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S U M M A R Y
The geodynamo features a broad separation between the large scale at which Earth’s magnetic
field is sustained against ohmic dissipation and the small scales of the turbulent and electrically
conducting underlying fluid flow in the outer core. Here, the properties of this scale separation
are analysed using high-resolution numerical simulations that approach closer to Earth’s core
conditions than earlier models. The new simulations are obtained by increasing the resolu-
tion and gradually relaxing the hyperdiffusive approximation of previously published low-
resolution cases. This upsizing process does not perturb the previously obtained large-scale,
leading-order quasi-geostrophic (QG) and first-order magneto-Archimedes-Coriolis (MAC)
force balances. As a result, upsizing causes only weak transients typically lasting a fraction
of a convective overturn time, thereby demonstrating the efficiency of this approach to reach
extreme conditions at reduced computational cost. As Earth’s core conditions are approached
in the upsized simulations, Ohmic losses dissipate up to 97 per cent of the injected convective
power. Kinetic energy spectra feature a gradually broadening self-similar, power-law spectral
range extending over more than a decade in length scale. In this range, the spectral energy
density profile of vorticity is shown to be approximately flat between the large scale at which
the magnetic field draws its energy from convection through the QG-MAC force balance and
the small scale at which this energy is dissipated. The resulting velocity and density anomaly
planforms in the physical space consist in large-scale columnar sheets and plumes, respectively,
co-existing with small-scale vorticity filaments and density anomaly ramifications. In contrast,
magnetic field planforms keep their large-scale structure after upsizing. The small-scale vor-
ticity filaments are aligned with the large-scale magnetic field lines, thereby minimizing the
dynamical influence of the Lorentz force. The diagnostic outputs of the upsized simulations
are more consistent with the asymptotic QG-MAC theory than those of the low-resolution
cases that they originate from, but still feature small residual deviations that may call for
further theoretical refinements to account for the structuring constraints of the magnetic field
on the flow.

Key words: Core; Dynamo: theories and simulations; Numerical modelling.

1 I N T RO D U C T I O N

Steadily improving numerical models of the geodynamo have ap-
peared since the historical outset of the discipline, more than two
decades ago. In retrospect, it is quite striking that a significant part of
the fundamental insight on how Earth’s magnetic field may be regen-
erated by the underlying core convection has been gained through
early models that featured a low spatial resolution. A self-sustained
magnetic field with dipole reversals (Glatzmaier & Roberts 1995)
and basic but plausible induction mechanisms (Olson et al. 1999)
could indeed be captured with simulations resolving spatial scales
down to only a thousand kilometers at Earth’s core–mantle bound-
ary (corresponding to spherical harmonic degree 20). At first glance

this may seem sufficient since geomagnetic field models using even
the most recent satellite observations can resolve the main field of
internal origin only up to degree 13 and its rate of change up to
degree about 16, after which contributions from other sources and
contamination from noise become too strong (Hulot et al. 2015).
This is of course misleading because the Earth’s core is expected to
be in a strongly turbulent state (e.g. Aubert et al. 2017), implying
that the large-scale picture that we observe should be influenced by
nonlinear interactions between much smaller, unobservable scales.
This theoretical expectation has been partly confirmed by subse-
quent modelling efforts, where advances of the computer power
allowed for calculations with a gradually increasing spatial resolu-
tion (harmonic degree in excess of 100), and more realistic physical
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parameters. The output from these models has indeed reached a
higher level of quantitative agreement with the detailed morphol-
ogy of the geomagnetic field (Christensen et al. 2010; Mound et al.
2015), and of its temporal variations, notably the westwards drift
of low-latitude magnetic flux patches at the core–mantle boundary
(Aubert et al. 2013; Schaeffer et al. 2017). However, this new gener-
ation of models still featured a relatively low spatial resolution and
parameters quite far from Earth’s core conditions, raising the ques-
tion of whether these successes were indeed obtained in physically
relevant conditions, especially regarding the force balance obtained
in the numerical models (e.g. Soderlund et al. 2012).

In an attempt to answer this question, it has recently been shown
that the physical conditions at which these models operate and those
of Earth’s core can be connected through the formulation of a unidi-
mensional theoretical path in model parameter space (Aubert et al.
2017). The level of magnetic turbulence (as characterized by the
value of the magnetic Reynolds number, see Section 2) is already
realistic at path start and therefore remains constant along this path.
However, a decreasing ratio between the kinematic and magnetic
diffusivities along the path (decreasing magnetic Prandtl number)
and increasing levels of forcing imply that hydrodynamic turbulence
becomes stronger (increasing Reynolds number), and separation be-
tween the largest magnetic field scales and the smallest velocity field
scales increases accordingly. Despite this increasing level of turbu-
lence, a striking result of calculations carried out along this path
is that at large-scales (below spherical harmonic degree 30), and
timescales longer than the convective overturn time, the morphol-
ogy of the magnetic field, of its rate-of-change and underlying core
flows, as well as the leading-order force balance remain approx-
imately invariant as we progress towards Earth’s core conditions
(Aubert et al. 2017; Aubert 2018). This result rationalizes the early
successes of geodynamo modelling that were obtained at low spatial
resolution, but raises further questions regarding the role and impor-
tance of the broad scale separation that is expected in Earth’s core,
and indeed observed in recent landmark simulations at extreme con-
ditions and high resolution (harmonic degrees in excess of 200 and
up to 1000; Sakuraba & Roberts 2009; Yadav et al. 2016; Schaeffer
et al. 2017; Sheyko et al. 2018). One key point is that only a small
fraction (the first 15 per cent) of this parameter space path has been
covered by fully resolved direct numerical simulations (DNS), and
a larger portion (up to 50 per cent) has been explored using lower
resolution, large-eddy simulations (LES) employing a form of eddy
viscosity that prescribes the smallest possible scales in the system.
For these simulations, hyperdiffusion has been preferred over so-
phisticated subgrid parametrizations (e.g. Baerenzung et al. 2008,
2010; Matsui & Buffett 2013), on the basis of physical scaling argu-
ments (Davidson 2013) that predict that the dominant force balance
in the system is achieved at a relatively large scale (spherical har-
monic degree about 10) that does not significantly evolve along the
path. The realism of LES simulations has been successfully tested in
the path region where both DNS and LES are feasible (Aubert et al.
2017). However, this region corresponds only to a moderate level
of hydrodynamic turbulence, and one may question the realism of
LES as regards the details of the scale separation and the associated
nonlinear energy transfers when turbulence significantly increases.
This calls for high-resolution geodynamo simulations at advanced
positions along this path.

High-resolution geodynamo simulations in the rapidly rotating
and strongly turbulent regime pertaining to Earth’s core conditions
are also desirable to advance the understanding of how rotation
and a self-generated magnetic field constrain turbulence in such

systems. Recent cross-fertilization between theoretical investiga-
tions (Davidson 2013; Calkins et al. 2015; Aurnou & King 2017;
Calkins 2018) and numerical efforts (Aubert et al. 2017; Schaeffer
et al. 2017) have led to an emerging consensus that in this regime,
the system is governed at large scales by a leading-order geostrophic
balance between the pressure and Coriolis forces, as opposed to the
earlier conjecture of a large-scale magnetostrophic balance where
the Lorentz force would also reach a leading order (e.g. Hollerbach
1996). With a leading-order geostrophic balance being enforced, it
has been argued that the planforms of the dynamo are in fact broadly
similar to those of non-magnetic, rotating convection (Soderlund
et al. 2012). This apparently weak influence of the magnetic field
was however obtained in contexts where the magnetic energy was
equivalent to the kinetic energy, implying a weak magnetic control
on the flow. Subsequent simulations at more extreme parameters and
higher magnetic to kinetic energy ratios (stronger magnetic control)
have indeed highlighted different distributions of length scales in
magnetic and non-magnetic rotating turbulence (Yadav et al. 2016;
Sheyko et al. 2018). Still, the Lorentz force tends to be minimized
as a consequence of Lenz law, leading, for instance, to the enforce-
ment of the Taylor constraint (Taylor 1963) at the axisymmetric
level (see e.g. Aubert et al. 2017). Though there exists an impor-
tant body of numerical work on rotating or magnetic turbulence
in Cartesian domains (see reviews in Tobias et al. 2012; Nataf &
Schaeffer 2015), the configuration of forced magnetohydrodynamic
(MHD) and rotating turbulence in a spherical shell has been less
studied in this so-called strong regime of interaction between the
velocity and magnetic fields.

In this study, the hyperdiffusive approximation of LES simula-
tions previously published in Aubert et al. (2017) and Aubert (2018)
is gradually relaxed, and their spatial resolution is increased accord-
ingly, with all other parameters kept the same, a process that will
be referred to as upsizing. Due to computational limitations, high
spatial resolution and long integration times cannot be achieved si-
multaneously. The upsized models are therefore computed only for
a short amount of time and our first goal is to assess the duration
of transients caused by upsizing and the relevance of this numer-
ical approach. Our next goals are to evaluate the successes and
shortcomings of the previously employed hyperdiffusive approxi-
mations in the light of the upsized solutions and of other available
extreme DNS simulations, and propose optimal approximations for
forthcoming work. The upsized simulations are also useful to eval-
uate the robustness of the leading-order force balance, extract the
next-order force balances established at smaller scales, characterize
the turbulence and scale separation through their statistical proper-
ties and assess their level in Earth’s core. The manuscript is orga-
nized as follows: Section 2 presents the numerical dynamo model
and methods. Results are presented in Section 3 and discussed in
Section 4.

2 M O D E L A N D M E T H O D S

2.1 Model set-up, dimensionless inputs and outputs

We implement the equations of Boussinesq convection, thermo-
chemical density anomaly transport and magnetic induction in the
MHD approximation within an electrically conducting and rotat-
ing spherical fluid shell of thickness D = ro − ri and aspect ratio
ri/ro = 0.35 representing the Earth’s outer core. These equations
can be found in Aubert et al. (2017) (from hereafter A17). We
solve for the velocity field u, magnetic field B and density anomaly
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field C. The shell is surrounded by solid inner core of radius ri,
and a solid mantle between radii ro and 1.83ro, both of which are
electrically conducting. These two surrounding layers are electro-
magnetically coupled to the outer core and gravitationally coupled
between each other, and present a variable axial differential rotation
with respect to the fluid shell. The moments of inertia of the three
regions are set in Earth-like proportions, and the constant angular
momentum of the ensemble defines the planetary rotation rate vec-
tor �. Convection is driven from below using a homogeneous mass
anomaly flux F imposed at radius ri, and a volumetric buoyancy
sink term such that there is no homogeneous mass anomaly flux
at radius ro. The mechanical, thermochemical and electromagnetic
boundary conditions are respectively of the stress-free, fixed-flux
and electromagnetically conducting types at both boundaries. The
complete set-up of boundary conditions, lateral heterogeneities and
core-mantle-inner core couplings corresponds to the Coupled Earth
model described in Aubert et al. (2013); A17; Aubert (2018) and
full details on this set-up can be found in these earlier studies. All
models produced a self-sustained and dipole-dominated magnetic
field with Earth-like geometry (Christensen et al. 2010, A17) that
did not reverse polarity during their integration time.

The main model parameters are the flux-based Rayleigh, Ekman,
Prandtl and magnetic Prandtl numbers

RaF = go F

4πρ�3 D4
, (1)

E = ν

�D2
, (2)

Pr = ν

κ
, (3)

Pm = ν

η
. (4)

Here go, ρ, ν, κ and η are, respectively, the gravity at radius ro, the
fluid density, viscosity, thermochemical and magnetic diffusivities.
We use the path theory (A17) that bridges the parameter space gap
between our previous coupled Earth model (Aubert et al. 2013) and
Earth’s core conditions by relating these four parameters to a single
variable ε:

RaF = εRaF (CE), (5)

E = εE(CE), (6)

Pr = 1, (7)

Pm = √
εPm(CE). (8)

Here RaF(CE) = 2.7 × 10−5, E(CE) = 3 × 10−5 and Pm(CE) =
2.5 are the control parameters of the coupled Earth dynamo model.
Through these definitions, A17 introduced the concept of a unidi-
mensional path in parameter space, starting at ε = 1, and ending
at ε = 10−7 where reasonable estimates for Earth’s core condi-
tions are obtained (A17). The model cases presented here (Table 1)
range from ε = 0.1 to ε = 3.33 × 10−4, this latter value defining
the model at the middle of the path, which to date is the clos-
est to Earth’s core conditions computed in a numerical simulation.
The numerical implementation involves a decomposition of u, B

and C in spherical harmonics up to degree and order �max and
a discretization in the radial direction on a second-order finite-
differencing scheme with NR gridpoints. We use the spherical har-
monics transform library SHTns (Schaeffer 2013) freely available
at https://bitbucket.org/nschaeff/shtns. Full details on
the numerical implementation can be found in A17.

Along the parameter space path, the magnetic Reynolds number
Rm = UD/η (where U is the rms value of u in the shell) remains
approximately constant and Earth-like (Table 2), a defining property
of this path. As a consequence, the level of hydrodynamic turbu-
lence increases as we progress towards Earth’s core conditions, as
witnessed by the increase of the hydrodynamic Reynolds number
Re = UD/ν = Rm/Pm reaching values up to Re ≈ 24 000. A17
explored a parameter range down to ε = 0.1 (the first 14 per cent of
the path on a logarithmic scale) with DNS simulations. Beyond this
point, DNS simulations become computationally very expensive
(Schaeffer et al. 2017). Therefore, in A17 the remaining portion to
the middle of the path was explored with LES simulations where a
hyperdiffusive approximation was used on the velocity and density
anomaly fields, but not on the magnetic field that remained fully re-
solved. The principle is to use values of �max and NR lower than those
required by DNS, and effective diffusivities νeff, κeff that depend on
the spherical harmonic degree � and the molecular diffusivities ν,
κ according to Nataf & Schaeffer (2015)

(νeff, κeff) = (ν, κ) for � < �h, (9)

(νeff, κeff) = (ν, κ) q�−�h
h for � ≥ �h. (10)

Here �h is the cut-off degree below which the hyperdiffusive treat-
ment is not applied, and qh is the strength of hyperdiffusion. In
Table 1 we recall the values of qh, �h of a few LES cases from A17
(marked with a star symbol), where the approach was to start hy-
perdiffusivity at a relatively large scale �h = 30 and smoothly ramp
its strength up towards smaller scales. Here we increase the model
resolution (�max, NR) and test three approaches to relax hyperdiffu-
sivity. First, we introduce new LES simulations where we keep �h

= 30 but use weaker hyperdiffusivity, i.e. values of qh weaker than
in A17. Second, we introduce quasi-DNS simulations (from here-
after qDNS) where we bring �h close to the smallest numerically
resolved scale �max and employ larger values of qh than those used
in A17. This latter configuration attempts to maximize the range of
length scales over which hyperdiffusivity is not applied, and capture
as much as possible the physically relevant length scales within this
range. Third, we extend the portion of the path where full DNS
computations are carried out to 21 per cent, by reporting on a DNS
at E = 10−6 (ε = 3.33 × 10−2). Due to the increased computa-
tional cost, qDNS and DNS simulations have been integrated over a
shorter simulation time than their LES counterparts (see run length
data in Table 1, presented in units of the overturn time D/U).

Time-averaged diagnostic outputs of the simulation are presented
in Table 2. Listed first are the convective power density p in units
of goF/4πD2, its fraction f� that is dissipated by ohmic losses
(also represented in Fig. 1 as a function of the path parameter), the
magnetic Reynolds number Rm presenting the shell rms velocity
U in units of η/D, the shell rms magnetic field B in Elsasser units
of

√
ρμη� (where μ is the magnetic permeability, the resulting

dimensionless value representing the square root of the classical
Elsasser number, A17). We also report on the level of enforcement
of the Taylor constraint by computing the level of cancellation T of
azimuthal magnetic force integrated over geostrophic cylinders as
in A17. The magnetic dissipation length scale d� is defined as in
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Table 1. Input parameters of numerical models (see the text for definitions). Cases marked with a (∗) symbol have been previously reported in A17.

Case ε

Path position
(per cent)

Run length
(overturns) E Pm �max NR �h qh

DNS (∗) 0.1 14 164 3 × 10−6 0.8 256 480 – –
DNS 3.33 × 10−2 21 59 10−6 0.45 320 720 – –
qDNS 3.33 × 10−2 21 8 10−6 0.45 320 720 290 1.1
qDNS1 10−2 29 33 3 × 10−7 0.25 256 816 196 1.15
qDNS2 10−2 29 3.3 3 × 10−7 0.25 512 1248 448 1.15
qDNS 3.33 × 10−4 50 0.8 10−8 0.045 640 2496 512 1.45
LES (∗) 0.1 14 1172 3 × 10−6 0.8 133 200 30 1.045
LES (∗) 3.33 × 10−2 21 595 10−6 0.45 133 240 30 1.0575
LES1 (∗) 10−2 29 332 3 × 10−7 0.25 133 320 30 1.07
LES2 10−2 29 22.3 3 × 10−7 0.25 256 320 30 1.03
LES (∗) 3.33 × 10−4 50 196 10−8 0.045 133 624 30 1.10

Table 2. Output parameters of numerical models (see the text for definitions). Cases marked with a (∗) symbol have been previously reported in A17.

Case

Path
position

(per cent)
4πD2 p

go F
f�

Rm =
U D

η

B√
ρμη�

T �� �MS �⊥ �CIA �VAC

DNS (∗) 14 0.332 0.81 1092 4.52 0.17 159 71 10 76 207
DNS 21 0.335 0.89 1071 4.41 0.11 166 70 10 110 >320
qDNS 21 0.331 0.88 1050 4.33 0.11 167 78 11 105 295
qDNS1 29 0.346 0.92 1130 4.49 0.07 171 60 10 199 212
qDNS2 29 0.340 0.93 1095 4.49 0.07 170 65 12 182 455
qDNS 50 0.343 0.97 1105 3.90 0.02 196 130 13 522 522
LES (∗) 14 0.336 0.72 1046 4.64 0.17 146 62 9 61 73
LES (∗) 21 0.343 0.76 1036 4.57 0.12 150 65 10 72 79
LES1 (∗) 29 0.348 0.80 1046 4.70 0.08 152 60 10 87 83
LES2 29 0.347 0.86 1084 4.61 0.09 162 67 12 122 127
LES (∗) 50 0.360 0.84 1089 4.48 0.04 164 81 12 101 92

10
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0.5
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1

f Ω

DNS (A17)
DNS (this work)

LES (A17)
qDNS (this work)

LES (this work)

14% path29% path43% path

Figure 1. Evolution of the fraction f� of convective power dissipated by
Ohmic losses with the path parameter ε, in LES, qDNS and DNS simulations
(Earth’s core conditions are towards the left of this graph). Simulation results
already reported in A17 are presented in grey, and new results are reported
in blue. The shaded regions represent the ±1 std. dev. of fluctuations relative
to the time average.

A17 (where it was labelled as dmin) from the square root of the ratio
of volume-averaged magnetic energy and magnetic dissipation, and
reported as an equivalent harmonic degree �� = πD/d�.

As previously in A17, we compute scale-dependent force balance
diagrams (Fig. 2) that enable the investigation of the spatial force
balance structure. To represent length scales, we prefer the har-
monic degree � over the harmonic order because of the invariance

of �-dependent energy spectra against rotation of the coordinate sys-
tem, and because unlike an harmonic order, a given degree � in the
spectral space can be associated to a minimal corresponding length
scale πD/� in the physical space. It has been a common practice
to use curled forces rather than the forces themselves to examine
their contributions in the Navier-Stokes equation (e.g. Christensen
& Aubert 2006; Davidson 2013). This approach is however mis-
leading if these curls are then analysed in the spectral space. Indeed,
the contributions at different harmonic degrees are coupled by the
curl operation, thereby defeating the possibility to associate a force
at degree � to its action at length scale πD/� in the physical space.
For this reason, and also because we wish to also assess the role of
the pressure force, it is mandatory to analyse the non-curled forces
in the spectral space (as previously done in A17). Crossover length
scales are obtained in Fig. 2 and reported in Table 2 by determining
the harmonic degrees at which two forces of the system become of
equal amplitude. These may be thought of as scales where a given
force balance is achieved, and they usually bound scale ranges where
different dynamical equilibria are enforced. The temporal variabil-
ity of force balance diagrams is weak (A17) and they are therefore
computed from snapshots in time. The typical error on crossover
length scales is then less than 10 per cent. Here we recall some
key results found in A17 for the force balance structure and intro-
duce new crossover length scales. These results found along the
parameter space path are typical of the situation most commonly
found in a wide region of the parameter space (Schwaiger et al.
2019), with the exceptions being found at low convective supercrit-
icality and low magnetic Prandtl number Pm. The different forces
span up to five orders in magnitude (with unprecedently low lev-
els of viscosity being reached in the qDNS at 50 per cent of the
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(a) (b) (c)

Figure 2. Scale-dependent force balance diagrams for direct and quasi-direct numerical simulations (DNS and qDNS) obtained along the parameter space
path. Represented are the rms amplitudes of each force as functions of the spherical harmonic degree � (see A17 for technical computation details). Forces
are normalized relative to the maximum value of the pressure force. The ageostrophic Coriolis force represents the residual Coriolis force after removal of
the pressure force. The amagnetostrophic Coriolis force represents the residual Coriolis force after removal of the pressure and Lorentz forces. The crossover
length scales �MS, �⊥, �CIA and �VAC are defined from the crossings observed in these diagrams (see the text for interpretation, values in Table 2 and a summary
diagram in Fig. 3).

path, Fig. 2c), involving at least three successive orders of force
balances. Fig. 2 shows that at large scales (low harmonic degrees),
a leading order quasi-geostrophic balance is achieved between the
Coriolis and pressure forces. The crossover of the Coriolis and
Lorentz forces defines the magnetostrophic harmonic degree �MS.
For harmonic degrees larger than �MS, the zeroth-order balance be-
comes magnetostrophic, with the pressure force equilibrating the
Lorentz force (which is hence essentially a magnetic pressure) and
the residual Coriolis force. Considering now the first-order balance,
the crossover harmonic degree of the Lorentz and buoyancy forces
is defined as �⊥. As this balance is achieved under the constraint of
the part of the Coriolis force not balanced at zeroth order by pres-
sure (the ageostrophic Coriolis force), the associated length scale
is usually referred to as that of the MAC (magneto-Archimedes-
Coriolis) balance (Davidson 2013; Yadav et al. 2016; Aubert 2018,
A17). For � < �⊥, the first-order balance is of thermal wind type
between the ageostrophic Coriolis and buoyancy forces, and for �

> �⊥ it becomes of magnetic wind type between the ageostrophic
Coriolis and Lorentz force. Moving to the next-order force balances,
the crossover harmonic degrees of the inertial and buoyancy forces
�CIA, and of the viscous and buoyancy forces �VAC are, respectively,
representative of the CIA (Coriolis-inertia-Archimedes) and VAC
(viscous-Archimedes-Coriolis) force balances that operate under
the constraint of the Coriolis force residual not balanced at zeroth
and first orders (the amagnetostrophic Coriolis force). A summary
diagram presenting the relative positions of the main length scales
is presented in Fig. 3. Scale separation in this system refers to the
difference between the large scale of the first-order MAC balance
at degree �⊥, and the much smaller scales of the second-order force
balances at degrees �CIA, �VAC and of magnetic dissipation at degree
��.

2.2 Asymptotic QG-MAC theory

The results from the upsized numerical simulations will be anal-
ysed in the light of the asymptotic theory proposed by Davidson
(2013), some elements of which are recalled here. We consider a
leading-order, quasi-geostrophic (QG) equilibrium and a first-order

Figure 3. Relative positions of key length scales in the simulations, rep-
resented as equivalent spherical harmonic degrees. The horizontal bands
represent the extent of the spherical harmonics expansion (with the right
end representing the maximum degree �max), and their colour delineate the
ranges where hyperdiffusivity is applied (pink) or not (grey). Note that ��

is based on the integral length scale d� encompassing magnetic diffusion in
all three spatial dimensions, hence it is possible that �� exceeds �max. The
degree �⊥ is indicative of the large scale at which the first-order MAC bal-
ance is achieved. Only the smallest of the two harmonic degrees �CIA, �VAC

is represented, thereby indicating the nature of the force balance achieved at
second order.

magneto-Archimedes-Coriolis (MAC) force balance, both well sup-
ported by the numerical simulations (Fig. 2), together with the dy-
namo power budget. Due to the zeroth-order QG equilibrium and the
associated Taylor-Proudman constraint, the scale d// of flow struc-
tures along the rotation axis � remains at the system size, that
is, d// ∼ D (see Fig. 5). The first-order MAC balance operating at
the large scale d⊥ = πD/�⊥ can be written from the curl of the
Navier-Stokes equation (see A17):

ρ�U

D
∼ goC

d⊥
∼ B2

μd2
⊥

, (11)
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where C is a typical value for the density anomaly field. In the
present context where Ohmic losses account for the essential part
of the dissipated energy (Fig. 1), the balance between the convective
power input and magnetic dissipation (Christensen & Tilgner 2004;
Christensen & Aubert 2006) may be written as

ηB2

μd2
�

∼ p ∼ go F

D2
, (12)

where we have used the equivalence between convective power
and mass anomaly flux (Christensen & Aubert 2006; Aubert et al.
2009, A17), as attested by the almost constant value of 4πD2p/goF
in Table 2. Combining eqs (11) and (12), and using F ∼ UCD2, we
obtain the vorticity equivalence

U/d⊥ = cω η/d2
�. (13)

This equivalence states that the vorticities at the large scale d⊥
where the magnetic field is sustained by drawing convective power
(balance between buoyancy and Lorentz forces) and at the small
scale d� where this power is ohmically dissipated are related by a
proportionality constant cω (interpreting η/d2

� as a vorticity implic-
itly assumes that the gradient and rotational parts of u are of similar
magnitude at the scale of magnetic diffusion).

2.2.1 Self-similar ranges in spatial spectra

Despite the fact that power is essentially carried by magnetic (rather
than hydrodynamic) nonlinearities from the large injection scale d⊥
down to the small dissipation scale d�, we do not expect spatial
spectra of the magnetic energy density to feature self-similar, power-
law behaviours in the range [�⊥, ��] because the level of magnetic
turbulence is only moderate (Rm is moderate; Table 2). However,
the hydrodynamic Reynolds number Re = Rm/Pm reaches values
up to 24 000 along the explored part of the path, suggesting that
such ranges are likely in spectra of the velocity field. The vorticity
equivalence (13) further supports this idea. Indeed, the constant cω

being in principle of order 1, at large values d⊥/d� of the scale
separation we expect the spectral enstrophy density ω2(�) at degree
� (where ω = ∇ × u is vorticity) to remain approximately constant,
that is,

ω2(�) ∝ �0 for �⊥ < � < ��. (14)

With length scales varying like �−1, the energy density of velocity
u2(�) should then also present a power-law range

u2(�) ∝ �−2 for �⊥ < � < ��. (15)

Deviations from these ideal spectra are however likely. First, length
scales are indeed anisotropic in this system, with flow structures
elongated along the rotation axis (d⊥ � d//), implying that the ve-
locity energy spectrum is less steep than �−2 if the vorticity spectrum
is flat. In that sense, the spectra of the vorticity component parallel
to the rotation axis ω// = (∇ × u) · �/� and velocity component
perpendicular to the rotation axis u⊥ = u − (u · �/�) should bet-
ter approach (14, 15) than those of the full vorticity ω and velocity u,
because the former leave out the variations along the rotation axis.
Second, the scale separation d⊥/d� only reaches values up to 20 in
our simulations (Fig. 3). Finally, the correspondence between length
scales and harmonic degrees is not straightforward (e.g. Schaeffer
et al. 2017), because a given harmonic degree can represent differ-
ent length scales at different radii, and because different dynamics
may exist in the regions inside and outside the axial cylinder tangent
to the inner core (the tangent cylinder). We will nevertheless use
(14, 15) as guidelines for the interpretation of spatial spectra.

2.2.2 Asymptotic scaling laws along the parameter space path

We now recall the derivation of the scaling laws for U, B, d⊥ and d�

along the parameter space path, as functions of the path parameter
ε. If one requires the large- and small-scale vorticities present in eq.
(13) to be independent on the system rotation rate and diffusivities,
then from (12) it follows that the magnetic field itself is independent
on the rotation rate and diffusivities. Davidson (2013) pointed out
that dimensional analysis finally yields the following scaling, cor-
responding to the initial proposal of Christensen & Aubert (2006):

B ∼ √
ρμ(go F/ρD)1/3. (16)

Combining eqs (11, 12, 16) and using RaF ∼ ε leads to the scalings
previously proposed in A17, which are presented here in a slightly
different manner to account for our choice of dimensionless quan-
tities:

B√
ρμη�

∼ ε1/12, (17)

Rm = U D

η
∼ ε−1/18, (18)

d⊥/D ∼ ε1/9, (19)

d�/D ∼ ε1/12. (20)

The powers of ε entering (17–20) imply that these quantities only
undergo weak variations along the path (as confirmed by Table 2),
from ε = 1 down to ε = 10−7. This is another evidence of the
continuum that exists along the parameter space path between nu-
merical simulations and Earth’s core conditions. In particular, the
weak variations of the length scales d⊥ and d� (see Fig. 3) led
A17 to propose a scale-invariant theory (the path theory, see also
Starchenko & Jones 2002) tailored for the analysis of LES simula-
tions, where these two length scales are fixed, which in turn implies
constant values of Rm and B/

√
ρμη�. The weak values of scaling

exponents may initially obscure the prospect of checking these the-
ories against numerical data, but A17 have shown that this is not the
case owing to the broad range of accessible path parameter values
ε and the low scatter of numerical data. However, an uncertainty
analysis will be needed for the upsized runs, which have a short
integration time (Table 1) and may therefore present more scatter
than the LES simulations analysed in A17.

3 R E S U LT S

3.1 Transients

Fig. 4 presents a typical temporal evolution sequence of output di-
agnostic quantities during a gradual upsizing process starting from
LES1 (Table 1), a large-eddy simulation at 29 per cent of the param-
eter space path (Ekman number E = 3 × 10−7) taken from A17.
At each increase of spatial resolution, the simulation is restarted
using the output of the previous step. Transients associated to this
process are short, typically a fraction of a convective overturn. As
we shall see, the process does not alter the leading-order QG-MAC
force balance (Fig. 2, see also Fig. 9 below) and large-scale simula-
tion structure (see Figs 5–7), leaving only the smaller scales to reach
their saturated energy after the upsizing step. Integral diagnostics for
power, velocity and magnetic field (Figs 4a–c) are therefore largely
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(a)

(c)

(b)

Figure 4. Temporal evolution of output diagnostics during an upsizing se-
quence at 29 per cent of the parameter space path (E = 3 × 10−7). At each
upsizing step, the restart file from the previous step is used. Case LES1 from
A17 (Table 1, black) is first expanded into LES2 (purple) with the same cut-
off harmonic degree �h = 30 but a lower value of the hyperdiffusion strength
qh. Two quasi-DNS simulations (qDNS1, qDNS2) are then performed, first
by expanding the spherical harmonic truncation to �max = 256 and the hy-
perdiffusivity cut-off to �h = 196 (blue), and then by expanding �max to
512 and �h to 448. For clarity, only a portion of the first three sequences
(black, purple, blue) is represented. Because of an incorrect specification of
the numerical code options, the diagnostic outputs presented here were not
available during a short portion of the last sequence (green dashes).

invariant against upsizing, with the upsized simulations even fol-
lowing the evolution of the previous lower-resolution case for about
an overturn time after the upsizing step. The magnetic dissipation
length scale d� (Fig. 4d) is more sensitive to the distribution of small
scales and hence more influenced by upsizing, until a high enough
resolution is reached in qDNS2 to fully encompass �� = π /d� (see
Fig. 3). As a corollary, the fraction f� of Ohmic dissipation in the
system (Fig. 1) generally increases during the upsizing procedure,
and reaches a value independent of further upsizing when d� also
converges (see similarity of f�, �� for qDNS1 and qDNS2 in Ta-
ble 2). At 50 per cent of the path, the upsizing process thereby leads
to a value f� = 0.97 indicative of almost entirely Ohmic dissipation.
We are therefore confident that despite being integrated for a small

amount of overturn times, the upsized simulations are fully repre-
sentative of the saturated dynamical state that could be reached at
much greater computational cost in a regular DNS.

3.2 Planforms in physical space

Planforms of the velocity, density anomaly and magnetic fields in
the physical space are presented in Figs 5–7, for the initial case
LES1 and final case qDNS2 of the upsizing sequence at 29 per
cent of the path (Table 1, Fig. 4). The structure of u, B, C at large
scales is remarkably preserved after upsizing, confirming the ac-
curacy of LES, as previously advocated for in A17. These large
scales consist in upwellings taking the shape of radially elongated
columnar sheets (Figs 5a,b) associated with large buoyancy plumes
(Fig. 6a,b), entrained in a mostly columnar and westward azimuthal
flow presenting rim-like polar circulations on the tangent cylinder
(Figs 5c,d). Relative to its LES1 counterpart, the qDNS2 simu-
lation however features significantly enriched small scales and a
higher level of separation between the largest and smallest observ-
able scales. These small scales comprise columnar flow filaments
coexisting with the sheet-like cylindrical radial upwellings (Fig. 5b)
and ramifications of the buoyancy anomaly plumes (Fig. 6b). The
small-scale content is best seen on planforms of the axial vortic-
ity ω// (Fig. 5f) where the columnar filaments are gathered at the
edges of the large-scale velocity structures. As we shall see below
in Figs 10–12, the large scale in u, B, C is d⊥, the scale of the
MAC balance at which the magnetic field draws its power from
convection, and the dominant small scale seen in ω in the qDNS2
case corresponds to d� where this power is ohmically dissipated.
In the LES1 case (Figs 5a,c,d and 6a), the scale separation is much
weaker, and we shall see the small scale of ω in this case correspond
to the balance of hyperdiffusive viscosity and buoyancy force (the
VAC balance at harmonic degree �VAC). Figs 7(a) and (b) show
that the upsizing process does not cause an increase in the scale
separation of the magnetic field B, the content of which remains
largely at scale d⊥. Indeed, in case of LES1 the magnetic field is
already close to being fully resolved, because the low value of the
magnetic Prandtl number Pm warrants a modest degree of magnetic
turbulence Rm at strong forcing. Analysing the magnetic field ge-
ometry of the upsized case qDNS2 (Fig. 8), it can be seen that field
lines tend to avoid regions of strong velocity and also gather at the
edges of upwelling sheets or density anomaly plumes. This leads
to a remarkable alignment between small-scale vorticity filaments
and magnetic field lines, which is commonly referred to as dynamic
alignment in the theory of strong MHD turbulence (see Tobias et al.
2012). This is the process through which the magnetic field adjusts
so as to minimize its shear by the flow, as a consequence of Lenz
law. The Lorentz force therefore constrains the flow but ultimately
becomes dynamically irrelevant, reducing its contribution at small
scales to a magnetic pressure (Fig. 2). The planforms of qDNS2 are
broadly comparable to those of recently published DNSs with strong
scale separation (Schaeffer et al. 2017; Sheyko et al. 2018). How-
ever, less accumulation of light material within the tangent cylinder
is observed in qDNS2 than in simulation S2 from Schaeffer et al.
(2017), and we do not observe the generation of reverse surface
magnetic flux inside this cylinder (compare Figs 6a,b to 7 in Scha-
effer et al. 2017). Case qDNS2 indeed features a stronger level of
forcing (stronger hydrodynamic and magnetic Reynolds numbers)
than the cases from Schaeffer et al. (2017) and Sheyko et al. (2018),
and this presumably improves the exchange of material through the
tangent cylinder, leading to a spatially more homogeneous system.
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Figure 5. Planforms of velocity u components in the cylindrical radial direction (a,b), the azimuthal direction (c,d) and planforms of the axial vorticity ω//

(e,f). Represented are the fields in the equatorial plane, in a half meridian plane, at the outer (core–mantle) boundary of the shell at radius ro, and at radius r/D
= 0.545, close to the inner (inner core) boundary. The position of the rotation axis � is marked by a black line on all panels. The left-hand column (a,c,e) refers
to a snapshot taken during case LES1 from A17 at 29 per cent of the path (Ekman number E = 3 × 10−7, Table 1), and the right-hand column to a snapshot of
the highest-resolution case qDNS2 also obtained at 29 per cent of the path after the upsizing sequence (green lines in Fig. 4). Velocity is presented in magnetic
Reynolds units of η/D, and vorticity in inverse magnetic diffusion time units of η/D2.

3.3 Force balances at leading and first order

Fig. 9 presents scale-dependent force balances in simulations with
variable degrees of upsizing (LES, qDNS, DNS) at a fixed position
on this path (21 per cent). This complements Fig. 2 where force
balances are presented for DNS and qDNS along the parameter
space path. Invariance of the zeroth-order quasi-geostrophic and
magnetostrophic balances, as well as the first-order MAC balance
was observed along the path in the LES of A17, and is confirmed
here in the upsized qDNS and DNS. The LES are furthermore

efficient at accurately capturing these balances (compare Figs 9a
and c). The value of the crossover length scale to magnetostrophy
�MS is also broadly invariant in our sets of runs, except for the
qDNS at 50 per cent of the parameter space path (Fig. 2c), where
the force balance is perturbed by the choice of upsizing strategy (see
below). Invariance of �MS is consistent with the analysis of Aurnou
& King (2017) where this scale is conjectured to depend solely
on the Elsasser number B2/ρμη� and magnetic Reynolds number
Rm, both of which are about constant along the path (Table 2). The
MAC length scale �⊥ is also almost invariant along the parameter
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Figure 6. Planforms of the density anomaly field C, presented in units of F/4π�D3. The snapshots are taken at the same instants in time as in Fig. 5, for cases
LES1 (a) and qDNS2 (b) obtained at 29 per cent of the path. Same visualization conventions as in Fig. 5.
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Figure 7. Planforms of the radial component of the magnetic field B, presented in Elsasser units of
√

ρμη�. The snapshots are taken at the same instants in
time as in Fig. 5, for cases LES1 (a) and qDNS2 (b) obtained at 29 per cent of the path. Same visualization conventions as in Fig. 5.

space and against upsizing (see also Fig. 3). In summary, the QG-
MAC force balance previously advocated for in Davidson (2013),
Yadav et al. (2016), A17, Calkins (2018) is therefore confirmed
here as the leading-order balance asymptotically holding in rapidly
rotating regimes, and it is shown to be remarkably stable even in the
high-resolution, upsized simulations.

The projection of these leading and first-order force balances
on axisymmetric scales yields the Taylor constraint, stating that
the integral of azimuthal Lorentz force over imaginary cylinders
co-axial to the rotation axis vanishes to the level of the residual
inertia and viscosity (see A17). Since the magnetic field structure is
largely preserved by upsizing (Figs 7a,b) the level of enforcement
T of the Taylor constraint is also preserved (Table 2) and increases
along the parameter space path. We again emphasize that adherence
to the Taylor constraint should not be misinterpreted as a sign of
leading-order magnetostrophy, as it follows here from leading-order
quasi-geostrophy.

3.4 Second-order force balance and optimal
approximations

Differences between upsizing strategies emerge at the next orders in
the force balance diagrams. DNS simulations (Figs 2a and 9c, see
also A17) show that the second-order force balance is of the CIA

nature. It has been argued that the VAC balance could influence
the dynamics of dynamo simulations at moderate parameter values
(King & Buffett 2013) but this is clearly not the case here as this
balance only comes at the third order in amplitude. Quasi-DNS sim-
ulations constructed such that the hyperdiffusive cut-off �h largely
exceeds �CIA (such as qDNS at 21 per cent and qDNS2 at 29 per
cent of the path; Fig. 3) have a force balance structure that is undis-
tinguishable from that of the full DNS down to the second order in
amplitude (compare Figs 9b and c, see also Fig. 2b). At third order,
the VAC balance length scale �VAC is improperly resolved in these
qDNS but this has no consequence on the partitioning of dissipa-
tion between Ohmic and viscous losses (compare the f� values in
qDNS and DNS at 21 per cent of the path in Fig. 1). This type of
qDNS may therefore be safely used to fully replace a DNS, but it
still involves a sizeable computational cost because �CIA becomes
large along the path (Fig. 3). As an acceptable tradeoff between cost
and accuracy, a qDNS simulation where the cut-off is close to, or
smaller than the true value of �CIA, but still larger than �� may be
performed (respectively, cases qDNS1 at 29 per cent of the path and
case qDNS at 50 per cent of the path, Fig. 3). This type of qDNS
still captures the Ohmic dissipation fraction f� well, and in any case
better than LES (compare LES, qDNS1 and qDNS2 at 29 per cent
of the path in Fig. 1), but the stronger approximation implies a per-
turbed force balance structure at high harmonic degree (Fig. 2c) and
an inaccurate determination of �CIA (compare qDNS1 and qDNS2
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Figure 8. Polar view of the axial vorticity field ω// from case qDNS2 at 29 per cent of the path, presented in the entire equatorial plane and at radius r/D =
0.545, with black lines delineating the cut presented in Fig. 5(f) (same snapshot and colour coding as this figure). Magnetic field lines parallel to the local
direction of B are also represented (orange), with thickness proportional to the local magnetic energy density B2. In order to see field lines in the whole volume,
the equatorial plane is made selectively transparent with opacity proportional to |ω//|. This reveals an organization of field lines aligned with the columnar
vorticity filaments and along the rotation axis.

(a) (b) (c)

Figure 9. Scale-dependent force balances for LES (a), qDNS (b) and DNS (c) simulations at 21 per cent of the parameter space path (Ekman number E =
10−6). See Fig. 2 and the text for the definitions of crossover harmonic degrees, and A17 for technical computation details.

in Fig. 3). Finally, LES simulations (Fig. 9a) tend to render a mix of
CIA and VAC force balances at second order, with �CIA ≈ �VAC and
both values being significantly decreased relative to DNS (Table 2,
Fig. 3). At path positions of 29 per cent and beyond the ordering
of these two length scales is even reversed compared to the DNS

ordering (i.e. �VAC < �CIA, see violet symbols in Fig. 3), implying
that VAC has replaced CIA as the second-order force balance. This
implies that the determination of f� is inaccurate (Fig. 1), as already
reported in A17.
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Figure 10. Instantanous kinetic (KE) and magnetic (ME) energy density
spectra, as functions of the spherical harmonic degree �, in DNS, qDNS
and LES simulations performed at 21 per cent (a) and 29 per cent (b) of
the parameter space path (Ekman numbers E = 10−6 and E = 3 × 10−7).
Spectra are normalized such that the total magnetic energy is one, illustrating
the increasing dominance of the magnetic energy as we progress along the
parameter space path.

(a)

(b)

Figure 11. (a) Instantaneous kinetic energy density spectra in DNS and
best-resolved qDNS simulations along the parameter space path, as func-
tions of the spherical harmonic degree �. Spectra are normalized in each
case relatively to the total kinetic energy. (b) kinetic energy density spectra
compensated with �3/2. The horizontal dashed line in (b) represents 85 per
cent of the flat level of compensated kinetic energy density.

3.5 Spatial energy spectra and power-law ranges

Differences between upsizing strategies can be further assessed
by examining spatial spectra of the kinetic and magnetic energy
densities (Fig. 10). Here again, a representation using the spherical
harmonic degree � is used, but similar results can be obtained by

Figure 12. Instantaneous energy density spectra of the enstrophy ω2, kinetic
energy u2, axial enstrophy ω2

// and kinetic energy of flow perpendicular to

the rotation axis u2
⊥, in case qDNS2 at 29 per cent of the parameter space

path (Ekman number E = 3 × 10−7). Spectra are normalized relatively to
the total kinetic energy.

using the spherical harmonic order instead. All simulations have
broadly similar magnetic energy spectra throughout the spherical
harmonic degree range, and also similar kinetic energy spectra up to
spherical harmonic degree � ≈ 60, underlining the relevance of LES
at such large scales and the weak impact of upsizing on these scales.
In particular, the peak of kinetic and magnetic energy spectra for �

> 1 occurs at � = �⊥, confirming that �⊥ is the dominant scale of
velocity, density anomaly and magnetic field planforms (Figs 5–7).
There is no evidence of a self-similar, power-law range in spectra
of the magnetic energy density. This is expected given the modest
level Rm ≈ 1000 of magnetic turbulence (Table 2). In kinetic energy
spectra of the LES simulations, a power-law decay range cannot be
observed because it is obscured by hyperdiffusion kicking in at �h

= 30 (red and pink curves in Figs 10a,b), but it appears gradually in
qDNS and DNS simulations where the hyperdiffusive cut-off �h is
increased close to �max or removed altogether. It is again advisable
to use a sufficiently resolved qDNS simulation (dark green curves
in Figs 10a,b) for best accuracy (compare the dark green and black
curves in Fig. 10a). In particular, choosing �h above ��, but close
to or below �CIA causes energy stacking effects where the tail of
the spectrum overshoots the true value (compare light green and
dark green curves in Fig. 10b). This in turn causes the buoyancy
and Coriolis force lines to overshoot their true value in the force
balance diagrams (Fig. 2c).

Plotting together uncompensated and compensated kinetic energy
spectra (Figs 11a,b) of our best-resolved qDNS and DNS simula-
tions along the path further reveals that the simulations are sup-
portive of a gradually broadening range with power-law decay �−3/2

starting from the large scale �⊥. Less steep decay ranges have been
previously observed in strongly scale-separated dynamo simulations
(Schaeffer et al. 2017; Sheyko et al. 2018), with spectral indices
from −1 to −4/3, and evidence of dependence of spectral index with
the simulation forcing has also been reported. The steeper decay ob-
served here occurs in a context of even stronger forcing (stronger Re
and Rm) than in these previous simulations and approaches closer to
the index −2 predicted from vorticity equivalence (Section 2.2.1).
In our three simulations where resolution is high enough to avoid
energy stacking at the spectrum tail (black, red and green curves in
Fig. 11), the extent of the power-law range is measured through the
harmonic degree at which the compensated spectra of Fig. 11(b)
fall below 85 per cent of the plateau energy. We then find that the
corresponding harmonic degrees match the lowest of the two scales
�CIA, �� (see their relative position in Fig. 3). This is theoretically
expected because vorticity equivalence should be enforced down
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to the scale of magnetic dissipation, unless the MAC balance is
perturbed at small scales by the second-order CIA balance. In our
qDNS simulation at 50 per cent of the parameter space path (blue
curve in Fig. 11) the same analysis cannot be carried out because
of energy stacking at the spectrum tail, but we note that stacking
again starts at �� which in this case is significantly lower than �CIA

(Figs 2c and 3). Power transfers from injection at �⊥ down to Ohmic
dissipation at �� are well controlled in this simulation (hence the flat
compensated spectral range), but the transfer to even smaller scales
of the residual power (3 per cent in this case, Fig. 1) for viscous
dissipation via inertial forces is improperly rendered (because the
true value of �CIA is not resolved), thereby causing the stacking of
energy. Though this stacking appears significant in the compensated
spectra (Fig. 11b), it should not be overemphasized as it represents
a small fraction of the kinetic energy (Fig. 11a). Stacking is also
commonly observed in fully resolved DNS (see the tails of the black
and red curves in Figs 11a,b), and in previously published simula-
tions with moderate resolution (see fig. 3b of Sheyko et al. 2018)
without bearing too much consequence on the simulated dynamics.

In order to further establish the link between Davidson’s vorticity
equivalence (eq. 13) and the power-law range observed in Figs 10
and 11, spatial spectra of enstrophy ω2 are plotted together with
kinetic energy spectra in Fig. 12 for case qDNS2 at 29 per cent of the
parameter space path. At scales between the MAC scale �⊥ and the
magnetic dissipation scale ��, the enstrophy ω2 presents a weakly
increasing power-law range ω2∝�1/3. Given that scale separation
covers a decade in this example, this implies that the amplitude
of vorticity varies by less than a factor 2 between the large and
small scales, consistent with the idea of a flat spectrum underlain
by vorticity equivalence (eq. 14). The vorticity spectrum peaks at
� = ��, showing that the dominant scale of the vorticity planforms
observed in Fig. 5(f) is indeed the scale of magnetic dissipation (the
same analysis carried out in the case of the LES case of Fig. 5(e)
reveals that �VAC is the dominant scale). Note that a length scale
defined as δ(�) = u(�)/ω(�) ∼ D�−11/12 does not exactly vary like
�−1, underlining weak but measurable effects of the anisotropic flow
structure (Figs 5b,d). Computing the spectra of axial enstrophy ω2

//

removes the influence of the long length scale parallel to the rotation
axis, and reveals a better respected vorticity equivalence ω2

// ∼ �1/4

in the range [�⊥, ��]. Likewise, the kinetic energy spectrum of
flow perpendicular to the rotation axis follows u2

⊥ ∝ �−7/4, better
approaching the spectral index −2 (eq. 15), and the associated
perpendicular length scale δ⊥(�) = u⊥(�)/ω//(�) now indeed varies
like �−1, confirming the relevance of spherical harmonic degrees to
analyse length scales.

3.6 Scaling properties

The outputs from our upsized qDNS and DNS simulations at high-
est resolution are expected to approach the asymptotic QG-MAC
scaling theory of Davidson (2013), and to depart from the scale-
independent path theory outlined in A17 and verified on LES sim-
ulations (see Section 2.2.2). Fig. 3 indeed shows that �⊥ in qDNS
and DNS simulations tends to be slightly higher than in LES sim-
ulations, and to slightly increase along the path, both results being
consistent with these expectations. However these results are not
fully systematic, presumably because of our evaluation of �⊥ on
snapshots and the associated uncertainty, which while being small
(about 10 per cent) remains on the order of the observed variations.
Furthermore, from eq. (19) a doubling of �⊥ = π /d⊥ is predicted
between 14 and 50 per cent of the path, but clearly not observed. The

(a)

(b)

(c)

Figure 13. Evolution of the magnetic Reynolds number Rm (a), magnetic
field amplitude B/

√
ρμη� corrected as in A17 with the inverse square root

of the ohmic fraction f� (b), and magnetic dissipation length scale d� (c)
with the path parameter ε (Earth’s core conditions are towards the left on
these graphs). Presented are the set of LES from A17 (black circles), the set
of DNS from A17 (black stars) and the best-resolved qDNS and DNS from
this work (blue diamonds), with the blue shaded regions representing the
uncertainty range associated to short-term time averaging of these runs (see
the text). Power laws obtained by least-squares fitting of the A17 results are
also reported (orange and green lines for DNS and LES, respectively). The
power-law fit obtained from DNS simulations (orange line) closely follows
the predictions from the QG-MAC theory (Davidson 2013, A17). For the
new DNS and qDNS simulations, best-fitting power laws (purple lines) are
obtained by using weighted least squares taking the uncertainty range into
account.

departure of our results for �⊥ from the QG-MAC prediction simply
reflects the fact that the scale separation d⊥/d� in our simulations
actually increases along the path, while from eqs (19 and 20), it is
(rather counter-intuitively) expected to decrease in the QG-MAC
theory.

To refine this analysis, we further examine in Fig. 13 the evolu-
tion along the path of the dimensionless velocity Rm, magnetic field
B/

√
ρμη� (corrected as in A17 with the inverse square root of f� to

account for incompletely Ohmic dissipation at the start of path), and
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magnetic dissipation length scale d�/D. To evaluate the uncertain-
ties that are due to the shortness of DNS and qDNS runs, our longest
LES simulation at 14 per cent of the path (Table 1) is used as a ref-
erence. Error bars for other cases are then computed by evaluating
in this reference case the maximum deviation of outputs averaged
over the short duration of these cases versus the long time average
of the reference. Power laws of DNS and qDNS are then obtained
from the numerical data by using least-squares weighted with the
resulting uncertainties. The magnetic Reynolds number of upsized
simulations (Fig. 13a) remains about constant along the path, with a
scaling Rm ∼ ε0.004 ± 0.04. This result is close to the prediction from
the path theory (constant Rm, A17), and deviates from the asymp-
totic QG-MAC prediction Rm ∼ ε−1/18 ∼ ε−0.056 (eq. 18, yellow line
in Fig. 13a) in a significant manner even with uncertainties taken
into account. The magnetic field of upsized simulations (Fig. 13b)
follows the f�-corrected scaling B/

√
f�ρμη� ∼ ε0.04±0.06 and un-

corrected scaling B/
√

ρμη� ∼ ε0.02±0.06, not fundamentally devi-
ating from the constant prediction of the path theory (A17) but
this time also marginally compatible with the QG-MAC prediction
B/

√
ρμη� ∼ ε1/12∼ ε0.083 (eq. 17). Similar results are found for

the magnetic dissipation length scale (Fig. 13c) that follows d�/D ∼
ε0.04 ± 0.04, marginally compatible with the constant prediction from
the path theory and the QG-MAC prediction d�/D ∼ ε1/12 (eq. 20).
In summary, output diagnostics from the upsized qDNS and DNS
simulations indeed better approach the QG-MAC theory of David-
son (2013) than their LES counterparts, but fail to fully adhere to
this theory, with the most important deviations being observed on
the diagnostic for flow velocity.

4 D I S C U S S I O N

By increasing the resolution and relaxing the hyperdiffusive approx-
imation of the large-eddy simulations presented in A17, we have
presented high-resolution numerical simulations of the geodynamo
that approach closer to the rapidly rotating and turbulent conditions
of Earth’s core than earlier extreme simulations (Yadav et al. 2016;
Schaeffer et al. 2017; Sheyko et al. 2018). The high-resolution
models could be integrated only for a short time, but they are still
relevant as they reach dynamical saturation after transients lasting
only a fraction of an overturn time (Fig. 4). This rapid equilibration
owes to the fact that the large-eddy simulations that they originate
from are already in the correct large-scale force balance (Fig. 9). In
that sense, large-eddy simulation followed by upsizing is an highly
efficient strategy to reach extreme conditions at a fraction of the
computer cost that would be involved in equilibrating the simula-
tion from scratch. By reaching extremely low levels of the fluid
viscosity in much of the harmonic degree range (up to five orders
of magnitude below those of the leading forces, Fig. 2), the upsized
simulations also reach a state where the injected convective power is
almost entirely dissipated by Ohmic losses (Fig. 1). Combined with
the previous results from A17, the new high-resolution simulations
provide insight into force balance, scale separation and turbulence
in Earth’s core.

4.1 QG-MAC force balance in Earth’s core

A quasi-geostrophic equilibrium between Coriolis and pressure
forces (Fig. 2) has been confirmed as the leading-order force bal-
ance enforced at large scales as we progress towards Earth’s core
conditions with high-resolution simulations. Though the magnetic
force also reaches leading order at smaller scales (as previously

advocated by Aurnou & King 2017), its contribution is essentially
a magnetic pressure because of dynamic alignment of vorticity
filaments and magnetic field lines (Fig. 8), implying that from a
dynamical standpoint the whole length scale range in fact remains
close to quasi-geostrophic. These results further rule out the possi-
bility that Earth’s core is in a system-scale magnetostrophic state,
and should encourage further theoretical developments centred on
quasi-geostrophy (Calkins et al. 2015; Calkins 2018). At the next or-
der, the magneto-Archimedes-Coriolis force balance already found
in Yadav et al. (2016) and Aubert et al. (2017) has also been con-
firmed in high-resolution simulations.

4.2 Scale separation in Earth’s core

In the vicinity of the large scale �⊥ of the MAC balance, the upsized
simulations preserve the large-scale features and axial invariance of
the large-eddy simulations that they originate from. They however
reveal an important scale separation in their velocity, vorticity and
density anomaly fields (Figs 5 and 6) while the magnetic field re-
mains at large scales (Fig. 7). The most interesting features revealed
by upsizing are vorticity filaments that are most prominent at the
small scale �� of magnetic dissipation (Fig. 12). These exist at the
edges of the large-scale, sheet-like convective upwelling and induce
ramifications of density anomaly plumes. The filaments align with
the large-scale magnetic field lines (Fig. 8), thereby minimizing the
non-pressure part of the associated Lorentz force at small scales
(Fig. 2). The distribution of velocity and vorticity across scales has
been analysed in the spectral space by using a decomposition of
energy into spherical harmonic degrees. This approach is justified
because at the strong forcing of our simulations, the effects of spa-
tial heterogeneity and anisotropy are both reduced (Figs 5, 6 and
12) relative to simulations at weaker forcing (Schaeffer et al. 2017;
Sheyko et al. 2018). The spectral analysis (Figs 11 and 12) has partly
confirmed the principle of vorticity equivalence from the QG-MAC
theory (Davidson 2013), with approximately flat enstrophy spec-
tra between degree �⊥ (large scale d⊥) at which the magnetic field
draws its power from convection and degree �� (small scale d�)
where this power is dissipated. High-resolution simulations feature
a �−3/2 power-law decay in the range [�⊥, ��], approaching closer
to the spectral index −2 predicted from vorticity equivalence than
earlier simulations at lower forcing (Schaeffer et al. 2017; Sheyko
et al. 2018). On a side note, Schaeffer et al. (2017) mention that
with a kinetic energy density power-law decay not much steeper
than �−1, integral length scales built by weighting each harmonic
degree � with this density (Christensen & Aubert 2006; King &
Buffett 2013) become ill-posed. The present high-resolution sim-
ulations confirm this view and suggest that such measures should
be abandoned altogether as they do not match any of the physically
relevant crossover length scales identified here.

From the evolution of key length scales along the parameter space
path (Figs 3 and 13), at the end of the parameter space ε = 10−7 (i.e.
at Earth’s core conditions) we predict large-scale features at scale
�⊥ ≈ 10 and small-scale features at �� ≈ 300 (respectively d⊥ =
π D/�⊥ ≈ 700 km and d� = π D/�� ≈ 20 km), hence a significant
but not extremely large level of scale separation. This implies that
the large-scale structures currently imaged by core flow modelling
(see Holme 2015 for a review) are representative of the large scales
of the geodynamo, and that numerical dynamo simulations can
provide robust a priori constraints on the spectral decay of the flow
in this inverse problem (e.g. Aubert 2013, 2014, 2015; Fournier
et al. 2015).
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4.3 Optimal strategies for large-scale approximation of
Earth’s core dynamics

In our system, the convective power p is essentially carried by
magnetic nonlinearities associated to the Lorentz force from the in-
jection scale �⊥ to the Ohmic dissipation scale �� (Section 2.2). To
further render the transfer of the residual power (1 − f�)p to even
smaller viscous dissipation scales through hydrodynamic nonlinear-
ities, one needs to resolve at least the Coriolis-Inertia-Archimedes
scale �CIA (Figs 1 and 9). From the simulation cases where �CIA

is correctly resolved (Fig. 3) we can infer the dependency �CIA

∼ ε−0.4, leading at Earth’s core conditions to �CIA ≈ 20 000, or
the equivalent length scale π D/�CIA ≈ 400 m. Though the need
to resolve such a small scale obviously complexifies the numeri-
cal simulation problem, we note that this residual part of power (1
− f�)p becomes vanishingly small in our simulations and there-
fore at Earth’s core conditions (Fig. 1), thereby motivating further
research towards approximated simulations of moderate maximal
resolution �max ≈ �� � �CIA. Introducing quasi-direct numerical
simulations where the hypderdiffusive cut-off �h has been set to a
value larger than ��, but smaller than �CIA, we have for instance
obtained an acceptable trade-off between computational cost and
accuracy, with an accurate value of the Ohmic dissipation fraction
f� (Fig. 1) but some stacking towards the kinetic energy spectrum
tail (Figs 10 and 11) and some degradation of the small-scale force
balance (Fig. 2). The upsized results have also confirmed the qual-
ity of earlier large-eddy simulations from A17, which capture the
large-scale planforms (Figs 5–7), the leading order and first-order
force balances (Fig. 9) and dynamical equilibria such as the en-
forcement of the Taylor constraint (Table 2) to an excellent level
of accuracy, but fail to render the partition of dissipation between
Ohmic and viscous losses (Fig. 1) because they introduce a viscous-
Archimedes-Coriolis force balance at second order.

4.4 Rotating magnetohydrodynamic turbulence in the
spherical shell geometry

It is interesting to compare the turbulence properties observed here
to the non-magnetic, but rotating case. In classical 2-D and quasi-
geostrophic turbulence (e.g. Nataf & Schaeffer 2015), the enstro-
phy cascades to smaller scales through vortex stretching. In the
present high-resolution simulations, vortex stretching is strongly
constrained by dynamic alignment of vortex filaments with mag-
netic field lines (Fig. 8). This may explain why the velocity spectrum
decay �−3/2 (Figs 11 and 12) is less steep than the decay �−5/3 previ-
ously reported in a strongly forced simulation of nonmagnetic and
rotating convection (Sheyko et al. 2018), and much less steep than
the decay m−5 obtained along spherical harmonic orders in simu-
lations of quasi-geostrophic Rossby wave turbulence (Schaeffer &
Cardin 2005).

Examining our results within the framework of non-rotating,
MHD turbulence, we first note that our simulations are in the strong
turbulence regime where magnetic field lines are bent by veloc-
ity fluctuations. Cartesian simulations of strong MHD turbulence
commonly feature energy density spectra decaying like k−3/2

⊥ , where
k⊥ is the field-perpendicular wavenumber, and scale-dependent dy-
namic alignment of vorticity structures along field lines is essential
to reconcile this spectral decay with existing theories (see e.g. To-
bias et al. 2012). It is interesting to note that dynamic alignment
in the physical space is also clearly observed here, and that Alfvén
waves, the energy carriers of strong MHD turbulence, have been
highlighted as important energy carriers in our simulations, both

the axisymmetric and non-axisymmetric levels (Aubert 2018). In-
terpreting the common spectral decay index −3/2 of our results
and the strong MHD turbulence theory is however subject to cau-
tion, as the relationship between the cartesian wavenumber k⊥ and
the spherical harmonic degree � in volume-averaged spectra is not
straightforward (Schaeffer et al. 2017).

4.5 Towards an ultimate asymptotic scaling theory

The outputs from the best-resolved upsized simulations approach
the scaling predictions of the QG-MAC theory (Davidson 2013)
better than their large-eddy counterparts, but do not fully adhere
to this theory. The deviations are clearest for the length scale d⊥
(Fig. 3) and the flow velocity or magnetic Reynolds number Rm
(Fig. 13). They already appear in a DNS carried out at 21 per cent
of the path, suggesting that this is not the result of residual hyperdif-
fusivity effects. It remains possible that the magnetic equilibration
of the upsized simulations takes place on a timescale that is still
longer than the short integration times that could be achieved here,
in which case the error bars specified of Fig. 13 would be underesti-
mated. If such is the case however, the DNS at 21 per cent of the path
remains puzzling as its magnetic field amplitude appears to almost
match the QG-MAC prediction while the velocity field amplitude
strongly deviates from this theory. Deviations from the QG-MAC
theory may be needed somehow, because we have seen that this
theory fails to predict an increase of scale separation along the path
as Earth’s core conditions are approached, in apparent contradiction
with the present results (Fig. 11) and previous high-resolution nu-
merical simulations (Sakuraba & Roberts 2009; Yadav et al. 2016;
Schaeffer et al. 2017; Sheyko et al. 2018). It has also been shown
in A17 that the predictions from the scale-invariant path theory
match the amplitude of Earth’s core magnetic and velocity fields
strikingly well, and better than the QG-MAC predictions. In this re-
spect, it is possible that the vorticity equivalence (spectral index −2
in the kinetic energy spectrum) is incompatible with dynamic align-
ment of vorticity and magnetic field lines (spectral index −3/2).
When stacked at advancing positions along the parameter space
path (Fig. 11), kinetic energy spectra do indeed appear to converge
towards index −3/2 and there is no evidence that the index could
evolve towards −2 upon further progress along the path. If index
−3/2 is the asymptotic value, then the vorticity equivalence constant
cω in eq. (13) may have some residual dependence on the path pa-
rameter ε, while still remaining of order one at the end of path. This
indicates that some refinements may still be needed for an ultimate
scaling theory of Earth’s core dynamo. Further work should ac-
count for the gradual enforcement of structuring constraints exerted
by the magnetic field on the flow as we progress towards Earth’s
core conditions.
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