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Abstract 8 

Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes 9 

fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and 10 

can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can 11 

be determined. In order to quantify the isotope fractionation factor between magnetite and melt, piston 12 

cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were 13 

equilibrated at 800°C and 0.5 GPa over a range of oxygen fugacities (fO2), bracketing those of 14 

terrestrial magmas. Magnetite is systematically 51V-depleted with respect to the coexisting melt, a 15 

tendency ascribed to the predominantly VI-fold V3+ in magnetite, and a mixture of IV- and VI-fold 16 

V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with 17 

increasing logfO2 relative to the Fayalite-Magnetite-Quartz buffer (FMQ), from ∆51Vmag-gl = -18 

0.63±0.09‰ at FMQ-1 to -0.92±0.11‰ (SD) at ≈FMQ+5. These first mineral-melt measurements of 19 

V isotope fractionation factors underline the importance of both oxidation state and co-ordination 20 

environment in controlling isotopic fractionation. The fractionation factors determined experimentally 21 

are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. 22 

Further, these experiments provide a useful framework in which to interpret vanadium isotope 23 

variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state 24 

of the magma from which they crystallise.  25 
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Introduction 29 

Among the polyvalent elements, vanadium is particularly unique in that it exists in five oxidation 30 

states, V0, V2+, V3+, V4+ and V5+. This wide range of valence states brackets the oxygen fugacities 31 

(fO2) of natural rocks, and thus elemental partitioning of V has been employed as a redox indicator 32 

(e.g., Canil 1997; Lee et al. 2005; Mallmann and O’Neill, 2009; 2013).  33 

Pure magnetite has an inverse spinel structure at room temperature, with the formula 34 
IV(Fe3+)VI(Fe2+Fe3+)O4, however, it tends to the random, normal distribution at ≈1400°C (Wu and 35 

Mason, 1981). In the absence of titanium, the Fe3+/Fe2+ ratio of two in magnetite is imposed by its 36 

stoichiometry, making it independent of fO2 of the melt from which it crystallises. The high 37 

octahedral site preference energy of V3+ makes its incorporation favourable into magnetite by the 38 

reaction VO1.5 + FeO = FeV2O4, which is a normal spinel. Together, the Fe3+/Fe2+ and V4+/V3+ pairs 39 

undergo electron exchange that results in the stabilisation of all four species at high temperatures, 40 

leading to considerable configurational entropy and negative deviations from ideality in Fe3O4-41 

FeV2O4 solid solutions (Petric and Jacob, 1982; O’Neill and Navrotsky, 1984). This phenomen 42 

renders V3+ highly compatible in magnetite, and the V4+/V3+ ratio is also independent of fO2 at a given 43 

temperature and pressure.  44 

Due to the important role magnetite plays in evolving magmas, vanadium partition coefficients are 45 

well-characterised over a range of fO2 (e.g., Canil and Fedourtchuk, 2001; Righter et al., 2006a; 46 

Toplis and Corgne, 2002, Mallmann & O’Neill, 2009), though, until recently, few at melt 47 

compositions relevant to the silicic magmas from which they predominantly crystallise. Arató and 48 

Audétat (2017) measured the partitioning of V between magnetite and silicic melts with varying 49 

Alumina-Saturation Indices (ASI), molar Al2O3/(CaO+Na2O+K2O), between 800°C and 1000°C, 50 

observing that V becomes more compatible at lower temperatures and higher ASI. A similar 51 

dependence was observed by Sievwright et al. (2017), who further showed that V substitution into 52 

titanomagnetite follows that of Ti. In both cases, the logarithm of the partition coefficient of V into 53 

magnetite compared with logfO2 resulted in a slope of -0.5, implying that V is largely trivalent in 54 

magnetite, whereas V5+ prevails in the silicate liquid. 55 

Stable V isotopes can now be determined to a precision high enough to be applied to geological 56 

problems (e.g., Nielsen et al., 2011; Prytulak et al., 2011; Wu et al., 2016).  The nascent dataset, 57 

including peridotites, mafic magmas and meteorites (Prytulak et al., 2011; Prytulak et al. 2013, 58 

Nielsen et al. 2014; Wu et al., 2016; Prytulak et al. 2017; Schuth et al. 2017; Sossi et al. 2017) reveals 59 

analytically resolvable V isotope fractionations at high temperatures. The strong dependence of V 60 

partitioning on fO2 makes it tempting to interpret isotope variations in terms of variable oxygen 61 

fugacity. Even at igneous temperatures, variable bond strength gives rise to stable isotope 62 
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fractionation, with heavier isotopes preferred in stronger bonding environments (e.g. Urey, 1947; 63 

Schauble, 2004). Whilst the valence of an element plays a role in determining bond strength, the co-64 

ordination environment is also key (e.g., Sossi and O’Neill, 2017). 65 

Vanadium isotopes, during the early phase of crystallisation dominated by Fe-Mg silicates and 66 

plagioclase, are invariant in natural magmatic systems from island arc (Marianas) and intraplate 67 

(Hekla, Iceland) environments (Prytulak et al., 2017), and V is mildly incompatible. However, upon 68 

Fe-Ti oxide saturation in dacitic compositions, the V isotope composition of the remaining melt 69 

increases to 2‰ higher than in mafic compositions. This phenomenon is a result of Rayleigh 70 

distillation and a magnetite-melt fractionation factor of ≈ -0.5‰ at around 1000-1050°C (Prytulak et 71 

al., 2017). At the resolution of their measurements, no co-variation of the fractionation factor with the 72 

fO2 of the magma (FMQ for Hekla, FMQ+2 for Marianas) is apparent. As such, both the differing co-73 

ordination and V oxidation state inferred between magnetite (VIV3+) and melt (IV-VIV4+ and IVV5+) are 74 

required to drive isotopic fractionation, but it is problematic to deconvolve these parameters from one 75 

another in natural rocks.  Thus, before natural variations in stable vanadium isotopes can be 76 

interpreted in the context of fO2, the response of isotope fractionation to oxygen fugacity and other 77 

physicochemical variables must be systematically examined.  78 

This contribution presents the first experimental investigation of stable vanadium isotope 79 

fractionation. Stable V isotope fractionation factors are determined between hydrous, granitic melts 80 

and magnetite equilibrated in a piston cylinder assembly at 800°C and 0.5 GPa as a function of 81 

oxygen fugacity. These conditions were chosen to maximise the isotopic fractionation factor whilst 82 

still resembling natural systems. Elemental partitioning between the two phases is fit using a 83 

thermodynamic model that yields estimates for Fe2+/Fe3+ and V3+/V4+/V5+ ratios in the melt. With this 84 

information, V isotope fractionation between magnetite and melt is modelled using the bond valence 85 

model. It is shown that V isotope fractionation between experimental magnetite and melt is sensitive 86 

to both co-ordination environment and oxygen fugacity, and thus potentially useful in deciphering 87 

redox conditions during igneous processes and for fingerprinting the origin of magnetite with 88 

differing petrogenetic histories. 89 

Methods & Rationale 90 

 91 

Experimental Petrology 92 

Magnetite has several attributes that make it an attractive target for the experimental investigation of 93 

vanadium stable isotope fractionation. These include the ubiquity of magnetite in igneous systems, the 94 

importance of the mineral in understanding the genesis of arc magmas (e.g., Jenner et al., 2010), the 95 

high compatibility of vanadum in magnetite (except under very oxidising conditions; Toplis and 96 
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Corgne, 2002), the growing body of work using magnetite chemistry for economic tracing (e.g., 97 

Boutroy et al. 2014; Dare et al. 2014; Canil et al. 2016) and its magnetic properties, which aids phase 98 

separation of experimental charges. Importantly, incorporation of V3+ in magnetite is favoured 99 

stoichiometrically over other oxidation states, so that its speciation is independent of oxygen fugacity 100 

(O’Neill and Navrotsky, 1984) hence isotopic variations can be ascribed almost solely to changes in V 101 

bonding environment in the melt. 102 

Whilst analytically resolvable variations in vanadium isotopes have been demonstrated in high 103 

temperature materials (Prytulak et al., 2011; 2013; Nielsen et al., 2014; Prytulak et al. 2017; Schuth et 104 

al. 2017; Sossi et al. 2017), the magnitude of fractionation is ≈1‰.  Thus, the experiments presented 105 

herein were devised to maximise potential isotope fractionation, rather than replicate natural systems.  106 

Temperature affects stable isotope fractionation proportional to 1/T2 (Urey, 1947). In attempting to 107 

minimise temperatures (and therefore maximise isotope fractionation) required for a liquid melt to 108 

exist, a haplogranitic melt was chosen (Table 1).  To further decrease the liquidus temperature and 109 

promote equilibration, water was added as a flux. By interpolation of H2O contents at saturation in 110 

different haplogranite compositions (Holtz et al., 2001), water saturation is calculated to be 10.2 wt. 111 

% at 800°C and 0.5 GPa for the haplogranite used in this work (Table 1). In order to prevent the 112 

formation of a fluid phase, which could complex V, 9 wt. % water was added, keeping the melt just 113 

below the saturation point. Vanadium was added at 4 wt. % of the total mixture. 114 

In order to control fO2 in piston cylinder experiments, the double capsule method (Eugster, 1957; 115 

Woodland and O’Neill, 1997; Matjuschkin et al., 2015) was employed. This technique is predicated 116 

on the rapid diffusion of hydrogen and use of H2O as an oxygen buffering agent, where the 
𝑓𝑂2
𝑓𝐻2

 ratio is 117 

controlled by the redox potential of the E0/Ex+ pair. More reducing metals will be in equilibrium with 118 

a vapour phase that has a lower H2O/H2 ratio. 119 

 𝐸0 + 𝐻2𝑂 =  𝐻2 +  𝐸2+𝑂 (1) 

   

 𝐸0 + 1 2⁄ 𝑂2 =  𝐸2+𝑂. (2) 

Then, subtracting equation (2) from (1) gives: 120 

 𝐻2𝑂 = 𝐻2 + 1 2⁄ 𝑂2. (3) 

Hydrogen diffusion proceeds from the outer reservoir into the inner capsule, which is fashioned from 121 

a 0.2 mm wall thickness, 3.5 mm external diameter Ag75Pd25, rather than the pure Ag, 6.3 mm 122 

external diameter outer capsule. The Silver-Palladium capsule is less prone to Fe loss compared to Pt 123 

(Muan, 1963), and offers comparable H2 permeability that is an order of magnitude greater than that 124 

of pure silver at 800°C (Chou, 1986). At equilibrium, equation (3) can be expressed as: 125 
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 log 𝑓𝑂2 = 2 log 𝑎𝐻2𝑂 − 2 log 𝑓𝐻2 + 2log 𝐾 . (4) 

If the hydrogen pressures are equivalent in the inner and outer capsules, fO2 should be equivalent in 126 

both. However, in the experiments designed here, H2O is slightly undersaturated in the inner capsule, 127 

yielding an 𝑎𝐻2𝑂 < 1. Therefore, the oxygen fugacity in the inner capsule is given by: 128 

 log 𝑓𝑂2
𝑖𝑛𝑛𝑒𝑟 = log 𝑓𝑂2

𝑜𝑢𝑡𝑒𝑟 + 2 log 𝑎𝐻2𝑂. (5) 

Here, it is assumed that the activity of water, 𝑎𝐻2𝑂 = 𝑓𝐻2𝑂/𝑓𝐻2𝑂
𝑜 , where 𝑓𝑜 is the fugacity at saturation 129 

(= 1). Mole fractions of water dissolved in granitic melts were calculated as a function of composition 130 

at 800°C according to Behrens and Jantos (2000).  131 

The solid-solid buffers chosen span the range of typical terrestrial oxygen fugacities found in granitic 132 

rocks (e.g., Carmichael, 1991). At 800°C, they become more oxidising from Co-CoO < NNO < Re-133 

ReO2 < HM, corresponding to FMQ-0.78, FMQ+0.81, FMQ+2.87 and FMQ+5.07, respectively. As 134 

the intrinsic fO2 of piston cylinder charges are around FMQ (Boettcher et al., 1973; Medard et al., 135 

2008), the molar ratios of the metal-metal oxide mixtures were set such that the more unstable 136 

component was in excess. For Co:CoO, 75:25, Ni:NiO = 50:50, Re:ReO2 = 67:33 and 75:25 137 

Hematite:Magnetite. The presence of water and both phases was verified after the experiment by 138 

XRD, ensuring that the oxygen fugacity was buffered by the two-phase assemblage, to an uncertainty 139 

of ±0.3 log units (Matjuschkin et al., 2015). 140 

To verify the reliability of the more complex piston cylinder experiments, a simpler experiment was 141 

run in a 1 atm vertical gas-mixing furnace. A sodium silicate melt composition in the system Na2O-142 

SiO2-Fe2O3 was devised (Bowen et al., 1930) to remain super-solidus at 800°C and fluid-absent 143 

conditions. The oxides were added in the proportions 23:37:38 (Table 1), yielding a composition with 144 

a liquidus temperature around 900°C. Above the hematite-magnetite buffer, liquids of this 145 

composition crystallise only hematite down to the ternary eutectic temperature of 809°C.  To this mix, 146 

2 wt. % V2O3 was added, and the experiment was run in an open Ag crucible suspended from an 147 

alumina loop by Pt wire at FMQ-1. Oxygen fugacity was set by a CO-CO2 gas mixture, with which 148 

the melt interacted at 800°C to crystallise magnetite. A summary of experimental conditions, run 149 

times and weights can be found in Table 2.  150 

The experiments were finely crushed, and magnetite was separated gravitationally by settling in 151 

acetone, where the recovered material was subjected to the same treatment several times, resulting in 152 

near-pure glass fractions. Experiments with coarser-grained magnetite were also separated 153 

magnetically from the silicate glass. The sodium silicate composition has the added benefit of being 154 

soluble in water (Fuchs, 1825), whereas magnetite was dissolved in 6M HCl. 155 

Electron Microprobe 156 
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Major element analyses of the experimentally-grown phases were performed on a Cameca SX100 at 157 

the Research School of Earth Sciences (RSES), Australian National University (RSES, ANU) using 158 

wavelength dispersive spectroscopy (WDS). Spectrometers were initially calibrated for peak position 159 

and intensity on in-house natural mineral standards, and three Smithsonian National History Museum 160 

internal standards, San Carlos Olivine, Kakanui Augite and Tiebaghi Chromite (Jarosewich et al., 161 

1980) corrected for in-run drift. Beam conditions were set at 15 kV and 20 nA for a 1 μm focused 162 

spot, increased to 20 μm broad beam for glasses. Peak counting times varied depending on the 163 

element; Si, Al and Mg were run on TAP with a 10 s count time each while Na was analysed for 20s 164 

on the same crystal. Calcium and K were run on PET for 10 s and 20 s, respectively.  Iron was 165 

analysed for 10 s on the more sensitive LLIF crystal, together with the V Kα peak (as opposed to Kβ 166 

which is less intense and has interferences from Cr and especially Ti) with a count time of 120 s on 167 

two spectrometers, yielding an estimated detection limit of 40 ppm. Reported glass and mineral 168 

compositions are an average of between 5 – 10 points. 169 

Isotope Geochemistry 170 

 171 

Analytical Considerations 172 

Vanadium has two stable isotopes, whose abundances are highly skewed between 51V (99.76%) and 173 
50V (0.24%). The existence of only two stable isotopes precludes the use of a double spiking 174 

technique to correct for mass fractionation.  Mass fractionation of stable isotopes may be induced 175 

during ion exchange chromatography due to incomplete elution (see Anbar et al., 2000; Chapman et 176 

al., 2006; Sossi et al., 2015). Therefore, quantitative (100%) recovery of V is required. In addition, the 177 

purification of V is further complicated by the isobaric interferences of 50Cr and 50Ti (4.31% and 178 

5.34%, respectively) on the minor isotope, 50V. As such, the accurate and precise measurement of the 179 

isotopes of vanadium also necessitates near-quantitative removal of Cr and Ti (Nielsen et al., 2011; 180 

Prytulak et al., 2011).  181 

Ion Exchange Chromatography 182 

Samples, including separated experimental charges and United States Geological Survey (USGS) 183 

reference materials were dissolved in HCl-HF-HNO3 in the ratio 1:0.5:0.2 for 48 hours at 140°C in 184 

sealed Teflon vials.  The USGS reference material PCC-1 is a Cr-spinel rich harzburgite, that was 185 

digested in an oven in pressurised, sealed Teflon bombs in a 3:1 mixture of concentrated HNO3:HF 186 

for 6 days at 210°C. PCC-1 was then evaporated under concentrated HNO3. 187 

The procedure of Nielsen et al. (2011) was followed in order to satisfy the requirements of 1) 188 

complete recovery of V and 2) quantitative removal of Cr and Ti. All work was carried out in a 189 

laminar flow hood at RSES, ANU.  190 
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Mass Spectrometry 191 

Analyses were performed on a ThermoFinnigan Neptune Plus MC-ICP-MS at RSES, ANU. Stable 192 

vanadium isotopes are reported using standard delta notation, relative to the Oxford Alfa Aesar V 193 

solution standard (AA), defined as 0‰ (Nielsen et al., 2011; Prytulak et al., 2011). 194 

𝛿51𝑉𝐴𝐴 (‰) = (( 𝑉/ 𝑉)5051
𝑠𝑚𝑝

( 𝑉/ 𝑉)5051
𝐴𝐴

− 1) × 1000 195 

The Neptune Plus at ANU is equipped with 1010 Ω and 1011 Ω resistors. The major isotope, 51V was 196 

measured on a 1010 resistor to mute the overwhelming signal whilst still achieving statistically 197 

meaningful counts on 50V. The measurement protocol followed that outlined in Sossi et al. (2017). 198 

Briefly, sample solutions and standards were analysed in 0.3M HNO3 at a concentration of 4 ppm, in 199 

Low Resolution (LR) mode, using H-cones. Each analysis comprised of 45 cycles of 4.194 s each. An 200 

instrumental baseline is implemented before each analysis, in addition to a blank subtraction 201 

performed every bracketing standard. The cup configuration is given in Table 3, and allows for 202 

collection of the Ti and Cr masses, a requirement for application of the interference correction on 50V. 203 

Interference and mass bias corrections were applied using the exponential law to both the samples and 204 

standard. Uncertainties are reported as standard deviations throughout. 205 

Results 206 

 207 

Petrography 208 

A back-scattered electron image of a representative section of the Re-ReO2 experiment is shown in 209 

Figure 1. All experimental runs produced magnetite and glass. The two phases are present in 1:1 210 

proportions, reflecting the ratio of magnetite:haplogranite in the starting mixture (Table 1). Magnetite 211 

predominantly occurs as small (5-20 μm) euhedral crystals that often form glomeroporphyritic 212 

clusters of ≈ 100μm. A small fraction (5-10%) of the magnetite occurs as larger, embayed phenocrysts 213 

of up to 50 μm in length, whose growth may have resulted from pressure fluctuations over the course 214 

of the experiments. The glass is vitric and unvesiculated. Both magnetite and glass phases are 215 

homogeneous, with no chemical zoning evident with proximity to the capsule walls, within phases or 216 

where both are in contact. 217 

 218 

Major and Minor element compositions 219 

Compositions of silicate glass and magnetite are reported in Table 4. Water contents, calculated by 220 

difference of the total to 100 wt. %, range from 6.89 wt. % (HM) to 9.45 wt. % (NNO), likely 221 

reflecting the imprecision in adding 9μL of water to the experimental charge. Importantly, these are 222 

all lower than the theoretical water saturation content of the granitic melt (Holtz et al., 2001). With 223 

(6) 
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respect to the initial starting composition, the alkali contents are depleted, ranging from a combined 224 

total of 6.25 to 6.79 wt. % on an anhydrous basis, compared to 9.48 wt. % in the starting mix. Their 225 

decrease is at the expense of Al2O3, FeO(T) and V2O3, with the latter two showing trends in their 226 

concentration with fO2 (Fig. 2a,b). As oxygen fugacity increases, iron shows a parabolic decrease 227 

from 3.35 wt. % at Co-CoO to 1.57 wt. % at HM (Fig. 2a). The opposite dependence is observed for 228 

V (Fig. 2b), with higher concentrations under more oxidised conditions (1443±61 ppm at HM), 229 

compared to 268±49 ppm at Co-CoO. Over the same range in oxygen fugacity, magnetite 230 

compositions remain comparatively constant, with 6.89 < V2O3 (wt. %) < 8.39 and 84.40 < FeO(T) (wt. 231 

%) < 86.23, and, when re-calculated for 3 cations/4 oxygens, correspond to coulsonite components 232 

(Xcoul) of 0.11 to 0.13 (Table 4). In the 1 atm experiment at FMQ-1, V is incompatible in magnetite, 233 

with V2O3  = 0.33±0.10 wt. % (Xcoul = 0.005), compared to 2.67±0.03 wt. % in the melt.  234 

V isotopic Compositions of solution standards and USGS Reference Materials 235 

The first assessment of the long-term reproducibility of BDH is δ51VAA = -1.19±0.08‰ (n ≈ 1000; 236 

Nielsen et al., 2011). Later studies are in excellent agreement with this value (Wu et al., 2016: δ 51VAA 237 

= -1.23±0.04‰ (n=197), Schuth et al., 2017; δ 51VAA = -1.22±0.04‰ (n=10), and Sossi et al. (2017), -238 

1.10±0.08‰, (n=5). Continual measurement of BDH at RSES, ANU over the time period of unknown 239 

samples measured in this study yields -1.13±0.06‰ (n = 28). This consistency attests to the capability 240 

of measuring V isotopes in a pure V solution using the ANU analytical protocol. These values 241 

compares well with the column-processed V2O3 starting material (also BDH) and BDH solution, 242 

which give -1.17±0.16‰ and -1.22±0.12‰, respectively. In addition, USGS reference materials were 243 

analysed to test the reproducibility and accuracy of the wet chemistry (sample dissolution and ion 244 

exchange purification). Standard data for USGS reference materials is in agreement with literature 245 

data (Table 5). In fact, BIR-1 agrees well in all laboratories that measured this standard, even though 246 

different combinations of medium and low resolution, wet and dry plasma, 109, 1010, 1012 resistors 247 

and different instruments (the Neptune and the Nu) were employed (Table 5). The same is true of 248 

BCR-2, with the exception of the heavier value of -0.78±0.04‰ reported by Wu et al. (2016). The 249 

stability of V isotope compositions processed using ion exchange chromatography across numerous 250 

labs employing diverse analytical protocols testifies to the robustness of the values reported herein. 251 

V isotopic composition of magnetite and glass in experimental charges 252 

Vanadium isotope compositions of separated magnetite and glass are listed in Table 6. The V isotope 253 

composition of the starting material (BDH) is G51VAA = -1.19±0.08‰ (Nielsen et al., 2011). In most 254 

cases, measured magnetite compositions are marginally heavier than this value, from -1.35±0.06‰ to 255 

-1.48±0.07‰, while magnetite in the NNO experiment has -1.79±0.06‰. The glass phase is always 256 

systematically heavier than its coexisting magnetite, between -0.88±0.09‰ to -1.16±0.09‰, again 257 
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close to the starting composition, but clearly resolved from magnetite. Measured isotope differences 258 

between magnetite and glass vary between -0.32±0.11‰ and -0.70±0.08‰. 259 

Discussion 260 

 261 

Correcting for contamination and open-system behaviour of V in experiments 262 

The time required to achieve isotopic equilibrium may be tested by performing a time-series, whereby 263 

all other variables are held constant aside from the run duration. Here, two experiments were run for 264 

three days (Co-CoO and HM), whereas the Re-ReO2 and NNO experiments were run for 7 and 14 265 

days, respectively. The coherence of all four experiments with one another in chemical and isotopic 266 

trends (Fig. 1a,b, Fig. 2) suggests attainment of isotopic equilibrium with run times longer than three 267 

days. Additionally, as magnetite was grown from oxide powders rather than equilibrated, grain 268 

growth should occur in equilibrium with the melt.  269 

Diffusion rates for V4+, presumed to be the most abundant V species in the melt (e.g. Toplis and 270 

Corgne, 2002) are estimated with the empirical, viscosity-based model of Mungall (2002). At 1073K 271 

and 5 kb, and an average XH2O = 23.1 (mol. %) the calculated log η = 3.7 (Pa.s; Ardia et al., 2008), 272 

gives rise to V diffusivity of 3.0 × 10-10 cm2/s. For an inner capsule radius of 1.5 mm, equilibration 273 

times over the length scale of the capsule are 8.7 days (3 days gives equilibration length scales of 0.9 274 

mm). These timescales are sufficient for equilibration over the length scale of melt-magnetite 275 

equilibrium, which occurs over 100-200 μm (Fig. 1). 276 

Despite evidence for equilibrium, open system behaviour, resulting from the loss of vanadium from 277 

either the melt or magnetite, must be evaluated. The most likely culprits are a) complexation of V by a 278 

fluid phase and b) alloying of V with the 75Ag-25Pd capsule. The recovered charges are unvesiculated 279 

(Fig. 1) and have lower water contents than required for fluid saturation, obviating loss of V in a fluid 280 

phase. While V is immiscible in Ag (Smith, 1989), it readily forms alloys with Pd (Massalski, 1990). 281 

However, the low temperatures, high fO2 and high Ag proportion in the Ag-Pd alloy minimise V loss 282 

to the inner capsule. The degree to which V loss affected each experiment may be quantified by mass 283 

balance. Re-constructed total V2O3 contents, considering that 50% of the mix is comprised of 284 

magnetite (differential dissolution of magnetite into melt at different fO2 has no effect on the 285 

calculated proportions), are given in Table 6. With the exception of the NNO run (3.41±0.16 wt. %) 286 

all experiments are within uncertainty of the 4 wt. % in the starting mix. The 1 atm experiment 287 

yielded 1.82±0.06 wt. % V2O3, compared with the 2 wt. % in the starting mix, and it is noteworthy 288 

that the magnitude of the V isotope fractionation factor in this experiment is consistent with the high 289 

pressure experiments. Therefore, with the exception of the NNO run, which lost <15% V, the 290 

experiments acted as closed systems with respect to V.  291 
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To quantify the purity of the separated glass and magnetite fractions, V concentrations from a split of 292 

the solutions measured for their isotope composition are reported in Table 6. As the end-member 293 

phase compositions are known, mass balance constrains the fraction of magnetite contaminating the 294 

glass and is used to yield the isotope composition of the glass:  295 

𝛿 𝑉51
𝑔𝑙 =

𝛿 𝑉51
𝑚𝑖𝑥(𝑓𝑚𝑎𝑔𝑋𝑚𝑎𝑔

𝑉 +(1−𝑓𝑚𝑎𝑔)𝑋𝑔𝑙
𝑉 )

𝑓𝑚𝑎𝑔𝛿 𝑉51
𝑚𝑎𝑔𝑋𝑚𝑎𝑔

𝑉 +(1−𝑓𝑚𝑎𝑔)𝑋𝑔𝑙
𝑉 . 296 

Where 𝑋 refers to the concentration of vanadium in magnetite and glass, and 𝑓 their mass fraction. 297 

The mass fraction of magnetite is given by the two-phase mass balance:  298 

𝑓𝑚𝑎𝑔 =
(𝑋𝑚𝑖𝑥

𝑉 − 𝑓𝑔𝑙𝑋𝑔𝑙
𝑉 )

𝑋𝑚𝑎𝑔
𝑉  299 

where 𝑋𝑚𝑖𝑥
𝑉  is the concentration of V measured in solution. Values of 𝑋𝑚𝑖𝑥

𝑉 , the total V2O3 in the 300 

mixture and those calculated for 𝑓𝑚𝑎𝑔 are listed in Table 6, with 𝑓𝑚𝑎𝑔 ranging from 5.3% in the HM 301 

experiment, and 0.4% in the NNO run, where the long run time permitted growth of magnetite and 302 

facilitated separation from the glass. The corrected 𝛿 𝑉51
𝑔𝑙 values are in the range -1.02‰ (NNO) to -303 

0.57‰ (HM) (Table 6). The true fractionation factor between magnetite and silicate glass 304 

(∆ 𝑉𝑚𝑎𝑔−𝑔𝑙
51 ) can then be calculated (Table 6).  305 

This quantity shows a negative dependence on the logfO2 of the experiment at 800°C, where 306 

∆ 𝑉𝑚𝑎𝑔−𝑔𝑙
51  = -0.92±0.11‰ at logfO2 = -9.68 (HM) and where ∆ 𝑉𝑚𝑎𝑔−𝑔𝑙

51  = -0.63±0.09‰ at logfO2 307 

= -15.74 (FMQ-1), 1SD. 308 

Partitioning and redox-dependence of Fe and V  309 

Quantification of the co-ordination and oxidation state of V, in both magnetite and melt, is essential to 310 

understanding the direction and magnitude of isotopic fractionation between two phases. At 311 

equilibrium, the reaction describing the formation of magnetite from iron oxides present in a silicate 312 

melt is: 313 

𝐹𝑒𝑂(𝑙) + 2𝐹𝑒𝑂1.5(𝑙) = 𝐹𝑒3𝑂4(𝑠) (9). 314 

This demonstrates that the stoichiometry of Fe in magnetite is fixed and does not therefore depend on 315 

fO2. However, the relative proportions of the liquid components, 𝐹𝑒𝑂(𝑙) and 𝐹𝑒𝑂1.5(𝑙), depend on fO2 316 

according to the reaction: 317 

𝐹𝑒𝑂(𝑙) + 1
4

𝑂2 = 𝐹𝑒𝑂1.5(𝑙). (10) 318 

(7) 

(8) 
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Assuming ideal (two-site) mixing for 𝐹𝑒3𝑂4(𝑠), as is the case at high temperatures where Fe2+ and 319 

Fe3+ are randomly distributed over the A and B sites of magnetite (Wu and Mason, 1981), then 320 

𝑎(𝐹𝑒3𝑂4) =  𝑋(𝐹𝑒3𝑂4)2 . Therefore, at equilibrium, equation (9) is written: 321 

0 = 2log 𝑋(𝐹𝑒3𝑂4) − 2 log 𝑋(𝐹𝑒𝑂1.5) − log 𝑋(𝐹𝑒𝑂) − log 𝐾(1)
∗ , (11) 322 

and for equation (10) 323 

0 = log 𝑋( 𝐹𝑒𝑂1.5) − 0.25 log 𝑓(𝑂2) − log 𝑋(𝐹𝑒𝑂) − log 𝐾(2)
∗  (12) 324 

where log 𝐾∗ denotes the deviation of the liquid components from ideality relative to the ideal case, 325 

log 𝐾, in which 𝑎 = 𝑋. Here, Henry’s Law behaviour is assumed, such that 𝛾𝐹𝑒𝑂1.5
𝛾𝐹𝑒𝑂

 is constant over all 326 

fO2, a condition shown to be valid for MORB (Berry et al., 2017).  327 

With the constraint that 𝑋(𝐹𝑒𝑂1.5) +  𝑋(𝐹𝑒𝑂) =  ∑ 𝐹𝑒𝑂𝑥, and given that ∑ 𝐹𝑒𝑂𝑥, 𝑋(𝐹𝑒3𝑂4) and fO2 328 

are known from the experiments, a weighted non-linear least squares chi-squared minimisation is 329 

performed for the difference between the modelled and measured ∑ 𝐹𝑒𝑂𝑥 by changing 𝑙𝑜𝑔𝐾(9)
∗  and 330 

𝑙𝑜𝑔𝐾(10)
∗  and hence 𝑋(𝐹𝑒𝑂1.5) and 𝑋(𝐹𝑒𝑂): 331 

𝜒2 = ∑ (∑ 𝐹𝑒𝑂𝑥
𝑐𝑎𝑙𝑐−∑ 𝐹𝑒𝑂𝑥

𝑜𝑏𝑠

𝑠(𝐹𝑒𝑂𝑥)
)𝑖

2
, (13) 332 

Where 𝑖 denotes that the sum was performed globally for all four experiments simultaneously. The 333 

weighting of the uncertainty on the analyses, 𝑠(𝐹𝑒𝑂𝑥) was set to 0.15 of the ∑ 𝐹𝑒𝑂𝑥
𝑜𝑏𝑠 value. 334 

The calculated 𝑙𝑜𝑔𝐾(9)
∗  = 6.34±0.30 and 𝑙𝑜𝑔𝐾(10)

∗  = 2.97±0.08. The high 𝑙𝑜𝑔𝐾(10)
∗  relative to that 335 

determined for MORB at 1400°C and 1 bar (0.54; Berry et al., 2018), predominantly reflects the 336 

temperature-dependence of fO2. Corrected to a mineral buffer (FMQ; Fig. 3a), Fe3+/∑Fe remains 337 

higher at a given fO2 in hydrous haplogranite relative to MORB. In fact, the high logK*(10) is close to 338 

that found for the K2Si3O7 and Na2Si3O7 liquids studied at 1250°C and 1 bar by Knipping et al. 339 

(2015), suggesting that network-modifiers (Na, K) stabilise Fe3+ in silica-rich compositions (Thornber 340 

et al., 1980; Borisov et al., 2017). 341 

Previous studies emphasise that trivalent V is significantly more compatible than V4+or V5+ in silicate 342 

and oxide minerals (Canil, 1999; Nielsen et al., 1994; Righter et al., 2006b; Toplis and Corgne, 2002). 343 

This is due to the high octahedral site preference energy of V3+ (4/5∆oct) and the suitability of its ionic 344 

radius in VI-fold co-ordination (0.645 Å) for VIFe3+-occupied sites (0.64 Å). Magnetite, which has an 345 

inverse-spinel cation distribution at room temperature, IVFe2+ VI(Fe2+,Fe3+)O4 (e.g., Bosi et al., 2009; 346 

Fleet, 1981), tends towards a random (normal) structure at high temperatures (Wu and Mason, 1981), 347 

and V is incorporated as the coulsonite end-member, which is a normal spinel; IVFe2+VI(V3+)2O4 348 
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(Radtke, 1962). With both the ferric-ferrous and V3+/4+ redox pairs present, the following reaction 349 

occurs in magnetite:  350 

𝐹𝑒2+ + 𝑉4+ = 𝐹𝑒3+ +  𝑉3+(14) 351 

At high temperatures, the equilibrium constant tends to 1 (a statistically random arrangement) because 352 

having substantial fractions of each of the four species results in particularly high configurational 353 

entropy.  As the free energy associated with electron exchange is small, this causes a large, negative 354 

deviation from ideality of mixing, meaning the substitution of V3+ in magnetite is energetically more 355 

favourable than either of the end-members (Fe3O4 or FeV2O4). As temperature decreases, the reactants 356 

become progressively favoured (Wakihara and Katsura, 1971; O’Neill and Navrotsky, 1984), and the 357 

substitution of V into magnetite can be written: 358 

𝐹𝑒𝑂(𝑙) + 2𝑉𝑂1.5(𝑙) = 𝐹𝑒𝑉2𝑂4(𝑠), (15) 359 

demonstrating that the incorporation of V is also independent of fO2. At equilibrium, in the system Fe-360 

V-O, eq. 15 becomes: 361 

0 = 2log(1 − 𝑋𝐹𝑒3𝑂4) − 2 log 𝑋(𝑉𝑂1.5) − log 𝑋(𝐹𝑒𝑂) −  log 𝐾(7)
∗ . (16) 362 

The mole fraction of VO1.5 in the silicate melt, and resultant V3+/V4+ ratio, is in turn dependent on the 363 

fO2 of the experiment: 364 

𝑉𝑂1.5(𝑙) + 1
4

𝑂2 = 𝑉𝑂2(𝑙) (17) 365 

𝑉𝑂2(𝑙) + 1
4

𝑂2 = 𝑉𝑂2.5(𝑙) (18) 366 

and, at equilibrium: 367 

0 = log 𝑋( 𝑉𝑂2) − 0.25 log 𝑓(𝑂2) − log 𝑋(𝑉𝑂1.5) − log 𝐾(17)
∗ . (19) 368 

0 = log 𝑋( 𝑉𝑂2.5) − 0.25 log 𝑓(𝑂2) − log 𝑋(𝑉𝑂2) − log 𝐾(18)
∗ . (20) 369 

As V is a trace element in the silicate melt, it is assumed to be in the Henry’s Law region, where the 370 

activity coefficient for each valence is independent of fO2. The constraint that 𝑋(𝑉𝑂1.5) + 𝑋(𝑉𝑂2) +371 

𝑋(𝑉𝑂2.5) = ∑ 𝑉𝑂𝑥 enables a global non-linear least-squares fit to be performed to the ∑ 𝑉𝑂𝑥 372 

measured in the silicate melt, analogous to that described for iron (eq. 13). Calculated equilibrium 373 

constants are logK*
(15) = 11.09±0.19; logK*

(17) = 5.04±0.12 and logK*
(18) = 2.65±0.10. The high 374 

equilibrium constant of eq. 15 reflects the stability of the FeV2O4 component in magnetite. The 375 

logK*
(17)-logK*

(18) = 2.39 shows that V4+ is the dominant oxidation state of V in silicate liquids (e.g. 376 

Giuli et al., 2004; Sutton et al., 2005), except under highly oxidising conditions (>FMQ+3; Table 7, 377 

Fig. 3b).  378 
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Values of logK* in this work are generally lower (i.e., favouring the reduced species) than found in 379 

Toplis and Corgne (2002) for a ferrobasaltic composition at 1068°C and 1 bar, see Table 7. This 380 

behaviour is a reflection of the lower slope in a log(DV) vs. ΔFMQ diagram (Fig. 4), where m, the 381 

slope, is dictated by the change of speciation of V in the liquid (a slope of -0.31 denotes ∑DV = DV
3+, 382 

with lower slopes reflecting increasing DV
4+). For the data of Toplis and Corgne (2002) m = -0.30 383 

compared with -0.16 herein. However, we note that the omission of their most oxidised experiment 384 

would decrease their slope to -0.18, in much closer agreement with our data. This reduction in slope 385 

equates to DV
3+ = 3070 and DV

4+ = 64, hence DV
4+/ DV

3+ = 2.1%, somewhat higher than the 0.2-0.5% 386 

(or 1% for a slope of -0.18) obtained by Toplis and Corgne (2002). By contrast, the slope of the data 387 

defined by the data of Sievwright et al., (2017) for andesitic-dacitic melts at 1070°C, 1 bar and Arató 388 

and Audétat (2017) are steeper again, near -0.50; higher than the maximum of -0.30 allowed. 389 

Nevertheless, especially at high fO2, our values of DV compare well with Arató and Audétat (2017), 390 

whose experiments were run under essentially the same conditions (800°C, 5 kb) and compositions 391 

(haplogranite with ASI of ≈1). A slope of -0.50 implies that vanadium is exclusively V3+ in magnetite 392 

and V5+ in the melt. This differing behaviour may arise due to the high FeV2O4 component in our 393 

experiments and those of Toplis and Corgne (2002), compared with the trace amount of V present in 394 

magnetite in Sievwright et al., (2017) and Arató and Audétat (2017), where increasing V3+ pushes 395 

equilibrium (14) to the left, producing V4+. In natural titanomagnetites crystallising from layered 396 

mafic intrusions (e.g., Balan et al., 2006) V3+/ΣV ranges from 0.83 to 0.98, consistent with the 397 

preference of V3+ for magnetite. Together, these results confirm that 𝐷𝑉3+ ≫ 𝐷𝑉4+  as expected 398 

thermodynamically. 399 

Controls on V isotope fractionation 400 

Isotopic fractionation can be understood in the context of the bond valence model, which states that 401 

the sum of the bond valence (𝑠 = charge/co-ordination) must equal the formal charge on the ion 402 

(Pauling, 1929). Its relation to the strength of the <V–O> bonds (the parameter that controls isotope 403 

fractionation) is given by the force constant, Kf, which may be approximated by describing the 404 

bonding environment of V by electrostatic interactions, using the Born-Landé equation (see Young et 405 

al., 2009; Sossi and O’Neill, 2017): 406 

𝐾𝑓,𝑉,𝑂 =  −
𝑠̅𝑉𝑠̅𝑂𝑞2(1 − 𝑛)

4𝜋𝜀𝑜𝑟3  407 

Here, 𝜀𝑜 is the permittivity of free space, 𝑞 the charge on an electron in coulombs, 𝐵 the Born 408 

exponent (=12 in minerals, Young et al., 2009) and 𝑟 the radius in metres. The force constant 409 

therefore increases (which favours heavier isotopes) as charge increases or co-ordination decreases 410 

because both phenomena are associated with a shortening of the bond length.  411 

(21) 
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Calculations performed herein are benchmarked against recent molecular dynamics simulations of 412 

hydrated V species of variable oxidation state (Wu et al., 2015) and compare favourably (see 413 

Appendix A for details). At high temperatures, the force constant can be related to the reduced 414 

partition function ratio, or 𝛽 factor, by a constant term, 𝑓 that describes the quantum component of the 415 

partition function ratio, and is dependent on the relative mass difference between the two isotopes 416 

(Bigeleisen and Mayer, 1947): 417 

𝑓 =  
3𝑁𝐴103

96𝜋2 (
ℎ

𝑘𝐵𝑇
)

2

(
1

𝑚𝑛
−

1
𝑚𝑑

), 418 

where 𝑁𝐴 is Avogadro’s number, ℎ is Planck’s constant, 𝑘𝐵 Boltzmann’s constant, 𝑚 the molar mass, 419 

and for 51V/50V = 1720; and the temperature, in Kelvin, squared:  420 

103 ln 𝛽𝑉
51/50 =

1720(𝐾𝑓)
𝑇2 . 421 

While the oxidation state of V in magnetite and co-existing melt can be estimated (see Partitioning 422 

and redox-dependence of Fe and V), information on co-ordination number and bond lengths is rare 423 

(Schindler et al., 2000). As in minerals, V3+ is octahedrally co-ordinated in basaltic glasses, V4+ has an 424 

average co-ordination of 5.33 (Sutton et al., 2005), whereas V5+-O bond lengths are 1.82Å (close to 425 

V-fold), decreasing to 1.7±0.02Å (IV-fold) in alkali- and Ca-rich compositions (Giuli et al., 2004). 426 

This figure closely matches that obtained by adding the ionic radii of IVV5+ (0.355Å) and O2- (1.38Å), 427 

1.74Å. In the experimental glasses r is therefore estimated by linear interpolation between <V-O> 428 

bond distances for V5+ (r = 1.74 Å) and V4+ (r = 1.87 Å) (Giuli et al., 2004; Sutton et al., 2005), with 429 

values shown in Table 8.  430 

The constancy of V oxidation state, and hence calculated <V-O> bond lengths in magnetite over the 431 

range of fO2 investigated means that changes in V speciation in the melt control the degree of isotopic 432 

fractionation. Results of these calculations (Fig. 5) show that an average oxygen co-ordination of 2.5 433 

best fits the melt experimental data, implying a network-forming role for both V4+ and V5+, which is 434 

unsurprising given their similar charge and co-ordination to Si4+. Importantly, the model also predicts 435 

that magnetite, where V exists in a lower average valence (3+) and higher co-ordination (VI-fold), 436 

should always be isotopically lighter than co-existing melt. The model reproduces the larger isotopic 437 

fractionation observed in the more oxidised experiments, where the difference in charge, co-438 

ordination and <V-O> bond length is greater between the two phases at higher fO2. 439 

Figure 5 illustrates the dependence of the fractionation factor between magnetite and melt as a 440 

function of fO2 at 800°C, which has the form:  441 

∆ 𝑉𝑀𝑎𝑔−𝑀𝑒𝑙𝑡 (‰) =  −0.045 ± 0.021(∆𝐹𝑀𝑄) − 0.70 ± 0.0551  442 

(23) 

(22) 

(24) 
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Uncertainties take into account the errors on the analyses themselves as well as the goodness of fit of 443 

the regression, and should be noted that they are compensatory (a positive uncertainty in the slope is 444 

compensated for by a negative uncertainty in the intercept, and vice-versa). The slope illustrates that 445 

the dependence on fO2 is small over the range of igneous rocks as V remains V3+ in magnetite but 446 

increases in valence in the melt. Fractionation is largely driven by i) the difference in redox state of 447 

trivalent V in magnetite and V4+/V5+ in the melt over a range of fO2, and ii) the difference in co-448 

ordination between octahedral V3+ in magnetite and IV- to V-fold co-ordinated V in the liquid. 449 

Implications 450 

Comparison with natural data  451 

Minerals in the titanomagnetite solid solution are common accessory phases in igneous systems on 452 

Earth. Despite their minor abundance, the timing of their appearance on the liquid line of descent 453 

gives rise to the distinct chemical evolution of the tholeiitic (late saturation, iron-enrichment) and 454 

calc-alkaline (early saturation, iron depletion) magmatic trends (Sisson and Grove, 1993). As the 455 

timing of this saturation is dependent on the fO2 of the crystallising magma (e.g., Toplis and Carroll, 456 

1995; Feig et al., 2010), magnetite may provide an important record of the prevailing oxygen fugacity 457 

via its vanadium isotope composition. Furthermore, magnetite crystallisation reduces the melt by 458 

preferentially sequestering Fe3+ and can trigger sulphide saturation with important implications for the 459 

formation of economically viable mineral deposits (e.g., Jenner et al., 2010). 460 

Prytulak et al. (2017) measured the whole rock V isotope composition of two differentiating 461 

magmatic suites from Hekla, Iceland and Anatahan volcano, from the Marianas island arc. The former 462 

records fO2 ≈ FMQ (Baldridge, 1974) whereas magmas from the Marianas crystallise under a more 463 

oxidised regime, near FMQ+2 (Brounce et al., 2014). Despite these differing oxygen fugacities, the V 464 

isotope evolution in both systems shows a similar trajectory, in which the most differentiated magmas 465 

reach δ51VAA ~ +1‰ from an initial, parent magma composition of near -0.7‰. In detail, the 466 

calculated magnetite-melt fractionation factors differ slightly; -0.5 ‰ for Anatahan, and -0.45 ‰ for 467 

Hekla (Prytulak et al., 2017) at ≈ 1000°C. 468 

Strikingly, however, both of these fractionation factors derived from bulk lavas fall in the range 469 

determined experimentally herein. Using the correlation of the experimental fractionation factor with 470 

fO2 (eq. 24), corrected from 800°C to 1000°C assuming a 1/T2 dependence (eq. 23), gives relative fO2 471 

of FMQ-1.5 for Hekla and FMQ+0.7 for Anatahan, in excellent agreement with the 2 log unit 472 

difference recorded by oxygen barometry (see Prytulak et al., 2017, and references therein), although 473 

they are displaced to lower values (FMQ and FMQ+2, respectively). It remains to be explored as to 474 

whether changes in composition in the melt phase affect V redox and co-ordination, and hence the 475 

isotopic fractionation factor. That melt composition can alter co-ordination number was shown for Fe, 476 
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where IV-fold co-ordinated iron is preferred relative to VI-fold in more polymerised, alkali-rich 477 

rhyolitic compositions with respect to more mafic compositions (Dauphas et al. 2014). A similar 478 

effect may be expected for V, because the low bond valence alkalis stabilise lower V co-ordination 479 

numbers (see Jackson et al., 2005). Indeed, Giuli et al. (2004) observed that in Fe-bearing 480 

compositions, V5+ was in higher co-ordination than in Fe-free and sodium-silicate compositions. The 481 

stronger <V-O> bonds found in lower co-ordination environments would therefore produce greater 482 

Δ51Vmag-melt fractionation in granitic melts compared with basaltic liquids. Empirically, given the 483 

displacement in calculated fO2 with respect to measured values in Hekla and Anatahan suggests that 484 

the fractionation factor may indeed be sensitive to composition. If so, then the experimental 485 

calibration for haplogranitic compositions is not directly applicable to the andesitic-dacitic liquids 486 

crystallising at Hekla and Anatahan. Nevertheless, the fO2 dependence (the slope in eq. 24) will be 487 

less sensitive to composition because different melt components will affect the logK* of eqs. 15, 17 488 

and 18 by altering the vanadium oxide activity coefficients in the melt (γVO1.5, γVO2 and γVO2.5) but 489 

not the stoichiometries of the reactions.  490 

The relative insensitivity of the V isotope composition in whole rock lavas to their different redox 491 

states shows that V isotopes are not straightforward indicators of fO2 variations in igneous systems. 492 

However, the systematic increase in fractionation factor with fO2 (Fig. 2), is potentially resolvable if 493 

magnetite-melt pairs are determined. In the absence of the melt phase, because magnetite commonly 494 

hosts the majority of the vanadium in crystallising magmas, it may act as a single mineral indicator of 495 

fO2.  496 

Magnetite as an indicator of fO2 497 

Given the diverse ways in which magnetite may form on the Earth, the chemistry of this mineral 498 

likely holds clues to its provenance and conditions of formation. However, discrimination of 499 

magnetite provenance based trace elements alone can be troublesome given that igneous magnetite 500 

may span a wide range of composition dependent on its petrogenetic history, resulting in the overlap 501 

of many trace element fingerprints in different formation environments (e.g., Dare et al., 2012). 502 

Magnetite from igneous rocks are amongst the most V-rich on Earth, often containing > 0.15 wt. % 503 

V2O3, and reaching levels of several weight percent in some settings such as layered mafic intrusions 504 

(e.g. Grigsby, 1990; Dare et al., 2014; Toplis and Corgne, 2002; Balan et al., 2006). Figure 6 depicts 505 

results of a fractional crystallisation model similar to Prytulak et al. (2017) to predict the V isotope 506 

composition of magnetite at different fO2 conditions. The fO2 of an initial ferrobasaltic magma with 507 

6.5 wt. % MgO, 12 wt. % FeO and 300 ppm V (Toplis and Corgne, 2002), is varied from FMQ-1, 508 

FMQ+1 to FMQ+3 (Fig. 6). Temperature is related to the fraction of melt, F, by the expression T°C = 509 

1022+266(F)-290F2+175F3 (Toplis and Corgne, 2002). Magnetite saturation (at T°C < 510 
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27.2×ΔNNO+1125) and modal abundance (ol+plag):cpx:mag =42:40:18, as a function of fO2 and 511 

temperature, is parameterised after Toplis and Corgne (2002), while olivine and augite Mg#s are 512 

given by KD
Fe-Mg = 0.3 (Toplis, 2005; Bédard, 2010). Plagioclase is the only other mineral to 513 

crystallise, with phase proportions set to ol:plag = 0.27 and ol:(cpx+plag) = 0.27 (Toplis and Carroll, 514 

1995). Partition coefficients as a function of fO2 for V in magnetite are taken from this work and those 515 

for clinopyroxene from Mallmann and O’Neill (2009). The vanadium isotope fractionation factor 516 

between magnetite and melt is taken from equation (24), and is assumed to apply to clinopyroxene-517 

melt due to its preference for trivalent V in octahedral co-ordination (Karner et al., 2005; Mallmann 518 

and O’Neill, 2009). At FMQ-1, clinopyroxene crystallises first, depriving the melt of half its V budget 519 

before magnetite crystallises (DV = 63.1) with a maximum of 1.4 wt. % V2O3. Intermediate fO2 520 

produces the greatest enrichment of V in magnetite (1.51 wt. %) despite lower DV, of 26.9, as it co-521 

crystallises with augite. At FMQ+3, magnetite is initially poor in V2O3 (0.57 wt. %) owing to its 522 

lower DV of 12.6, but the melt is depleted more slowly, such that magnetite crystallising at the end of 523 

differentiation is still V-rich (>100 ppm). Magnetite from the reduced series has the heaviest δ51V, 524 

owing to a) extraction of light V into clinopyroxene and b) rapid depletion of V from the melt (Fig. 6). 525 

In general, magmatic magnetite will be initially light and V-rich, before evolving to heavy, V-poor 526 

compositions due to progressive extraction of V by magnetite (±clinopyroxene).  527 

Granitic rocks, whose compositions range from reduced, A-type granites (Turner et al., 1992; Frost 528 

and Frost, 2010) to oxidised, magnetite-bearing I-type granite (Chappell and White, 1977) may evolve 529 

distinct V isotope signatures in magnetite. Qualitatively, the protracted fractionation crystallisation 530 

that produces A-types (e.g., Turner et al., 1992; Shellnutt et al., 2009) depletes the remaining melt in 531 

V and light V isotopes, such that any magnetite to crystallise from these evolved magmas is V-poor 532 

(<100 ppm) and inherits a heavy isotope composition, >1.5‰ (Fig. 6). By contrast, magnetite in I-533 

type granites, owing to their more oxidising environment, crystallises earlier in its magmatic evolution 534 

while ample V remains in the melt. This melt is still isotopically light, akin to basaltic liquids 535 

(Prytulak et al., 2013; Fig. 6), and the Δ51Vmag-melt fractionation factor upon magnetite precipitation is 536 

enhanced due to the oxidising conditions, resulting in isotopically light magnetite, ≤ 1‰ (Fig. 6) that 537 

is relatively rich in V (>100 ppm). This behaviour mirrors that observed for iron isotopes in granitic 538 

rocks (Foden et al., 2015). The isotopic composition of V in detrital, igneous magnetite may therefore 539 

prove diagnostic in identifying the conditions under which it crystallised from its parent magma, 540 

which may be especially useful in older Archean rocks in which magnetite is often detrital. 541 

Magnetite precipitated from high temperature (500 – 800 °C) porphyry fluids may reach similar V2O3 542 

contents (≈0.5 wt. %; e.g. Nadoll et al., 2014) to those found in mafic igneous rocks. Vanadium 543 

contents decrease to ≈0.1 wt. % (Canil et al., 2016) in magnetite associated with skarn-type 544 

mineralisation (300 – 500°C). The lowest V contents (and trace elements in general) occur in 545 
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magnetite precipitated from seawater to comprise BIFs (Dare et al., 2014; Nadoll et al., 2014), with a 546 

median of 4.8 ppm (-4.5/+36, n = 135). The diversity of magnetite V concentrations forming in 547 

distinct environments at different temperatures offers ample scope for stable isotopic fractionation. 548 

Therefore, characterisation of the V isotope composition of magnetite formed in different settings 549 

may in the future, together with V concentrations, act as a powerful provenance tracer.  550 

Conclusion 551 

The first V isotope fractionation factors between experimentally-grown magnetite and hydrous, 552 

haplogranitic melts at 800°C, 0.5 GPa were determined. Oxygen fugacity in the experiments was 553 

varied by fixing fH2 according to different mineral buffers, varying from FMQ-1 to FMQ+5, 554 

supplemented by a 1 atm run with an alkali-silica melt at FMQ-1. Vanadium becomes more 555 

compatible in magnetite at progressively more reducing conditions in response to a higher abundance 556 

of V3+ in the granitic melt. This behaviour is reflected in increasingly isotopically heavy melt relative 557 

to magnetite at higher fO2, ranging from ∆51Vmag-gl = -0.63±0.09‰ at FMQ-1 to -0.92±0.11‰ at 558 

≈FMQ+5, and can be fit by Δ51V (‰) = -0.045±0.021×ΔFMQ-0.70±0.05. Such a trend can be 559 

reproduced by modelling the fractionation factor according to the bond valence model, where V is 560 
VIV3+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. Experimentally-derived 561 

fractionation factors are in accord with those inferred from natural systems, highlighting the role of 562 

magnetite in controlling the V isotope composition of evolving magmatic systems. The ubiquity of 563 

magnetite on the Earth’s surface and its formation in igneous, metamorphic, hydrothermal, and 564 

aqueous environments likely engenders significant isotopic fractionation.  565 
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Figure Captions 

Fig. 1 Back-scattered electron image of experimental run D1555 (Re-ReO2). Bright crystals are 

magnetite, while the darker regions are glass. 

Fig. 2 The concentration of a) FeO (wt. %) and b) V (ppm) measured in the glass by EPMA as a 

function of fO2. Error bars on symbols are 1SD 

Fig. 3 The control of logfO2 (expressed relative to the FMQ buffer, ΔFMQ; O’Neill, 1987) on the 

relative proportions of redox-sensitive species for a) Fe2+/Fe3+. Compositions are hydrous 

haplogranite (orange curve, this work), (Na,K)2Si3O7 liquids (Knipping et al., 2015) and Mid-Ocean 

Ridge Basalt, MORB (Berry et al., 2018). Numbers refer to the logK* value of reaction 10. b) 

V3+/V4+/V5+. The relative abundance of vanadium species is shown by the red line (V3+), green line 

(V4+) and blue line (V5+) for the hydrous haplogranite composition (this work), calculated from values 

of the equilibrium constants for reactions 15, 17 and 18. See Partitioning and redox-dependence of Fe 

and V. 

Fig. 4 The change in the logarithm of the bulk partition coefficient of vanadium between magnetite 

and melt (logDV) as a function of logfO2, relative to the FMQ buffer (ΔFMQ; O’Neill, 1987). Plotted 

are datasets for different melt compositions; ferrobasalt at 1068°C, 1 bar (green, Toplis and Corgne, 

2002); andesite-dacite at 1070-1120°C, 1 bar (Sievwright et al., 2017), and hydrous haplogranite at 

800°C, 5 kb (blue, Arató and Audétat, and red, this work). The slope of the curve is proportional to 

the relative compatibility of V3+ over V4+, see Partitioning and redox-dependence of Fe and V. 

Fig. 5 Measured vanadium isotope fractionation factor between magnetite and melt and its evolution 

with fO2 at 800°C. Fits to the data are i) a linear regression (dashed line) and associated 1SD 

confidence envelope (grey field), which corresponds to eq. 24, and ii) calculations based on the bond 

valence model (solid line). See Controls on V isotope fractionation. 

Fig. 6 The variation of δ51VAA with V content (expressed as V2O3 wt. % on a logarithmic scale) in 

magnetite and melt. Three models of an evolving ferrobasaltic magma are presented at FMQ-1 (red), 

FMQ+1 (green) and FMQ+3 (blue). The solid lines denote the composition of the magnetite and the 

associated magmatic range (red field), whereas the dashed lines show the melt composition. In both 

cases, crystallisation proceeds from high V2O3/light δ51V to low V2O3/heavy δ51V, with the regions of 

I-type and A-type denoted, corresponding to crystallisation under oxidising and reducing conditions, 

respectively. See section 5.2. 
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Table 1. Composition of experimental starting mix.  
  Oxide (wt. %) 
Component Mass Fraction SiO2 Al2O3 Fe2O3 Na2O K2O V2O3 H2O 
Piston Cylinder         
PS Haplogranite 0.460 77.64 12.90  4.73 4.74   
Magnetite 0.460   96.66     
Vanadium 0.039      100  
Water 0.041       0.043 
1 Atmosphere         
Na-Fe-Silicate 0.980 37  38 23    
Vanadium 0.020      100  

 

Table 1 Click here to download Table Table 1.docx 

http://www.editorialmanager.com/ctmp/download.aspx?id=164274&guid=6894b540-232e-455f-8d1b-7381d1d8c9e5&scheme=1
http://www.editorialmanager.com/ctmp/download.aspx?id=164274&guid=6894b540-232e-455f-8d1b-7381d1d8c9e5&scheme=1


Table 2. Experimental conditions and weights 

Press Name Inner Capsule Inner Capsule (g) Mix (g) H2O Inner (g) Outer Ag (g) Buffer Type Buffer (g) H2O Outer (g) Temperature (°C) Duration  
(h) 

CO2 (sccm) CO (sccm) 

V D1542 75Ag-25Pd 0.2914 0.0686 0.0027 2.9989 HM 0.0547 0.0049 800 72 - - 

V D1545 75Ag-25Pd 0.3069 0.0875 0.0040 2.9852 Co-CoO 0.0516 0.0084 800 72 - - 

A C4449 75Ag-25Pd 0.2216 0.0547 0.0024 3.0045 NNO 0.1572 0.0311 800 336 - - 

V D1555 75Ag-25Pd 0.2530 0.0637 0.0026 2.9788 Re-ReO2 0.0982 0.0058 800 168 - - 

C FMQ-1 Ag - - - - CO-CO2 - - 800 163 98 5 
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Table 3. Cup configuration on Neptune Plus MC-ICP-MS 
Cup L3 L2 L1 C H1 H2 H3 

Resistor 1011  1011 1010  1011 1011 
Isotope 49Ti  50V 51V  52Cr 53Cr 
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Table 4. Compositions of experimental phases determined by electron microprobe.   
  Oxide (wt. %) 
Glasses n Na2O MgO SiO2 Al2O3 FeO K2O CaO V2O3 Total 

HM 6 2.62 0.01 72.84 12.57 1.57 3.20 0.09 0.21 93.11 
±  0.04 0.01 0.90 0.25 0.10 0.13 0.02 0.02 1.13 
Re-ReO2 6 2.58 0.01 71.36 12.94 1.86 3.31 0.09 0.13 92.30 

±  0.07 0.02 0.74 0.56 0.15 0.11 0.02 0.02 0.32 
NNO 8 3.35 0.04 68.04 13.77 2.38 2.80 0.12 0.05 90.55 
±  0.23 0.01 0.49 0.22 0.09 0.09 0.02 0.01 0.65 
Co-CoO 5 2.49 0.03 70.96 12.69 3.35 3.28 0.11 0.04 92.97 
±  0.06 0.02 0.54 0.08 0.16 0.04 0.02 0.01 0.66 
FMQ-1 5 17.68 0.04 49.04 0.17 26.38 0.06 0.25 2.67 96.29 
±  0.08 0.02 0.20 0.02 0.25 0.02 0.03 0.03 0.48 
           
Magnetite          
HM 11  0.12 0.25 0.83 86.23   6.89 94.33 
±   0.02 0.32 0.10 0.35   0.27 1.24 
Re-ReO2 8  0.10 0.12 1.02 83.71   7.83 92.78 

±   0.03 0.03 0.14 1.04   1.06 0.08 
NNO 7  0.10 0.06 0.60 82.14   8.14 91.03 
±   0.05 0.07 0.16 0.69   0.65 0.88 
Co-CoO 6  0.02 0.08 0.10 84.40   8.39 92.98 
±   0.03 0.03 0.03 0.35   0.05 0.32 
FMQ-1 6  0.01 0.09 0.00 91.87   0.33 92.31 
±   0.01 0.02 0.02 0.62   0.10 0.65 
3 Cations/4 Oxygens Mg2+ Si4+ Al3+ Fe2+ Fe3+  V3+ XCoul 

HM 11  0.007 0.010 0.037 1.003 1.732  0.210 0.108 
Re-ReO2 8  0.006 0.005 0.046 0.999 1.705  0.240 0.123 
NNO 7  0.005 0.002 0.027 0.997 1.719  0.249 0.127 
Co-CoO 6  0.006 0.001 0.002 0.995 1.740  0.257 0.129 
FMQ-1 6  0.001 0.004 0.000 1.003 1.983  0.010 0.005 
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Table 5. Vanadium stable isotope compositions of reference materials and standards. 

 # dissolutions # repetitions δ51VAA (‰) SD 2SE Reference 
V2O3 (BDH) 2 3 -1.17 0.16 0.18  
BDH Solution N/A 28 -1.13 0.06 0.03  
Column BDH N/A 3 -1.22 0.12 0.16  
Column AA N/A 3 -0.12 0.11 0.13  
       
BCR2 1 2 -1.11 0.04 0.06 This Work 
BCR2   -0.95 0.08  Prytulak et al., 2011 
BCR2   -0.78 0.04  Wu et al. (2016) 
BCR2   -1.03 0.05  Schuth et al. (2017) 
BIR-1 3 7 -1.05 0.11 0.08 This Work 
BIR-1   -0.94 0.08  Prytulak et al., 2011 
BIR-1   -0.92 0.05  Wu et al. (2016) 
PCC-1 1 2 -1.02 0.08 0.11 This Work 
PCC-1   -1.02 0.04  Prytulak et al., 2011 
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Table 6. Calculated bulk V content and isotope composition in the experiment and in the magnetite and glass solution fractions, their isotope composition, 
and the fractionation factor calculated after correcting for contamination. 
Experiment Bulk V2O3 

(wt. %) 
± (SD) Phase V 

(ppm) 
fmag fgl n δ51VAA 

(‰) 
± (SD) δ51VAA, 

corr. (‰) 
Bulk δ51VAA  

(‰) 
∆51Vmag-gl  

(‰) 
± (SD) 

HM 3.60 0.31 
Magnetite 28523   3 -1.48 0.07 -1.49 

-1.46 -0.92 0.11 Glass 3852 0.053  2 -1.16 0.09 -0.57 

Re-ReO2 3.98 0.10 
Magnetite 29397   3 -1.45 0.06 -1.45 

-1.43 -0.82 0.09 
Glass 1954 0.038  2 -1.08 0.07 -0.63 

NNO 3.41 0.16 
Magnetite 34197   3 -1.79 0.06 -1.79 

-1.73 -0.77 0.08 Glass 327 0.004  2 -1.09 0.06 -1.02 

Co-CoO 4.22 0.24 
Magnetite 25668   3 -1.35 0.06 -1.35 

-1.33 -0.67 0.08 Glass 520 0.014  1 -0.98 - -0.68 

FMQ-1* 1.82 0.06 
Magnetite 2890  0.04 1 -1.35 - -1.51 

-0.95 -0.63 0.09 Glass 13545   2 -0.88 0.09 -0.88 
* FMQ-1 is a 1 atm experiment 
NB: Isotope compositions are quoted following correction for contamination (see Correction for contamination and open-system behaviour of V in 
experiments) 
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Table 7. Values of equilibrium constants and resulting Fe2+/Fe3+ and V3+/V4+/V5+ ratios in the melt 

calculated by least-squares fit to the experimental partitioning data. Numbers in brackets refer to 

1SD uncertainties. See Partitioning and redox-dependence of Fe and V. 

 Log K*
(9) Log K*

(10) Log K*
(15) Log K*

(17) Log K*
(18)  

Global 6.34(30) 2.97(8) 11.09(19) 5.04(12) 2.65(10)  

χ2 5.48 0.15  

 Fe3+/∑Fe V3+/∑V V4+/∑V V5+/∑V Vx+/∑V 

Co-CoO 0.12(2) 0.06(2) 0.88(4) 0.06(2) 4.00(1) 

Ni-NiO 0.24(3) 0.02(1) 0.85(5) 0.13(3) 4.11(3) 

Re-ReO2 0.52(4) 0.01(0) 0.66(7) 0.34(5) 4.33(5) 

HM 0.80(2) 0.00(0) 0.35(9) 0.65(9) 4.65(10) 
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Table 8. Parameters for calculating the isotope fractionation from the bond valence model. See Controls on V 
isotope fractionation. z = valence, ν = co-ordination, s = bond valence, r = bond length, Kf = force constant. 
Experiment Phase zV νV sV sO  rV,O 

(m) 
Kf 

(N/m) 
± (SD) 

HM 
Magnetite 3.00 6 0.50 0.50  2.00×10-10 281 56 

Melt 4.65 4.5 1.03 0.80  1.79×10-10 890 178 

Re-ReO2 
Magnetite 3.00 6 0.50 0.50  2.00×10-10 281 56 

Melt 4.33 4.5 0.96 0.80  1.83×10-10 815 163 

NNO 
Magnetite 3.00 6 0.50 0.50  2.00×10-10 281 56 

Melt 4.11 4.5 0.91 0.80  1.85×10-10 749 150 

Co-CoO 
Magnetite 3.00 6 0.50 0.50  2.00×10-10 281 56 

Melt 4.00 4.5 0.89 0.80  1.87×10-10 715 143 
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