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S U M M A R Y
Secondary microseismic sources emit seismic waves over long time spans. Reoccurring signals
with similar slowness and frequency therefore arrive at seismic arrays. Blind source separation
techniques can be used to identify and isolate such reoccurring signals from other signals and
from diffuse seismic noise. Along these lines, we use non-negative matrix factorization as
blind source separation technique to decompose continuous seismic array records. We model
the recorded energy as a mixture of a few components with static slowness–frequency and
time-dependent amplitudes. Components and amplitudes are fitted to optimally explain the
recorded seismic energy over time. These components represent secondary microseismic
signals with quasi-static slowness–frequency vector and fluctuating amplitude. Each fitted
component reveals the geographical origin (through the slowness–frequency vector) and time
evolution of an active secondary microseism with high precision because it is separated from
other signals and diffuse seismic noise. Furthermore, relative traveltimes can be automatically
extracted for the signals that correspond to a specific component that can potentially be used
in tomographic studies. We show two examples of seismic signals that were extracted with
this technique, one focusing on P waves from the typhoons Goni and Atsani, and the other
showing secondary microseism PKP signals from typhoon Glenda.

Key words: Body waves; Seismic noise; Wave propagation.

1 I N T RO D U C T I O N

Secondary microseisms are generated by ocean wave interactions
that continuously emit seismic waves over a time span of many
hours—unlike impulsive earthquakes. The origin and frequency of
the emitted seismic waves vary only slowly with time, following the
evolution of the ocean wavefield (Hasselmann 1963; Kedar et al.
2008; Stutzmann et al. 2009; Zhang et al. 2010; Ardhuin et al.
2011; Stutzmann et al. 2012; Farra et al. 2016; Liu et al. 2016).
Their amplitude, however, fluctuates quickly, as a consequence of
the random ocean wave interactions.

A seismic array often records a mixture of microseismic signals
from different, simultaneously active source regions. Because of
the amplitude fluctuations of these signals the mixture is constantly
changing: sometimes the signal from one region is stronger, some-
times the signal from another, sometimes the signals have similar
amplitude. In this paper, we show that this property allows to sep-
arate the signals belonging to each region from the mixtures using
blind source separation.

Blind source separation (from now on BSS; e.g. Friedman et al.
2001; Cichocki et al. 2009; Comon & Jutten 2010) is a technique
that is often used not only in acoustic studies (e.g. Parra & Spence
2000; Vincent et al. 2006) but also in geophysics (e.g. Ikelle 2007;
Moni et al. 2012; Takahata et al. 2012; Liu & Dragoset 2013). In

our context, the purpose of BSS is to unmix mixtures of signals,
retrieving the isolated signals (mixing components), and the ampli-
tude with which they contribute to the mixture (mixing amplitudes).
BSS cannot extract the components and amplitudes from a single
mixture without extra information because this is a non-unique
problem. However, it becomes applicable when many independent
mixtures are used in the unmixing procedure. In this case a com-
ponent can be identified as a distinct variation in the mixtures with
independent amplitude.

Signal mixture are recorded by isolated seismic stations: the
power spectrum of the recorded ground displacement, for exam-
ple, can be seen as the mixture of spectra of different seismic
signals from independent underlying physical processes: for exam-
ple, a mixture of wind generated high-frequency signals and low-
frequency volcanic tremor signals is observed over a continuous
broad-band spectrum (Cabras et al. 2012). Over time, the relative
amplitudes of these signals vary because the underlying physical
processes are independent and change the mixture continuously. A
spectrogram—the power spectrum as a function of time—therefore
provides many independent mixtures of the spectra of the under-
lying signals. Sometimes the volcanic tremor signals are stronger,
sometimes the wind generated signals are stronger. BSS can poten-
tially retrieve the spectral shape (components) and amplitudes of the
underlying independent signals that correspond to the independent
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physical processes from these mixtures (Cabras et al. 2008, 2012,
2014).

Signal mixtures appear also in seismic array recordings: Each
station of the array records the sum—a mixture—of simultaneously
arriving signals. Each station in the array records a different mixture
because the signals arrive at slightly different times, depending on
the station position and the signal’s horizontal slowness (throughout
the paper slowness refers to horizontal slowness). BSS can be used
to separate signals with different slowness from these mixtures.
Based on this idea, a BSS method called DUET has been used in
different settings to unmix signals from the volcano Mt Etna (Moni
et al. 2012), and also from secondary microseisms (Moni et al.
2013).

In this paper, we also examine signal mixtures that are recorded
by a seismic array. Unlike DUET, that exploits the signal mixture
variation amongst stations, we exploit the signal mixture variation
with time. Conceptually, our technique is comparable to the time-
varying mixture of signals at a single station that can be decomposed
with BSS as outlined above and described in more detail in Cabras
et al. (2008, 2012, 2014), except that we use seismic energy in
slowness–frequency space provided by a seismic array instead of
the power spectrum at an isolated station.

In particular, we take advantage of the almost static slowness
and frequency of secondary microseisms that continuously gener-
ate signals with varying amplitude from the same source region.
The time-dependent signal mixture that is recorded at an array can
therefore be described as the sum of a few components with static
frequency and slowness. BSS can identify such static components,
and separate them from other seismic signals. The unmixed com-
ponents can then be associated with microseisms and examined
individually with higher precision than traditional methods allow.
This can be seen as an example of unsupervised learning, where we
extract signals that reappear over time at a seismic array without
explicitly telling the algorithm which signals to extract.

We finally show that it is possible to extract relative traveltimes
between stations from each of the unmixed components. Extracting
relative traveltimes from secondary microseismic signals is inter-
esting for potential tomographic applications. Zhang et al. (2010),
Liu et al. (2016) and Nishida & Takagi (2016) have shown that trav-
eltimes can be extracted from secondary microseismic signals. Our
method allows to retrieve such measurements in a fully automatic
way for multiple simultaneously active sources.

After a methodological introduction we demonstrate the main
purposes of the method: (i) the extraction of the energy distribution
of secondary microseismic sources in frequency–slowness space;
(ii) the extraction of the temporal evolution of the amplitude of
these sources; (iii) the fully automatic extraction of relative travel-
times between stations of the array from a day record, based on the
automatically identified microseismic signals.

2 M E T H O D

2.1 Beam computation

In this paper, we look at seismic signals from the perspective of a
seismic array: we examine the power spectrum of vertical ground
displacement as a function of time t, frequency f and horizontal
slowness vector s, called the beam B(t, f, s), that is recorded by
the array. The beam B contains the cumulated energy of all signals
that arrive at the array, in general from many seismic sources with
different slowness and frequency.

To obtain the beam as a function of frequency, we use the com-
plex, analytic bandpass filters that are shown in Fig. 1. The one-sided
filter spectra span the secondary microseismic frequency band from
0.10–0.24 Hz. Each filter corresponds to a real and a complex
wavelet in time domain. Convolution with these real and complex
wavelets of the jth filter transforms each seismic data trace, sampled
at discrete times ti, into a complex trace a j (ti )eiφ j (ti ), with instanta-
neous phase φj(ti) and amplitude aj(ti).

To obtain the beam B, we shift the instantaneous phase φjl and
amplitude ajl of each trace l in time by the scalar product of a given
horizontal slowness vector sk with a station position rl relative to the
array centre. The corresponding time shift δtkl = sk · rl represents
the time shift that a plane wave with slowness sk experiences when
it propagates through the array. δtkl can be separated in a sample
shift �tkl, that corresponds to a multiple of the sampling interval of
the seismic trace, and a subsample shift εkl, that is smaller than the
sampling interval of the seismic trace:

δtkl = �tkl + εkl . (1)

The shifted instantaneous phase of filter j for slowness k and station
l is then

φ jkl (ti ) = φ jl (ti + �tkl ) + 2π f jεkl . (2)

Ignoring subsample time shifts, the shifted amplitude is

a jkl (ti ) = a jl (ti + �tkl ). (3)

Instantaneous phase and amplitude of the traces of all N stations of
the array are finally averaged to compute the beam:

B(ti , f j , sk) = mean
l=1..N

{ei2πφ jkl (ti )}2median
l=1..N

{a jkl (ti )}2. (4)

Averaging instantaneous phase and amplitude independently yields
a more robust beam, similar to the phase-weighted stack method
(Schimmel & Paulssen 1997). Because such a beam depends less
on variations in amplitude over the array, it often provides better
slowness resolution. We use the median instead of the mean for
amplitude averaging because it further reduces the influence of
amplitude outliers at isolated stations.

Amplitude variations over the array can, for example, be caused
by local interference with other signals but the amplitudes of some
seismic signals can show strong local amplitude amplification, such
as in the case of PKIKP signals that travel through the Earth’s core.
The major effect of such local amplitude variations is to reduce the
slowness resolution of the array but not the time resolution.

The slowness resolution of the beam is naturally limited by its
size and inter-station distance (aliasing). It can be described in terms
of the array response function that indicates how the energy from
a monochromatic plane wave spreads in slowness. Different beam-
forming techniques exist that can reduce this spread in slowness and
improve the beam resolution (Gal et al. 2016). The BSS technique
that is presented in this paper is complementary and can potentially
be combined with these techniques. It exploits the time dependence
of the beam to separate sources instead of improving the slowness
resolution of the beam.

3 T I M E AV E R A G I N G V E R S U S B L I N D
S O U RC E S E PA R AT I O N

The beam B as a function of time is usually noisy and difficult to
examine directly. In the case of microseisms, averaging the beam
energy B over many time steps, comprising a total time length T, is
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(a) (b)

Figure 1. (a) Analytic filters that cover the secondary microseismic band. The filters are analytic, with zero amplitude at negative frequencies. (b) The imaginary
part (dashed lines) and real part (solid) of the wavelet that correspond to a filter shown only for a short time window. The wavelet time length is proportional
to the lowest frequency of each filter (finite impulse response).

one possibility to extract relevant signals:

B̄( f j , sk) = mean
i=1..T

{B(ti , f j , sk)}. (5)

Averaging B over time enhances long-duration signals with consis-
tent slowness and frequency, such as microseisms. Short-duration
signals, such as earthquakes, or signals with diffuse slowness and
frequency (‘noise’) are attenuated. Simultaneously active sources
that are clearly separated in slowness or frequency can also be ex-
amined individually.

Time averaging has a significant problem: weaker signals can
easily be masked by stronger ones. This even happens when both
signals are well separated in slowness because leaked energy from
one source can still be stronger than energy from significantly
weaker secondary sources at different slowness (this leakage is
related to the array response function). Because secondary mi-
croseism amplitudes vary over orders of magnitude, this happens
often.

Nevertheless, the amplitude of microseisms fluctuates also
rapidly in time. Sometimes, when the stronger source has very
low amplitude, weak sources can be studied with higher precision.
Time averaging dumps this information, whereas BSS exploits these
amplitude fluctuations in time to extract the strong and the weak
sources. It explains the beam as the mixture of several components
in contrast to a single average.

3.1 Blind source separation with non-negative matrix
factorization

We now formalize and illustrate BSS using non-negative matrix
factorization (NNMF) for the case of a synthetic beam B that could
have been observed with a seismic array.

We define a microseismic source S to be the product of a normal-
ized energy distribution E in frequency f and slowness s space and
an amplitude A that varies in time:

S(t, f, s) = A(t)E( f, s), (6)

A and E are non-negative, because they represent energies. Addi-
tionally, E is normalized such that its maximum is one.

Now consider a beam B that is composed of N sources Sm (m
= 1...N) with amplitudes Am(t) and energy distributions Em( f, s).
Assuming that the source signals that are recorded at the array are
sufficiently uncorrelated, that is, that there is no particular phase
relation between the signals, the beam B can be written as the sum

of the individual sources:

B(t, f, s) ≈
N∑

m=1

Am(t)Em( f, s). (7)

The beam B at time t is a mixture (superposition) of the
componentsEm( f, s) with coefficients Am(t). We are going to show
that it is possible to find components Em( f, s) and amplitudes Am(t)
that explain the beam B in an optimal way with a least-squares inver-
sion. The inversion is particularly stable if the beam is known over a
long-enough time span and if the amplitudes vary sufficiently, that
is, if many independent mixtures of the components are known.

Consider the example shown in Fig. 2. In this synthetic example,
three monochromatic sine waves constitute a hypothetical seismic
wavefield that is recorded by a seismic array in Alaska.

The three signals sm(t) have (signal #0) slowness s0 =
(−0.05, 0.00) s km−1 and frequency f0 = 0.12 Hz, (signal #1)
slowness s1 = (−0.00, 0.05) s km−1 and frequency f1 = 0.16 Hz,
and (signal #2) with slowness s2 = (−0.053, 0.00) s km−1 and fre-
quency f2 = 0.20 Hz. Such slownesses and frequencies correspond
to typical P waves from secondary microseisms. The signal ampli-
tudes am(t) are drawn every 100 s from a log-uniform distribution
between 1 and 10 × 10−8 m and smoothly interpolated in between.
In the same way, random phases φm(t) are drawn every 100 s from
a uniform distribution between 0 and 2π and interpolated smoothly
in between. am(t) and φm(t) represent the rapidly fluctuating ampli-
tudes and phases of secondary microseismic signals:

sm(t) = am(t) sin(2π fmt + φm(t)). (8)

The time-dependent variance, or power (energy per time), of the
sine wave signals as measured by the beam B is Am(t) = (am(t)/2)2

and is shown in Fig. 2(a).
The synthetic wavefield, as observed by the seismic array, is the

sum of the three individual signals that are shifted by the time
necessary to reach each station. For each station l with position
rl relative to the array centre, the signals are therefore shifted by
δtml = sm · rl . A synthetic 1 hr record ul(t) is then generated for
each station of the array by summing the shifted individual signals
sm(t):

ul (t) =
N∑

m=1

sm(t − δtml ). (9)
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Figure 2. Illustration of the separation of temporally independent sources. Panel (a) shows the amplitudes of three monochromatic synthetic sources. The
synthetic sources have distinct slowness and/or frequencies and slowly varying random phase. Panel (b) shows the synthetic wavefield that has been constructed
for seismic array stations in Alaska. Different sources appear with different patterns in the wavefield because they have different slowness and frequency.
Panel (c) shows some time samples of the beam that corresponds to the wavefield as recorded by the array. The beam clearly recovers the signal amplitude and
slowness but it is a mixture of all sources. Panel (d) shows the time average of the beam. The source mixture is retrieved but the original sources are lost in
the averaging process. Panel (e) shows the decomposed beam, that is, three components that optimally explain the source mixture that is observed in the full
time-dependent beams shown in panel (c). Finally, panel (f) shows the recovered amplitudes of each signal over time that resemble to a high degree the original
ones shown in panel (a).

The wavefield ul(t) is shown in Fig. 2(b), as recorded by the whole
array. The distinct patterns that correspond to the different signals
can be visually identified.

Fig. 2(c) shows time samples of the beam B as a function of s.
The beam maximum over all frequencies at a particular slowness
(from now on just beam amplitude) is shown with colour intensity.
The frequency of the beam maximum (from now on dominant fre-
quency) is shown with colour hue. For example, the red colour of the
first beam that is shown corresponds to the frequency f = 0.12 Hz
of source #1, the green colour of the second beam to frequency f
= 0.16 Hz of source #2, and the blue colour of the last beam to
frequency f = 0.20 Hz of source #3. The beam is sometimes dom-
inated by a single source and sometimes by a mixture of evenly
strong sources, corresponding to the amplitudes in Fig. 2(a).

The time average of the 1 hr beam is shown in Fig. 2(d). Although
the low-frequency source #1 is well resolved in this beam, source #2
is more difficult to identify and source #3 vanishes completely
behind the stronger source #1. This illustrates that the time average

does not resolve secondary sources very well. Using BSS, it is
possible to retrieve the original sources from the time-dependent
beam.

We now transform the continuous eq. (7) into its discretized
form. The continuous beam B(t, f, s) becomes the beam matrix
Bik where index i corresponds to a time sample ti, and index k to
a slowness–frequency pair ( fk, sk). The beam matrix can be seen
as the set of images as plotted in Fig. 2(c). BSS extracts common
structures in this set of images. In other words, the whole set of
beam time samples is constructed as the linear combination of a
few components. In discrete form, eq. (7) can be written as

Bik ≈
N∑

m=1

Aim Emk . (10)

To find the time-dependent amplitudes A, and the static energy
distributions E for a given number N of components, we minimize
the following least-squares error under the condition that Aim and
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Figure 3. Illustration of PCA (orange), ICA (green) and NNMF (red). Each
grey point is a random superposition (mixture) of two input components
(black). NNMF is able to recover the input components because it takes into
account two main properties, non-negativity and non-orthogonality, of the
point cloud that are known a priori.

Emk are non-negative:

minimize
Aim>0;Emk>0

∑
ik

|Bik −
∑

m

Aim Emk |2. (11)

Eq. (11) with the imposed constraints is identical to an NNMF. As
a non-negative equivalent of principal component analysis (PCA),
NNMF is routinely used in many different domains, and many al-
gorithms that solve the constraint minimization problem of eq. (11)
exist. In this paper, we use an algorithm implemented in the open
software library scikit-learn (Cichocki & Phan 2009; Févotte &
Idier 2011).

Fig. 2(e) shows the result of the unmixing procedure for the
synthetic example. The algorithm correctly extracts the position of
origin and the frequency of the three input signals. The power of
the unmixed sources, shown in Fig. 2(f), also closely resembles the
input power of the synthetic signals.

3.2 Comparison of different blind source separation
techniques

NNMF is particularly well suited for the case of non-negative beam
values. We illustrate here its advantages compared to other tech-
niques for the case of a continuously recorded beam on a conceptual
synthetic example shown in Fig. 3.

Consider the beam B = [B1, B2], measured over time at two
distinct slowness and frequency values (B1 = B(ti , f1, s1) and B2 =
B(ti , f2, s2)) over 300 time steps. Each grey scattered point in Fig. 3
corresponds to the beam at a particular time. The x-component
of point i corresponds to the beam at time ti, frequency f1 and
slowness s1. The y-component corresponds to the beam at time ti,
frequency f2 and slowness s2. The particular values of the beam were
generated as mixture of two components E1 = [1, 0.3] and E2 =
[0.2, 1] (shown with black arrows, called input in the legend). The
component amplitudes A1(ti) and A2(ti) are drawn for every time
step from a χ 2 distribution that has twice the variance for source E1

than for source E2. Component 1 can be seen as having dominant

frequency and slowness f1, s1 and leaks some energy (value 0.3)
into component 2 with frequency and slowness f2, s2. Component
2 on the other hand leaks energy (value 0.2) into source E1. The
components are non-orthogonal because of the energy leakage. The
synthetic beam B that generates the point cloud can be written as

B(ti , f, s) = A1(ti )E1( f, s) + A2(ti )E2( f, s). (12)

The distribution of this point cloud can now be described using
different methods. We illustrate in Fig. 3 time averaging, PCA,
independent component analysis (ICA) and NNMF [a general in-
troduction to these methods can be found in Friedman et al. (2001)].

Time averaging (blue arrow) extracts a mixture of both sources,
but is dominated by the stronger source E1. If the input sources
were orthogonal, the mean amplitude of source E1 could have been
approximated by the value f1, s1 coordinate of the mean, and the
amplitude of source E2 by the f2, s2 coordinate of the mean. When
source energy overlaps, as in real observations, this is not possible
anymore.

PCA (implementation details in Halko et al. 2011) describes the
point cloud with two orthogonal components that are the directions
of the strongest variation of the data in a least-squares sense, ordered
from the strongest to weakest. PCA implicitly assumes that the data
is multivariate Gaussian distributed around the mean. This is the
reason why we draw the PCA component arrows from the mean
and not from the origin in Fig. 3. The PCA does not use the main
properties about the data set that are known a priori: first, beam
components can be non-orthogonal, for example, due to leaked
energy or noise. Second, beam components are positive definite.
Because it lacks this crucial information, the PCA interprets the
point cloud distribution inaccurately, and extracts, for example, one
negative component (downward pointing arrow).

ICA (implementation details in Hyvärinen & Oja 2000) does not
constrain components to be orthogonal, but also allows for negative
components. The corresponding ICA components (green arrows)
are even less close to the input components than the components
that were found by the PCA.

Finally, we use NNMF (implementation details in Cichocki &
Phan 2009; Févotte & Idier 2011) to extract non-orthogonal, positive
definite components (red arrows). NNMF extracts components that
are very close to the input components because it exploits the a
priori known properties, non-negativity and non-orthogonality, of
the point cloud in contrast to PCA and ICA.

In contrast to the time average, BSS methods, in particular
NNMF, allow to extract the relevant components from a beam more
accurately.

3.3 Source number and regularization

The number of independent components N determines the capacity
of our model to represent the beam B. As in other inversions, there
is no simple rule for how it should be chosen. In contrast to the
synthetic example in Fig. 2, the number of active microseisms is
unknown and often not well defined in reality: Real signals from
secondary microseisms do have some variations in frequency and
slowness, and could be represented by one component that aver-
ages the signal energy distribution, or by several components that
describe the slowness–frequency variations more accurately. The
beam B also contains ‘noise’, often from energy that leaks from
surface waves to other seismic arrivals. Seismic noise often has
consistent slowness and frequency and will therefore usually be
represented by one or several components in our model. We call
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a component a noise component if its energy is distributed evenly
over slowness.

Roughly the component number balances the two common ex-
tremes of many inverse problems: a low component number is able
to fit the beam with high bias and low variance with respect to noise
or source variations (underfitting). In other words, it provides stable
components that are little influenced by noise or source variations
but only recovers the most important structures of the beam. On the
other hand, a high component number fits the beam with low bias
but high variance (overfitting): weak sources are recovered but the
components are strongly influenced by noise and source variations.
In practice, we search for a middle ground to fit the dominant active
sources in the beam with few stable components.

Another possibility to tune the model is the introduction of L1 or
L2 regularization. L1/L2 regularization adds an adjustable costs to
the elements of the amplitude, the component, or both matrices in
eq. (11). Both regularization types favour less extreme components
and amplitudes in exchange for a less accurate fit of the beam. This
is particularly useful to avoid fitting noise. L1 regularization has
a tendency to favour sparse components and amplitude that have
zero values, whereas L2 regularization has a tendency to equalize
component and amplitude values (see Appendix A). In practice,
there is no ideal damping parameter as in other inverse problems.
The regularization parameter has to be tuned for each problem.
However, we have found that very little L1/L2 regularization is
required if we fit a lot of data with few components. In the examples
that are shown below, regularization has therefore only a minor
influence, as long as no extreme values are used.

3.4 Suppression of noise using sample weights

In many cases, two distinct types of components can be distin-
guished: unmixed source components, whose beam energy is con-
centrated around a specific slowness value, and noise components,
whose beam energy is not concentrated. Typically, we are mainly in-
terested in the source components, and not particularly in the noise
components.

One possibility to remove noise components is to weight the
beam time samples with a measure that indicates how strongly the
energy concentrates in slowness–frequency space. A good measure
of the time-dependent noise level of the beam is the median of the
beam energy over all slownesses and frequencies. If the beam B is
divided at each time step by the noise level at this time step, it is
transformed from units of energy into signal to noise ratio units.

3.5 Relative traveltimes

The complex filters provide the instantaneous phase of each trace
at every time step, which permits to extract phase shifts between
stations with respect to the expected phase of a plane wave with
given slowness. Such phase shifts are directly related to traveltime
shifts that can be caused by heterogeneous structure in the Earth,
which is why they are highly interesting for seismological studies
(Zhang et al. 2010).

If a component corresponds to a plane wave, it can be represented
by the frequency fm and slowness sm with maximum component en-
ergy. Whenever the component amplitude is high, we can expect
that such a plane wave appears in the waveforms. To extract phase
and traveltime shifts of the plane wave that correspond to the com-
ponent m, we start with the phase traces φlm(ti) for stations l and

component frequency fm that are aligned to the component slowness
sm , as described in eq. (2).

The shifted phases are distributed around the mean shifted phase
of the stations l at times when such plane waves arrive with the
component slowness sm . This mean shifted phase can be computed
for each time step as

φ̄m(ti ) = arg

{
N∑

l=1

eiφlm (ti )

}
. (13)

When the mean shifted phase of all stations is subtracted from the
shifted phases of each station, we obtain relative phase shifts for
each time step. These relative phase shifts are now concentrated
around zero whenever a coherent plane wave is observed with the
frequency and slowness of the component.

When the plane wave arrives with a slightly different slowness
�s(ti ), a linear trend 2π fm�s(ti ) · rl remains in the phases. We
therefore compute a slowness correction at each time step using a
linear least-squares regression:

�s(ti )=minimize

{∑
l

|2π fm�s(ti ) · rl−(φlm(ti )−φ̄m(ti ))|2
}

. (14)

The phase that corresponds to this slowness correction is subtracted
as well from the relative phase shifts. We finally obtain the slowness
corrected relative phases �φlm(ti) for component m, each station l
and time i:

�φlm(ti ) = φlm(ti ) − φ̄m(ti ) − 2π fm�s(ti ) · rl . (15)

These phases are distributed around zero when the component am-
plitude is high. The deviations from zero that are consistent over
time for a given station correspond to a time shift. We average the
vector that corresponds to a phase in the complex plane over the
whole day, weighted such that times where the component has high
amplitude compared to the other signals contribute more to the av-
erage than times where the relative component amplitude is weak.
In particular we use wm(ti) = (Am(ti)/

∑
Am(ti))α as weights, with α

= 2, which provides us with a complex coefficient c:

clm = 1∑
i wm(ti )

T∑
i=1

(wm(ti )e
i�φlm (ti )). (16)

The phase of clm can be converted to traveltimes:

�tlm = arg{clm}/(2π fm). (17)

The amplitude |clm| is one, if the relative phases are perfectly con-
sistent over the whole day. This is usually not the case because of
other signals that interfere and degrade the observations. The value
|clm| provides a measure of the consistency of our measurement,
and is therefore from now on called consistency of the measured
traveltime shift at station l for component m. On high quality days
with strong signals, we obtain consistencies of about |clm| = 0.5,
on lower quality days, consistencies of |clm| = 0.1–0.2 are more
common.

A synthetic test that shows this procedure and its quality is pre-
sented in Fig. 4. We have generated four synthetic monochromatic
signals with varying slowness and frequency using the same ap-
proach as in Fig. 2 to determine their amplitude and phase. We
generate 2 hr of synthetic ground displacement waveforms for each
station of a seismic array in Alaska, which is composed of the
networks TA and AK.
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1266 M. Meschede, E. Stutzmann & M. Schimmel

Figure 4. Synthetic benchmark for traveltime extraction. A 2 hr synthetic wavefield (recorded at the Alaska array) consisting of a mixture of four monochromatic
signals with different frequencies and slownesses is unmixed. The four unmixed components are shown in Row 1. The input slowness of the synthetic signals
is indicated with black circles and very well recovered through the unmixing procedure. In addition to the plane wave time shifts expressed by the signal
slowness and station position ri · si, time shift perturbations were added to each signal that resemble a slow velocity heterogeneity at the centre of the array.
The time shift perturbations that have been added to each signal are shown in Row 2. Row 3 shows how well these time shifts are recovered automatically for
each component. Row 4 shows histograms of the input and the measured time shifts.

In addition to the normal time shift that a plane wave experi-
ences when propagating with a certain slowness, we add a station-
dependent time shift to each signal that corresponds to a slow ve-
locity zone in the centre of the array. The exact setup of the slow
velocity zone is not of importance, but the heterogeneity slows the
wave front, leading to realistic time shifts of <1s at stations that lie
behind the heterogeneity, from the perspective of a signal’s direction
of propagation.

Fig. 4, Row 1 shows the four components (from column 1–4)
that have been extracted using NNMF from the time-dependent
beam. They correspond very well to the input slowness (indicated
with a black circle) and frequency of the four input signals. Row 2
shows the input traveltimes, that are positive (red colour) behind the
heterogeneity at the centre of the array from the perspective of the
components direction of propagation that is indicated with a black
arrow. Note that the signals arrive from below, which is the reason
why only stations that are close to the centre are affected. Row 3
shows the measured traveltime (2 hr average) at each stations for
each component. The measured traveltimes resemble very closely
the input ones, which is confirmed by the scatter plots in Row 4.

The steps of traveltime extraction are illustrated in detail for com-
ponent #1 in Fig. 5: Figs 5(a) and (b) show the amplitudes alm(ti)
and instantaneous phases φlm(ti) of all stations for the frequency fm,
and align to the slowness sm with maximum component energy, re-
spectively. The component amplitude that was obtained with NNMF
is shown in Fig. 5(a) (orange line). Whenever the component am-
plitude is high, the trace amplitudes and phases in Figs 5(a) and
(b) align over stations (vertically). After the mean of the aligned
phases has been subtracted (Fig. 5c), phase shifts that are consistent

over time (horizontal patterns) appear and can be converted into
traveltime shifts.

The consistencies |clm| of all stations and components are >0.9
in this synthetic example. This means that the measured travel-
time shifts are consistent at times when the component amplitude is
high and therefore robust. The consistency value is very important
because it allows to objectively estimate the quality of the mea-
surement. Subjective parameters that determine the quality of this
measurement are the component number and the filters that were
chosen initially. The traveltime shifts can only be as precise as the
frequency resolution of the filter: a filter bandwidth of 0.02 Hz im-
plies that the phase is transformed to traveltimes with a relative error
of < 0.01/0.12 = 8 per cent, which is larger for the low frequency
wavelet at 0.12 Hz (see eq. 17). The measurement is based on the as-
sumption that an unmixed component corresponds to a plane wave.
Traveltimes will be inaccurate for unmixed components that are
mixtures of plane waves with different slowness and frequency or
that contain noise only. In such a case, the consistency values will
go down. The exact component number of the unmixing procedure
is not important as long as it isolates plane waves with specific
slowness and frequency.

4 E X A M P L E S

We illustrate the procedure with two real data examples; each of
them decomposes the beam energy of a full day. As in the synthetic
traveltime test shown in Fig. 4, we use vertical ground motion
data that were recorded by a seismic array in Alaska consisting
of 64 stations (AK and TA seismic networks), shown in Fig. 6
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(a)

(b)

(c)

Figure 5. Stepwise extraction of relative traveltimes from the unmixing component #1 of the 2 hr synthetic data in Fig. 4. Panel (a) shows the amplitude of
the traces, corresponding to the frequency fm with maximum component energy. The traces are sample aligned according to the slowness sm with the main
component energy. Superimposed, with an orange line, is the inferred component amplitude that was found with non-negative matrix factorization. Whenever
the component amplitude is high, the amplitudes align vertically, as expected. The three other signals can also be seen when the trace amplitude is high but
does not align as well. Panel (b) shows the equivalent plot for the subsample aligned instantaneous phases of the traces, again for the filter with frequency fj. It
is less obvious to see, but again, whenever the component amplitude (orange line in a) is high, the phases align. This becomes more obvious in panel (c) where
we subtracted the mean of the phase and corrected for any remaining time shift that can be explained by adjusting the slowness. Now, phase shifts appear that
are constant for particular stations (horizontal features in the plot). These phase shifts can be observed in particular when the component amplitude is low, and
they cannot be observed when the component amplitude is high. Therefore, we compute the time averaged phase shift from panel (c) as the weighted mean
over time of the phases with weights that reflect the component amplitude.

Figure 6. Map of the stations of the ‘Alaska’ virtual array that is used in
this paper.

(see Acknowledgements section for detailed references). The raw
recordings of each station are transformed from instrument response
to vertical ground displacement with flat frequency response in the
secondary microseismic frequency band from 0.05–0.30 Hz and a
sampling rate of 1 Hz.

The beam B as a function of time, frequency and slowness is
computed in 20 s intervals (4321 samples for one day), using the
filters with bandwidth 0.02 Hz and central frequencies 0.12, 0.14,

..., 0.22 Hz shown in Fig. 1, on a Cartesian slowness grid that spans
the west–east and south–north components from −0.08 to 0.08 s
km−1. The response function of the array is shown in Appendix B.

Beam energy at a particular slowness can be associated with dif-
ferent seismic phases: the strongest amplitude phases on the vertical
component in the considered slowness–frequency range are the P
waves that are shown in Fig. 7(a). Phases that are reflected multiple
times, such as PP, are not shown. Each ray path is associated with
a particular horizontal slowness, and to a distance between source
and receiver. The relation of horizontal slowness with distance is
shown in Fig. 7(b) for each phase. Fig. 7(c) shows the slowness
ranges that are associated with each seismic phase in the beam B.
Energy with a particular slowness and azimuth can be retraced to
its origin using the slowness–distance relation of Fig. 7(b), under
the assumption that it corresponds to the phases that are listed in
Fig. 7(c).

Prior to unmixing, the beam is transformed to signal to noise ra-
tio units, as explained in Section 3.4. We define the time-dependent
noise level as the median beam energy over all slownesses and fre-
quencies in the considered ranges from −0.08 to 0.08 s km−1 and
0.12 to 0.22 Hz at the respective time. This emphasizes components
that have concentrated energy in slowness–frequency space. We
then unmix the beam using NNMF with five components. Because
we use few components and have many time samples of the beam,
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(a) (b) (c)

Figure 7. Illustration of the phases that we examine in this paper. Panel (a) shows ray paths and distance ranges of the phases, (b) their slowness–distance
relation, (c) the slowness regions that correspond to each phase in the beam. The phases that are shown are: the P phase (blue) , that is, a P wave that travels
mostly through the lower mantle; the PKP phases that travel through the outer core and split into PKPab (orange) and PKPbc (green) with slightly different
ray paths; the PKIKP phase that passes through the inner core. Note that the distance ranges of PKP and PKIKP overlap, which is the reason why a secondary
microseism in these regions can be observed with both phases. Some other phases in the examined slowness ranges with significant amplitude on the vertical
component are indicated in grey in panel (b): PR (blue colour) are P waves that travel short distances and are heavily influenced by upper-mantle heterogeneities;
The PP phase has similar slowness than P but comes from twice as far, fortunately it is usually weaker in amplitude than the direct P phase; Pdiff is diffracted
around the core and can be observed at a slowness that corresponds to a large distance P phase, or an almost antipodal PKPab phase.

no additional regularization is required. The resulting unmixed com-
ponents are normalized such that their maximum is one (division
by the unnormalized component’s maximum) and the mixing am-
plitudes are adapted accordingly (multiplication with unnormalized
component’s maximum). We use the average mixing amplitude of
each component to define its average strength in signal to noise ratio
units. Component amplitudes are transformed back from signal to
noise ratio units to displacement energy by multiplication with the
time-dependent noise level.

The day-averaged wave interaction pressure, computed from the
wind-driven ocean wave model WAVEWATCH III (e.g. Tolman 2008;
Ardhuin et al. 2011) is shown for reference for each example. WAVE-
WATCH III provides maps of the surface pressure that is generated
by ocean wave interactions. This surface pressure is considered to
be the dominant source of the seismic signals in the secondary mi-
croseismic frequency band (e.g. Kedar et al. 2008; Stutzmann et al.
2012). The source pressure maps serve merely as an independent
reference with which our observations can be compared. It is only
approximate because the pressure model does not take into account
the source site effect and resonance in the ocean water column which
alter the frequency and amplitude of the seismic signals (Gualtieri
et al. 2014; Meschede et al. 2017). As for the beam energy, the
pressure amplitude is shown with colour intensity and the domi-
nant frequency of the pressure with colour hue. Additionally, we
show the positions of tropical cyclones that are active during a day
with black dots because cyclones are known sources of secondary
microseisms.

4.1 Example 1: typhoons Atsani and Goni

4.1.1 Unmixed sources

The setting of the first example are secondary microseisms from the
twin typhoons Atsani and Goni on 2015 August 21.

The day-averaged wave interaction pressure from the model
WAVEWATCH III is shown in Fig. 8(a). The regions that are cov-
ered by the different seismic phases are indicated with lines that
are coloured according to Fig. 7 (the short distance orange and
green line overlap and therefore appear with a different colour).

Black dots show the positions of the tropical cyclones Goni at
the coast of Taiwan, Atsani southeast of Japan, Kilo in the central
Pacific and Dani in the central Atlantic. Strong wave interactions
can be seen at the position of Goni and Atsani in the P-wave dis-
tance range. The wave interaction pressure has higher dominant
frequency at the position of Atsani (blue colour) and lower domi-
nant frequency towards the Japanese coast (red colour). Other re-
gions with strong wave interaction pressure are the South-Atlantic
and South-Indian ocean that lie in the PKPab/PKPbc and PKIKP
distance ranges. The South-Pacific is in the shadow zone of the
Earth’s core from the Alaskan perspective, and cannot be seen by
any of the seismic phases that we consider. It could however gen-
erate Pdiff phases that arrive with the slowness of a large distance
P wave or of a nearly antipodal PKPab wave (see grey line in
Fig. 7b).

The wave interaction pressure projected to slowness space is
shown in Fig. 8(b). To project the map shown in Fig. 8(a) to slow-
ness domain, we transform each point, defined by its distance and
azimuth from the Alaska array centre, to slowness and azimuth
using the relation shown in Fig. 7(b). On the left side (westward di-
rection) in the P-wave slowness range, the wave interaction pressure
corresponding to the cyclones Goni and Atsani can be seen. From
the Alaska array, the South-Indian ocean lies in westward (left) di-
rection and the South-Atlantic in eastward (right) direction. In the
PKPab and PKPbc slowness regions, strong wave-wave interaction
pressure can be seen in these directions, as well as in the PKIKP
slowness range that covers the antipode.

The observed beam energy, averaged over the whole day, is shown
in Fig. 8(c). It shows very clearly signal energy that corresponds to P
waves from the cyclones Goni and Atsani. The colour indicates that
its dominant frequency is 0.18 Hz (turquoise/blue) at the position
of cyclone Atsani and 0.14 Hz (faint yellow) towards the Japanese
coast. This frequency dependence corresponds to the one that we
expect from the ocean wave hindcast shown in Figs 8(a) and (b).
Physically, long period signals from the coast are generated by
the interaction of incident ocean waves with waves reflected at the
coast that are generally stronger at longer periods. Signal energy
at other slownesses is not clearly identifiable in the day averaged
beam.
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Figure 8. Observation of secondary microseism signals on the 2015 August 21 by the seismic stations in Alaska. Panel (a) shows a model of ocean wave
interaction pressure that has been computed from the wind-driven ocean wave hindcast WAVEWATCH III. Coloured lines indicate the regions of the seismic
phases P (orange), PKPab (green), PKPbc (red) and PKIKP (purple). Black dots correspond to cyclones Goni (Taiwan), Atsani (South-East of Japan), Kilo
(Central Pacific) and Dani (Central Atlantic). (b) Ocean wave interaction pressure projected to slowness domain. The slowness regions of the different seismic
phases are indicated with coloured lines. (c) Day averaged beam energy. (d) Unmixed beam components, ordered from the strongest (#1) to the weakest (#5)
signal to noise ratio E.

The lower panels of Fig. 8 show the decomposed beam for this
day. We have used NNMF to find five sources that optimally explain
the 4321 time samples of the beam. The unmixed sources are ordered
from the strongest (#1) to the weakest source (#5) in signal-to-noise
ratio units. Sources #1 to #4 correspond to the Goni–Atsani source
region. Source #5 corresponds to a source region in the South-
Atlantic.

Source #1 is centred at the location of cyclone Atsani with dom-
inant frequencies of about 0.18 Hz. Source #2 is close to source #1
but slightly shifted towards the Japanese coastline with lower fre-
quencies of about 0.16 Hz. Source #3 is a high-frequency source
(0.20 Hz) at the position of Atsani. Source #4 is close to the Japanese
coastline and has the lowest frequency (0.14 Hz). Sources #1 to #4
belong to the Goni–Atsani source region, whose frequency com-
position is shown in detail. The frequency composition of the
Goni–Atsani source region corresponds to our expectations from
the wave–wave interaction pressure model: sources at the coastline
have significantly lower frequency than sources at the cyclone.

Source #5 is weaker and corresponds to PKPab/PKPbc and maybe
PKIKP sources from the South-Atlantic source region. It even seems
that there is some additional energy at the source location of cy-
clone Dani. It is mixed with a noise component. A closer look on
sources #4 and #5 reveals that there is some beam energy at the
position of cyclone Kilo. Indeed, we find that increasing the source
number to 10 enables us to separate sources from this cyclone as
well.

4.1.2 Time development and mixing components

Each unmixing component in Fig. 8 comes with an amplitude for
each of the 4321 time samples of the beam. These amplitudes de-
scribe how strong a component contributes to the beam at a given
time. The amplitudes for each component are shown in Fig. 9(a),
stacked on top of each other. The noise level of the beam is indi-
cated with a black colour but is not distinguishable from the time
axis in this example because it is very low. Fig. 9(a) demonstrates
that the component amplitudes fluctuate quickly, not only from one
component to another, but also for all amplitudes. Some longer du-
ration developments of the amplitudes can also be seen. Source #1
(blue) is stronger at the beginning of the day, whereas sources #2
(orange) and #4 (red) become stronger towards the end, indicating
that source region moved towards the Japanese coast towards the
end of the day and became lower frequency.

A zoomed extract of this plot is shown in Fig. 9(b) for times
9760–10 150 [s]. Fig. 9(c) shows the corresponding beams, and
Fig. 9(d) the associated wavefield. More precisely, Fig. 9(d) shows
the recorded seismic displacement at each station of the array, time
shifted according to the slowness of source #1 and the positions
of each station, and filtered around the dominant frequency of
source #1. The wavefield is therefore aligned vertically in Fig. 9,
whenever a plane wave arrives with the slowness of source #1. This
happens, in particular, at time sample 9960 s which is almost ex-
clusively composed of source #1. At this instant, the beam shows
source #1, and the wavefield is well aligned, showing the actual
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(a)

(b)

(c)

(d)

Figure 9. (a) Temporal evolution of the amplitudes of the unmixed sources over the whole day. (b–d) Zoom at times 22 180–22 580 of (b) the source amplitudes,
(c) the beam time samples and (d) the ground displacement at each station of the array (wavefield), that has been aligned according to the slowness of source #1.

seismic signal that has been identified and detected from the de-
composition. The seismic signal again demonstrates the fluctuating
amplitude of the signal.

Signals from secondary microseisms are not always so clearly
visible as in this example. Most of the time, they are somewhat
hidden by other signals and just appear gradually when many time
samples are averaged. However, because the amplitude of micro-
seismic signals fluctuates strongly at a seismic array, often some
signals arrive with stronger amplitude than the noise level and can
be examined individually.

4.1.3 Extracting relative traveltimes

The quality with which secondary microseism signals, as the one
shown in Fig. 9(d), can be observed, suggests that we can extract
traveltimes from them. To this end, we use the procedure explained
in Section 3.5. The traveltime shifts that correspond to the five
components of this example are shown in Fig. 10 for each station
over a topographic map of Alaska. The size of the scatter points is
proportional to the consistency value |cl| with which the traveltime
was observed over the day, smaller points are less consistent than
larger points. The maximum consistency of |cl| = 0.5 is obtained
for component #1 that is the strongest. A black arrow shows the
direction of the slowness vector with maximum energy for each
component.

Few consistent trends are visible in the traveltimes: slower veloc-
ity along the southeastern coastline, faster velocity in the southwest,
slower velocities around the array centre (Denali gap), and faster
velocities in the north and north of the southeastern coastline. This
corresponds to our expectations from the geology of Alaska and
tomographic studies of this region (Martin-Short et al. 2015).

4.2 Example 2: multiple sources including PKP waves
from Cyclone Glenda

The context for the second example is represented by several sec-
ondary microseism source regions that were active on 2015 March
1.

The major source regions with strong wave interaction pressure
in the model (shown in Figs 11 a and b) are in the North-Pacific
in the regional P-wave slowness range, in the North Pacific around
Kamchatka and in the North Atlantic around Greenland in the P-
wave slowness range, in the South Atlantic and South Indian Ocean
off the coast of Madagascar in the PKP slowness range (cyclone
Glenda, indicated with a black dot), and at the Antarctic coast in
the PKIKP slowness range.

In the time averaged observed beam, shown in Fig. 11(c), the
dominant source in the North-Atlantic is the only source region
that can be clearly identified. Other source regions can be seen
only vaguely. On the other hand, the unmixed sources, shown in
Fig. 11(d) separate the individual sources regions: component #1
corresponds to the North Atlantic, component #2 to the Kamchatka,
component #3 to the North Pacific, component #4 to the South
Atlantic, and #5 to the South Indian source regions. All components
are mixed with noise and also component #4 mixes high frequency
energy from South Atlantic PKP waves with high frequency energy
from North Atlantic P waves. Increasing the number of components
(not shown), improves the unmixing and separates the two wave
types in component #4, as well as noise from source components.
However, increasing the number of components splits also some of
the source regions into several components, and it is a matter of
choice whether one wants to have a larger number of more precise
components or a smaller number of undivided ones.

Compared to example 1, the components in this example have
a lower signal to noise ratio as becomes clear from the black line
that shows the noise level in Fig. 12(a). Also many components
are active simultaneously as can be seen in Fig. 12(b) that shows
a zoomed time window of Fig. 12(a). Correspondingly, the beam
energy is noisy (Fig. 12c) and signals are more difficult to identify.
Nevertheless, the waveforms shown in Fig. 12(d) can be seen to
align at 34860s, when the component #1 amplitude (Fig. 12b) is
high and the amplitude of other components is low.

Traveltimes can also be extracted from such a noisier record, us-
ing our automated approach. In example 2, the consistency value
|cl| < 0.2 of the average phases that are extracted is much lower
than in example 1. Nevertheless, the traveltime patterns that are
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Figure 10. Traveltime differences that were extracted for the unmixed components #1–#5. The source direction from where maximum beam energy arrives at
the array is indicated with a black arrow.

Figure 11. Observation of secondary microseism signals on 2015 March 1 by the Alaska array. Panel (a) shows a model of ocean wave interaction pressure that
has been computed from the wind-driven ocean wave hindcast WAVEWATCH III. Coloured lines indicate the regions of the seismic phases P (orange), PKPab
(green), PKPbc (red) and PKIKP (purple). The black dot corresponds to cyclone Glenda (South Indian Ocean). (b) Ocean wave interaction pressure projected
to slowness domain. The slowness regions of the different seismic phases are indicated with coloured lines. (c) Day averaged beam energy. (d) Unmixed beam
components, ordered from the strongest (#1) to the weakest (#5) signal to noise ratio E.

extracted, and shown in Fig. 13, are similar to the ones extracted
from example 1. Comparing the traveltimes extracted in example 2
from component #2 that is located at Japan with the traveltimes
extracted in example 1 from any of the components #1 to #4, one
can identify common patterns such as: the low velocity zone at the
southeastern coast of Alaska, the fast velocity zone in the south-
west, the faster velocities away from the coast in the east, and the
slower velocities in the centre to northwest part of the array. In con-
trast to example 1, the components come from various directions to
the array. Component #1 and #2 show slightly different patterns of
traveltimes that might be exploitable in a tomographic study. Travel-
times from component #4 are somewhat inconsistent with the ones
from component #1 although both seem to examine signals with
similar slowness. However, remember that source #4 is only partly
unmixed. This difference can be explained considering the higher
noise level that particularly degrades the weaker components. To
fully automatize traveltime extraction, we should therefore impose
a strict threshold on the consistency value |cl| that is a measure of
the quality of the obtained traveltimes.

5 C O N C LU S I O N S

We have demonstrated that recurrent seismic signals from sec-
ondary microseisms can be identified and decomposed fully au-
tomatically using BSS. We have used NNMF as BSS technique to
decompose the non-negative beam energy in slowness–frequency
space. This method can be used to examine microseisms with high
precision and find and extract weak signals from the mixture of
signals that are observed over the course of the day by a seismic ar-
ray. It provides knowledge of the short duration time development
of each signal, which can, for example, be used to automatically
extract traveltimes from secondary microseisms in a fully auto-
matic way. It has been shown by other authors that such traveltime
measurements from secondary microseisms can resolve subsurface
structure.

We have used the proposed methodology on data from a seismic
array in Alaska to extract P waves from secondary microseisms as-
sociated with the cyclones Goni and Atsani, as well as P waves from
other regions with strong wave interactions, and PKP waves from
cyclone Glenda. We have confirmed the assumption that the ampli-
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(a)

(b)

(c)

(d)

Figure 12. (a) Temporal evolution of the amplitudes of the unmixed sources over the whole day. (b–d) Zoom at times 34660–35060 s of the day. Panel (b)
shows the source amplitudes, (c) the beam time samples, and (d) the ground displacement at each station of the array (wavefield), which has been aligned
according to the slowness of source #1.

Figure 13. Traveltime differences that were extracted for the unmixed components #1 to #5. The source direction from where maximum beam energy arrives
at the array is indicated with a black arrow.

tude of secondary microseismic signals fluctuates rapidly. Such sig-
nals can be strong enough to surpass the background noise level such
that they can be examined without any time averaging or stacking di-
rectly in the wavefield. Finally, we have extracted relative traveltimes
with a fully automatic procedure from automatically detected and
characterized microseismic signals for the seismic array in Alaska.
The quality of these measurements is automatically quantified and
leads to observations that correspond to our geological knowledge
of the region and that can potentially be used in future tomographic
studies.

In this paper, we observed and exploited strong fluctuations in
amplitude of signals from secondary microseisms. These fluctua-
tions allow us to examine individual sources with high precision
because they reduce the amount of interference between different
signals (signals are disjoint in time). The origin of these fluctua-
tions can be the random character of the ocean wavefield that leads
to fluctuations of the secondary microseism source amplitude. It
would be interesting to analyse in detail if the amplitude distribu-
tion of the microseismic signals that are recorded at a seismic array
corresponds to the one that is expected for the interaction pressure
of ocean waves. Ocean waves themselves are typically assumed to
behave as a Gaussian random field and are modelled accordingly.
These statistics are less well examined for the nonlinear interactions

of the ocean waves that generate secondary microseismic sources.
Such questions are beyond the scope of this paper but can cer-
tainly be addressed using techniques as the proposed one to access
the amplitude of individual microseismic sources with high time
resolution.
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A P P E N D I X A : L 1 V E R S U S L 2 R E G U L A R I Z AT I O N

Regularization is introduced to NNMF as an additional cost to eq. (11):

minimize
Aim>0;Emk>0

[∑
ik

|Bik −
∑

m

Aim Emk |2 + αL2

∑
mk

(E2
mk + A2

mk) + αL1

∑
mk

(|Emk | + |Amk |)
]

. (A1)

Fig. A1 illustrates its effect on a synthetic beam, represented as a point cloud as in Fig. 3. L2 regularization with αL1 = 0 (left) equalizes
component values (and amplitudes that are not shown) at high damping parameters αL2. L1 regularization with αL2 = 0 (right) favours sparse
solutions at high damping parameters αL1 because it corresponds to a norm with corners (for details see e.g. Friedman et al. 2001).

Figure A1. L2 (left) and L1 (right) regularized NNMF for different damping parameters α. L1 regularization favours sparse components that have zero x or y
values. L2 regularization has a tendency to equalize the components.

A P P E N D I X B : A R R AY R E S P O N S E A N D P L A N E WAV E A S S U M P T I O N

Fig. B1 shows the array response of the Alaska array that is used in this paper for a frequency of 0.16 Hz. The aperture of this virtual array is
600 km. The width of the main lobe at 90 per cent of the maximum is 0.004 s km−1 along the sx axis and 0.006 s km−1 along the sy axis. It
corresponds to a surface of about 400 km × 800 km for a source at a distance of 50◦ from the network.

Beams are computed using eq. (4) using the plane wave approximation. In Fig. 11(c), sources close to Greenland are detected with a

Figure B1. Array response of the Alaska array that is used in this paper for a period of 0.16 Hz.

dominant frequency between 0.15 and 0.17 Hz. The distance between the sources and the Alaska array is about 50◦. In that case, the time
difference between the arrival of a wave at the centre of the network and at the further station is 22.480 s in spherical Earth and 20.528 s
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(a)

(b)

Figure B2. Day average beam energy computed using a subarray with 400 km aperture. Colours represent the frequency of the beam maximum and colour
hue gives the normalized beam amplitude. The maximum of the beam close to Greenland is similar to that observed with larger seismic array as in Fig. 11(c).

using plane wave approximation. The time error is 1.95 s, that is about 1/3 of the wave period, and therefore the further station will still sum
up constructively to the total beam energy.

In order to further investigate the beam resolution as a function of array aperture, we selected a subset of the Alaska stations corresponding
to a virtual array aperture of 400 km. The beam computed for the same day as in Fig. 11(c) is plotted in Fig. B2. Beams in Figs B2 and 11
c are very similar: two sources at two close frequencies (0.15 and 0.16 Hz) are clearly detected near Greenland. Therefore, even though
considering the curvature may improve the results, we conclude that the distortion of the wave front can be neglected in this study.
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