standard Pression and
Temperature

Most analysis centres
use GPT

Tropospheric gradients Two East/West and
North/south gradients

estimated per day

Two East/West and
North/south gradients

estimated per day

Most analysis centres
estimate one pair of

gradients per day and
per station

Orbits Re-estimated IGS, not estimated Re-estimated by analysis
centres

Earth Orientation Parameters Re-estimated IGS, not estimated Re-estimated by analysis
centres

Solid earth tides IERS 2003
conventions

IERS 2003 conventions IERS 2003 conventions

Oceanic tides FES2004 FES2004 FES2004

Atmospheric tides Not used Not used Not used

Time span 1 week 1 week 1 week

Number of stations available
with 75 per cent or more data

36 110 67

Reference Santamaria-Gomez
et al. (2011)

Bruyninx (2004) Rebischung (personal
communication)

Table 2. Main characteristics of the GRACE geoid models.

Research team CNES/GRGS CSR GFZ JPL

Release RL02 RL04 RL04 RL04

Maximum degree 50 60 120 120

Ocean dealiasing
model

MOG2D OMCT OMCT OMCT

Atmosphere
dealiasing model

ECMWF ECMWF ECMWF ECMWF

Reference Bruinsma
et al. (2010)

Bettadpur
(2007)

Flechtner
et al. (2010)

Watkins & Yuan (2007)

Filtering None Gaussian filtering, radius 500 km + decorrelation filter from Swenson et al.
(2006) with parameters from Duan et al. (2009)
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1444 P. Valty et al.

Table 3. Main characteristics of the GCMs used.

Contribution Hydrology Ocean Atmosphere

Loading model GLDAS WGHM ECCO Mercator NCEP

Data modelled Surface and subsurface
soil moisture (kg/m2)

Surface, subsurface soil
moisture and large

surface aquifers water
load (kg/m2)

Ocean bottom
Pressure under IB

hypothesis (Pa)

Ocean bottom
Pressure under IB

hypothesis (Pa)

Pressure loading associated
displacement (mm). IB

hypothesis over the oceans,
including the

Mediterranean sea.

Time span 1 month 1 month 10 days 1 week 6 hours

Grid step 0.25◦ 0.5◦ Interpolated at 1◦,
using spline
interpolation

Interpolated at 1◦,
using spline
interpolation

2.5◦

Reference Rodell et al. (2004) Döll et al. (2003) Lee et al. (2002) Drillet (personal
communication)

Petrov & Boy (2004)

2.5 Total and interannual displacements

The periods shorter than 1 month were filtered out using a running
average, and the time-series were sampled to a common monthly
time span. In addition, we estimated and removed the trend from all
the time-series as, for GPS, it includes tectonic contributions.

The geophysical signal remaining in the pre-processed data sets is
dominated by the seasonal cycle (Fig. 1). This is not optimal for our
purpose as it can include sources other than the water load, especially
for the GPS. For example, the seasonal temperature fluctuations
can create an annual signal in the antenna position due to thermal
expansion of the bedrock or of the building, or to phase centre
variations (Dong et al. 2002). Consequently, we also investigate
separately the interannual cycle. This interannual signal is obtained
by subtracting from each time-series a composite annual cycle and
by applying a low-pass filter to all these residual time-series (Fig. 2),
removing periods smaller than 6 months. The composite annual

cycle is computed as the mean seasonal signal over the entire time
span: the January value of the composite is the mean value in
January over all the time-series (Hartmann & Michelsen 1989).

3 T H E T C H M E T H O D

3.1 Basic principle of the TCH method

The TCH method aims to estimate the precision of three measure-
ment techniques observing the same quantity, under the hypothesis
that the errors of each technique are independent from the errors
of the others (Premoli & Tavella 1993). For a given observation
time-series, Di, one can write:

Di = Dtrue + εi , (1)

Figure 1. Time-series of vertical displacement at the Matera station (mm) from GRACE-GRGS (red), GPS (European combined solution, blue) and the sum
of the loading models (GLDAS+ECCO+NCEP, black).
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Assessing the precision in loading estimates 1445

Figure 2. Time-series of interannual vertical displacement at the Matera station (mm) from GRACE-GRGS (red), GPS (European combined solution, blue)
and the sum of the loading models (GLDAS+ECCO+NCEP, black).

where Di is the time-series of displacement as determined from
the data of the technique i, Dtrue is the true displacement, which is
common to all the techniques and εi the error of technique i. For
each station, each solution is then the exact sum of the displacement
due to the water load, common to all the solutions and techniques,
and of the residual term, which only depends on the technique,
solution and station. In our case, the three techniques do not exactly
observe the same signal, and a part of the ‘error’ is actually a
signal that the others do not see, such as the local deformation that
only GPS can measure. For the sake of clarity, in what follows, we
will nevertheless speak about error. Computing the variance of the
difference between the time-series from two techniques i and j, we
obtain:

var
(
Di − D j

) = var
(
Dcommon + εi − Dcommon − ε j

)

= var
(
εi − ε j

)

= var (εi ) + var
(
ε j

) − 2cov
(
εi , ε j

)
. (2)

For techniques I and j with independent errors, the covariance
between their errors is zero and

var
(
Di − D j

) = var (εi ) + var
(
ε j

)
. (3)

When three data sets with independent errors are used, the eq. (3)
make a set of three equations with three unknowns, with a unique
solution: the three variances of the technique errors. This is actually
the case when using three independent sources of information: GPS,
GRACE and the sum of the GCMs.

Note that this hypothesis of null covariance is only true at the first
order as, for instance, the same atmospheric and oceanic products
are used in the dealiasing of GRACE and in GPS analysis. This point
is discussed in Section 3.2, where we justify this approximation.

3.2 Example of the Matera station, Italy

Fig. 1 shows the time-series of vertical displacement computed from
GRACE-GRGS, GPS and the sum of loading models GLDAS +
ECCO + NCEP for the Matera station (MATE), Italy.

For this station, we applied the TCH equation system (eq. 3) to the
vertical displacements from one GRACE solution (GRACE-GRGS
time-series), one GPS solution (European combined time-series)
and one combination of loading models (the time-series of the sum
of GLDAS, ECCO and NCEP contributions). We obtain the stan-
dard deviation of the error as 0.8, 1.7 and 0.6 mm for, respectively,
the GRACE, the GPS and the load models solutions (Table 5).
These results are smaller than the amplitude of the computed dis-
placements (Fig. 2), confirming that a large part of the signal is
common to the GRACE, GPS and the sum of the models.

Over the interannual part of the signal, the error standard devia-
tion is found to be 0.4, 0.8 and 0.5 mm for the considered GRACE,
GPS and the load models solutions, respectively (Table 6). Note
that this error reduction mostly results from the running average, as
averaging on 6 values diminishes the standard deviation by a factor
of 2.4 (

√
6).

4 R E S U LT S

We have three independent sources of information, GPS, GRACE
and load models, with several solutions for each technique. Section
2.2 has presented a basic application of the TCH on one station,
with only one solution for each technique. In this Section 3, we
use the full data set, that is, the four GRACE solutions, the four
combinations of the GCMs and the two GPS solutions, for all the
stations of our network. By computing the variances of the differ-
ences between two time-series of displacement on each station, we
can write the equation system for all pairs of series. We keep and
estimate the covariance term when we consider the differences of
time-series between two solutions of the same technique, like two
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1446 P. Valty et al.

GRACE solutions, and we set this covariance term to zero in case
of two different techniques, as mentioned in Section 2.1 (eq. 3). The
resulting system remains over-determined and is solved by a least-
square procedure. This approach is consistent with the method of
Chin et al. (2005), who showed that the TCH method has a solution
even when data sets with correlated error are used, as long as there
are at least three differences of time-series from techniques with
independent errors, which is the case here as we have several solu-
tions from each one of our independent techniques. The covariance
that need to be estimated are those between two solutions of the
same technique. As some techniques have more observations than
others, we weight the equations so that, globally, every technique
(GRACE, GPS and models) is given the same weight in the total
system.

Considering that the time-series from each data set at each station
allow sampling the error of the technique used to generate the time-
series, we solve, in part A, a global equation system with only three
unknown variances: the error variance of GRACE, GPS and the
sum of the loading models. Then, considering that the time-series
from each solution at each station allow us to sample the error of a
given solution, we compare, in part B, the solutions from the same
technique with each other. In this case, the number of unknown
variances equals 10 (four GRACE solutions, four combinations of
the loading models and two GPS solutions). Finally, in part C, we
solve the same equation system, with the same unknowns than in
part B, but for each station independently. This allows to detect
geographical patterns in the precision of a given solution, as well as
local anomalies.

4.1 Technique level comparison

To obtain the technique error, we only use differences of time-
series from different techniques. We do not consider the differences
between two solutions of a same technique, as they are supposed
here to be the samplings of the same quantity, the technique error.
The system is then composed of 32 equations for each station, or
24 if the station is not part of the ULR4 solution (see Table 4). The
32 equations are the 16 differences between the time-series of each
one of the two GPS solutions and each one of the four GRACE
solutions and of the four combinations of models, in addition to the
16 differences between each one of the four GRACE solutions and
each one of the four GCM solutions. We solve the global system for
the variance of the errors for GRACE, GPS and the loading models.
In order to get better estimations of the uncertainties on the error
variances, we used a boot-strapping method with 1000 resamplings
(Moore et al. 2003), randomly picking as many stations as in the
initial set, with repetition, and making independent estimation of
the errors for each resampling. The medians, extreme values, and
standard deviations for the errors are presented inFig. 4. The results
are at the same order than those obtained for the Matera station, with
error standard deviation for the vertical displacement of 1.2, 2.1
and 1.0 mm for GRACE, GPS and the loading models, respectively.
Note that 1 mm of vertical displacement corresponds to about 2
cm of equivalent water height at a 2500 km spatial scale (Fig. 3).
Similar conclusions hold for the interannual vertical errors, though
the standard deviations are half the size: 0.5 mm for the loading
models, 0.6 mm for GRACE and 1.1 mm for GPS. The relative
errors, representing the ratios between the variances of the errors
and the variances of the signals, are shown on Fig. 5. Both on total
and interannual signals, for GRACE, GPS and the loading models,
these relative errors are always smaller than 50 per cent, showing

that a significative part of the variance of the signal can be explained
by the common loading, included at interannual timescale.

4.2 Solution level comparison

We also use the TCH method to compare the quality of the different
solutions for a same technique, by estimating the variance of the
error term for each solution. In this case, the equations with differ-
ences of time-series from the same techniques are added into the
system described in Section 3.1. The covariance between the errors
for two solutions of a same technique are kept as an unknown of
the system and estimated. This leads to 13 equations more than is
Section 3.1 or 12 if the station is not part of ULR4 solution. These
13 equations are the six pair-wise differences between the four
GRACE solutions, the six pair-wise differences between the four
combinations of GCMs and the difference between the two GPS
solutions time-series if the station is part of the ULR4 solution. We
then have 36 equations on each station, and 45 for stations included
in the ULR4 Solution (Table 4). Tables 7 and 8 present the results
obtained, respectively, on the total and interannual time-series. Both
on the total signal and on the interannual displacements, our results
show that the standard deviation of the errors depends more on the
technique than on the solution used.

As mentioned above, there might be some covariance between
the intertechnique errors. Including all the covariance as unknown
of the problem would make it underdetermined. To overcome that
problem, we added constraint equations, under the hypothesis of
weak correlation for all the intertechniques errors. The obtained
results with this method are consistent within 0.2 mm with the
results presented in Tables 7 and 8, confirming that the possible
intertechnique covariance can be left out of the problem.

4.2.1 Comparison of the GPS solutions

In Table 7, the precision of the ULR4 solution appear slightly better
than that of the European combined one. Nevertheless, if we restrict
the estimation on the ULR4 stations only, the results for the two
solutions are both at 1.9 mm. This indicates that the difference
resulted mostly from the different network, as the ULR4 network is
less homogeneously distributed than the network of 110 stations of
the European combined solution. This also implies that the impact
of the differences in data processing strategy is small with respect
to the intertechnique differences.

4.2.2 Comparison of the GRACE solutions

The estimated precision for the GRACE solutions is at the same
order, about 1 mm. The best precision is obtained with the GRGS
model. This is appears to be due to the fact that the amplitudes of the
displacements from the GRGS solution are generally slightly larger
than for the other solutions, and more consistent with those from the
GCMs and the GPS. Also note that the GRGS solution is less covari-
ant with the other GRACE solutions than the other GRACE models
with each other. This point is consistent with the differences in data
processing methods, and in particular the stabilization applied to
the GRGS solution in order to avoid any additional data filtering
(Bruinsma et al. 2010). This difference disappears at interannual
timescale, the four GRACE solutions giving similar errors.
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Assessing the precision in loading estimates 1447

Table 4. Summary of the number of equations and of the number of unknowns in the three-cornered hat system. Each line corresponds to a way of solving the
three-cornered hat system, the second column corresponds to the total number of observations (i.e. equations) of the three-cornered hat system, the third column
is the number of total estimated parameters (i.e. the variance of the residuals and the covariance of the residuals between two solutions for a same technique),
and fourth and fifth columns are respectively the total number of variances and covariance (including usually non-estimated intertechnique covariance).

Level of resolution
(and concerned

section)
Estimated variance

of residuals
Number of
equations

Number of
variances

Total number of
covariance

Total number of
unknowns

Number of covariance
considered as null

Basic case (1 GPS
solution, 1

GRACE solution,
1 model solution),
at the station level

(Section 2.2)

One variance of
residual for each

data

3 (for one station) 3 3 (all are
intertechnique

covariance)

3 (3 variances) 3 (all differences are
intertechnique
differences, no

differences between two
solutions of the same

technique)

At the technique
level (Section 3.1)

One variance of
residual for each

technique (case 1)

24 × 36 stations
(where we have 2
GPS solutions) +
36 × 74 stations
(where we have
only one GPS

solution) = 3528
(only

intertechnique
differences are

considered at this
level)

3 3 (all are
intertechnique

covariance)

3 (3 variances) 3 (all differences are
intertechnique
differences, no

differences between two
solutions of the same

technique)

At the solution
level (Section 3.2),

case 1 (stations
part of European
combined GPS
solution only)

One variance of
residuals for each

solution,

36 × 74 stations +
= 4284

10 45 23 (10 variances +
13 covariance

between different
solutions of the
same technique)

32 (the intertechnique
covariance)

At the solution
level (Section 3.2),

case 2 (stations
being part of

European
combined and

ULR4 GPS
solutions)

One variance of
residuals for each

solution

45 × 36 stations

At the station level
(Section 3.3)

One variance of
residuals for each
solution and for

each station (case
3)

36 (for each of the
74 stations only
part of European

combined
solution)

9 (for one
station)

36 (for one station) 21 (for one
station): 9

variances + 12
covariance

24 intertechnqiue
covariance (for one

station)

45 (for each of the
36 stations part of

European
combined and of
ULR4 solutions)

10 (for one
station)

45 (for one station) 23 (for one
station): 10

variances + 13
covariance

32 intertechnique
covariance (for one

station)

Generalized
three-cornered hat,
at the station level

One variance of
residuals and all
covariance for

each solution and
each station

36 + 24 constraint
equations (for

each one of the 74
stations only part

of European
combined

solution) = 60

9 (for one
station)

36 (for one station) 45 (for one station) None (all covariance,
even intertechnique
ones, are estimated)

45 + 32 constraint
equations (for each
of the 36 stations
part of European
combined and of

ULR4
solutions) = 77

10 (for one
station)

45 (for one station) 55 (for one station)
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Table 5. Standard deviation of the errors on the vertical displacements at the Matera
station.

GRACE GPS Loading models

GRGS
European
combined

GLDAS+
ECCO+ NCEP

Standard deviation
of residuals (mm)

0.8 1.7 0.6

Table 6. Standard deviation of the errors on the interannual vertical displacements at
the Matera station.

GRACE GPS Loading models

GRGS
European
combined

GLDAS+
ECCO+ NCEP

Standard deviation
of residuals (mm)

0.4 0.8 0.5

Figure 3. Vertical displacement induced by a 1 cm equivalent water height loss, as a function of the spatial scale of this load.

Figure 4. Standard deviation of the residuals computed by the three-cornered hat method. Results are given at the technique level (GRACE, GPS, loading
models), for the Vertical, Eastern, Northern and interannual Vertical displacements. The half length of the thick coloured bars represents the standard deviation
of the residual estimates obtained from the boot-strapping method, the green vertical bar the median value (assumed to be the standard deviation of the residual)
and the two extremes of each thin bar the minimal and maximal value obtained when doing the bootstrapping.
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Assessing the precision in loading estimates 1449

Figure 5. Relative residuals (ratio between the variance of the residuals computed by the three-cornered hat method and the mean variance of the signal.
Results are given at the technique level (GRACE, GPS, loading models), for the Vertical, Eastern, Northern and interannual Vertical signals.

Table 7. Standard deviation of the errors in mm (diagonal terms) and correlation of the errors (non-diagonal terms) on the vertical displacements on the 110
European stations. Grey blocks indicate that the intertechnique covariance of the residual terms are not estimated.

GRACE- GRACE- GRACE- GRACE- GPS GPS (ULR4) GLDAS+ GLDAS+ WGHM+ WGHM+
GRGS JPL CSR GFZ (European on 36 ECCO+ Mercator+ ECCO+ Mercator+

combined) stations only NCEP NCEP NCEP NCEP

GRACE-GRGS 1.0 ± 0.06 0.10 0.29 0.39
GRACE-JPL 1.4 ± 0.06 0.86 0.83
GRACE-CSR 1.2 ± 0.06 0.82
GRACE-GFZ 1.3 ± 0.06

GPS (European combined) 2.1 ± 0.13 0.71
GPS (ULR4) on 36 stations only 1.9 ± 0.09

GLDAS+ ECCO+ NCEP 0.8 ± 0.05 0.61 0.60 0.49
GLDAS+ Mercator+ NCEP 0.9 ± 0.05 0.52 0.88
WGHM+ ECCO+ NCEP 1.0 +/− 0.06 0.95
WGHM+ Mercator+ NCEP 1.1 +/− 0.06

Table 8. Standard deviation of the errors in mm (diagonal terms) and correlation of the errors (non-diagonal terms) on the interannual vertical displacements
on the 110 European stations. Grey blocks indicate that the intertechnique covariance of the residual terms are not estimated.

GRACE- GRACE- GRACE- GRACE- GPS GPS (ULR4) GLDAS+ GLDAS+ WGHM+ WGHM+
GRGS JPL CSR GFZ (European on 36 ECCO+ Mercator+ ECCO+ Mercator+

combined) stations only NCEP NCEP NCEP NCEP

GRACE-GRGS 0.6 ± 0.04 0.56 0.65 0.73
GRACE-JPL 0.6 ± 0.04 0.89 0.71
GRACE-CSR 0.6 ± 0.04 0.69
GRACE-GFZ 0.6 ± 0.04
GPS (European combined) 1.2 ± 0.10 0.69
GPS (ULR4) on 36 stations only 1.1 ± 0.07
GLDAS+ ECCO+ NCEP 0.5 ± 0.04 0.87 0.79 0.64
GLDAS+ Mercator+ NCEP 0.6 ± 0.05 0.68 0.98
WGHM+ ECCO+ NCEP 0.6 ± 0.05 0.97
WGHM+ Mercator+ NCEP 0.7 ± 0.05

4.2.3 Comparison of the loading models combinations

The precisions of the GCM combinations are also of the same order,
about 1.2 mm, with small differences between the combinations:
for example WGHM and Mercator generate about 0.4 mm more
standard deviation of errors than GLDAS and ECCO, which give
the best results. This suggests that the use of that combination might
be optimal for comparing with geodesy data.

4.3 Station level comparison of the solutions

When solving the same equation system for each station indepen-
dently, we obtain information on the precision of each solution at
each station as shown on Fig. 6, and on Fig. 7 for the interannual
signal.

The GRGS and CSR solutions, which appear to be the most pre-
cise ones in the previous section, do not show any clear geographical
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1450 P. Valty et al.

Figure 6. Maps of residuals on the vertical displacements due to the loading (in mm) given by station and by solution.

pattern in their local errors. Conversely, a consistent spatial pattern
appears in the errors estimated for the GFZ or JPL models, with
higher errors in Eastern Europe (Ukraine, Romania) and in the At-
lantic coast than in the Mediterranean region. In coastal regions, this
result can be due to the non-homogeneous quality of the dealiasing
product, whereas in Eastern Europe it might be mainly due to a

slightly smaller amplitude of the annual signal in those GRACE
solutions.

Spatial patterns also appear in the map of errors on the load
mass estimation derived from the loading models: larger errors
are found around the Black Sea. This would indicate a less precise
modelling of the Black Sea Ocean Bottom Pressure. The distribution
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Figure 7. Maps of residuals on the interannual vertical displacements due to the loading (in mm) given by station and by solution.

of estimated GPS standard deviations of errors shows higher values
in the Middle-East and in some Eastern Europe stations. Stations
with strong local effects appear clearly, such as ESCO station in
the Spanish Pyrenees where effects due to the high altitude (around
2450 m) can affect the amplitude of annual signal. This suggests a
practical application of this method for the detection of anomalies
in the GPS time-series.

5 D I S C U S S I O N

Using the TCH method on GPS, GRACE and climate GCMs, we
estimate the load deformation precision at the mm level for GRACE
and the GCM, and twice as large for the GPS. Note that this pre-
cision estimates does not only include the specific technique and
solution errors in measuring the deformations, the gravity changes,
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or in estimating the mass associated to water load, that is, what we
actually want to estimate, as they also include the possible geophys-
ical contributions other than the common water signal, as well as
the omission error related to the difference of spatial resolution of
the water load estimation between the different techniques.

The other geophysical contributions are actually not an issue
for our study, as we want to investigate the quality of the water
load determination; consequently, considering such contributions
as error is appropriate. In addition, those effects are expected to be
small. Indeed, we removed a trend for all the data sets, the time-
series should be free from any linear tectonic, GIA or subsidence
(Zerbini et al. 2007) signals. Moreover, earthquakes effects should
not be present in our time-series as de Viron et al. (2008) showed
that GRACE was only able to detect earthquakes with a magnitude
larger than 8.6, which did not happen in our area of interest, and
as earthquakes-related discontinuities have been removed from the
GPS time-series during the stacking step. Given the earthquakes
which occurred between 2002 and 2009, residual post-seismic dis-
placements can locally affect significantly GPS time-series on some
stations in the area of the epicentres, especially in Central and South-
ern Italy (earthquake of l’Aquila in 2009) and Morocco (earthquake
of Al-Hoceima in 2004). The number of stations concerned is how-
ever limited. The GPS time-series also include local site effects, for
instance linked with seasonal deformations of the buildings where
stations are installed, displacements due to monumentation insta-
bility (Dong et al. 2002), or local geologic effects (Nahmani et al.
2012).

As the displacements from both GRACE and the models have
a space resolution of the order of several hundreds of kilometres,
the omission error on the displacements associated to water load
is mostly associated with the shorter wavelengths spatial signal in
the GPS station positions, which is not present in GRACE and the
models. Note that the conversion from loading to displacements
also acts as a low-pass filter: the resulting displacement from a load
is more sensitive to low frequencies than to local spatial patterns,
compared to the original load. Therefore the differences of resolu-
tions between the three techniques are smaller when considering the
displacements than one could expect from the difference of a priori
resolutions.

For the GPS, specific technique and solution errors may come
from the propagation of mismodellings in zenithal hydrostatic a
priori delays, mapping function, antenna phase centre variations,
solid or oceanic tides or orbits, draconitic signals (Ray et al. 2008),
multipaths effects, or the fact that atmospheric tides are not taken
into account (van Dam et al. 2007; Tregoning & Watson 2009).
For GRACE, those are mostly related to aliasing noise. For the
loading models, they would be associated with the modelling errors
or the non-modelled contributions, like groundwater in hydrological
models or great surface aquifers, which are not taken into account
in GLDAS.

When considering that the load mass from GRACE has a mean
spatial scale of 2500 km, the 1.2 mm precision obtained here cor-
responds to about 2.5 cm of water height, which is consistent with
previous studies. Estimates obtained by Wahr et al. (2006) range
between 2 and 3.5 cm of EWH. Swenson et al. (2006) found a
precision of the GRACE-estimated water storage at the level of 2.5
cm EWH over large hydrological basins. A precision of 2 cm EWH
was found by Klees et al. (2008) by comparing several global and
regional GRACE solutions on basins larger than 1 million km2, and
by Longuevergne et al. (2010) over small basins.

Our error levels for the GPS displacements are smaller than
the precision estimates obtained by Collilieux et al. (2010), who

reported a 4.7 mm precision based on a weekly repeatability analy-
sis. Our results are consistent with those of Ray (2011), who found a
2.2 mm weekly repeatability on the vertical displacement at stations
where the water signal is supposed to have been removed. The lesser
precision of the GPS as compared to GRACE and the GCMs can
be associated with local deformations, which are only measured by
GPS, and by error from the technique itself. As shown by van Dam
et al. (2007), the contribution of local load, or omission error, to
this difference of errors between GPS and the two other techniques
is expected to be small. However, our results also show that the
GPS keeps a fair sensitivity to the water load also at interannual
timescales.

The inconsistencies between geodetic measurements and the
loading models in coastal areas, especially in the Atlantic, had been
noticed by several studies (e.g. van Dam et al. 2007; Tesmer et al.
2011). A possible explanation is the large amplitude of oceanic tides
at those locations, associated with the low amplitude of the annual
signal. The use of imperfect tide correction models, assimilated in
different ways in the GPS and GRACE data processing, may create
artefacts contaminating the times-series.

6 C O N C LU S I O N

We showed that the TCH can be used to assess the precision of the
water load determined from GRACE, GPS and GCMs. We found
that GRACE and the GCMs, when converted into vertical displace-
ment, reach a precision of about 1mm over Europe, whereas the
GPS performs with about twice this level of error. We also inves-
tigated the interannual signal, and showed that the performances
of the different techniques are comparable to what is obtained for
the seasonal signal. In particular, the GPS time-series keep a fair
sensitivity to water load signals at interannual timescales, and the
loading models prove to be efficient at retrieving the interannual
water displacements. An outcome of our analysis was also to detect
local problems in the different solutions, such as outlying GPS sta-
tions, or mismodelling of the Black Sea. When comparing different
solutions for each type of data/model, we assessed the impact of the
processing strategy of each GRACE and GPS time-series and com-
pared the quality of the different loading models. Both on the total
and on the interannual displacements, it was shown that the standard
deviation of the errors depended more on the technique than on the
solution used. In the future, this assessment can be completed by
studies at a global scale, as a step towards a possible use and assim-
ilation of geodetic data into hydrological and oceanic circulation
models.
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