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Abstract

Resistor networks are popular because they offer solvable models of transport between connected
discrete points and can represent natural or artificial systems such as mycorhizzal networks or carbon
composite chains. When the connectivity pattern is repeated, two-point resistances can be expressed
by recurrence relations. Here, we illustrate this approach in the case of three-dimensional m x 3
scaffolding and globe networks, characterized by a repeated pattern along a three-fold invariant axis.
We show that a first set of recurrence relations follows from three-fold invariance and Kennelly’s Y-A
transform, providing the two-point resistance between any pair of neighbouring nodes, including the
case of infinite networks. Using van Steenwijk’s method, a second set of recurrence relations is
obtained between non-neighbouring nodes. Numerous explicit expressions are thus derived using
elementary methods, which can be compared with the results of numerical codes or novel integration
methods such as Tan’s recursion-transform. Having at hand general properties of these networks is
useful to evaluate their capacity of representing natural or industrial systems.

1. Introduction

Networks represent matter, not by smooth continuous functions, but by a discrete number of connected points.
Since their properties can be solved analytically or numerically, networks play an important role in the approach
of complexity in contemporary physics [1]; they are, for example, efficient models for transport problems [2] or
adaptive decision processes [3]. Resistor networks, considered since the nineteenth century [4], provide a
remarkable introduction to the generic properties of networks, and can be used to practice general methods,
such as the Y-A transform [5], also known as Kennelly’s theorem, or van Steenwijk’s method [6]. Using these
elementary methods, the resistance between any pair of nodes (two-point resistance), can be calculated exactly in
numerous networks [6—8].

Among resistor networks, those with a repeating pattern of nodes and connections are being considered
frequently in current research, for example to analyze the response of long chains of electronic components [9],
or to model fibrous matter such as carbon composites [ 10]. Repeated patterns can also result from a growth
mechanism or represent a reciprocal system in a packing problem in the context of granular matter [11]. The
iteration of network units, even at a simple level, leads to recursive relations and, thus, generates scale-free
(fractal) objects [12] and also provides graphical representations of concepts in number theory such as the
expression of irrational numbers as continued fraction [13].

Resistor models are now applied routinely in rock physics [2, 14] or geophysical data interpretation [ 15-17],
using numerical methods. Exact mathematical methods have also been developed such as the resistance sum
rules [18], Green functions [ 19-22] and the Laplacian matrix approach [23], which was recently revisited to
propose the direct recursion-transform (RT) method [24-30]. The RT method was originally proposed by Tan
in2011 [25, 27, 29] to be able to solve resistor networks configurations with arbitrary boundaries, which are
importantin practical situations. In this method, the potential difference between arbitrary nodes, given
injection of current between two other arbitrary nodes, relies on the diagonalization of one single matrix and is
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Figure 1. (a)6 X 3 globe network (five triangular frames perpendicular to the three-fold axis). (b) 5 x 3 scaffolding or cylinder
network (five triangular frames perpendicular to the three-fold axis). (c) 5 x 3 tower network (5 x 3 scaffolding with a top node).
The frames perpendicular to the three-fold axis are all equal to b, and all resistors linking the frames or linking the top and bottom to
polar nodes, when present, are equal to 1.

expressed as a generic sum. The general expression of the two-point resistance follows as a particular case [27],
and various networks such as cobweb, fan, globe [25, 26, 28, 29] or triangular repeating networks [30] were
completely solved in this manner. While, at the beginning of the development of the RT method [24, 25], the
general expressions of the solution sums appeared difficult to handle, recently, easy to use explicit equations
have been made available for repeating triangular or square networks [29]. In the presence of iterative patterns,
however, the two-point resistances can be calculated in a simpler manner using recurrence relations,
independently of the RT method. This is for example the case for ladders, which can be solved analytically
[31,32], and produce rich resonance structures when replacing some resistors with frequency-dependent LC
impedances. Thus, it appeared interesting to compare the general exact solutions given by the RT method

in situations where recurrence relations can be obtained directly.

In this paper, we concentrate on repeating three-dimensional resistor networks having a three-fold invariant
axis, the m x 3 globe network and its variants, the m x 3 scaffolding and tower networks. In these cases, the
two-point resistances can be calculated using elementary methods only. First, we introduce these networks in
details and restate general properties resulting from the three-fold invariance and relations around corner nodes
with three legs [33]. Then, we derive a first set of recurrence relations using the Y-A transform (Kennelly’s
theorem) and we obtain explicit expression for the two-point resistance between any pair of neighbouring
nodes. Then, using van Steenwijk’s method, a second set of recurrence relations is obtained and is used to infer
the resistance between non-neighbouring nodes. Finally, we make a comparison with expressions obtained from
the RT method [29] and we illustrate one application in terms of frequency-dependent impedance. The
relevance of the approach and potential generalizations are discussed in the conclusion.

2. Presentation of three iterated three-fold invariant networks

Consider the m x 3 globe network [24, 26] (figure 1(a)). It has 3-fold symmetry around a central axis. It is made
of m — 1horizontal frames of three equal resistors b and each frame is connected to the frame above and below,
and for the top and bottom frames to the poles, by unity resistors. The top node (north pole) is labelled 0 and the
bottom (south pole) is labelled 3(» — 1) 4 1. The nodes of the horizontal frames are numbered from the north
pole down to the south pole as shown in figure 1(a).

While the nodes of globe networks are usually placed on a sphere [24, 26], the m X 3 globe network is
topologically equivalent to a pile of m — 1 equal triangular frames with poles, and this is the situation that we
consider in the following. Thus, we construct the m x 3 globe network from the (m — 1) x 3 cylinder network
(figure 1(b)). Inthem x 3 cylinder network, defined as a scaffolding (or a pile) of 1 frames, the nodes of the top
frame are labelled 0, 1 and 2 and so on (figure 1(b)), with the last node being 3m — 1. Takingan (im — 1) X 3 cylinder
network, we first add a top pole (figure 1(c)), a network referred to previously as the (i — 1) x 3 tower network [8].
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Figure 2. Upper parts of the m x 3 cylinder (a) or globe (b) networks. When the top node of the globe network is removed by applying
the Y to A transform, a cylinder network is obtained (c), but with a different resistor b’ for the top frame instead of b.

Then, we turn it upside down, and add another pole, and thus obtain the 1 x 3 globe network. When proceeding in
this way, we obtain explicit relations simultaneously for the i x 3 scaffolding and globe networks. The two-point
resistance between nodes iand jinthem x 3 cylinder network is noted R;; (), and is noted ﬁij (m)inthem x

3 globe network. The base resistance of the m x 3 tower network is noted R (m), corresponding, for example, to the
resistance between nodes 3m — 2 and 3m — 1 (figure 1(c)).

In a symmetrical network, two-point resistances are related to each other. It is useful to summarize the
relations resulting from symmetries to avoid unnecessary calculations. In the present case, we first have three-
fold invariance around the central axis, which leads to obvious relations such as Ry; = Rg; = Ry (globe
network, figure 1(a)) or Ry; = Ry, = Ry (cylinder network, figure 1(b)). Another trivial consequence of the
three-fold invariance is that the resistance between the two poles is #11/3 (three lines of 71 unit resistors in series,
connected in parallel). Less immediate relations, in the i x 3 globe network, result from the fact that the poles
ofthem x 3 globe network satisfy the conditions of the cubic corner theorem [8], and we have, for node 0:

_ 1+ R
Ry = —2,
3

&)
with a similar relation for the south pole node.

Consider now the terminal nodes 0, 1 and 2 in the i x 3 cylinder network (figure 2(a)). They satisfy the
conditions of another corner theorem [8]. Indeed, these nodes are connected to three branches and there is a
plane of symmetry. In the following, we need the most general version of the relations that result from this
symmetry (two-plus-one legs corner theorem, see appendix A). In addition, because of the three-fold invariance,
we have Ry; = Ry,. Thus, using equation (A11), we can express Ry3 and Ry, in terms of Ry;:

3R — b2 —b
Ry; — 2Rot bz( )
. 2
(B +3b+ bHRy — b2 + b) @
Roy = =

Similar relations also exist for the nodes of the terminal frames of the i x 3 globe network. Indeed, node 0
can be eliminated using Kennelly’s theorem [5]. When one node K is connected to three nodes i with
conductance ¢;, then all connections from nodes i to K can be replaced with connections ij with conductance ¢;;
such that ¢;; = ¢;¢;/ Z L (Yto A or star to triangle transform). When the three connections have the same
resistance a, then the resistance of each replacing ij resistor is 3a. Thus, the three branches from node 0 to nodes
1,2and3inthem X 3 globe network, can be replaced by a resistor of value 3, thus nodes 1, 2 and 3 are now
connected by aresistance band 3 in parallel, namely a resistance b’ = 3b/(3 + b) (igure 2(c)). Now, we are in
the situation of equation (2), replacing bby b':



Figure 3. (a) Equivalent diagram of the top six nodes of the m x 3 cylinder network. (b) Diagram showing the circuit below nodes 0, 1
and 2 in figure 3(a). (c) After application of the A to Y transform in the central part of figure 3(b). (d) After application of the Y to A
transform to the Y circuit of figure 3(c).
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Consequently, for the terminal nodes of the considered networks, it is sufficient to calculate Ry; and Rpp.In
the following, we derive recurrence relations to obtain these resistances to any order .

3. Recurrence relations for the terminal resistances

The considered networks are periodic or repeating networks, and are therefore handled by recurrence methods
[9-13,29,30]. Let us consider the m x 3 cylinder network and assume we know Ry, (). Because of the three-
fold rotational invariance, the equivalent diagram of the top three nodes is a triangle of equal resistances A,,,, and
we have Ry,(m) = 2A,,/3 (A,, in parallel with 2A,,)). Now we add one frame of three resistors b and the vertical
connections to the previous network (figure 3(a)). This new network is the (m + 1) x 3 cylinder network. To
calculate the resistance between the new nodes 0 and 1 (figure 3(a)), we proceed as follows. First, we calculate the
equivalent circuit connecting nodes 0, 1 and 2 to the bottom part, namely the unity resistors legs connected to
the previous frame with resistances A,,,. This circuit, shown in figure 3(b), can be reduced, first, by applyinga A
toY transform at the centre. The central triangle is thus replaced by a star of A,,,/3 to a central node (figure 3(c)).
The whole circuit is now a star with three equal branches of resistance 1 + A,,,/3. ApplyingnowaY to A
transform, we obtain a frame of three equal resistors 3 + A,, (figure 3(d)). The complete equivalent circuit
between nodes 0, 1 and 2 is therefore a frame of three equal resistors 3 + A,, in parallel with b. Consequently,
Api1=bGB+ A,)/(b+ 34+ A,)and:

2 2 + Ro(m
Rof(m +1) = =A, 11 =2b n(m) . 4)
This recurrence relation has numerous consequences. First, we infer that, at large values of m, Ry (1)
converges to the value Ry;(00), which satisfies:
2 4+ Rgi(c0
Ror(00) = 2b 0i(00) 5)

6 + 2b + 3Rpi(c0)



which is an equation of degree 2 with only one positive solution:

Ryi(00) = |1 + % ~ 1L (6)

Using equation (2), we also have the limits for the other two edge resistances:

C3Rp(c0) —bQ—b) 3 [ 4 3 2
Ro3(00) = 0 —ﬁl—l—?—ﬁ—g-yl

(3 + 3b + b>)Ry(c0) — b2 + b) 3+ 3b + b? 4b 2
R = = 1+ = —1]1-2 -1
() b? b? Vs b

The limit of the terminal resistance of the m x 3 globe network also follows. Indeed, we take the
(m — 1) x 3tower network, turn it upside down, and the top nodes are equivalent to a frame of three resistors
A1 = 3R(m — 1) /2. Then, we add one pole and three legs, equivalent to a triangular frame of resistors 3, to
add in parallel to Am_ 1, hence:

™)

_ 2 34, 2R(m — 1
Romy= 2 34m _ 2Rm =D ®)
33+ 4, , 24 Rm-1)

Since R,, also follows the recurrence relation of equation (4), then R (00) = Ry;(c0), and equation (8) gives,
atlarge m:

Ez(oo) =

2R(c0) _3(1 2b 4b)' ©

2+ R(o) b
Using the expression for R;,(cc) from equation (8), which we put into equations (1) and (3), we obtain the
limits of the other top resistances of the co x 3 globe network:

~ 1 4b

R =1+ —|1— |1+—

01(c0) b( 3)

_ (3 + b)? 2b 4b 2 1

1Ryc) =2 1+ 2 - 14+ 2242 : (10)
14(00) b3 ( 3 3 b 3

= 347b45b2+b> 9+ 15b+ 70> [ 4b

Ris(00) = 3 + 4;3 +b 9+ b3+ 1+?

Using the same approach, we can derive other recurrence relations. Indeed, the equivalent circuit linking
nodes 3,4 and 5, is the same as the equivalent circuit between nodes 0, 1 and 2 when exchanging band A,,; it is
therefore a frame of three equal resistors 3 4+ b in parallel with A,,,, hence B,,, 1 = A,,(3+ b)/(b + 3+ A,),
which gives the resistance R34(m + 1) as a function of Ry (m):

Ryy(m + 1) = EBerl = 20+ HRu(m) .

an

Similarly, we construct the globe network iteratively from the (m — 1) x 3 tower network, turn it upside
down, add onelayer and a top node, making the (m + 1) x 3 globe network. For example, the 3 x 3 cylinder
network (figure 4(d)) is obtained by adding one layer to the 2 x 3 cylinder network (figure 4(a)), and Ry, (3)
follows from Ry, (2) using equation (4). Similarly, the upside down 3 x 3 tower network (figure 4(e)) is obtained
by adding one layer to the upside down 2 x 3 tower network (figure 4(b)), and R (3) follows from R (2) using
equation (4). When we add one layer plus a top node to the upside down 2 x 3 tower network (figure 4(b)), then
we getthe 3 x 3 globe network (figure 4(f)). As shown above, one layer of b resistors plus one top node is
equivalent to one layer of b’ resistors. To obtain Ry, (1), thus, we just use equation (4), replacing b by &', and we
have:

Ro(m + 1) = 2/ 2t R(mf D) . (12)
6 + 2 + 3R(m — 1)
Using equation (8),and b’ = 3b/(3 + b), we can write equation (12) in terms of Ry, (1) only:
_ 4b
Ry(m + 1) = (13)

6 + 4b — bR, (m)

As done above for Ry, in equation (1 1), we can also write a recurrence relation for R,s. Indeed, we just have
to replace Ry, (1) by R and b by b':
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Figure 4. First steps of the iterative construction of m x 3 cylinder and globe networks: (a) acylinder 2 x 3 network, (b) after addinga
top node and rotating upside down, and (c) adding a top pole, thus obtaining the 3 x 3 globe network. Similarly: (d) adding a layer to
the2 x 3 cylinder, thus making the 3 x 3 cylinder network, (e) after adding a top node to the 2 x 3 cylinder and rotating upside
down, or adding a layer to the rotated tower of figure 4(b), and (f) adding a top pole, thus obtaining the4 x 3 globe network.
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26+ )Rm—1) 2B+ 20)Rm—1) 20 + 2b)Ru(m)
6+20 +3R(m—1) 6+4b+ (3 +bRm —1) 6+ 4b — bRy(m)

Rys(m + 1) = (14)
To illustrate the method, we give explicit relations for the first values of m (tables 1 and 2). To start the

iteration, we take a frame of three resistors b, which gives Ry;(1) = 2b/3. Adding one pole, using equation (8),

weobtain R(1) = 2b(3 + b); adding a second pole, we obtain Ry,(2) = 2b/(3 + 2b). Using recurrence

relations in equations (4) and (13), we obtain the explicit expressions for R (1) and Ry, (1) given in tables 1

and 2. From equations (1)—(3), we then obtain Ros (1), Ro4 (1), Ro1 (1), R4(m) and R;s(m).

4. Recurrence relations for closest neighbour internal resistances

Further recurrence relations can be inferred without more calculations. Consider anm x 3 cylinder network
and some position inside the network with g layers above and p layers below, with m = g + p (figure 5(a)). The
bottom nodes of the upper glayersarei,i + 1andi + 2, withi = 3(q — 1), while the top nodes of the lower p
layersarei + 3,i + 4andi + 5. The equivalent circuit between nodesi,i + 1andi + 2isatriangle of three
resistors A, = 3Ry1(9)/2. The equivalent circuit between nodes i + 3,i + 4andi 4 5isatriangle of three
resistors A, = 3Ro1(p)/2.

Consequently, the whole circuit containing nodesi,i + 1,7 + 2,i + 3,i + 4andi + 5isequivalent to the
circuit of figure 5(b), which is identical to the circuit of figure 3(a), replacing b by A,. Thus, we can use
equation (4) and we get:

2 4+ Roi(p) 2 4+ Roi(p)

Riiy1(m) = 2A = Roi1(q) . (15)
16 + 24, + 3Roi(p) 2 + Roi(@) + Roi(p)
The equivalent resistance between nodes i + 3 andi + 4 is obtained by exchanging p and g:
24+ R
Ri+3)i+4)(m) = Roi(p) 0@ (16)

2+ Roi(q) + Roi(p)



Table 1. Closest neighbour two-point resistances of the m x 3 cylinder networks for m < 5.

m 1 2 3 4 5
Ry 2 2b3+b 26 94 9b + 07 2b 27 + 45b 4 18b* + b° 2b 81 4 189b + 1350 + 300° 4 b*
33t 9 3+ b)(1+b) 3 27 + 54b + 30b% + 4b3 3 81 + 216b + 18962 + 60b° + 5b*
Ros 1+2b 3+ 8b+3b° 9 + 30b + 24b* + 4b° 27 + 108b + 129b* + 52b° + 5b*
34 2b 33 4+ b)(1 + b) (3 + 2b)(9 + 12b + 2b?) 81 + 216b + 189b* + 60b> + 5b*
Ros 3+ 6b + 20> 9+ 24b + 15b% + 2b* 27 + 90b + 90b? + 30b° + 2b* 81 + 324b + 441b% + 246b° + 51b* + 2b°
3(3 + 2b) 93 + b)(1 + b) 3(3 + 2b)(9 + 12b + 2b%) 3(81 + 216b + 189b* + 60b> + 5b*)
R, 263+ b 26 (3 + b))+ 9+ b?) 2b(3 + b)(27 + 45b + 18b* + b*)
91+b 3 (3 + 2b)(9 + 12b + 2b?) 3(81 + 216b + 189b* + 60b° + 5b%)
Ry 3+ 8b 4 2b° 27 + 108b + 123b* + 48b° + 5b*
9 + 12b + 2b? 81 + 216b + 189b2 + 60b> + 5b*
R, 27 + 90b + 84b + 24b° + 2b* 81 + 324b + 423b + 216b° + 39b* + 2b°

3(3 + 2b)(9 + 12b + 2b%)

3(81 + 216b + 189b2 + 60b> + 5b*)

Table 2. Closest neighbour two-point resistances of the m x 3 globe networks for m < 6.

m 2 3 4 5 6
R 2b 26 342 b B+ b +b) b 27 4 54b + 30b° + 4b® 2b (9 + 15b + 5b%)(9 + 9b + b?)
3+2b 33+bhA+Db) (3 + 2b)(9 + 12b + 2b%) (9 + 15b + 5b%)(9 + 9b + b?) 3 (14 b3+ b)(3 + 2b)(9 + 12b + b?)
R 3 4 4b 9 + 18b + 7b? 27 + 72b + 54b% + 10b° 81 + 270b + 297b% + 120b° + 13b* 243 + 972b + 1404b? + 882b° + 225b* + 16b°
33 +2b) 93+ b1 + b) 3(3 + 2b)(9 + 12b + 2b%) 3(9 + 15b + 5b%)(9 + 9b + b?) 9(1 + b)(3 + b3 + 2b)(9 + 12b + b?)
R 34 7b 27 + 90b + 66b% + 10b° 81 + 324b + 369b% + 138b° 4 13b* 81 + 351b + 459b% + 201b° + 16b*
91 + b) 3(3 + 2b)(9 + 12b + 2b?) 3(9 + 15b + 5b%)(9 + 9b + b?) 9(1 + b)(3 + bY(3 + 2b)(9 + 12b + b?)
Ris 9 + 24b + 13b? 27 + 90b + 84b% + 22b° 81 + 324b + 423b% + 210b° + 31b* 243 + 1134b + 1890b + 1386b° + 429b* + 40b°
93 + b)(1 + b) 3(3 + 2b)(9 + 12b + 2b%) 3(9 + 15b + 5b%)(9 + 9b + b?) 9(1 + b)(3 + b3 + 2b)(9 + 12b + b?)
Ris 3+ 2b p G+ 20)(3 + 4b + b?) 27 + 54b + 3002 + 4b°
9 + 12b + 2b? (9 + 15b + 5b%)(9 + 9b + b?) 9(1 + b)(3 + b)(9 + 12b + b?)
Rer 9 + 27b + 13b* 243 + 1134b + 1728b + 10806 + 231b* + 16b°
3(9 + 15b 4 5b%) 9(1 + b)(3 + b)(3 + 2b)(9 + 12b + b?)
Rus 81 + 324b + 423b% + 216b° + 37b* 243 + 1134b + 1890b% + 1404b> + 459b* + 52b°

3(9 + 15b + 56%)(9 + 9b + b?)

9(1 + b)(3 + b)(3 + 2b)(9 + 12b + b?)

Similarly, we can apply equation (2) replacing b by A, and we get:

3Rii+n(m) — A2 — Ay

2 + 3(Rpi(p) + Roi(g9)

RiGi3)(m) =

Ay
(G + 34, + AgD)Riyn(m) —

2 32 + Roi(p) + Ro1(9)

A2+ AY

2 + 3(Roi(p) + Ror(q) + Ror(p)Roi(9)

7)

Riiray(m) = 2
q

302

+ Roi(p) + Ro1(9))

These expressions, as expected, are symmetrical in p and g, while equations (15) and (16) are symmetrical
between each other. As an example of application, we give in table 1 the explicit expressions obtained using
equation (17) for R3¢(4), R37(4), R3(5) and R37(5).
When considering these internal resistances for a large network, we can use the obtained limit equation (6)
for Ry;. When both p and g are sufficiently large, we have Ry, (p) = Ry1(q) = Ry1(00), which, when inserted into
equations (15) and (17), gives:

Rii11(o0) =

J Ri(i13(00) =

R1(00)2 + Roi(0)) 2b
2(1 + Rp1(c0)) 3\/1 + 475
1+ 3Rg1(0) 2
3(1 + Ro1(00)) 3 h n 4b
3
24+ 3R1(c0)(2 4+ Ro1(00)) — 142

(18)

b

Rii1a)(c0) =

6(1 + Ro1(00))

3\/1+
3

4b

The same approach can be used for the internal resistances of an m x 3 globe network. Ithasm — 1
horizontal frames. When separating the top m; — 1horizontal frames, then m, — 1 frames remain below, thus
m = m; + m, — 1. Thelowestindices in the upper group of frames arei,i + 1andi + 2 with

i = 3(m; — 1) — 2. Theseparation is thus characterized by:

i:3m1—5
]:3m1—2
m=my + m; — 1

19)
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Figure 5. (a) Inner part of an m X 3 cylinder or globe network. (b) Equivalent diagram of the network made by the internal nodes 7,
i+ 1,i+ 2,i+ 3,i+ 4andi + 5.

To find the internal resistances, we apply equations (15)—(17), replacing Ry;(q) and Ry (p), by Ro1(my — 1)
and Ry, (m, — 1), respectively. Using equation (8), we obtain:

o~ _ 4Ro1 (my)
RiGr1y(m) = — —
4 — Ro1(mp)Ro1(my)
4Ro1(m;)
4 — Roi(my)Ro1(my)

Rii+3)i+ay(m) =

3 — — _ _ . (20)
Riias(m) = 4 + 4Ro1(m) + 4Ro1(mp) — SRo1(1m1) Ro1 (1)
o 3(4 — Ro1(my) Ro1(my))
Riga(m) = 4 + 4Rq1(m1) + 4Ro1(my) + Roi(my) Roi (my)

3(4 — Roi(m)Ro1(my))

In table 2, we give the explicit expressions obtained using equation (20) for R4;(5), R45(5), R47(6) and
R43(6). As another application, suppose we are interested in the expression of the middle internal resistance
betweennodes 13 and 16 ofthe 11 x 3 globe network. Using equation (19), we have m; = 6 = m,. We then
take Ry (6) from table 2 and we get, directly from equation (20):

243 + 1215b + 2052b% + 144903 + 405b* + 31b°
3(243 4 891b + 1188b% + 693b> + 165b* + 11b°)

Ri5_16(11) = (21)

Now we know how to obtain the expressions for the resistance between all closest-neighbour nodes in
m X 3 cylinder and globe networks, which all result from the basic recurrence relation of equation (4). When
the nodes are more distant, some relations can also be inferred.

5. Recurrence relations for two-point resistances across one frame

Following the method used above, we start from a fundamental network (figure 6(a)), obtained by adding an
intermediate frame to the network of figure 5(b). To account for possible networks above and below, we
introduce in figure 6(a) resistances A and B, similar to A, and A,, respectively, in figure 5(b). While most
equivalent resistances are already known from the previous sections, we are interested in the equivalent
resistance between nodes 0 and 6, and in the equivalent resistance between nodes 0 and 7. The previous
recurrence relations cannot be applied, neither the Y- A transform, so we use van Steenwijk’s method.

To apply this method, consider the configuration of currents when a unity current is injected at node 0 and
current 1/8 is extracted from the other eight nodes (figure 6(a)). By symmetry, the currents between nodes 1 and
2, between nodes 4 and 5 and between nodes 7 and 8 are zero. Designating by « and (3 the currents from node 0 to
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Figure 6. Equivalent diagram of an internal part of an m x 3 cylinder or globe network, displaying nine nodes and one intermediate
frame layer.

node 1, and from node 3 to node 4, respectively, all other currents are fixed by symmetry or current conservation
(figure 6(a)). The currents v and (3 are constrained by closed loops 3-4-1-0 and 6-7-4-3, giving:

bﬂ—(a—%)—Aa+(l—2a):0

, (22)
B2 a9 3) = i 2) o0 (G20 - 2) =
or:
b= — + B+ Aa
9+ 3B’ 23)
BG+Ba+@G+b+Bpf=——
which gives:
a_g B3+ Bb+33+b+B)
8B3+Bb+B+AB+b+B) (24)
5_3 A( + B) '
8B+Bb+B+AB+b+ B
The total voltage drop Vi from node 0 to node 6 is then:
V%:E_4a_25:29+6b+9A+(3+b)B+3AB+5Ab. 25)
8 8 B3+Bb+B+A@B+b+ B)

To obtain R, van Steenwijk’s method works as follows [6—8]. We subtract from the current configuration
shown in figure 6(a), the current configuration obtained when injecting a unity current at node 6 and extracting
current 1/8 at all other nodes. Then, we obtain a total current configuration with current 1 + 1/8 = 9/8
injected at node 0 and extracted at node 6. The resistance is then the total voltage drop divided by the current
9/8. Here, it is not needed to calculate the second current configuration when injecting a unity current at node 6.
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This is indeed the configuration depicted in figure 6(a), exchanging A and B. The potential drop Vjs from 0 to 6
in the second configuration is thus given by equation (25), exchanging A and B. In the following, in general, we
use the convention that, for any quantity F(A, B), then F(A, B) = F(B, A). We then obtain:

8 ~ 34+2b+ 2+ b)(A+ B) + AB
Ras = S (Vo + Voo) = 2 CroA+h A8 (26)
9 3(3 + 2b) + (3 + b)(A + B) + AB
Similarly, we have:
8 .
Ro7 = g(Vm + Vor)s (27)
with:
\/()7:%5—4a—25+B(%—a—B—%):35+B _ 4+ Ba-Q+B)j, (28)
and we obtain:
R _ 233 42b) +32 L DA+ B) + G+ bAB 29)
Y3 33420+ GLb)A+B) +AB

In equations (26) and (29), the terms are rearranged to separate the symmetric combinations A + Band AB.
In the simplest case, we have A = B = b, giving:

1+0b
Roo(3) = 20—
340 (30)
R (3)_39+18b+9b2+b3'
T 9 A+ G+ b
In the case of an extended cylinder network, we have, as in the previous section, A = 3R;(q)/2 and
B = 3Ry,(9)/2, thus:
Rigr)(m) — 243 4 2b) 4+ 62 + b)(Roi(p) + Ro1(9)) + 9Ro1(p)Roi(q)
1(i+ -
34(3 + 2b) + 23 + b)(Ro1(p) + Ro1(9)) + 3Ro1(p)Roi(q) G1)
Rigsny(m) = 243 + 2b) + 62 + b)(Roi(p) + Roi(@) + 33 + B)R(p)Roi(q)
1(i+ -
3 43+ 2b) + 2(3 + b)(Roi(p) + Roi(9)) + 3Ro1(p)Ro1(q)
As an example of application, consider R34(5). We just apply equation (31) withp = q = 2 and the
expression of Ry;(2) from table 1. We obtain:
27 + 90b + 99b* + 40b° + 5b*
Rs9(5) =2 (32)

81 + 216b + 189b2 + 60b° + 5b*

From equation (31), we also obtain, for example, the situation of large networks above and below, using
equation (6):

R (oc) — 240G +20) +12C 4 )Rui(00) + SRox(00)? _ 2 (1 e L% ) 33
3 4(3 + 2b) + 4(3 + b)Ry1(c0) + 3Rg1(0)? b 3

We can also derive resistancesin m x 3 globe networks. To get the expression of R;;(4), for example, we
apply equation (29) with A = B = b’ and we get:

S

3+4
342

R7(4) = (34)

W |
<

We can also obtain the expression of the internal resistance across one frame in the m x 3 globe network. As
in section 4 above, we replace in equation (31) Ry1(q) and Ry1(p), by Ro1(m; — 1) and Ry (m, — 1), respectively,
and then, using equation (8), we obtain:
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Figure 7. Convergence of two-point resistances in the m x 3 globe network as a function of m. (a) Edge resistance (R;,), resistance
between two middle internal nodes along the axis (Ry,), and resistance between two internal nodes along the axis separated by one
middle node (R,/). (b) Difference between the limit value at large m (R.,.) and the resistance for a given m. Three values of b are
considered: b = 1 (fullline), b = 0.1 (dotted line) and b = 10 (dash-dot line).

o 243 + 2b) + 2(3 4 b)(Roi(1m) + Roy(my)) — 4b§bl(ml)§01(m2).

Ri = R, R, ”
i+6)(m) 3 4(3 + 2b) — 2b(Ro1(my) + Ro1(m2)) .

This method can be generalized to obtain two-point resistances across two and more intermediate frames
(appendix B).

6. Discussion

From the recurrence relations in equations (4), (11), (13)—(14), (15)—(17) and (20), the exact equations for the
limits for large numbers of layers are obtained as a function of the resistance b. When m is increased, the
resistance between nodes of the m x 3 globe network increases to approach the limit value (figure 7(a)). The
difference between the limit and the actual value for a given m and a given choice of b, however, is not necessarily
negligible, even for values of m larger than 10 (figure 7(b)). Indeed, this difference, for a given value of m, is larger
for larger values of b. In addition, it is larger for the central internal resistance along the axis (Ry;) than for the
edge resistance Ry, and even larger for the central internal resistance along the axis with one intermediate frame
(Ryt). The equations for the limit values, therefore, can be used instead of the actual values as a function of m,
but with some caution depending on the considered domain of 1, on the required precision, and depending on
the particular pair of nodes considered.

Our explicit solutions are useful to study practical cases. By replacing the basic resistors by reactive
components (capacitors and inductances), the impedance response can also be calculated analytically. For
example, equations (30) and (34) can be used to evaluate the effect of adding covering resistances at the top and
at the bottom of a three-layer triangular pile of a basic reactive element (figure 8). As an illustration, we take a
basic element made of an inductance L in series with a resistor Ry and a capacitance C in parallel (figure 8(a)).
Resistance b in our model is replaced by a complex impedance Z, depending on frequency f[30]:

Ry

Zy(0) = iwLy + ——,
0( 0 1+ iu}ROC0

(36)

where iis here the square root of —1 and w = 27f. The variations with frequency of the impedances Zy¢(3) and
Z17(4) (figure 8(b)) show a transition from a low-frequency limit, obtained when b is replaced by Ry, to the high-
frequency limits 2 from equation (30) and 4/3 from equation (34), respectively. The variation with frequency
during the transition depends on the Ry, Ly and C, parameter values. The effect of piling up more layers on the
frequency response can easily be studied as the analytical expressions can be obtained for any number of layers.
The expressions we have obtained above were first checked using a numerical code based on node reduction
using Kennelly’s theorem. These expressions can also be compared with the exact solutions of the i x 3
cylinder and globe networks given by Tan’s RT method [29]. The obtained expressions of two-point resistances
with m smaller than 4, elaborated in detail in appendix C, correspond exactly to the explicit expressions given in
tables 1 and 2. As the two methods are completely independent, the comparison is highly meaningful. In Tan’s
RT method, general and elegant expressions are obtained, and particular simple cases are worked out
progressively in a recursive manner. Here, an opposite approach is used. We start from a simple fundamental
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Figure 8. Comparison of the impedance response. (a) Resistor b of the horizontal frame is replaced by an element including an
inductance Ly and a resistance Ry in parallel with a capacitance Cy. (b) Considered impedance between top and bottom frame of the
3 x 3 cylinder network. (c) Considered impedance between top and bottom frame of the4 x 3 globe network. (d) Modulus of
impedance as a function of frequency for two different values of Ly and Cy, keeping Ry = 2 2.

unit cell (figure 3(a)), then more and more complicated networks are built up by combining different variants of
the unit cell.

Beyond the actual practical cases considered in this paper, the method described here appears useful to
complement the derivations using general methods such as the RT method or Green functions [19-22]. Our
method can be analyzed as follows. First, we have stated the relations between two-point resistances resulting
from the general symmetry properties, in particular near the terminal nodes. Then, we have established and
solved a root network (figure 3), from where various types of iterative relations follow. In this case, we have
obtained all two-point resistances between closest neighbours. Finally, we have shown that other basic root
networks can be solved (figure 6), here with one or two intermediate frames (appendix B), and further relations
have been inferred. This approach is general and should be attempted in other types of networks, such as the
m X 4 cylinder and globe networks, for which explicit expressions have been also obtained from the RT method
[29]. In more complex networks with symmetries of higher orders, even if it turns out that our direct approach is
not simpler than the general RT summations and that not all two-point resistances potentially can be derived,
even partial recurrence relations will be useful to obtain limit cases and discuss the relevance of a given network
to model a situation of concern. Analytical expressions and limit values are meaningful tools to evaluate the
capacity of a given network topology to account for observations. Our approach does not replace more powerful
and complete calculation methods, but it provides a useful assessment of properties.

7. Conclusions

In this paper, we have shown how the explicit expressions for all closest neighbour resistancesinm x 3
scaffolding (cylinder) and globe networks result from a single recurrence relation Ry (m + 1) =

2b(2 + Rp1(m)) /(6 + 2b + 3R (m)), equation (4), obtained by using only the Y-A transform (Kennelly’s
theorem). Furthermore, by using van Steenwijk’s method, we have obtained explicit expressions for resistances
across one (section 5), two or more intermediate frames (appendix B). These calculations illustrate how the
symmetry properties (planar and 3-fold invariance around a central axis) can be combined with a repeated
pattern of resistors.

Our expressions coincide with the explicit results that can be inferred from the general expressions given by
the RT method [29]. Thus, our derivation provides a completely independent verification, and this comparison
enhances the confidence we can have in both methods to obtain explicit analytical expressions. Such analytical
results are useful to check numerical codes in practical applications, and to evaluate the relevance of a given
network topology to model the physical system of concern and compare with experimental data.

In the case of the m x 3 networks considered here, our analysis complements the general results by giving an
appreciation of the consequences of the repetition of basic unit cells to construct extended networks with 3-fold
invariance. By such analysis, we learn to be aware of the different types of relations of the two-point resistance
appearing in such three-dimensional networks and we understand their origin. In complex networks, it will
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remain useful to complement general expressions by relations which are direct consequences of the rotational
and translational symmetry properties [33]. Since networks offer a modelling approach with a rapidly growing
range of applications, from material science [ 10] and geophysics [2, 14—16] to biological systems [34], the
exploration of the rich properties of resistor networks in three dimensions and their mathematical descriptions
will remain a vast research area for the coming years.
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Appendix A

Two-plus-one legs corner theorem

Consider anode, labelled 0, with three branches connected to a network with a plane of symmetry containing
this node and one of the branches (figure A1). Without loss of generality, we assume that the resistance of the
branch in the symmetry plane, connecting node 0 to a node labelled 3, is unity and the resistance connecting 0 to
the two other nodes 1 and 2 is b. The equivalent diagram between nodes 1, 2 and 3, capturing the rest of the
network, is an isosceles triangle with one equivalent resistance A between nodes 1 and 2, and two equal
resistances B for the branches 3—1 and 3-2 (figure A2). This arrangement constitutes the reduced network in the
considered problem.

Below we show that the two-point resistances between the nodes are related, and we will derive expressions
with resistance b as a parameter. This demonstration is more general than the case treated previously, which was
assuming b = 1[8]. To express the two-point resistances, we use van Steenwijk’s method. For this purpose, we
derive the current distribution corresponding to the injection of a unity current, and extracting current 1/3 from
each of the other three nodes, for each class of possible injection nodes of the problem. In the present case, three
configurations need to be considered (figure A2).

Figure Al. General case of a corner node 0 with three legs in a network with a plane of symmetry IT containing node 0 and one leg.
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Figure A2. Equivalent diagram in the situation of figure A1. Node 0 is the corner node and node 3 is in the plane of symmetry with
node 0. Resistance of branch 0-3 is 1, and b for branches 0-1 and 0-2. Equivalent resistance between nodes 1 and 2 is A, and B between
nodes 3 and 1, and between nodes 3 and 2. (a) Current configuration in the equivalent network when a unity current is injected at node
0. (b) Current configuration in the equivalent network when a unity current is injected at node 3. (c) Current configuration in the
equivalent network when a unity current is injected at node 1. Current is counted positive in the direction of the arrow.

In the first configuration (figure A2(a)), unity current is injected at node 0. Calling o the current in branch
0-2, all other currents in the reduced network can be inferred by symmetry or by current conservation. The
current between nodes 1 and 2 is zero. Using the closed loop 0-1-3, we have:

by — 1 — 200 + BG _ ao), (A1)

giving:
1 3+B

p= —— T2 A2
T 3241018 (42)

In the second configuration (figure A2(b)), unity current is injected at node 3. Calling o5 the current in
branch 3-1, similarly, all other currents in the reduced network can be inferred by symmetry or by current
conservation, with zero again between nodes 1 and 2. Since the configuration of figure A2(b) is the same as the
configuration of figure A2(a) when b and B are exchanged, we have:

1 340

N e A3
32+b+B (43)

(€%}

In the third configuration (figure A2(c)), when unity current is injected at node 1, the planar symmetry of the
network is not verified by the currents and we need to introduce three unknown currents: a; (between nodes 1
and 2), (3, (between nodes 1 and 3) and y; (between nodes 0 and 3). These unknowns are constrained using the
closed loops 1-2-3, 1-3—0 and 1-2-0 giving, respectively:

1
Aap = 3(251 + - 5)

Bi=m+b(d—-—a—0B) . (A4)

1
Aoy = b(z — 20 — 20—y — g)

From equation (A4), eliminating ;, which is not needed afterwards, we extract the values of «v; and 3;:

o=t Bb
3 AB + Ab + 2Bb
_ AB + 3ABb + 5Ab + 3Ab* + 2Bb + 2Bb*
B 3(2 + b + B)(AB + Ab + 2Bb)

(A5)
B

To obtain the two-point resistance R;; between nodes i and j, we subtract the voltage drop resulting from the
current configuration with injection at node 7, from the voltage drop resulting from the current configuration
with injection at node j, which gives the total voltage drop corresponding to the total current 1 + 1/3 injected at
node i and extracted at node j. Thus, we have:
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3 b+ B
Ros= (1 —2a04+ 1 —2a3) = — 2
03 4( 0 3) T b+ B

Rlz — zzAal = &
4 AB + Ab + 2Bb A6
2AB + AB? + Ab + ABb + 2Bb + B%b’ (A6)

(2 + b + B)(AB + Ab + 2Bb)
AB + ABb + 2Ab + Ab? + 2Bb + Bb?
(2 4+ b + B)(AB + Ab + 2Bb)

3
Ro1=zb(ao+1—a1—ﬁ1)=b

3
Rz = ZB(OG +B)=B8B

The expression for Ry; corresponds to the unity resistor in parallel with b 4 B, as expected. From the first
and second equations in equation (A6), we extract A and B:

Q@+ bRy —b
~ 1-Rp

B 2BbR;;

~ 2Bb — (b + B)Ri»

B
, (A7)

which we can inject into the third and fourth equations, and we can express Ry; and R;; in terms of Ry3, Ry,
and b:

{ 4Ry = Riz + b*Ro3 + b(2 — b) (A8)

4Ri3 = Ry + 2 + b)*Ros — b(2 + b)’

These relations can be applied to any terminal node of the 1 x # cylinder network, for example node 0.
Node 2 and node 3 of figure Al are thennode n — 1 and node n, respectively, of the cylinder network. We then
have:

4RO] = Rl(nfl) + bzROn + b(z - b) (A9)
4Ry = Ry + 2 + b)*Ro, — b(2 + b)’
However, by rotational invariance, we have, in the m x n cylinder network, Ry, — 1) = Rj;and
Rin = Rowm + 1> and we can rewrite equation (A9) as:
4Ry; = R;; + bR b2 —b
01 12 on :' ( ) . (A10)
4Rom+1) = Rz + (2 + b)*Roy — b(2 + b)
In the case of the m x 3 cylinder network, we have the additional condition that R;, = Ry, and
equation (A10)leads to:
_ 12 _
3Rg; = b’Rys +2b(2 b) ' AlD)
4Ros = Ro1 + (2 + b)*Ro3 — b(2 + b)

Expressing Ry as a function of Ry, in the second equation and eliminating Ry; from the second equation, we
get equation (2), which is the expression used to obtain the results of table 1.

Appendix B

Two-point resistances across two and more intermediate frames

The method presented in section 5 can be generalized to more intermediate levels. Here, we illustrate the case of
two frames, shown in figure B1. Consider the configuration of currents when a unity current is injected at node 0
and current 1/11 extracted from the other eleven nodes (figure B1). By symmetry, the currents between nodes 1
and 2, between nodes 4 and 5, between nodes 7 and 8, and between nodes 10 and 11, are zero. We follow the
scheme of figure 6 and introduce three unknown currents o, 3and v from node 0 to node 1, from node 3 to node
4 and from node 6 to node 7, respectively; all other currents are fixed by symmetry or current conservation
(figure B1). The three unknown currents are constrained by the closed loops 3-4-1-0, 6-7-4-3 and 9-10-7-6,
giving:
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Figure B1. Equivalent diagram of an internal part ofan m x 3 cylinder or globe network, displaying 12 internal nodes and two
intermediate frame layers.

bﬁ—(a—l—ll)—AaJra—za):o

*b’y—(a+[3—12—1)—b[3+(1—2a—2ﬁ—%):0 >, (B

1 3 3 1 2
Bl=—a-8-7-2)-[(a+B8+v— )b —|—(——2a—2 —2——):0
\(2 b= 22) ( b+ 11) LT f=2=4

hence:
12
12
b'yz—H+3a+(3+b)ﬂ . (BZ)

B
(3+B)a+(3+B)ﬁ+(3+b+b)7=43;
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Now, before solving explicitly, we establish an intermediate general relation between resistance Ry and the
edge resistances Ry, and Rq_,. The total voltage drop Vi from node 0 to node 9 is:

%9:%—604—4[3—27. (B3)

Taking S and v from equation (B2), we can express Vg in terms of v only:

6
1162

%9:%—6a—4ﬂ—2’y: [12 + 16b + 5b* — (1 + b)(3 + b + A)1la]. (B4)

To express resistance Ry using the current configuration of figure B1, we subtract, from the current
configuration of figure B1, the current configuration obtained when injecting a unity current at node 9 and
extracting current 1/11 atall other nodes. Then, we obtain a total current configuration with current 1 4+ 1/

11 = 12/11 injected at node 0 and extracted at node 9. The resistance is now the total voltage drop divided by
the current 12/11. As in section 5, it is not necessary to calculate the second current configuration when injecting
aunity current at node 9. This is indeed the configuration depicted in figure B1, exchanging A and B. We thus
obtain an expression for Ryy:

11 i 1
Rop = (Voo + Vi) = —51212 + 16b + 5% — (1 + B3 + b+ A)lla — (L +H)( + b+ B114],

(B5)
However, we also have:
1
R01 = —2A«
2 (B6)
Ry_10 = —2Ba
Consequently:
Roo = %[(2 + b)(6 + 5b) — 3(1 + b)((s +b+ A)% —G+b+ B)%)]- (B7)

When we already have Ry, and Ry_; using the methods presented above, then we also have the expression
for Ry using equation (B7). This equation can also be generalized iteratively when adding more intermediate
frames. With only one intermediate frame (section 5), the corresponding relation is obtained from
Ros = 8(Vis + Vis) /9 and equation (25):

1

Rog = E[%% +5b) — (3 +2b +A)&

Re7
— b — 1.
" B+2 +B)B] (B8)

Aswe did above, in the case of one intermediate frame, we can also solve explicitly equation (B2) to obtain
the expression of a:

_ 490 + b3 +b) + (15 + 17b + 3b*)(A + B) + (7 + 6b)AB

— B9
11 91 +bB+b)+(9+ 9% + b>)(A + B) + (3 + 2b)AB %)

and we obtain:
91+ b)Y+ b) + (15 + 17b + 3b*)(A + B) + (7 + 6b)AB (B10)

P T 91+ b)GB+b)+ O+ 9 + b)A+ B) + 3+ 20)AB
In the simplest case, wehave A = B = b, giving:
9 + 16b + 6b2

Rpo(4) = ————— | B11
(%) 9+ 12b + 22 (B11)
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In the case of an extended cylinder network, equation (B10) can be written:

12(1 + b)(3 + b) + 2(15 + 17b + 3b*) (Ro1(9) + Roi(p)) + 3(7 + 6b)Roi(9) Roi(p)

R =
B = e b6 % b) + 20 7 9 + b)(Rer(@ £ Ror(p) + 3G + 26)Ror(@) Rox(p)

» (B12)

and the limit for large g and p is, with Ry1(p) = Ro1(q) = Ro1(00), using equation (8):

1 (1 + b)? 4b
Ri =—|6+8+3b* — 18— |1 + — |. B13
@+9(o) b2( 3440\ 3 (319

Asin section 5, we can also derive resistances in m x 3 globe networks. To get the expression of R, _1o(5), we
apply equation (B12) with A = B = b’ and we get:
9 + 19b + 9b2

R_j06)= — "~ |
1-100) = s s

(B14)

We can also obtain the expression of the internal resistance across two frames in the m x 3 globe network.
Wereplace in equation (B12) Ry1(q) and Ry, (p), by Roy(m; — D)and Ry (my — 1), respectively, and then, using
equation (8), we obtain:

Riisoy(m) = 12(1 + b)(3 + b) + 2(6 + 5b)(Ro1(m) + Ro1(m)) — b(4 + 3b)Ro1(m) Ro1 (my)
11+ - — — — — .
12(1 + b)(3 4 b) — 2b(3 4 2b)(Ro1(1m1) + Ro1(m3)) + b*Roy (1) Roy (1m)

(B15)

Using equations (B12) and (B15), we can obtain Rs _ 15(5), Rs _ 15(6), R4_13(6), R4_3(7) and so on.

Appendix C

Comparison with the results of Tan’s recursion-transform method
Our results for the m x 3 cylinder (table 1) and globe (table 2) networks can be compared with the results of
Tan’s RT method, explicitly given in this case [29]. Let us first consider the m X 3 cylinder network.

Following the notations used by Tan and Tan in [29], the m x 3 cylinder network is madeofn = m — 1
triangular frames A;B,C; with 0 < i < n of resistors rpand the #n + 1 frames are connected by equal resistors r.
Here, we consider the two-point resistances between node A and all other nodes, given by the following concise
and elegant general expressions:

k 2 AE, — 2AE,_ + AF.AFE,_
Raxn(Ags A) = 3 + oh Fk : £
n+1
> Cl1
k 2 AE, + AE,_ 4+ AF.AE, €D
Raxn(Ag, By) = — + —
3 9h i

where h = r/1,[29], corresponding to h = 1/bin our notations. Equation (C1) corresponds to equations (104)
and (107), respectively, of page 11 in [29]. To compare with our results, we have expressed the two-points
resistances in equation (C1) in units of r and simplified the notations. The recursive coefficients in equation (C1)
are given by equation (4) of [29] as:

AFy = Feyy — Fi
Xk, (C2)

F = —
T

where ) and )are the roots of Tan’s characteristic equation. They are given by equation (101) of [29]:
2
/\:1+%h+ (1+%h) 1
- (C3)
=14 20— (1+3h) -1
2 2
From equation (C3), we have the property that AX = 1.

To obtain explicit expressions from equation (C1), we calculate some values of the recursive parameters Fy
and AF,.. Wehave Fy = 0,F; = 1and AF, = 1.Fork = 2, we have:
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X — N
F, = =A+A=2 Sh
T A * + (C4)

AFRL=F,—F =1+ 3h

For k = 3, we have:

=N 4 AN+ =+ N2 = A =31 + 4h + 3k = 3(1 + h)(1 + 3h
% + AN + A+ (I +4h +3h% =30+ A+ 3 5

AF;=F—F =1+ 9% + 9%

Similarly:

_ 4
F— AA i = X XXM R = A+ DI+ D - 20= @+ 3@ + 120+ 98) (o

AE,=F — F =1+ 18h + 45h* 4+ 27h3

and:

_ 35
FSZAA i—x* TS QTS CHIDY D CRIG WD (T 16 W |

C7
=5 + 60h + 189h* + 216h> + 81h* €7

AFs = Fs — E, = 1 + 30h + 135h* + 189h° + 81h*

Now, applying equation (C1), we get, form = 2 (n = 1):

2 AF, 21+ 3h
Ro1(2) = Raxi(Ag, Bp) = ——— = —
01() A><1( 0 0) 30 F2 3h2+3h

1 4AF1—1 24+ h
; Rp3(2) = Rax1(Ap, A _—-|-
03(2) Ax1(Ags A1) o F 213

1 2 2AF +1 2 + 6h + 3h?
Rps(2 R Ay, B) = — — =
04(2) = Raxi1(Ag, By) = 3 o F h2 + 3h)

(C8)

Form = 3 (n = 2), we obtain:

_2AF 2 149491
R01(3) = Rax2(Ag, By) = 3R haA+i(t3h

_1 2AF272AF1+AF1 _ 348h+3K2
Ro3(3) = Raxa(Ao, A) = 5 + T = AT RuT

(C9)

and:

2 AR+ AF+AF? 24 15h 4 24h% 4 9h°
9h F, T 9h(1+ k(1 + 3h)
4 AR-1 1+h

9h Fs :21+3h ' (C10)

2 2AFR+1 214 9h+ 18k* 4 9K°

oh  F 9 h(1+ h)(1 + 3h)

Ro4(3) = Rax2(Ag, B)) =
Ros(3) = Rax2(Ag, Ay) =

Rop7(3) = Rax2(Ag, By) =

Wi Wl W=
+ o+t

Finally, for Ry;, we obtain, for m = 4andm = 5:

- 2 AF; 2 1+18h+ 450>+ 27K
Roi(4) = Raxs(Ao, Bo) = 5 E 3hQ2+3hQ 1 120+ 90

2 AR 2 1+ 30h+ 135h2 + 189h% + 810
Ro1(5) = Raxa(Ag, Bp) = - — = =

" 3h Fs 3h 54 60h + 189k + 216h° + 81h*

(C11)

The expressions from equations (C8)—(C11) coincide, when replacing /1 by 1/b, with the results given in
table 1 and equations (30) and (34) of section 5.

Examples of expressions can also be obtained for the m x 3 globe network. Using equation (103) of [29], we
have:
1 2 ooy

Ro1(1) = Raxn(Ags A) =
01(n) = Raxn(Ag, A) = 3 9h G,

(C12)
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where G, and v, are given by equations (7) and (5) of [29], respectively:

{Gn =FE41— 25+ E_, (C13)

ay = AE1 - AFn—l

Using the results (C4-C7) given above, we have:
G3; = F, — 2F; + F, = 9h(1 + h)(1 + 3h) , (C14)
Gy =F; — 2F, + F; = 3h(2 + 3h)(2 + 12h + 9K?)

and:

o) = AFI — AFO = 3h

Thus, we obtain the following explicit results for two-point resistances in the m x 3 globe network:

2
Ryi(2) = Lyzoai_ 4+ 3h
3 9hG, 32+ 3h)
2
3 9k Gs 9(1 + h)(1 + 3h)
R (4)_1 2 gy 10 + 54h + 72k + 27K
o 3 9h Gy 32+ 3h)(Q2 + 121 + 92

The expressions from equation (C16) coincide, when replacing h by 1 /b, with the results given in table 2.
Incidentally, using equation (1), we have:
2 mag—

C17
3h G, (17

Rix(n) = 3Rpi(n) — 1 =
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