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Abstract We develop a network-based method for detecting and classifying seismovolcanic tremors.
The proposed approach exploits the coherence of tremor signals across the network that is estimated from
the array covariance matrix. The method is applied to four and a half years of continuous seismic data
recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group in Kamchatka
(Russia), where five volcanoes were erupting during the considered time period. We compute and analyze
daily covariance matrices together with their eigenvalues and eigenvectors. As a first step, most coherent
signals corresponding to dominating tremor sources are detected based on the width of the covariance
matrix eigenvalues distribution. Thus, volcanic tremors of the two volcanoes known as most active during
the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the
daily array covariance matrix’s first eigenvector. Our main hypothesis is that these eigenvectors represent
the principal components of the daily seismic wavefield and, for days with tremor activity, characterize
dominant tremor sources. Those daily first eigenvectors, which can be used as network-based fingerprints
of tremor sources, are then grouped into clusters using correlation coefficient as a measure of the vector
similarity. As a result, we identify seven clusters associated with different periods of activity of four
volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require
a priori knowledge and is fully automatic; and the database of the network-based tremor fingerprints can
be continuously enriched with newly available data.

1. Introduction

Detecting and characterizing seismicity is a key aspect of volcano monitoring (Chouet & Matoza, 2013;
McNutt, 1992; Sparks et al., 2012). Most preeruptive and coeruptive processes within volcanic systems are
accompanied by seismic emission that can be used to detect and identify different phases of volcanic activity.
Seismic signals associated with volcanic unrest are very variable. Stresses induced by the ascending magma
are released in form of volcano-tectonic earthquakes (Roman & Cashman, 2006). Another large class of
activity known as long-period volcanic seismicity is more directly related to processes induced by fluid move-
ment within the volcano plumbing or hydrothermal systems (Chouet, 1996b; Iverson et al., 2006) that may
result in long-period earthquakes (e.g., Shapiro, Droznin, et al., 2017) and highly irregular signals known as
volcanic tremors.

Many approaches currently used for seismovolcanic monitoring originate from the classical earthquake seis-
mology and are, therefore, poorly adapted for the analysis of seismic tremors. Another difficulty of traditional
approaches for seismic monitoring is that they are largely based on visual inspection of seismic records for
detecting events and identifying characteristic patterns. With continuously growing monitoring networks and
data fluxes, this way of analyzing data becomes more and more problematic. Therefore, the seismovolcanic
monitoring (similarly to many other areas) must rely more on data-intensive automatic methods for analy-
sis and classification of signals leading to the idea of applying methods from the area of machine learning
(e.g., Carniel, 1996, 2014; Orozco-Alzate et al., 2012). Machine learning approaches related to seismovolcanic data
are most of the time applied on single time series from individual stations to perform blind source separation
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Figure 1. Seismic network (stations: blue squares) monitoring the Klyuchevskoy volcanic group (KVG) and surrounding
volcanoes (red triangles). The Russian Kamchatcka peninsula is located by a yellow circle on the Earth globe and the
insert shows the particular location of the KVG region (red rectangle in the insert) in front of the intersection of the Meiji
seamount with the edge of the Pacific Plate’s subduction beneath the North American Plate along the Kuril-Kamchatka
trench on the one hand and along the Aleutian trench on the other hand.

with dimension reduction methods such as Independant Component Analysis (Acernese et al., 2003; Cabras
et al., 2008, 2010; Ciaramella et al., 2011; Capuano et al., 2016), Nonnegative Matrix Factorization (Cabras
et al., 2012, 2014), or Degenerate Unmixing Estimation Technique (Moni et al., 2012). A few machine learn-
ing studies of seismovolcanic signals adopt a multistation approach but dealing with features (a machine
learning terminology that stands for any attribute of the waveform) derived from individual stations of the
network (e.g., waveform, spectrum, spectrogram,… ). Thus, Hibert et al. (2017) use Random Forest algorithm
to classify rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using waveform,
spectrum, spectrogram, and polarization as features. At the same volcano and using also Random Forest
algorithm, Maggi et al. (2017) classify eight classes of seismovolcanic signals automatically selecting the best
waveform and spectrum features from a combination of stations. Unglert and Jellinek (2017) use Principal
Component Analysis and Hierarchical Clustering algorithms to do pattern recognition of tremor spectra from
multiple stations of one volcano and of different volcanoes (Kilauea, Okmok, Redoubt, and Pavlof ).

Most of the previously proposed approaches for automatic classification of seismovolcanic signals are based
on analysis of features derived from individual sensors (e.g., Carniel, 1996; Hibert et al., 2017; Maggi et al.,
2017; Orozco-Alzate et al., 2012; Unglert & Jellinek, 2017). In this paper, we present a method that auto-
matically classifies volcanic tremors with their characteristic patterns defined from an ensemble of signals
recorded by a network composed of multiples sensors. The feature we use being derived from the sensors all
together, we call the method we developed a network-based method. So far, array methods have been used
to determine the location of tremor sources with small-aperture arrays (e.g., Almendros et al., 1997; Goldstein
& Chouet, 1994, Haney, 2010; Métaxian et al., 2002). The method presented here is aimed at classifying
tremors without locating their sources. The main idea is to explore the coherence of the tremor wavefield
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between different locations. This coherence is expressed in interstation cross correlations of continuous seis-
mic records with tremors resulting in waveforms with characteristic arrival times and phases that can be used
as their “fingerprints” (Droznin et al., 2015). An ensemble of interstation cross correlations represented in
Fourier domain forms a covariance matrix (Seydoux, Shapiro, de Rosny, Brenguier, & Landés, 2016; Seydoux,
Shapiro, de Rosny, & Landès 2016). The first eigenvector of this matrix characterizes a dominant compo-
nent of the recorded wavefield (Anderson, 1963), and we propose to use it as characteristic patterns for the
tremor classification. For this classification, we employ a clustering algorithm where the similarity between
different wavefield realizations is measured from correlation coefficients between the covariance matrix
first eigenvectors.

We apply the developed method to continuous records by permanent monitoring network in the region
of the Klyuchevskoy group of volcanoes (Kamchatka, Russia) (Figure 1) during a four and a half years long
time period between January 2009 and June 2013. During this period of time, the Klyuchevskoy, Tolbachik,
Kizimen, and Shiveluch volcanoes experienced very long episodes of volcanic tremor (Droznin et al., 2015) and
abundant amount of long-period earthquakes (Shapiro, Droznin, et al., 2017). The two most important tremors
lead to a summit eruption at the end of 2010 at Klyuchevskoy (e.g., Senyukov, 2013) and a fissure eruption
beginning at the end of 2012 at Tolbachik (e.g., Gordeev et al., 2013). Short explosive eruptions also occurred
at Bezymianny.

The studied volcanic group and the monitoring seismic network are presented in section 2. Section 3 details
the specificity of volcanic tremors monitoring. The estimation of the array covariance matrix and the clustering
algorithm based on its eigenvectors are described in section 4. The different detected and classified volcanic
tremor sources are presented in section 5.

2. Klyuchevskoy Volcanic Group Monitoring

The Klyuchevskoy volcanic group (KVG) consists of 13 stratovolcanoes (the three most active being
Klyuchevskoy, Bezymianny, and Tolbachik) located in an approximatively 70 km diameter zone on the
Russian Kamchatka peninsula (Shapiro, Sens-Schönfelder, et al., 2017). Its very particular tectonic setting in
front of the intersection of the Meiji seamount with the edge of the Pacific Plate’s subduction beneath the
North American Plate along the Kuril-Kamchatka trench on the one hand and along the Aleutian trench on
the other hand (cf. red rectangle in Figure 1 insert) turns it into one of the most active subduction zone vol-
canic group in the world. Different geodynamic models proposed to explain this important volcanism include
the following: geochemical evidence for fluid release from the thick and highly hydrated Meiji seamount
crust (Dorendorf et al., 2000); geochemical evidence for a mantle flow around the corner of the Pacific Plate
(Yogodzinski et al., 2001); seismic, tectonic, and petrological evidence for a recent (2 Myr ago) detachment of
a portion of the subducting slab (Levin et al., 2002, 2005; Park et al., 2002).

2.1. Recent Activity
Three volcanoes of the KVG (Klyuchevskoy, Bezymianny, and Tolbachik) were active during recent decades
(e.g., Gordeev et al., 1989; Ivanov, 2008; Ozerov et al., 2007; Senyukov et al., 2009, 2013). In addition, two other
very active volcanoes, Shiveluch and Kizimen, are respectively located north and south of KVG (Figure 1).
The volcano earthquakes together with tectonic regional and teleseismic events were used to study the internal
structure of the KVG with the seismic tomography (e.g., Balesta et al., 1991; Gorbatov et al., 1999; Gontovaya
et al., 2004; Ivanov et al., 2016; Koulakov et al., 2011, 2013, 2016; Lees et al., 2007; Slavina et al., 2001, 2012)
and with receiver functions (Levin et al., 2014; Nikulin et al., 2010). The sustained volcanic activity of the KVG
and closely located volcanoes requires permanent monitoring and makes this region particularly suitable for
testing volcanic monitoring methods.

2.2. Monitoring Seismic Network
The Kamchatka Branch of the Geophysical Survey (KBGS) of the Russian Academy of Sciences operates the
permanent seismic network monitoring the KVG and surrounding volcanoes (Chebrov et al., 2013; Gordeev
et al., 2006). In this paper, we use continuous records during four and a half years between January 2009 and
June 2013 by 18 stations in 2009 and 19 stations from 2010 onward. The stations and the five monitored
volcanoes are shown in Figure 1. The seismic stations have three components, each one being equipped by
a CM-3 short period seismometer with a corner frequency of around 0.8 Hz. Continuous records are sampled
at 128 Hz, and only the vertical component is analyzed in this article.
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3. Volcanic Tremors Monitoring

Volcanic tremors are continuous phenomena that can last from a few hours to several months, as in the case
of the KVG which experienced very long volcanic tremors at Klyuchevskoy and Tolbachik during the studied
period. They have different natures (harmonic, monochromatic, banded, spasmodic, etc.) and might be gener-
ated by different mechanisms such as magma moving through narrow cracks, fragmentation and pulsation of
pressurized fluids within the volcano, or escape of pressurized steam and gases from fumaroles (Konstantinou
& Schlindwein, 2003). Volcanic tremors might be generated within different parts of volcanoes and might
characterize different types of volcanic activity. They can occur either during eruptions and are, therefore,
called eruptive tremor or before eruptions and are called noneruptive tremors (McNutt & Nishimura, 2008).
In many volcanoes, noneruptive volcanic tremors constitute an important attribute of volcanic unrest and
their detection and characterization is used for volcano monitoring and eruption forecasting (Chouet, 1996a;
McNutt, 1992).

3.1. Single-Station Approach
As many volcanological observatories do all over the world, the KBGS monitors volcanic tremors using a sim-
ple single-station approach. For example, stations LGN and KMN are used for Klyuchevskoy and Tolbachik
tremors, respectively (cf. Figure 1). This simple approach suffers from three main limitations. First, the tremor
monitoring of one volcano is no longer operational if one of those reference stations (LGN or KMN) breaks
down, which is often the case and it can take a long time to reestablish stations due to their locations in
remote areas. Second, the very irregular trace of electronic noise possibly emitted by sensors or by the trans-
mitting system can be confused with tremor signals. Third and most important, the use of a single station
does not permit to spatially localize the tremor origin and to distinguish different tremor sources in case of
simultaneous functioning. To overcome those limitations, network-based methods (or array-based methods)
can be used.

3.2. Network-Based Approach
Network-based seismic methods have been originally developed in mid-1960s with the installation of the
two first large-scale seismic arrays LASA (Frosch & Murray, 1966) and NORSAR (Bungum et al., 1971), in the
context of the monitoring of nuclear explosions. Indeed, benefiting from signals simultaneously registered
by many receivers, network-based seismic methods are able to detect and locate weak sources embedded
in the background noise. So far, small-aperture arrays have been used to determine the location of tremor
sources (e.g., Almendros et al., 1997; Goldstein & Chouet, 1994; Haney, 2010; Métaxian et al., 2002). Another
approach is using the Real-time Seismic Amplitude Method (Endo & Murray, 1991) simultaneously with sev-
eral receivers. However, it can be unstable in the presence of noise and it is therefore more efficient for
eruptive tremors, when the signal is stronger. Therefore, here we use a method based on the array covari-
ance matrix that enhances coherent signals within a network by reducing local noise. The method and its
application for the characterization of both eruptive and noneruptive volcanic tremors are described in the
following sections.

4. Method: Array Covariance Matrix Eigenvalues and Eigenvectors

The proposed method is based on the analysis of eigenvalues and eigenvectors of the seismic array covariance
matrix, of which estimation is detailed in section 4.1. First, following the approach developed by Seydoux,
Shapiro, de Rosny, Brenguier, and Landés (2016), the width of the covariance matrix eigenvalues distribution
is analyzed in section 4.2 to detect time periods with strong volcanic tremors. Such tremors have already
been evidenced with this method at the Piton de la Fournaise volcano in La Reunion Island, together with
other types of seismic sources from oceanic (microseismic noise) and tectonic (local, regional, and tele-
seismic earthquakes) origins (Seydoux, Shapiro, de Rosny, Brenguier, & Landés, 2016). In a next step, the
frequency-dependent first eigenvector of the covariance matrix is analyzed in section 4.3 considering that
this first eigenvector represents the principal component of the daily seismic wavefield and, for days with
tremor activity, characterizes the dominant tremor sources. Those first eigenvectors can therefore be used as
network-based fingerprints of tremor sources. This approach constitutes a generalization to the whole net-
work of the phase-matching detection algorithm derived on cross correlations of specific stations pairs by
Droznin et al. (2015). The focus of our study being on long-duration tremors and not on short transient events,
all inferences are obtained from daylong records.
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4.1. Array Covariance Matrix Definition
In the following analysis, we consider only vertical component records. Let us consider the array data vector
u(t) =

[
u1(t) u2(t) … uN(t)

]T
, where ui(t) is the seismic trace registered by the seismometer i and N the num-

ber of sensors (N = 18 in 2009 and N = 19 from 2010 onward in this article), and its Fourier transform in the
frequency domain u(f ) =

[
u1(f ) u2(f ) … uN(f )

]T
. From a mathematical point of view, the array covariance

matrix C(f ) is defined as the expected value of the cross-spectra product between u(f ) and its transposed
complex conjugate:

C(f ) = E
[
u(f ) u†(f )

]
, (1)

where E stands for the Expected Value and †denotes the Hermitian transpose (complex conjugate transpose).

When working with real data, the estimation of the array covariance matrix requires several steps. First, the
used seismic records must be preprocessed to enhance certain types of signals that are targeted in the anal-
ysis and to diminish a possible influence of “nondesired” signals. In a second step, interstation covariances of
preprocessed records are statistically estimated.
4.1.1. Preprocessing of Seismograms
In this study, we are interested in detecting volcanic tremors. Therefore, in the first step seismic traces are fil-
tered between 10−1 Hz and 101 Hz (we intentionally filter in a frequency band wider than the tremor spectral
band) and downsampled from 128 Hz to 25.6 Hz to accelerate computations. Instrument responses are not
removed because all sensors are identical. The next step of the preprocessing is the amplitude normaliza-
tion. The idea of this normalization is to emphasize the network-wide coherence of the wavefield formed by
long-duration tremors.

The simplest idea is to completely ignore the signal amplitude, as done in many applications based on cross
correlation of ambient seismic noise (Bensen et al., 2007). This approach, referenced as the “classical” nor-
malization in the following text, combines a spectral whitening and a temporal equalization of the signal
amplitude. The spectral whitening consists of smoothing the signal spectrum with a df -long running aver-
age. The temporal equalization consists of smoothing the temporal signal with a dt-long running average. We
used df = 0.33 Hz and dt = 1.25 s in this study.

The described classical normalization removes almost completely the amplitude information and is necessary
to reduce the influence of strong impulsive signals (earthquakes). This approach is appropriate when analyz-
ing the nearly continuous and stationary seismic tremors. However, in many cases the seismovolcanic tremors
are not fully stationary in time and rather represent sequences of many impulsive events. In this case, the
amplitude modulation of tremor signals contains useful information and it might be better to preserve it. At
the same time, this is still important to preprocess the records to diminish the influence of strong earthquakes
and of local noise. The solution is to normalize the signals with spectral whitening but without time equal-
ization. The idea is that the information about the time amplitude modulation of tremors remains preserved.
Since the normalization is achieved only with spectral whitening, this approach is referenced as “spectral”
normalization in the following text.
4.1.2. Daily Covariance Matrix
The array covariance matrix is estimated according to the method proposed by Seydoux, Shapiro, de Rosny,
Brenguier, and Landés (2016). Every filtered and downsampled trace is divided into time windows with
overlapping of 25% (windows overlapping ratio R = 1∕4) on which normalization (classical or spectral nor-
malization) is applied. Then, every preprocessed window is subdivided into M overlapping subwindows of
duration 𝛿t (subwindows overlapping ratio r = 1∕2), on which u(f )u†(f ) cross-spectra matrices are computed.
The array covariance matrix C(f ) is then statistically estimated on each window of duration Δt = M r 𝛿t as the
average of those cross-spectra matrices:

C(f ) = ⟨u(f ) u†(f )⟩Δ t =
1
M

M∑
m=1

um(f ) u†
m(f ) (2)

The methodology to choose optimal parameters M and 𝛿t is detailed in Seydoux, Shapiro, de Rosny, Brenguier,
and Landés (2016). The rank of the array covariance matrix is equal to the minimum between the number of
sensors N (N = 18 or 19 in this article) and the number of subwindows M (Seydoux, Shapiro, de Rosny, & Landès
2016). We use M = 50 in this article, to ensure the covariance matrix estimation to be statistically robust.
Likewise, the subwindows duration 𝛿t depends on the time scale of the phenomenon one wants to detect.
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Figure 2. (a) Spectral width of the array covariance matrix eigenvalues distribution for the spectral normalization and
the following parameters explained in the text: M = 50; r = 1∕2; 𝛿t = 1,000 s; Δt = M r 𝛿t = 25, 000 s; and R = 1∕4. This
method developed by Seydoux, Shapiro, de Rosny, Brenguier, and Landés (2016) is efficient to detect the volcanic
tremors at Klyuchevskoy (2009–2010) and Tolbachik (2013) but is not able to distinguish them. (b–g and i) Spectral
width and eigenvalues distribution corresponding to the central days of clusters derived in section 5. (h) Calm period of
seismic noise characterized by an high spectral width and a flat eigenvalues distribution.
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Figure 3. Matrix of correlation coefficients between all daily array covariance
matrix’s first eigenvector, for the spectral normalization. The correlation
matrix is obtained by stacking such matrices in the frequency band
1.0 − 2.0 Hz where volcanic tremors are the more energetic as it appears
on Figure 2. Correlation coefficients are here equal to the absolute value of
the complex scalar product between the first eigenvectors of two different
days normalized by their respective norm, according to equations (5) and (6).

In this study, we are interested in long-duration events and are not
very concerned by resolving short-time duration signals. Therefore, we
consider 𝛿t=1, 000 s, which is the optimal duration to detect both contin-
uous tremors and time-modulated sequences of many impulsive events
described in section 4.1.1. This duration results in a very detailed resolu-
tion in frequency and also insures that all possible simultaneously seismic
waves are contained within one subwindow. Those parameters result
in a window of duration Δt = M r 𝛿t = 50 × 1∕2 × 1, 000 = 25, 000 s.
One daily array covariance matrix is finally computed as the average of the
tday∕(Δt ×R) = 86, 400∕(25, 000×1∕4) = 13.8 array covariance matrices of
1 day. This daily array covariance matrix is called “array covariance matrix”
in the following text.

4.2. Array Covariance Matrix’s Eigenvalues—Detection of Tremors
The array covariance matrix is inherently Hermitian and positive semidefi-
nite (Seydoux, Shapiro, de Rosny, Brenguier, & Landés, 2016). Therefore, it
can be decomposed on the basis of its eigenvectors Vi (analyzed in section
4.3) associated with real positive eigenvalues. According to Seydoux,
Shapiro, de Rosny, Brenguier, and Landés (2016), the number of nonzero
eigenvalues is related to the number of incoherent signals composing
the wavefield and then of independent seismic sources. One localized
source generates an array covariance matrix of rank one, and the rank value
increases with the number of independent sources. This rank value could
therefore theoretically be used to detect the number of sources recorded
by the array.

However, real seismic data contain seismic noise (whose sources are multiple: hum, oceanic microseisms,
wind, anthropic activity, scatterers acting like secondary sources,… ) and electronic noise. It makes impos-
sible using the covariance matrix rank to directly infer the number of independent sources. To solve this
issue, Seydoux, Shapiro, de Rosny, Brenguier, and Landés (2016) introduced the scalar value of “spectral
width” defined as the width of the covariance matrix eigenvalues distribution (with eigenvalues sorted in
decreasing order):

𝜎(f ) =
∑N

i=1(i − 1) 𝜆i(f )∑N
i=1 𝜆i(f )

(3)

This spectral width can be seen as a proxy for the number of independent seismic sources. Thus, the spectral
width corresponding to ambient seismic noise produced by distributed noise sources is high, whereas the
spectral width of a signal spatially coherent at the network scale generated by a single localized source is low.

The approach based on the covariance matrix spectral width has been successfully applied by Seydoux,
Shapiro, de Rosny, Brenguier, and Landés (2016) to detect the 2010 volcanic tremor at the Piton de la Fournaise
volcano in La Reunion Island. Here we apply this method on the KVG data. The frequency-dependent spec-
tral width computed from daily covariance matrices during the studied period (4.5 years) is shown in Figure 2
for the spectral normalization. For comparison, the corresponding figure for classical normalization appears
in Figure S1 of the supporting information S1. Those figures are different from spectrograms of individual sta-
tions and can be seen as “spectrograms of the whole network.” The difference lies in the fact that spectrograms
computed from one station can be affected by local noise, while Figures 2 and S1 just emphasize signals that
are coherent across the whole network. Both figures clearly show three main long-duration episodes when
the spectral width was reduced: (1) in the beginning of 2009, (2) from the end of 2009 to the end of 2010, and
(3) from the end of 2012 to mid-2013. The two first episodes correspond to periods of strong noneruptive
tremors at Klyuchevskoy and the last one to a strong eruptive tremor at Tolbachik (Droznin et al., 2015).
This result confirms that the distribution of the network covariance matrix eigenvalues can be used to
detect strong volcanic tremors. In addition to this, many short episodes with elevated wavefield coherence
(decreases in the spectral width) are observed.

To overcome the limitation of this approach based on eigenvalues to distinguish different sources of volcanic
tremor, the section 4.3 focuses on the eigenvectors of the daily array covariance matrix. Particularly the first
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Figure 4. First step of the clustering process: creation of the initial clusters.
Example of creation of the first initial cluster for the spectral normalization.
(a) ndays-long moving window time stack of average correlation coefficients
CCk,l to obtain stacked average correlation coefficient CCk (black curve), and
the initial cluster central point (vertical red line). (b) Line of the matrix of
average correlation coefficients CCk,l corresponding to the initial cluster
central day determined in Figure 4a (black curve), to determine days forming
the initial cluster (green rectangles) according to a threshold (horizontal red
line). (c) Days corresponding to the found cluster are removed from the
average correlation coefficients matrix (equation (6) and Figure 3) before
continuing up to the determination of the nclus initial clusters.

eigenvector, with the hypothesis that it represents the principal compo-
nent of the daily seismic wavefield and, for days with tremor activity, it
characterizes the dominant tremor sources.

4.3. Array Covariance Matrix’s First Eigenvector—Classification
of Tremors
The array covariance matrix eigenvalues prove efficient to detect volcanic
tremors, but it has to be noticed that it is not sufficient to distinguish
different sources of tremor. So far, the distinction between Klyuchevskoy
and Tolbachik tremors has been inferred from a priori knowledge
(e.g., Droznin et al., 2015). A further step in characterizing tremors is to
analyze the eigenvectors of the covariance matrix. In particular, the first
eigenvector corresponding to the maximum eigenvalue represents the
principal component of the analyzed seismic wavefield and, for periods
with tremor activity, characterizes the dominant tremor source.

Let us consider a wavefield generated by a tremor source that remains at
the same location and with a constant source mechanism. In this case, the
elements Ci,j(f ) of the covariance matrix can be written as follows:

Ci,j(f ) = |S(f )|2Ps(ri, f )P∗
s (rj, f ) (4)

where |S(f )|2 is the tremor source power spectrum, asterisk stands for
conjugate, ri and rj are positions of corresponding stations, and terms Ps

describe the radiation from the tremor source to stations (convolution of
the source mechanism with the media Green’s functions). In the case of
a wavefield dominated by such a single tremor source, the first eigen-
vector of its covariance matrix at a given frequency will be very close to
Ps(f ) and can, therefore, be used as a network-based fingerprint of the
source position and mechanism, or in other words, of a particular type
of seismovolcanic activity. Following this idea, we compute daily network
covariance matrices and extract their first eigenvectors that are then used
to classify the volcanic tremor sources.
4.3.1. Measuring Similarity Between Covariance Matrix
Eigenvectors—Multifrequency Correlation Coefficients
We use correlation coefficient as a measure of similarity between first
eigenvectors from days k and l: V1

k(f ) and V1
l (f ). These latter being com-

plex, the correlation coefficient at frequency f , cck,l(f ), is computed as
the absolute value of the complex scalar product normalized by the
respective norms:

cck,l(f ) =
|V1

k(f ) ⋅ V1
l (f )|

‖V1
k(f )‖‖V1

l (f )‖
, (5)

where the complex scalar product of two complex vectors x and y is
defined as the inner product of x and y∗. We then compute average cor-
relation coefficients, as the average of the n correlation coefficients cck,l(f )
calculated at frequencies between 1.0 Hz and 2.0 Hz (typical spectral band
of volcanic tremors):

CCk,l =
1
n

f=2Hz∑
f=1Hz

cck,l(f ) (6)

An ensemble of such average correlation coefficients computed between all days during the considered
period forms a large matrix shown in Figure 3 for the spectral normalization. For comparison, the correspond-
ing figure for classical normalization appears in Figure S2 of the supporting information S1. This matrix has a
specific structure and reveals several periods of elevated similarity between consecutive days, implying that
the dominating tremor source remained stable during these periods. In the following section, we describe
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Figure 5. Time-time representation of the seven first clusters, associated with volcanic activity, of the nclus = 10 clusters
determined by the clustering process for two different normalizations. Similar clusters obtained by the two different
normalizations are colored with the same color, and clusters obtained by only one normalization are colored in gray
(cf. Table 1). (a) Spectral normalization. (b) Classical normalization (spectral whitening and temporal equalization).

how the interday correlation coefficients can be used to automatically identify with a clustering algorithm the
periods when similar tremor sources were acting.
4.3.2. Clustering of Tremor Sources
The clustering process works in two steps: the first step is the creation of the initial clusters, and the second
step entails their iterative resorting to obtain the final clusters.

Step 1. The different stages of the first step of creation of the initial clusters, which are disjointed in terms of
days, are detailed in Figure 4 for the case of spectral normalization. First, the average correlation coefficients
CCk,l (equation (6) and Figure 3) are stacked in time through a ndays-long moving window, to obtain stacked
average correlation coefficients of day k, CCk (black curve in Figure 4a). The duration of the stacking mov-
ing window is chosen equal to 20 days (ndays = 20), which approximately corresponds to the lower limit of
duration of tremor episodes that we want to classify:

CCk =
l=k+10 days∑
l=k−10 days

CCk,l (7)

The maximum of this time stack determines the initial cluster central point (vertical red line in Figure 4a). Then
the line (or column) of the matrix of average correlation coefficients corresponding to this initial central day
is considered (black curve in Figure 4b), and only the days presenting a correlation higher than a threshold scc

(horizontal red line in Figure 4b) are kept in the cluster (green rectangles in Figure 4b). Days corresponding
to the found cluster are then removed from the average correlation coefficients matrix (Figure 4c), and the
process is continued up to the determination of the nclus initial clusters.

Step 2. Once the nclus initial clusters are created, the second step of their resorting is realized in an iterative way.
For each iteration, the resorting contains two stages. First, the central day of each of the nclus initial clusters
is redetermined by time stacking the average correlation coefficients CCk,l not any more through a ndays-long
moving window, but through a window containing only the days of the concerned cluster. Second, each day of
the studied period (between January 2009 and June 2013) is compared to the nclus cluster’s redefined central
days and placed in the cluster where the correlation is the highest. With the parameters fband = (1.0–2.0) Hz,
nclus = 10, ndays = 20, and scc = 30% used in this article, three iterations are needed for this iterative process
to converge, in the sense that the nclus cluster’s redefined central days are no more changing between two
consecutive iterations.
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Figure 6. Time-frequency representation of the seven first clusters, associated with volcanic activity, of the nclus = 10
clusters for the spectral normalization. The color represents the degree of correlation (projection in the sense of complex
scalar product) of the characteristic eigenvectors (white lines) on the array covariance matrix’s first eigenvector at every
day and every frequency. Cluster CS

1 is related to the Klyuchevskoy volcano which was very active in 2009 and 2010, with
an increase of activity leading to a summit eruption in October 2010 corresponding to cluster CS

3. Cluster CS
2 is clearly

associated with the Tolbachik volcano which experienced an important volcanic tremor from December 2012 when all
the other volcanoes were quite quiet. Cluster CS

4 is related to the Shiveluch volcano that was very active during quasi all
the studied time period, with a peak of activity characterized by really dense series of long-period events at the
beginning of 2009. And clusters CS

5, CS
6, and CS

7 are associated with the Kizimen volcano.

5. Results: Detection and Classification of Volcanic Tremor Sources

We apply the clustering algorithm described in the previous section to the daily eigenvectors of network
covariance matrices computed from the records after the classical and spectral normalizations to obtain two
sets of 10 clusters. The first seven clusters, possibly related to seismovolcanic activity, are shown in Figure 5
for the spectral and classical normalizations. For simplicity, in the following text we name clusters as CC

K
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Figure 7. Identical to Figure 6 but for preprocessing corresponding to classical normalization. The order of the clusters
has been modified for an easier comparison with Figure 6 (cf. Table 1). Here cluster CC

1 is associated with the Tolbachik
volcano which experienced an important volcanic tremor from December 2012 when all the other volcanoes were quite
quiet. Cluster CC

2 is related to the Klyuchevskoy volcano which was very active in 2009 and 2010, with an increase of
activity leading to a summit eruption in October 2010 corresponding to cluster CC

5 . Clusters CC
4 , CC

6 , and CC
7 are

associated with the Kizimen volcano.

and CS
K , where superscripted letters C and S correspond to the classical and spectral normalizations and K

indicates the respective cluster number.

Each cluster central day, iteratively determined as described in section 4.3.2, corresponds to the most char-
acteristic first eigenvector of each cluster. Those characteristic eigenvectors can be used as fingerprints for
the matching detection of tremor sources, comparing them with the daily eigenvectors from the continu-
ous records. Figures 6 and 7 show the projection (complex scalar product) in the time-frequency domain
of the array covariance matrix’s first eigenvector at every day and every frequency onto those characteris-
tic eigenvectors (white lines in Figures 6 and 7), respectively for spectral and classical normalization. This
representation shows the time and frequency extent of each classified tremor source.
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Table 1
Summary of Covariance Matrix Eigenvector Clusters Corresponding to the Seismovolcanic Sources

Spectral Classical

Cluster Date Cluster Date Origin

CS
1 2010/01/13 CC

2 2010/01/23 Klyuchevskoy

CS
2 2013/03/13 CC

1 2013/02/19 Tolbachik

CS
3 2010/09/18 CC

5 2010/09/19 Klyuchevskoy

CS
4 2009/03/20 - - Shiveluch

CS
5 2011/09/10 CC

4 2011/09/13 Kizimen

CS
6 2010/12/17 CC

6 2011/01/01 Kizimen

CS
7 2011/05/24 CC

7 2011/05/23 Kizimen

- - CC
3 2012/01/24 -

Note. Clusters obtained after the spectral and classical normalizations are shown in left and right
columns, respectively. Each line shows clusters corresponding to similar source (origin).

First, we note that most of the clusters obtained by the two different data preprocessing methods are very
similar, even if their respective order is not the same. The similarity between these clusters is summarized
in Table 1. The first three clusters in Table 1 are clearly related to the activity of Klyuchevskoy and Tolbachik
volcanoes already detected with the covariance matrix spectral width analysis (Figures 2 and S1). The spatial
origin of tremors forming these clusters is based on a priori knowledge from Droznin et al. (2015) about the
activity periods of those two volcanoes.

Another approach is directly using the moveout information contained in the covariance matrix eigenvectors.
According to equation (4), the first eigenvector approximately corresponds to the wavefield emitted by the
dominating tremor source at a given frequency. For each one of the ensemble of such first eigenvectors cor-
responding to the central day of each cluster, we compute the outer product at frequencies within the tremor
frequency band (1–2 Hz)

C1
i,j(f ) = V1

i (f )V
1∗
j (f ), (8)

and take the inverse Fourier transform to estimate the time cross-correlation function corresponding to this
first eigenvector (i.e., to the dominant tremor source at the central date of the considered cluster). Seismic
waves are expected to propagate with some average velocity from the tremor source. Therefore, in cross
correlations we expect the arrival time of maximal amplitude to approximately align with difference in dis-
tances between the respective stations and the source location (Ballmer et al., 2013). This property can be
used to test different possible source locations. If the tested location is elected close to the correct one, the
maximal amplitudes in the cross-correlation waveforms are expected to align with respect to the distance
difference. Such a test for clusters CS

2 (13 March 2013) is illustrated in Figure 8. It clearly shows that a good align-
ment is obtained when selecting a correct reference source location, that is, the Tolbachik volcanic edifice,
and conversely an incorrect source location at station SRD (positioned at the north-west of the network cf.
Figure 1) leads to a bad alignment. Similar figures corresponding to clusters CS

1 and CS
3 related to Klyuchevskoy

volcano appear in supporting information S1 as Figures S3 and S4.

An interesting result is that tremor activity at Klyuchevskoy is clearly separated in two clusters. Cluster CS
1

(13 January 2010) can be classified as noneruptive tremor (McNutt & Nishimura, 2008) and cluster CS
3

(18 September 2010) corresponds to most energetic eruptive final phase. This implies that the source of dom-
inating tremor was modified getting closer to the eruption. Possible explanation of this modification is either
that the tremor-generating activity migrated toward the surface getting closer to the eruption or that the
parameters of the tremor-generating process changed.

A part the activity of Klyuchevskoy and Tolbachik, our method detected several clusters during periods
when these volcanoes were not erupting. The cross-correlation moveout analysis illustrated in supporting
information S1 shows that signals corresponding to clusters CS

5, CS
6, and CS

7 originate from the Kizimen vol-
cano that was erupting starting in December 2010 and till the end of 2013 (Figures S6–S8). Seismic activity
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Figure 8. Comparison of cross correlations of cluster CS
2 (13 March 2013) plotted against differential distance of station

pairs to a localized source, for two different source positions. (left) Tremor source located in Tolbachik. (right) Source
located at station SRD positioned at the north-west of the network (cf. Figure 1). Only the good source location
(left case) shows an alignment of cross-correlations characteristics of a localized source.

associated with this long eruption was very irregular (Firstov & Shakirova, 2014). The initiation of the eruption
in December 2010 was accompanied by a very intense seismic crisis with most of events located within the vol-
canic edifice. This crisis is likely detected by our method as cluster CS

6 (17 December 2010). An example of daily
seismogram recorded during this crisis is shown in Figure 9c. Several episodes of very frequent long-period
earthquakes sometimes called as “drumbeats” occurred in Kizimen in 2011–2012 (Firstov & Shakirova, 2014).
Two strongest periods of this drumbeats correspond to clusters CS

5 (10 September 2011) and CS
7 (24 May 2011),

as illustrated with seismograms recorded at station KZV (the closest to Kizimen) in Figures 9b–9d.

Finally, the cross-correlation moveout analysis shows that cluster CS
4 (20 March 2009) originated from

Shiveluch (Figure S5 in the supporting information S1). A close look at seismograms from closely located
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Figure 9. Raw seismic vertical traces for the central day of different clusters (for the spectral normalization) at stations
located close to the volcanoes of the studied area (cf. Figure 1 for the precise location of stations). (a) Traces of stations
SMK, BDR, and SRK located close to the Shiveluch volcano for the central day of cluster CS

4 (20 March 2009). (b) Trace
of station KZV located close to the Kizimen volcano for the central day of cluster CS

5 (10 September 2011). (c) Trace of
station KZV located close to the Kizimen volcano corresponding to 6 days before the central day of cluster CS

6
(11 Decmber 2010). (d) Trace of station KZV located close to the Kizimen volcano for the central day of cluster CS

7
(24 May 2011).

stations (Figure 9a) shows that this cluster corresponds to an episode of frequent long-period earthquakes
at Shiveluch similar to those at Kizimen that produced clusters CS

5 and CS
7. This cluster has been only detected

with using the spectral normalization. The contribution of this sequence of long-period events on the covari-
ance matrix was almost removed when applying the temporal equalization of seismograms in the classical
preprocessing. The reason is that the seismovolcanic signal emitted from Shiveluch are not continuous in time
with the long-period earthquakes separated by 1 or 2 min of noise. In this case, temporal equalization of the
signal amplitude results in the dominant contribution of the noise in the covariances. This example shows that
the data preprocessing without temporal equalization might be more adequate for the detection of tremors
based on interstation covariances (cross correlations).

6. Discussion and Conclusions

The results presented in this study show that the analysis based on the network covariance matrix can be
successfully used to detect and to classify seismovolcanic tremors. The distribution of eigenvalues of this
matrix can be used to detect the episodes of strongest tremor activity. More advanced analysis of the covari-
ance matrix eigenvectors detects weaker signals even from sources located on the periphery of the seismic
network, as in the case of Kizimen and Shiveluch volcanoes.

The results of the analysis depend on the type of normalization used for preprocessing (classical or spectral
normalization) and on the choice of the parameters used for the covariance matrix computing (the number
of subwindows M and their duration 𝛿t) and in the clustering algorithm (the frequency band for stacking
correlation coefficients matrices fband, the number of searched clusters nclus, the length of summing moving
windows ndays, and the cluster’s correlation threshold scc). These parameters can be chosen in order to empha-
size certain type of signals and based on the properties of the used seismic network. In this paper, we focused
on detection of relatively long episodes of tremors in a frequency range between 1 and 2 Hz, typical for the
Klyuchevskoy volcano group. Therefore, we analyzed the covariance matrices computed from daylong time
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series. The time resolution of the analysis could be significantly enhanced with using shorter time windows.
This could be useful when focusing on details of individual tremor episodes, which is out of scope of the
present work.

The choice of the number of searched clusters nclus depends on the potential number of detected sources. In
this study of the volcanic system of the KVG with several erupting volcano and several episodes of activity,
we used a relatively high number (nclus = 10) and retrieved seven separate clusters of seismovolcanic activ-
ity. In many other volcanic systems, the possible number of existing sources might be not as large as in the
Klyuchevskoy volcanic group and in such cases this could be preferable to use smaller values of nclus in order
to make the detection more robust. The choice of the length of summing moving windows ndays depends of
the lower limit of duration on events that one wants to classify. We used ndays = 20 because it corresponds
to the shortest duration of long-period seismic events that occurred in the KVG during the time period of the
study. Choosing a smaller length ndays has no influence on the detected clusters but on the order on which
they appear. But choosing a length ndays too high results in loosing shortest clusters.

A very important aspect of the developed method is that, once all parameters selected, the data analysis
and following detection and classification of sources becomes fully automatic without need of additional
a priori information. Therefore, our method belongs to the family of machine learning methods. The algo-
rithm includes three main steps of machine learning-based signal analysis: (1) data preprocessing, (2) feature
extraction (characteristic first eigenvectors), and (3) learning (clustering) (Goodfellow et al., 2016). The main
difference of our method comparing to previous implementations of the machine learning for the analysis of
the seismovolcanic signals is that we extract “features” not from single-component signals but from an ensem-
ble of records by a network of stations. We use as signal features the eigenvectors of the networks covariance
matrix. The advantage of such features is that these eigenvectors contain an information about the location
and the mechanism of the dominating tremor source (equation (4)).

More exactly, the additional information from the network (comparing to scalar signal properties) is contained
in the phase of the interstation covariances which is related to a combination of the moveout of waves travel-
ing from the tremor source, and of the source mechanism. Therefore, an ensemble of these covariances from
a network could be also used as a feature for future classification. However, the dimension of this object is sig-
nificantly larger than the dimensions of the eigenvectors, which make the following classification less robust.
In addition, determination of the first covariance matrix eigenvector is an additional step in signal processing
that extracts the main component of the recorded wavefield corresponding to the dominant source. Figure 10
shows a comparison of time cross-correlations obtained from inverse Fourier transforms of a full covariance
matrix with those estimated from the first eigenvector (equation (8)) during the centroid date of cluster CS

2.
We can see that with using the first eigenvector instead of the whole matrix, we remove some noise at differ-
ential distances above 50 km. As a result, cross correlations obtained from the first eigenvector reflect slightly
better the propagation from the dominant source (Tolbachik volcano).

With the described method, we detected seven separate episodes with different sources corresponding to
tremor activity at four volcanoes: Klyuchevskoy, Tolbachik, Kizimen, and Shiveluch. While some of these
sources have been previously described in the literature, the burst of long-period events at Shiveluch (cluster
CS

4) is reported for the first time here. Future studies of volcanic tremors at volcanoes of the Klyuchevskoy
group might focus on details of individual tremor episodes with applying the analysis with a better time reso-
lution. The periods when more than one volcano emitted tremors simultaneously might be particularly inter-
esting and challenging for the analysis. This could possibly occur in 2010, when Klyuchevskoy and Shiveluch
were simultaneously active and in 2012 when some activity at Klyuchevskoy continued during the Tolbachik
eruption. Separation of such simultaneous tremor sources might require that additional eigenvectors of the
network covariance matrix be analyzed. Another option could be to include horizontal components in the
analysis in order to bring polarization constraint in the classification process (Vidale, 1986).

The detection and classification of volcanic tremors is also important for improving the noise-based imag-
ing and monitoring of the Klyuchevskoy group of volcanoes. Previous studies (e.g., Droznina et al., 2017)
have shown that using standard data preprocessing used in the noise-based seismology (Bensen et al., 2007),
the stable noise cross correlations could not be extracted at frequencies higher than 0.5 Hz because of the
“contamination” with tremor signals. More advanced data preprocessing might include two additional steps.
First, we can select for analysis only “calm” periods without tremor when simple noise-based techniques
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Figure 10. Comparison of cross correlations of cluster CS
2 (13 March 2013) obtained from the first eigenvector (left) or

from the full covariance matrix (right). (top) Individual cross correlations. (bottom) Two-dimensional interpolated cross
correlations corresponding to the smoothed envelope of the individual cross correlations linearly interpolated.
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can be directly applied. A second and potentially more powerful step would be filtering out the detected
tremors with the network-based approach proposed by Seydoux et al. (2017) to expand the periods on which
noise-based tomography and monitoring could be realized.
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