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Abstract

Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to
characterize previously detected exoplanets and potentially discover exomoons. In order to optimize search
strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal
evolution of hypothetical moon orbits in systems consisting of a star, one planet, and one test moon. We study a
few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these
three scenarios: (1) “locking,” in which the moon has a stable orbit on a long timescale (109 yr); (2) “escape
scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario,” in which the
moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces. Applying the
model to real cases from an exoplanet catalog, we study the long-term stability of moon orbits around known
exoplanets. We calculate the survival rate which is the fraction of the investigated cases when the moon survived
around the planet for the full integration time (which is the age of the star, or if not known, then the age of the Sun).
The most important factor determining the long-term survival of an exomoon is the orbital period of the planet. For
the majority of the close-in planets (<10 days orbital periods) there is no stable orbit for moons. Between 10 and
300 days we find a transition in survival rate from about zero to 70%. Our results give a possible explanation for
the lack of successful exomoon discoveries for close-in planets. Tidal instability causes moons to escape or being
tidally disrupted around close-in planets which are mostly favored by current detection techniques.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet dynamics (490); Tidal interaction (1699)

1. Introduction

Regular moons are predicted to form generally in planetary
systems, as a direct outcome of planet formation. During the
core-accretion, gravitational perturbations between planet
embryos imply a series of constructive impacts up to the
formation of a fully grown planet (Nagasawa et al. 2007).
This phase may happen between a few Myr to a few 100 Myr
after the star formation (see e.g., Chambers & Wetherill 1998),
and in these processes, satellites may form around the
growing planets. Such giant impacts are advocated for
the formation of the Earth’s Moon (Canup 2004) and for
the formation of Uranus and Neptune’s satellites (Morbidelli
et al. 2012). Satellites may also be formed in rings, which
could be natural outcomes of giant impacts or tidal
disruptions, either in the planet formation phase or later in a

relaxed planetary system (see e.g., Charnoz et al. 2009;
Canup 2012; Crida & Charnoz 2012).
An alternative scenario invokes the accretion of moons in

the gaseous circumplanetary envelopes that surround the most
massive giant planets during their growth in the gaseous
protoplanetary disks (see e.g., Canup & Ward 2006; Sasaki
et al. 2010; Miguel & Ida 2016). Inside the circumplanetary
disk, the solid material is replenished by the surrounding
protoplanetary disk. This solid material is thought to accrete
in the form of large satellites in a way similar to planets. Then
the young satellites migrate inward and sometimes sink into
the planet. When the circumplanetary disk disappears, the
satellite system remains and then undergoes long-term tidal
evolution.
After the planets have been formed, the orbits of moons

evolve due to the planet’s tides. Tidal forces lead to the
dissipation of energy. On the one hand, this usually results in the
gradual expansion of the moon’s orbits, if the evolution starts
outside the planet’s synchronous radius. (A synchronous orbit is
where the moon’s orbital period is equal to the planet’s rotational
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period.) On the other hand, moons inside the synchronous orbit
will migrate inwards and can reach the planet’s Roche limit
where the moons are disrupted by tidal forces.

The timescale of orbital evolution depends mainly on the
intensity of dissipation in the planet’s interior, which relies on
the material composition and internal structure of the planet.
The dissipation coefficient also varies with the changing planet
radius (for gas-rich planets Recent papers attempting to
compute the quality factor, Q, (also known as tidal dissipation)
show that Q could even be frequency dependent, and thus may
strongly depend on the orbital distance (see e.g., Ogilvie &
Lin 2004). However, in the current stage of our knowledge, the
large uncertainties in the origin of the dissipation process and in
the internal structure of detected exoplanets preclude any
theoretical calculation of Q for a specific planet. For this
reason, in the present paper, a classical approach is adopted
where Q will be considered as a constant, and many values will
be explored. The dissipation scales as Q−1 and we can assume
it to be in a steady-state when exploring those scenarios which
lead to moons on the long-term stability. For rocky planets, Q
is low and the dissipation is high (Q∼ 10–100), conversely for
giant planets Q is high (∼104–105) and dissipation is low
(Goldreich & Soter 1966; Alvarado-Montes et al. 2017).

The quest for exomoon discovery is a challenging task in
itself, and upon finding an exomoon we could empirically
constrain the Q value of the host planet by considering
the planetary distance and the age of the star. This will
provide invaluable information about the exoplanet interior,
too, since high/low dissipation rates may depend on the
planet core and interface with mantle (Lainey et al. 2012;
Remus et al. 2012).

Recently, Alvarado-Montes et al. (2017) investigated the
orbital changes of exomoons around close-in giant planets due
to tidal effects. In addition to the tidal evolution, they
implemented the changes of the giant planet’s physical
parameters into the model. The radius of the planet decreases
over time, and this change is most prominent in the first billion
years after the formation of the planet. The value of k2/Q
slowly increases, which also has an impact on the orbital
evolution of the moon.

Probably the most intriguing question concerning the moons
is the lack of a firmly confirmed moon in exoplanetary systems.
Before novel observation projects are designed for exomoon
detection, first we need to find the answer to the question of
where the exomoons would be. Did we use suboptimal signal
detection strategies, or did we simply look for moons in
systems where their existence is not too likely? This latter
possibility is the central question of this paper.

Barnes & O’Brien (2002) showed that exomoons are more
stable at longer planetary orbital periods, and also that the orbit
of exomoons can tidally evolve first outward and then inward

(toward the planet) as the planetary rotation slows due to tidal
interaction with the star. Heller (2012) studied the orbital
stability of habitable moons using the method of Kipping
(2009) and it was found that for stars of masses below≈0.2Me,
moons are not likely to stay on stable orbits around planets
which are in the habitable zone. Later Zollinger et al. (2017)
showed that for planets in the habitable zones of0.5Me stars,
the orbit of moons is not stable as they migrate toward the
planet.
Here we investigate the evolution of hypothetical satellites

orbiting the currently known exoplanets with numerical integra-
tion, under the influence of tidal interaction. We map a wide range
of parameters, including planet periods, moon to planet mass
ratios, and k2/Q. Instead of studying a few cases in large detail
and with high accuracy, which would be meaningless due to our
lack of knowledge on both the physical origin of tidal dissipation
and on the planet’s internal structure, we are more interested in the
statistical survival rate of moons. In order to investigate a large
range of configurations over billions of years of evolution, we
used the average description of Barnes & O’Brien (2002) which
are formulated in Equations (1)–(3) (Section 2). We apply this
method to identify different evolutionary pathways of moons
(Section 3) and then we calculate survival rates of hypothetical
moons around known exoplanets with the aim of pointing out
specific planets as observation targets that might have satellites
(Section 4 and the supplementary data).
Independently of our work, Sucerquia et al. (2019) used

similar methods to investigate the orbit stability of exomoons
around close-in planets, and estimated their detectability
through TDV and TTV effects. Guimaraes & Valio (2018)
had a similar goal with a focus on the photometric detectability
of hypothetical moons around Kepler planets. They selected 54
planets that could possibly host observable moons. Although
we also list planets with survival rates for moons, we focus our
investigations on survival statistics.

2. Methods

2.1. Orbital Evolution of Satellites

We calculate the orbital evolution of the planet and the moon
from the following equations (Barnes & O’Brien 2002; Sasaki
et al. 2012).
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where nm and np are the mean motions of the moon and the
planet, k2p is the second-order Love number of the planet which
relates to the dilatation due to tidal response, Qp is the quality
factor of the planet which describes the dissipation of energy in
the body, G is the gravitational constant, Rp is the radius of the
planet, Mm, Mp and Må are the masses of the moon, the planet,
and the host star, respectively, Ωp is the rotation frequency of
the planet, and α is the prefactor of the moment of inertia
(αMpR

2). Circular orbits are assumed for both the planets and
the satellites.

Since Equations (1) and (2) have the form of =y C y p

(where y is either nm or np, p is the exponent of 16/3 while C
contains all of the astrophysical constants) and Equation (3) can
directly be integrated once the time evolution of nm and np are
known, this set of equations can be solved analytically on the
domains until nm, np or Ωp do not surpass each other; in this
case, the presence of the ()sgn function would not allow the
fully analytical solution. We, therefore, implemented the
solution in a piecewise-analytical manner, monitoring the sign
changes in the differences between nm, np or Ωp while in the
distinct pieces, the exact solution is evaluated. Thus, besides
the vicinity of the points where the signs commute, the solution
does not even depend on this stepsize, allowing us to highly
speed up the computations.

For calculating the survival rate of moons around known
exoplanets, we let the orbits of the planet and the moon evolve
until the current age of the star, or if it is not known then until the
age of the Sun (4.57 Gyr). We solve the equations analytically
with fixed time steps to monitor whether the moon reaches the
Roche lobe of the planet or the critical distance (half of the Hill
sphere). In these cases, the integration ends because the moon is
considered to be lost either because of tidal disruption or escape
from the planet’s gravitational bond (for the latter case see
Domingos et al. 2006). The critical distance is calculated
by ( ( ))/ /= = R R a M M0.5 0.5 3crit Hill p p

1 3.
If at the end of the calculation the moon is still orbiting the

planet, then it is counted as a “survival” case.

2.2. Parameters used for the Integrations

Stellar mass (Må), planet mass (Mp), semimajor axis (ap) and
radius of the planet (Rp) were taken from The Extrasolar Planets
Encyclopaedia (http://exoplanet.eu, data obtained on 2021 March
25). Only those planets are considered where the Mp or the

·M isinp or the Rp value is known (at least one of them). Planets
with higher masses than 13 Jupiter mass are ignored as well as
those withMå< 0.08Me. In addition, the selected planets also had

to have either the orbital period (Pp) or the semimajor axis data.
After this selection 4064 planets remained.
For both the radius and mass (or ·M isinp if Mp is not given)

of the planet, the uncertainties were taken into account wherever
possible. If there was no uncertainty in the data, then simply the
given mass or radius was used. If there was a symmetric
uncertainty given, then the mass or radius values were generated
by choosing a random value with a Gauss distribution. The
symmetry was determined with the same method as described in
Chen & Kipping (2017, Section 2.2) where the difference
between the upper and lower errors must be below 10%. For these
symmetric cases, the mean of these two values was taken as the
standard deviation of the data. If the difference was higher than
10%, then the errors were ignored and simply the mean value was
used. We applied exactly the same method for those planets where
only the ·M isinp value was known, not the real mass. In these
cases, the error of ·M isinp was taken into account wherever
possible. This way we could generate realistic data for all planets,
taking into account the uncertainties in the measurements.
There are 1007 cases (out of 4064) where both the radius and

the mass (Mp or ·M isinp ) of the planet are known. For all the
other planets, the Forecaster model was used for generating
realistic values for the missing parameter (Chen & Kipping
2017). This tool predicts the mass (or radius) of the planet
based on the radius (or mass). As an input, the generated
(above-mentioned Gauss distributed) mass (or radius) values
were used as posteriors. This way, for each run the planet had a
different mass or radius, or both (if the original data had
symmetric errors).
See the following description of the defined ranges and

distribution of the chosen random values for the rest of the
(initial) parameters.

1. Mass of the moon: The mass of the hypothetical moons is
selected randomly with a uniform distribution between
1% and 10% of the host planet’s mass, for each planet.

2. Semimajor axis of the moon: The initial semimajor axis
of the moon is chosen randomly with a uniform
distribution on a logarithmic scale between 2 Rp and
Rcrit.

3. Radius of the moon: Estimating the radius of exomoons is
very challenging because only the solar system serves as
an example. We choose to define it through their densities
(ρm) using their mass which is already chosen. Based on
the big moons (radius >200 km) in the solar system, we
define three categories depending on the locations with
respect to the snowline (asnow). This is because beyond
the snowline there are icier, hence less dense bodies
in the solar system. The snowline is calculated as

·= a T R Tsnow eff
2

0
2 where Teff is the effective temper-

ature of the star and T0≈ 230 K is the equilibrium
temperature at the planets sub-stellar point (Cowan &
Agol 2011). A fourth category is also given for those

3

Publications of the Astronomical Society of the Pacific, 133:094401 (10pp), 2021 September Dobos et al.

http://exoplanet.eu


cases when Teff or Rå is not known, hence asnow cannot be
calculated. The ρm values are selected randomly with a
Gauss distribution with the following parameters.
(a) If ap< asnow: the mean value of ρm is 3 g cm−3,

σ= 1/3 g cm−3.
(b) If asnow� ap< 2 asnow: the mean value of ρm is

2.5 g cm−3, σ= 1/3 g cm−3.
(c) If 2 asnow� ap: the mean value of ρm is 2.5 g cm−3,

σ= 1/6 g cm−3.
(d) If asnow is not known: the mean value of ρm is

2.5 g cm−3, σ= 1/2 g cm−3.
4. Rotation period of the planet: In the solar system the

planet that has the slowest spin around its axis is Jupiter
with 9.9 hr. Scholz et al. (2018) define an empirical spin–
mass relation for planets and brown dwarfs. According to
their work, the spin velocity scales as ~v M , and from
this relation it can be concluded that the spin period does
not exceed 5 days even for brown dwarfs. (Spin–orbit
resonances are not taken into account.) Based on this
information and considering possible deviations, we set
the spin period to a random value with a uniform
distribution between 10 hr and 5 days.

5. Quality factor of the planet: For the quality factor (Qp)
three categories are defined.
(a) Rocky planets if Rp< 2R⊕: 10< Qp< 500 (Goldreich

& Soter 1966). Since lower values are more probable,
the distribution of the randomly chosen Qp value is
uniform on a logarithmic scale.

(b) Ice/gas giants if Rp� 2R⊕ and Pp> 10 days:
103<Qp< 106 (Goldreich & Soter 1966; Ogilvie &
Lin 2004; Lainey et al. 2012, 2017). For these planets
intermediate values are the most probable in this
range, hence Qp values are chosen with a log-normal
distribution with a mean of Qp= 104.5 and σ= 100.5.

(c) Hot Jupiters if Rp� 2R⊕ and Pp� 10 days: Qp∼
5× 106 (Ogilvie & Lin 2004). We do not have much
information on the possible Qp value of these planets,
hence we use a Gauss distribution with Qp= 5× 106

as the mean value and σ= 2× 106.

Qp is a critical parameter, as it controls the tidal evolution of
the planet, however, its value is very poorly constrained, and,
in the current state of our knowledge, it could vary by several
orders of magnitudes even for similar planets (Remus et al.
2012). For the giant planets in the solar system, Q is mostly
constrained by the secular acceleration of a big moon orbiting
relatively close to the planet and also by theoretical considera-
tions. For these planets, Q is estimated to be in the range
of 104–105 (see e.g., Goldreich & Soter 1966; Ogilvie &
Lin 2004; Lainey et al. 2009). However, if Q is not treated as a
constant but as a function of the tidal frequency, then we obtain
much lower values for Saturn with Q about 2500 (Lainey et al.
2012, 2017). Q is mostly unknown for ice giants like Uranus

and Neptune, but theoretical considerations put them in the
range>104 (Goldreich & Soter 1966). However, this estimate
is based on some unconstrained assumptions on the moon
formation scenarios and ages. There is also a more recent
estimation for Neptune which puts the Q value between 9000
and 36,000 (Zhang & Hamilton 2008).
Conversely, the Q of terrestrial planets is very low, in

comparison to gas giants, and is typically between ten and a
few hundreds (see e.g., MacDonald 1964; Goldreich &
Soter 1966; Smith & Born 1976; Ray et al. 2001; Rainey &
Aharonson 2006; Lainey et al. 2007). The Q for these planets is
better constrained because of the possibility of laboratory tests
of rocks (where possible). While Q might go up to 500 for
rocky planets, it is typically below 200 in the solar system.
It is highly challenging to draw conclusions about the

possible Q value of exoplanets. It seems reasonable to assume
that rocky planets have similar values as in the solar system.
We can also speculate that maybe the Q of giant planets is in
the same order of magnitude as their solar system counterparts,
however, theoretically, with low-density ice-rich cores, Q in the
range of a few hundreds would also be possible for a Saturn-
like planet (Lainey et al. 2017). In hot Jupiters, because of the
assumed synchronous spin and circularized orbit, Q might be
around 5× 106 (Ogilvie & Lin 2004).
The Love number k2 varies modestly from one planet to

another in the solar system but is between 0.1 and 0.6 (Gavrilov
& Zharkov 1977). We choose k2p= 0.5. However, k2 never
appears alone, but only in k2/Q. So we fix the value of k2 and
vary the value of Q to save a free degree of liberty that would
lengthen the computation time.
For the same reason, the parameter used for calculating the

gyration radius is also fixed to α= 0.3. It is expected that planets
with different compositions and structures have different gyration
radii, but by keeping α fixed, a free parameter is removed.
For each planet, ten thousand runs are made to get a wide

sample of the different initial parameters. What we call the
“survival rate” is simply the ratio of surviving moons (those
that stayed in orbit around the planet until the end of the
integration) and the total number of tested configurations.
For a few example cases, the parameters of the planet and the

moon are set to specific values which are described in detail in
Section 3.

3. Example Cases

In the example cases (see Figures 1 and 2), the system
configuration consists of a Solar-mass star with an Earth-like
planet and a moon that has a different mass in the different cases.
The quality factor of the planet is Qp= 10 in all cases. The initial
parameters used for the different runs are summarized in Table 1.
Note that the time shown in the horizontal axis is significantly
shorter in Figure 1 (where it ends at 5× 106 yr) than in Figure 2
(where it ends at 1010 yr).
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3.1. Evolution Outcomes

In the integrations, the moon has been observed to follow
three different families of evolutionary tracks, and depending
on the actual parameter set, all of these three tracks can evolve
rapidly, resulting in an unstable system, or the evolution can be
slow enough to lead to a surviving moon. Both the morphology
and the stability depend on the position of the Hill sphere, thus
eventually, on the masses and orbital periods of both the planet
and the moon, the stellar mass, and Qp.

3.1.1. Disruption Scenario

When the planet is close enough to the star, the tidal torque
on the planet from the star very effectively spins down the
planet. The tidal bulge is shifted slightly toward the trailing
side of the moon’s orbit, the moon quickly loses energy, spirals
inward, and is disrupted at the Roche lobe. The timescale of
this migration is very short (in the order of 1–200 million years,

mostly depending on the stellar distance and on the moon–
planet mass ratio) compared to the 10 Gyr integration time,
therefore we consider that these moons are unstable. This

Figure 1. Moon orbit and planet spin evolution in two example cases. See the
initial parameters in Table 1. The Blue dashed horizontal line at 6 × 10−6 s−1

represents the location of the critical distance from the planet (half of the Hill
radius of the planet) beyond which the moon escapes. The Red dashed
horizontal line shows the Roche radius of the planet expressed in the unit of
mean motion. Upper panel (disruption scenario): the moon quickly
synchronizes with the planet, but when migrating inwards to the planet, it
reaches the Roche lobe and becomes tidally disrupted. Lower panel (escape
scenario): the moon slowly migrates outwards meanwhile the planet spin
evolves. When the moon reaches the critical distance (after about 4 million
years), it escapes from the planet.

Figure 2. Moon orbit and planet spin evolution in three example cases. See the
initial parameters in Table 1. Blue and red dashed horizontal lines represent
the location of the critical distance for moon escape and the location of the
Roche limit, respectively, expressed in the unit of mean motion. Upper panel
(moon–planet locking scenario): the moon synchronises with the planet after
∼3 × 109 yr; up to this point, the moon slowly migrates outwards from the
planet, but after synchronisation the moon’s orbital period slowly decreases.
Middle panel (star–planet locking scenario): for a smaller Mm/Mp mass ratio
the planet synchronises with the star and becomes tidally locked. Bottom panel
(temporarily locked scenario): first the planet synchronises with the star
(at around 2 × 109 yr) but because of the moon’s inward migration, later it
synchronises with the moon instead (∼7 × 109 yr), but after that, the moon
shortly reaches the Roche limit of the planet.
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scenario is described in detail in Alvarado-Montes et al. (2017),
and our results are completely compatible with their findings
(Figure 1, top panel).

3.1.2. Escape Scenario

If the planet’s orbit is close to the star, then the Hill radius is
smaller. On any orbit inside the Hill sphere, the moon suffers
strong tidal forces, especially if the planet is relatively massive,
which makes the outward migration very fast. As a consequence,
if the moon formed close to the critical distance from the
planet (half of the Hill sphere), then it will quickly escape before
synchronization could happen (Figure 1, lower panel).

3.1.3. Tidal Locking

In connection with tidal locking, we define three different
scenarios.

Moon–planet locking: the Selenoid scenario. The evolution
track is somewhat similar to the Earth–Moon case. First, the moon
migrates outwards, until a spin–orbit synchronisation is reached
between the orbital period of the moon and the rotation of the
planet. In the later evolution, the moon slowly turns back, the
typical timescale before colliding with the planet was in the order
of 10 billion years in our integrations. (More specifically, the end
state of the moon is reaching the Roche radius of the planet, where
the moon will be disrupted). Therefore, we consider this scenario
as stable (Figure 2, top panel). We note that the similarity with the
Earth–Moon case is limited to the synchronization between the
two bodies, but there is a qualitative difference: here the planet spin
is synchronizing with the orbit of the moon, while in the Earth–
Moon case the spin of the Moon is synchronized with the orbit of
the Earth.

Star–planet locking. This scenario is similar to the Selenoid,
but rather than synchronising with the moon, the planet is
synchronised to the central star. We did find this possibility in
several test runs and seems to be typical for certain configura-
tions (close-in systems with the lightweight moon). In these
cases, the moon’s migration is slow and has a similar timescale
as in the Selenoid case. The path is qualitatively identical: first,

the moon migrates outwards and then later inward (Figure 2,
middle panel). This configuration is also stable in the long term,
and the moon can be observed (with difficulties coming from its
low mass and small size).
Temporarily locked scenario. We found another tidal

evolution scenario with a rather complex evolution for which
we have not found an earlier discussion in the literature. In the
beginning, it has essentially the same evolution as the star–
planet synchronisation, but since the moon migrates inwards,
here the tidal forces from the moon is increasing, and from a
point, they majorate over the tidal forces from the star. At this
point, the planet rotation will be decoupled from the mean
motion and resynchronizes with the moon. The inward
migration of the moon is enhanced from that point, and the
moon soon reaches the Roche limit of the planet. In the
scenario shown at the bottom panel of Figure 2, the planet’s
synchronisation with the star happens after approximately
2× 109 yr, where there is the turning point of the moon’s orbit,
too, and the break-up of the star-planet synchronisation
occurs at ∼7× 109 yr. Because of the large timescales, this
configuration is also stable in the long term, and moons in such
systems could be found.

3.2. Timescales

The timescales of the discussed scenarios depend on the
migration rate, hence indirectly on the distance of the Hill-
sphere which can limit the evolution path very close to the star.
Close-in planets always evolve very rapidly, because (i) the

Hill-sphere is close to the planet, and the moon reaches the
critical distance from the planet very soon or turns back at a
very close distance to the planet; and (ii) since the moon is
always very close to the planet, very prominent tidal forces
emerge and the orbit evolution will be very fast. For most
close-in configurations, similarly to the hottest sub-Jupiters
known, the tidal escape timescale of the moon can be even less
than 1000 yr. The only possible scenarios for those cases when
the planet is too close to the star are the disruption and the
escape scenarios (Figure 1 upper and lower panels).
If the planet orbits the star at a larger distance, the path to the

critical distance from the planet is longer and the evolution is
slower, hence the timescale of stability can reach billions
of years, or even the Hubble timescale (these are the tidal
locking scenarios, see Figure 2). For selenoids, this means that
the fallback takes several billion years, and for runaway moons,
the runaway time takes several billion years. In other words,
with increasing planet orbital period first we get quickly
falling-back selenoids, then stable selenoids (Figures 1 and 2
upper panels).

4. Known Exoplanets

We calculated the evolution of possible model moons in the
known planetary systems with the aim of pre-selecting those

Table 1
Initial Parameters Used for the Example Cases Shown in the Different Panels

of Figures 1 and 2

Figure 1
Upper

Figure 1
Lower

Figure 2
Upper

Figure 2
Middle

Figure 2
Bottom

Panel Panel Panel Panel Panel

Mm/Mp 1/85 1/85 1/85 1/150 1/300
ap (au) 0.3 0.3 1.0 1.0 0.8
nm (10−6

s−1)
38.0 6.1851 2.6640 2.6640 2.6640

Note. The star mass is Må = 1Me, the planet mass is Mp = 1M⊕ and the
quality factor of the planet is Qp = 10 in each case.
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exoplanets which can physically have a satellite. These planets
might worth a detailed follow-up observation for a moon
survey. Planets and their model moons were simulated
according to the recipe described in Section 2. The results
are listed in Table A.1 in the supplementary data, available
online at stacks.iop.org/PASP/133/094401/mmedia, ordered
by decreasing survival rate. (In the table only those cases which
have non-zero survival rates are shown.) The table also
contains the mean of the integration times for each planet. If
the survival rate is a hundred percent, then the mean of the
integration times will be equal to the age of the star (or of the
Sun if the star’s age is not known, as described in Section 2). If
in some cases the integration stops earlier, then the mean of the
integration times will be shorter. This parameter together with
the survival rate can be considered as a measure for the stability
of moon orbits.

Figure 3 shows the survival rate for test exomoons as a
function of the orbital period of the planet. Because the critical
escaping distance is small below 10 days orbital period, only
a few exomoons stay in a stable orbit around the planet.
Above ∼300 days, the survival rate is about 70%–90%, as a
consequence of the large critical distance. Between about 5 and
300 days we find a “transition zone” where the increasing size
of the critical escaping distance results in higher and higher
survival rates.

The saturation at ∼85% survival rate for large orbital periods
is caused by the chosen initial semimajor axes of the moons
which in some cases is below the synchronous orbit. In these
cases, the moons spiral inwards to the planet until they reach
the Roche sphere.

Only a fraction of known exoplanets are promising exomoon
hosts according to this work. This is primarily because the
orbital period behaves as a moon “censor”: not many satellites
are expected (survival rate mostly below 40%) for planets in
shorter period orbits than 10 days. This is not surprising, since
planets, this close to the star have small Hill radii, hence stable
orbits for a moon are limited to a very narrow space. As the orbit
of the moon evolves, sooner or later it will reach the instability
limit and escape from the planet’s gravitational bond.
Interestingly, the planets with known mass and radius data

(see the black dots in Figure 3) are showing smaller deviation
above ∼100 days orbital period, compared to those for which
the radii or masses are estimated from their other parameter
(teal and yellow colored dots, respectively). For the planets
with known mass and radius value, the survival rate reaches
50% at around 100 day orbital period of the planet, while for
the other planets it is much more diffused in between
approximately a hundred and a thousand days. Choosing a
mass or radius value for the planet is an extra free parameter
that naturally causes higher uncertainty in the results. This
might be the reason for the shift of the transition zone from
5–100 days to 30–300 days orbital period for the two kinds of
planets. For those where we have to add random mass or radius
values, we will find more unstable cases, hence the survival rate
starts increasing only at higher orbital periods where the critical
escape distance from the planet is larger. Another explanation
for the shift could be an observation bias, since the planets for
which both mass and radius data are measured are those for
which both transit and radial velocity observations were made.
This means that they are orbiting close to the star and in the

Figure 3. The survival rate of moons around known exoplanets as a function of the planet’s orbital period. Black colored dots: planets with known radius and mass
data. Teal colored dots: planets without known radius data, for these, their radius was estimated based on their measured mass (or M isinp ). Yellow-colored dots:
planets without known mass data, for these the masses were estimated from their measured radius.
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meantime, they are also massive. This might also explain why
the transition zone is closer to the star for these planets.

For known exoplanets with long orbital periods, the host stars
are quite faint, and the S/N ratio required for a successful moon
detection is not achievable by even as precise instruments like
the Kepler telescope. This finding is the resolution of the
seeming paradox of missing exomoons in Kepler data. Moons
are more likely to have a stable orbit around long orbital period
planets, but these cases are difficult to observe. This result is also
an alert for later transit finding surveys to focus on planets
around bright stars with 10–100 days orbital period.

5. Discussion

The successful detection of a moon around an exoplanet
relies basically on two independent factors: the moons must
exist (occurrence), and those moons must be observable. The
occurrence is a product of two factors: the formation rate and
the stability timescale. Formation studies of moons (and planets
or stars) are beyond the scope of this paper, however, with the
described formalism, we estimate the survival rate of moons
around currently known planets.

The survival rate of model moons in known exoplanetary
systems shows that satellites can only stay in orbit around the
host planet if the orbital period of the planet is larger than five
days. In our investigations, we found a transition zone between
5 and 300 days orbital periods where the survival rate is
growing with larger orbital periods. Above 300 days orbital
period the moon survival rate reaches 70%–90% for the
investigated planets. These specific numbers however depend
on the range of chosen initial parameters. Also, increasing the
integration time could result in decreasing the survival rates in
some cases. This would be only a quantitative change as it
would not alter the relation between the survival rate of moons
and the orbital period of the planets. Our investigation serves
statistical purposes, and it shows a clear trend in survival rates
that increase with the planetary orbital period.

This result is in good agreement with the findings of
Alvarado-Montes et al. (2017), who developed a more detailed
model including the changes of the planet’s physical
parameters over time as an additional factor influencing the
orbital evolution of satellites. Their results showed that moons
of planets with lower than ∼60 day orbital periods collide with
the planet, but for planets with larger stellar distances, the
satellites slowly migrate outwards and stay inside the Hill-
sphere of the planet during the whole 4 Gyr integration time
(“realistic” case, Figure 9 in their article). Including the change
in the planet radius and k2/Q tidal parameter over time in their
model increased the chance of moon survival. This implies that
neglecting these factors in our study might underestimate the
moon survival rates.

Our results are in line with those of Sucerquia et al. (2019),
too, who concluded that long-period planets are more favorable

moon hosts than short-period ones. They used a very similar
calculation method with the aim of estimating the TTV and
TDV signals for detection. They conclude that in their
investigated phase space no system produces TDV signals
strong enough to be observed, but there are very few cases
where the TTV signal would be observable with TESS and
Kepler. Larger moon-to-planet ratios and stellar distances could
help observations.
With a similar aim, but using a different method, Guimara˙es

& Valio (2018) also investigated known planets which could
host moons. Besides checking the possible semimajor-axes
of moons, they also took into account their detectability,
providing a list of 54 Kepler planets and candidates which
could have detectable moons.
Recently, Tokadjian & Piro (2020) made a similar work to

ours in which they investigated the orbit evolution of moons
around known exoplanets using simplified tidal lag models.
They identified 36 habitable zone planets around which a moon
might be stable for long timescales (at least for 1 Gyr). We
found that from these planets 29 have at least a 50% survival
rate for exomoons (typically between 50 and 65%.). There are
also four planets with survival rates higher than 65%: these are
Kepler-459 b (69%), Kepler-456 b (72%), Kepler-1654 b
(70%) and Kepler-1647 b (69%). They also found that for 21
planets the timescale before losing the moon is larger than the
Hubble time in all investigated cases. Our results show moon
survival rates typically between 55% and 70% for these planets
with mean integration times (tmean) between 2 and 3 Gyr (see
the supplementary data). There is one outstanding case (Kepler-
1628 b) that resulted in only a 9% survival rate in our study.
The explanation of our lower stability levels is that a much
bigger phase space was explored for the initial parameters
compared to the study by Tokadjian & Piro (2020). Also, since
the age of these planets is typically lower than 5 Gyrs (and in
some cases, it is not known), our calculation stopped much
earlier.
Martínez-Rodríguez et al. (2019) investigated the orbital

stability and habitability of exomoons around known planets of
M dwarfs. They found four planets that were in the habitable
zone and for which the orbit of the moon is stable for a long
timescale (the migration time of the moon is larger than the
Hubble time). These four planets are HIP 12961 b, HIP 57050 b,
GJ 876 b and c (in their paper under the names of CD-23 1056b,
Ross 1003b, IL Aqr b, and c, respectively). Interestingly, for
these planets our model gave 0%, 0%, 6% and 0% survival rates,
respectively. One of these four planets, however, HIP 57050 b
was thoroughly investigated also by Trifonov et al. (2020)
(planet name: GJ 1148b in their paper) where they were using
secular theory and direct N-body integrations to study the
possibility of a moon. Similar to our results, they have found that
it is unlikely that a moon would stay in a stable orbit around
the planet.
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Zollinger et al. (2017) investigated the tidal evolution and
habitability of exomoons assuming possible configurations and
found that moons in the habitable zone of M dwarfs experience
a tidal heating rate comparable to the tidal heat flux of Jupiter’s
moon, Io (∼2Wm−2). For stars with masses0.2Me, because
of the strong gravitational effect of the nearby star, the tidal
heating rate of a Mars-like moon around a Jupiter-like planet is
much stronger than that of Io’s, implying that these moons
might not be habitable. The maximum limit of tidal heating for
habitability, however, is not known, and atmospheric effects
can influence the habitability of bodies, as well (Barnes et al.
2013).

Recent hydrodynamical simulations showed that icy moons
can form from circumplanetary disks of ice giants such as
Uranus and Neptune, indicating that there might be a large
population of moons around exoplanets beyond the snowline
(Szulágyi et al. 2018). According to our findings, these moons,
if formed, can stay in stable orbits for a long period of time.

Older stars host more evolved systems, in which there is a
higher possibility that most satellites have disappeared due to
either disruption (at the Roche radius of the planet) or escape.
The presence of a massive exomoon may prevent synchroniza-
tion of the planet with the star and promotes synchronization
with the moon. In this case, satellites also evolve into a 1:1
spin–orbit resonance, getting to a mutually synchronised
planet-moon system. Less dissipative planets (gas giants and
ice giants) are more prone to keep satellites because of slower
orbital migration (see e.g., Sasaki et al. 2012). If an exomoon is
observed around a planet, it can provide a strong constraint on
the value of the quality factor, Q, which describes the
dissipation in the planet and gives hint on its interior.

Since younger stars host less evolved systems, there is a
higher chance for planets to still have satellites (which will
escape or be destroyed later). But satellites on less distant orbits
are more difficult to observe (Szabó et al. 2006; Simon et al.
2012). If more than one moon is found, then their orbital
architecture may give information on their formation, and
provide a strong constrain on Q. It may also be possible to infer
the presence of rings.

6. Conclusion

There is no confirmed exomoon detection to date, but the
quest for finding moons in Kepler data is still in progress.
Teachey et al. (2018) reported an exomoon candidate, Kepler-
1625 b I (see also Teachey & Kipping 2018), but this discovery
is under debate (Kreidberg et al. 2019; Teachey & Kipping
2019). Regardless of the existence of this moon, we found
stable orbits for satellites around this planet. Recently, the
presence of an exomoon candidate was suggested based on
observations of sodium and potassium lines around planet
WASP-49 b (Oza et al. 2019). Further observations are needed
for confirmation.

As a result of our calculations, we conclude that planets with
long orbital periods support high survival rates for moons, and
close-in planets, which are easier to observe, are less likely to
host moons. This can serve as an explanation for not having a
confirmed exomoon discovery so far.
Thanks to high accuracy photometry and long-term follow-

up missions, CHEOPS is measuring the radius of numerous
known exoplanets through transits with unprecedented accur-
acy. This paves the way for characterizing the close
environment of exoplanets and can unveil the presence of
exomoons and exorings. Moons and rings are natural
companions of planets. Neptune-sized planets are especially
promising targets owing to their (putative) lower dissipation
and large mass compared to Earth-like planets. Such targets
will be in the reach of the CHEOPS mission. Following the
CHEOPS mission, ESA’s PLATO 2.0 mission, capable of
discovering and following exoplanet systems and host stars,
and the ARIEL mission will continue the task of collecting
precise exoplanet light curves. Whereas exomoons have never
been firmly detected up to date, they should exist and their
successful detections will provide invaluable information on
the planet’s interior and formation process (Crida & Charnoz
2012). Detecting the first exomoons will be a major discovery
as moons could provide habitable environments, in particular,
if they orbit volatile-rich planets (like giant planets) and are
located inside, or close to, the habitable zone (Forgan & Dobos
2016; Dobos et al. 2017).
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