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Abstract

Resistor networks are popular because they offer solvablemodels of transport between connected
discrete points and can represent natural or artificial systems such asmycorhizzal networks or carbon
composite chains.When the connectivity pattern is repeated, two-point resistances can be expressed
by recurrence relations. Here, we illustrate this approach in the case of three-dimensionalm×3
scaffolding and globe networks, characterized by a repeated pattern along a three-fold invariant axis.
We show that a first set of recurrence relations follows from three-fold invariance andKennelly’s Y-Δ
transform, providing the two-point resistance between any pair of neighbouring nodes, including the
case of infinite networks. Using van Steenwijk’smethod, a second set of recurrence relations is
obtained between non-neighbouring nodes. Numerous explicit expressions are thus derived using
elementarymethods, which can be comparedwith the results of numerical codes or novel integration
methods such as Tan’s recursion-transform.Having at hand general properties of these networks is
useful to evaluate their capacity of representing natural or industrial systems.

1. Introduction

Networks representmatter, not by smooth continuous functions, but by a discrete number of connected points.

Since their properties can be solved analytically or numerically, networks play an important role in the approach

of complexity in contemporary physics [1]; they are, for example, efficientmodels for transport problems [2] or

adaptive decision processes [3]. Resistor networks, considered since the nineteenth century [4], provide a

remarkable introduction to the generic properties of networks, and can be used to practice generalmethods,

such as the Y-Δ transform [5], also known asKennelly’s theorem, or van Steenwijk’smethod [6]. Using these

elementarymethods, the resistance between any pair of nodes (two-point resistance), can be calculated exactly in

numerous networks [6–8].
Among resistor networks, thosewith a repeating pattern of nodes and connections are being considered

frequently in current research, for example to analyze the response of long chains of electronic components [9],

or tomodelfibrousmatter such as carbon composites [10]. Repeated patterns can also result from a growth

mechanismor represent a reciprocal system in a packing problem in the context of granularmatter [11]. The

iteration of network units, even at a simple level, leads to recursive relations and, thus, generates scale-free

(fractal) objects [12] and also provides graphical representations of concepts in number theory such as the

expression of irrational numbers as continued fraction [13].
Resistormodels are now applied routinely in rock physics [2, 14] or geophysical data interpretation [15–17],

using numericalmethods. Exactmathematicalmethods have also been developed such as the resistance sum

rules [18], Green functions [19–22] and the Laplacianmatrix approach [23], whichwas recently revisited to

propose the direct recursion-transform (RT)method [24–30]. TheRTmethodwas originally proposed by Tan

in 2011 [25, 27, 29] to be able to solve resistor networks configurationswith arbitrary boundaries, which are

important in practical situations. In thismethod, the potential difference between arbitrary nodes, given

injection of current between two other arbitrary nodes, relies on the diagonalization of one singlematrix and is
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expressed as a generic sum. The general expression of the two-point resistance follows as a particular case [27],
and various networks such as cobweb, fan, globe [25, 26, 28, 29] or triangular repeating networks [30]were
completely solved in thismanner.While, at the beginning of the development of the RTmethod [24, 25], the
general expressions of the solution sums appeared difficult to handle, recently, easy to use explicit equations
have beenmade available for repeating triangular or square networks [29]. In the presence of iterative patterns,
however, the two-point resistances can be calculated in a simplermanner using recurrence relations,
independently of the RTmethod. This is for example the case for ladders, which can be solved analytically
[31, 32], and produce rich resonance structures when replacing some resistors with frequency-dependent LC
impedances. Thus, it appeared interesting to compare the general exact solutions given by the RTmethod
in situationswhere recurrence relations can be obtained directly.

In this paper, we concentrate on repeating three-dimensional resistor networks having a three-fold invariant
axis, them×3 globe network and its variants, them×3 scaffolding and tower networks. In these cases, the
two-point resistances can be calculated using elementarymethods only. First, we introduce these networks in
details and restate general properties resulting from the three-fold invariance and relations around corner nodes
with three legs [33]. Then, we derive afirst set of recurrence relations using the Y-Δ transform (Kennelly’s
theorem) andwe obtain explicit expression for the two-point resistance between any pair of neighbouring
nodes. Then, using van Steenwijk’smethod, a second set of recurrence relations is obtained and is used to infer
the resistance between non-neighbouring nodes. Finally, wemake a comparisonwith expressions obtained from
the RTmethod [29] andwe illustrate one application in terms of frequency-dependent impedance. The
relevance of the approach and potential generalizations are discussed in the conclusion.

2. Presentation of three iterated three-fold invariant networks

Consider them×3 globe network [24, 26] (figure 1(a)). It has 3-fold symmetry around a central axis. It ismade
ofm−1 horizontal frames of three equal resistors b and each frame is connected to the frame above and below,
and for the top and bottom frames to the poles, by unity resistors. The top node (north pole) is labelled 0 and the
bottom (south pole) is labelled 3(m−1)+1. The nodes of the horizontal frames are numbered from the north
pole down to the south pole as shown infigure 1(a).

While the nodes of globe networks are usually placed on a sphere [24, 26], them×3 globe network is
topologically equivalent to a pile ofm−1 equal triangular frameswith poles, and this is the situation that we
consider in the following. Thus, we construct them×3 globe network from the (m−1)×3 cylinder network
(figure 1(b)). In them×3 cylinder network, defined as a scaffolding (or a pile) ofm frames, the nodes of the top
frame are labelled 0, 1 and2and soon (figure 1(b)), with the last nodebeing 3m−1.Taking an (m−1)×3 cylinder
network,wefirst add a toppole (figure 1(c)), a network referred topreviously as the (m−1)×3 towernetwork [8].

Figure 1. (a) 6×3 globe network (five triangular frames perpendicular to the three-fold axis). (b) 5×3 scaffolding or cylinder
network (five triangular frames perpendicular to the three-fold axis). (c) 5×3 tower network (5×3 scaffoldingwith a top node).
The frames perpendicular to the three-fold axis are all equal to b, and all resistors linking the frames or linking the top and bottom to
polar nodes, when present, are equal to 1.
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Then,we turn it upside down, and add anotherpole, and thus obtain them×3 globenetwork.Whenproceeding in
thisway,weobtain explicit relations simultaneously for them×3 scaffolding andglobenetworks. The two-point
resistance betweennodes i and j in them×3 cylindernetwork is noted ( )R m ,ij and is noted ( )


R mij in them×

3 globenetwork.Thebase resistance of them×3 towernetwork is noted ˆ ( )R m , corresponding, for example, to the
resistance betweennodes 3m−2 and3m−1 (figure 1(c)).

In a symmetrical network, two-point resistances are related to each other. It is useful to summarize the
relations resulting from symmetries to avoid unnecessary calculations. In the present case, wefirst have three-
fold invariance around the central axis, which leads to obvious relations such as

  
= =R R R01 02 03 (globe

network,figure 1(a)) orR01=R12=R20 (cylinder network, figure 1(b)). Another trivial consequence of the
three-fold invariance is that the resistance between the two poles ism/3 (three lines ofmunit resistors in series,
connected in parallel). Less immediate relations, in them×3 globe network, result from the fact that the poles
of them×3 globe network satisfy the conditions of the cubic corner theorem [8], andwe have, for node 0:

( )
 
=

+
R

R1

3
, 101

12

with a similar relation for the south pole node.
Consider now the terminal nodes 0, 1 and 2 in them×3 cylinder network (figure 2(a)). They satisfy the

conditions of another corner theorem [8]. Indeed, these nodes are connected to three branches and there is a
plane of symmetry. In the following, we need themost general version of the relations that result from this
symmetry (two-plus-one legs corner theorem, see appendix A). In addition, because of the three-fold invariance,
we haveR01=R12. Thus, using equation (A11), we can expressR03 andR04 in terms ofR01:

⎧
⎨
⎪

⎩⎪

( )

( ) ( )
( )

=
- -

=
+ + - +

R
R b b

b

R
b b R b b

b

3 2

3 3 2
. 2

03
01

2

04

2
01

2

Similar relations also exist for the nodes of the terminal frames of them×3 globe network. Indeed, node 0
can be eliminated usingKennelly’s theorem [5].When one nodeK is connected to three nodes iwith
conductance ci, then all connections fromnodes i toK can be replacedwith connections ijwith conductance cij
such that /å=c c c cij i j k k (Y toΔ or star to triangle transform).When the three connections have the same

resistance a, then the resistance of each replacing ij resistor is 3a. Thus, the three branches fromnode 0 to nodes
1, 2 and 3 in them×3 globe network, can be replaced by a resistor of value 3, thus nodes 1, 2 and 3 are now
connected by a resistance b and 3 in parallel, namely a resistance b′=3b/(3+b) (figure 2(c)). Now,we are in
the situation of equation (2), replacing b by b′:

Figure 2.Upper parts of them×3 cylinder (a) or globe (b)networks.When the top node of the globe network is removed by applying
the Y toΔ transform, a cylinder network is obtained (c), but with a different resistor b’ for the top frame instead of b.
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Consequently, for the terminal nodes of the considered networks, it is sufficient to calculateR01 and

R .12 In

the following, we derive recurrence relations to obtain these resistances to any orderm.

3. Recurrence relations for the terminal resistances

The considered networks are periodic or repeating networks, and are therefore handled by recurrencemethods
[9–13, 29, 30]. Let us consider them×3 cylinder network and assumewe knowR01(m). Because of the three-
fold rotational invariance, the equivalent diagramof the top three nodes is a triangle of equal resistancesAm, and
we haveR01(m)=2Am/3 (Am in parallel with 2Am). Nowwe add one frame of three resistors b and the vertical
connections to the previous network (figure 3(a)). This newnetwork is the (m+1)×3 cylinder network. To
calculate the resistance between the newnodes 0 and 1 (figure 3(a)), we proceed as follows. First, we calculate the
equivalent circuit connecting nodes 0, 1 and 2 to the bottompart, namely the unity resistors legs connected to
the previous framewith resistancesAm. This circuit, shown infigure 3(b), can be reduced, first, by applying aΔ
to Y transform at the centre. The central triangle is thus replaced by a star ofAm/3 to a central node (figure 3(c)).
Thewhole circuit is now a starwith three equal branches of resistance 1+Am/3. Applying now aY toΔ
transform,we obtain a frame of three equal resistors 3+Am (figure 3(d)). The complete equivalent circuit
between nodes 0, 1 and 2 is therefore a frame of three equal resistors 3+Am in parallel with b. Consequently,
Am+ 1=b(3+Am)/(b+3+Am) and:

( )
( )

( )
( )+ = =

+
+ +

+R m A b
R m

b R m
1

2

3
2

2

6 2 3
. 4m01 1

01

01

This recurrence relation has numerous consequences. First, we infer that, at large values ofm,R01(m)

converges to the valueR01(∞), which satisfies:

( )
( )

( )
( )¥ =

+ ¥
+ + ¥

R b
R

b R
2

2

6 2 3
, 501

01

01

Figure 3. (a)Equivalent diagramof the top six nodes of them×3 cylinder network. (b)Diagram showing the circuit belownodes 0, 1
and 2 infigure 3(a). (c)After application of theΔ to Y transform in the central part offigure 3(b). (d)After application of the Y toΔ
transform to the Y circuit offigure 3(c).

4



which is an equation of degree 2with only one positive solution:

( ) ( )¥ = + -R
b

1
4

3
1. 601

Using equation (2), we also have the limits for the other two edge resistances:

⎜ ⎟
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The limit of the terminal resistance of them×3 globe network also follows. Indeed, we take the
(m−1)×3 tower network, turn it upside down, and the top nodes are equivalent to a frame of three resistors
ˆ ˆ ( )/= --A R m3 1 2.m 1 Then, we add one pole and three legs, equivalent to a triangular frame of resistors 3, to
add in parallel to ˆ -A ,m 1 hence:

( )
ˆ

ˆ

ˆ ( )

ˆ ( )
( )


=

+
=

-
+ -

-

-
R m

A

A

R m

R m

2

3

3

3

2 1

2 1
. 8

m

m

12
1

1

Since R̂m also follows the recurrence relation of equation (4), then ˆ ( ) ( )¥ = ¥R R ,01 and equation (8) gives,
at largem:
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⎠
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3
. 912

Using the expression for ( )

¥R12 from equation (8), whichwe put into equations (1) and (3), we obtain the

limits of the other top resistances of the∞×3 globe network:
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Using the same approach, we can derive other recurrence relations. Indeed, the equivalent circuit linking
nodes 3, 4 and 5, is the same as the equivalent circuit between nodes 0, 1 and 2when exchanging b andAm; it is
therefore a frame of three equal resistors 3+b in parallel withAm, henceBm+1=Am(3+b)/(b+3+Am),
which gives the resistanceR34(m+1) as a function ofR01(m):

( )
( ) ( )

( )
( )+ = =

+
+ +

+R m B
b R m

b R m
1

2

3

2 3

6 2 3
. 11m34 1

01

01

Similarly, we construct the globe network iteratively from the (m−1)×3 tower network, turn it upside
down, add one layer and a top node,making the (m+1)×3 globe network. For example, the 3×3 cylinder
network (figure 4(d)) is obtained by adding one layer to the 2×3 cylinder network (figure 4(a)), andR01(3)
follows fromR01(2) using equation (4). Similarly, the upside down 3×3 tower network (figure 4(e)) is obtained
by adding one layer to the upside down 2×3 tower network (figure 4(b)), and ˆ ( )R 3 follows from ˆ ( )R 2 using
equation (4).Whenwe add one layer plus a top node to the upside down 2×3 tower network (figure 4(b)), then
we get the 3×3 globe network (figure 4(f)). As shown above, one layer of b resistors plus one top node is
equivalent to one layer of b′ resistors. To obtain ( )


R m ,12 thus, we just use equation (4), replacing b by b′, andwe

have:

( )
ˆ ( )

ˆ ( )
( )


+ = ¢

+ -
+ ¢ + -

R m b
R m

b R m
1 2

2 1

6 2 3 1
. 1212

Using equation (8), and b′ = 3b/(3+b), we canwrite equation (12) in terms of ( )

R m12 only:

( )
( )

( )


+ =
+ -

R m
b

b bR m
1

4

6 4
. 1312

12

As done above forR34 in equation (11), we can alsowrite a recurrence relation for

R .45 Indeed, we just have

to replaceR01(m) by R̂ and b by b′:
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( )
( ) ˆ ( )

ˆ ( )

( ) ˆ ( )
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+ =
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=
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=
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b b R m

b R m
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2 3 1

6 2 3 1

2 3 2 1

6 4 3 1

2 3 2

6 4
. 1445
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To illustrate themethod, we give explicit relations for the first values ofm (tables 1 and 2). To start the
iteration, we take a frame of three resistors b, which givesR01(1)=2b/3. Adding one pole, using equation (8),
we obtain ˆ ( ) ( )= +R b b1 2 3 ; adding a second pole, we obtain ( ) ( )/


= +R b b2 2 3 2 .12 Using recurrence

relations in equations (4) and (13), we obtain the explicit expressions for ( )R m01 and ( )

R m12 given in tables 1

and 2. From equations (1)–(3), we then obtain ( )R m ,03 ( )R m ,04 ( )

R m ,01 ( )


R m14 and ( )


R m .15

4. Recurrence relations for closest neighbour internal resistances

Further recurrence relations can be inferredwithoutmore calculations. Consider anm×3 cylinder network
and someposition inside the networkwith q layers above and p layers below, withm=q+p (figure 5(a)). The
bottomnodes of the upper q layers are i, i+1 and i+2, with i=3(q−1), while the top nodes of the lower p
layers are i+3, i+4 and i+5. The equivalent circuit between nodes i, i+1 and i+2 is a triangle of three
resistorsAq=3R01(q)/2. The equivalent circuit between nodes i+3, i+4 and i+5 is a triangle of three
resistorsAp=3R01(p)/2.

Consequently, thewhole circuit containing nodes i, i+1, i+2, i+3, i+4 and i+5 is equivalent to the
circuit offigure 5(b), which is identical to the circuit offigure 3(a), replacing b byAq. Thus, we can use
equation (4) andwe get:

( )
( )

( )
( )

( )

( ) ( )
( )( ) =

+
+ +

=
+

+ +
+R m A

R p

A R p
R q

R p

R q R p
2

2

6 2 3

2

2
. 15i i q

q
1

01

01

01
01

01 01

The equivalent resistance between nodes i+3 and i+4 is obtained by exchanging p and q:

( ) ( )
( )

( ) ( )
( )( )( ) =

+
+ +

+ +R m R p
R q

R q R p

2

2
. 16i i3 4 01

01

01 01

Figure 4. First steps of the iterative construction ofm×3 cylinder and globe networks: (a) a cylinder 2×3 network, (b) after adding a
top node and rotating upside down, and (c) adding a top pole, thus obtaining the 3×3 globe network. Similarly: (d) adding a layer to
the 2×3 cylinder, thusmaking the 3×3 cylinder network, (e) after adding a top node to the 2×3 cylinder and rotating upside
down, or adding a layer to the rotated tower offigure 4(b), and (f) adding a top pole, thus obtaining the 4×3 globe network.
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Similarly, we can apply equation (2) replacing b byAq, andwe get:
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2
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01 01

These expressions, as expected, are symmetrical in p and q, while equations (15) and (16) are symmetrical
between each other. As an example of application, we give in table 1 the explicit expressions obtained using
equation (17) forR36(4),R37(4),R36(5) andR37(5).

When considering these internal resistances for a large network, we can use the obtained limit equation (6)
forR01.When both p and q are sufficiently large, we haveR01(p)=R01(q)=R01(∞), which, when inserted into
equations (15) and (17), gives:
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The same approach can be used for the internal resistances of anm×3 globe network. It hasm−1
horizontal frames.When separating the topm1−1 horizontal frames, thenm2−1 frames remain below, thus
m=m1+m2−1. The lowest indices in the upper group of frames are i, i+1 and i+2with
i=3(m1−1)−2. The separation is thus characterized by:

⎧
⎨⎩

( )

= -
= -
= + -

i m

j m

m m m

3 5

3 2

1

. 19

1

1

1 2

Table 1.Closest neighbour two-point resistances of them×3 cylinder networks form�5.

m 1 2 3 4 5

R01
b2
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+
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b
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+ + + +

b b b b b

b b b b

2 3 27 45 18

3 81 216 189 60 5

2 3

2 3 4

R36
+ +
+ +

b b

b b

3 8 2

9 12 2

2

2

+ + + +
+ + + +

b b b b

b b b b

27 108 123 48 5

81 216 189 60 5

2 3 4

2 3 4

R37

( )( )

+ + + +
+ + +

b b b b

b b b

27 90 84 24 2

3 3 2 9 12 2

2 3 4

2 ( )

+ + + + +
+ + + +
b b b b b

b b b b

81 324 423 216 39 2

3 81 216 189 60 5

2 3 4 5

2 3 4

Table 2.Closest neighbour two-point resistances of them×3 globe networks form�6.

m 2 3 4 5 6


R12

+
b

b

2

3 2 ( )( )

+
+ +

b b

b b

2

3

3 2

3 1

( )( )

( )( )

+ +
+ + +

b
b b

b b b
6

3 1

3 2 9 12 2 2
( )( )

+ + +
+ + + +

b
b b b

b b b b
2

27 54 30 4

9 15 5 9 9

2 3

2 2

( )( )

( )( )( )( )

+ + + +
+ + + + +

b b b b b

b b b b b

2

3

9 15 5 9 9

1 3 3 2 9 12

2 2

2


R01

( )

+
+

b

b

3 4

3 3 2 ( )( )

+ +
+ +

b b

b b

9 18 7

9 3 1

2

( )( )

+ + +
+ + +

b b b

b b b

27 72 54 10

3 3 2 9 12 2

2 3

2 ( )( )

+ + + +
+ + + +

b b b b

b b b b

81 270 297 120 13

3 9 15 5 9 9

2 3 4

2 2 ( )( )( )( )

+ + + + +
+ + + + +

b b b b b

b b b b b

243 972 1404 882 225 16

9 1 3 3 2 9 12

2 3 4 5

2


R14

( )

+
+

b

b

3 7

9 1 ( )( )

+ + +
+ + +

b b b

b b b

27 90 66 10

3 3 2 9 12 2

2 3

2 ( )( )

+ + + +
+ + + +

b b b b

b b b b

81 324 369 138 13

3 9 15 5 9 9

2 3 4

2 2 ( )( )( )( )

+ + + +
+ + + + +

b b b b

b b b b b

81 351 459 201 16

9 1 3 3 2 9 12

2 3 4

2


R15

( )( )

+ +
+ +

b b

b b

9 24 13

9 3 1

2

( )( )

+ + +
+ + +

b b b

b b b

27 90 84 22

3 3 2 9 12 2

2 3

2 ( )( )

+ + + +
+ + + +

b b b b

b b b b

81 324 423 210 31

3 9 15 5 9 9

2 3 4

2 2 ( )( )( )( )

+ + + + +
+ + + + +

b b b b b

b b b b b

243 1134 1890 1386 429 40

9 1 3 3 2 9 12

2 3 4 5

2


R45

+
+ +

b
b

b b
2

3 2

9 12 2 2

( )( )

( )( )

+ + +
+ + + +

b
b b b

b b b b
6

3 2 3 4

9 15 5 9 9

2

2 2 ( )( )( )

+ + +
+ + + +

b b b

b b b b

27 54 30 4

9 1 3 9 12

2 3

2


R47

( )

+ +
+ +

b b

b b

9 27 13

3 9 15 5

2

2 ( )( )( )( )

+ + + + +
+ + + + +

b b b b b

b b b b b

243 1134 1728 1080 231 16

9 1 3 3 2 9 12

2 3 4 5

2


R48

( )( )

+ + + +
+ + + +

b b b b

b b b b

81 324 423 216 37

3 9 15 5 9 9

2 3 4

2 2 ( )( )( )( )

+ + + + +
+ + + + +

b b b b b

b b b b b

243 1134 1890 1404 459 52

9 1 3 3 2 9 12

2 3 4 5

2
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Tofind the internal resistances, we apply equations (15)–(17), replacingR01(q) andR01(p), by ˆ ( )-R m 101 1

and ˆ ( )-R m 1 ,01 2 respectively. Using equation (8), we obtain:

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ( ) ( ))

( )
( ) ( ) ( ) ( )

( ( ) ( ))

( )

( )

( )( )

( )

( )

 
 

 
 

    
 

    
 

=
-

=
-

=
+ + -

-

=
+ + +

-

+

+ +

+

+

R m
R m

R m R m

R m
R m

R m R m

R m
R m R m R m R m

R m R m

R m
R m R m R m R m

R m R m

4

4

4

4

4 4 4 5

3 4

4 4 4

3 4

. 20

i i

i i

i i

i i

1
01 1

01 1 01 2

3 4
01 2

01 1 01 2

3
01 1 01 2 01 1 01 2

01 1 01 2

4
01 1 01 2 01 1 01 2

01 1 01 2

In table 2, we give the explicit expressions obtained using equation (20) for ( )

R 5 ,47 ( )


R 5 ,48 ( )


R 647 and

( )

R 6 .48 As another application, supposewe are interested in the expression of themiddle internal resistance
between nodes 13 and 16 of the 11×3 globe network. Using equation (19), we havem1=6=m2.We then
take ( )


R 601 from table 2 andwe get, directly from equation (20):

( )
( )

( )


=
+ + + + +
+ + + + +

-R
b b b b b

b b b b b
11

243 1215 2052 1449 405 31

3 243 891 1188 693 165 11
. 2113 16

2 3 4 5

2 3 4 5

Nowwe knowhow to obtain the expressions for the resistance between all closest-neighbour nodes in
m×3 cylinder and globe networks, which all result from the basic recurrence relation of equation (4).When
the nodes aremore distant, some relations can also be inferred.

5. Recurrence relations for two-point resistances across one frame

Following themethod used above, we start from a fundamental network (figure 6(a)), obtained by adding an
intermediate frame to the network offigure 5(b). To account for possible networks above and below,we
introduce infigure 6(a) resistancesA andB, similar toAq andAp, respectively, infigure 5(b).Whilemost
equivalent resistances are already known from the previous sections, we are interested in the equivalent
resistance between nodes 0 and 6, and in the equivalent resistance between nodes 0 and 7. The previous
recurrence relations cannot be applied, neither the Y-Δ transform, sowe use van Steenwijk’smethod.

To apply thismethod, consider the configuration of currents when a unity current is injected at node 0 and
current 1/8 is extracted from the other eight nodes (figure 6(a)). By symmetry, the currents between nodes 1 and
2, between nodes 4 and 5 and between nodes 7 and 8 are zero. Designating byα andβ the currents fromnode 0 to

Figure 5. (a) Inner part of anm×3 cylinder or globe network. (b)Equivalent diagramof the networkmade by the internal nodes i,
i+1, i+2, i+3, i+4 and i+5.
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node 1, and fromnode 3 to node 4, respectively, all other currents are fixed by symmetry or current conservation
(figure 6(a)). The currentsα andβ are constrained by closed loops 3-4-1-0 and 6-7-4-3, giving:

⎧
⎨⎩

( )

( ) ( ) ( )

( )
( )

b a a a

a b a b b a b

- - - + - =

- - - - + - - + - - =

b A

B b

1 2 0

2 2 0

, 22

1

8

1

2

1

8

2

8

7

8

or:

⎧
⎨⎩

( )

( ) ( )
( )

b a

a b

= - + +

+ + + + = +

b A

B b B

3

3 3
, 23

B

9

8

9 3

8

which gives:

⎧
⎨
⎪

⎩⎪

( ) ( )

( ) ( )( )

( )

( ) ( )( )

( )

a

b

=
+ + + +

+ + + + +

=
+

+ + + + +

B b b B

B b A b B

A B

B b A b B

3

8

3 3 3

3 3 3

3

8

3

3 3 3

. 24

The total voltage dropV06 fromnode 0 to node 6 is then:

( )

( ) ( )( )
( )a b= - - =

+ + + + + +
+ + + + +

V
b A b B AB Ab

B b A b B

15

8
4 2

3

8

9 6 9 3 3 5

3 3 3
. 2506

To obtainR06, van Steenwijk’smethodworks as follows [6–8].We subtract from the current configuration
shown infigure 6(a), the current configuration obtainedwhen injecting a unity current at node 6 and extracting
current 1/8 at all other nodes. Then, we obtain a total current configurationwith current 1+1/8=9/8
injected at node 0 and extracted at node 6. The resistance is then the total voltage drop divided by the current
9/8.Here, it is not needed to calculate the second current configurationwhen injecting a unity current at node 6.

Figure 6.Equivalent diagramof an internal part of anm×3 cylinder or globe network, displaying nine nodes and one intermediate
frame layer.
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This is indeed the configuration depicted infigure 6(a), exchangingA andB. The potential drop Ṽ06 from0 to 6
in the second configuration is thus given by equation (25), exchangingA andB. In the following, in general, we
use the convention that, for any quantity F(A,B), then ˜( ) ( )=F A B F B A, , .We then obtain:

( ˜ )
( )( )

( ) ( )( )
( )= + =

+ + + + +
+ + + + +

R V V
b b A B AB

b b A B AB

8

9
2

3 2 2

3 3 2 3
. 2606 06 06

Similarly, we have:

( ˜ ) ( )= +R V V
8

9
, 2707 07 07

with:

⎛⎝ ⎞⎠ ( ) ( ) ( )a b a b a b= - - + - - - =
+

- + - +V B
B

B B
15

8
4 2

1

2

2

16
3

5

8
4 2 , 2807

andwe obtain:

( ) ( )( ) ( )

( ) ( )( )
( )=

+ + + + + +
+ + + + +

R
b b A B b AB

b b A B AB

2

3

3 3 2 3 2 3

3 3 2 3
. 2907

In equations (26) and (29), the terms are rearranged to separate the symmetric combinationsA+B andAB.
In the simplest case, we haveA=B=b, giving:

⎧
⎨
⎪

⎩⎪

( )

( )
( )( )

( )

=
+
+

=
+ + +
+ +

R
b

b

R
b b b

b b

3 2
1

3

3
2

9

9 18 9

1 3

. 30

06

07

2 3

In the case of an extended cylinder network, we have, as in the previous section,A=3R01(q)/2 and
B=3R01(q)/2, thus:

⎧
⎨
⎪

⎩⎪

( )
( ) ( )( ( ) ( )) ( ) ( )

( ) ( )( ( ) ( )) ( ) ( )

( )
( ) ( )( ( ) ( )) ( ) ( ) ( )

( ) ( )( ( ) ( )) ( ) ( )

( )

( )

( )

=
+ + + + +
+ + + + +

=
+ + + + + +

+ + + + +

+

+

R m
b b R p R q R p R q

b b R p R q R p R q

R m
b b R p R q b R p R q

b b R p R q R p R q

2

3

4 3 2 6 2 9

4 3 2 2 3 3

2

3

4 3 2 6 2 3 3

4 3 2 2 3 3

. 31

i i

i i

6
01 01 01 01

01 01 01 01

7
01 01 01 01

01 01 01 01

As an example of application, considerR39(5).We just apply equation (31)with p=q=2 and the
expression ofR01(2) from table 1.We obtain:

( ) ( )=
+ + + +
+ + + +

R
b b b b

b b b b
5 2

27 90 99 40 5

81 216 189 60 5
. 3239

2 3 4

2 3 4

From equation (31), we also obtain, for example, the situation of large networks above and below, using
equation (6):

⎜ ⎟⎛
⎝

⎞
⎠

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ¥ =

+ + + ¥ + ¥
+ + + ¥ + ¥

= + - ++R
b b R R

b b R R b
b

b2

3

4 3 2 12 2 9

4 3 2 4 3 3

2
1 1

4

3
. 33i i 6

01 01
2

01 01
2

Wecan also derive resistances inm×3 globe networks. To get the expression of ( )

R 4 ,17 for example, we

apply equation (29)withA=B=b′ andwe get:

( ) ( )


=
+
+

R
b

b
4

2

3

3 4

3 2
. 3417

Wecan also obtain the expression of the internal resistance across one frame in them×3 globe network. As
in section 4 above, we replace in equation (31)R01(q) andR01(p), by ˆ ( )-R m 101 1 and ˆ ( )-R m 1 ,01 2 respectively,
and then, using equation (8), we obtain:
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( )
( ) ( )( ( ) ( )) ( ) ( )

( ) ( ( ) ( ))
( )( )

    
 =

+ + + + -
+ - +

+R m
b b R m R m bR m R m

b b R m R m

2

3

4 3 2 2 3 4

4 3 2 2
. 35i i 6

01 1 01 2 01 1 01 2

01 1 01 2

Thismethod can be generalized to obtain two-point resistances across two andmore intermediate frames
(appendix B).

6.Discussion

From the recurrence relations in equations (4), (11), (13)–(14), (15)–(17) and (20), the exact equations for the
limits for large numbers of layers are obtained as a function of the resistance b.Whenm is increased, the
resistance between nodes of them×3 globe network increases to approach the limit value (figure 7(a)). The
difference between the limit and the actual value for a givenm and a given choice of b, however, is not necessarily
negligible, even for values ofm larger than 10 (figure 7(b)). Indeed, this difference, for a given value ofm, is larger
for larger values of b. In addition, it is larger for the central internal resistance along the axis (RM) than for the
edge resistanceR12 and even larger for the central internal resistance along the axis with one intermediate frame
(RM′). The equations for the limit values, therefore, can be used instead of the actual values as a function ofm,
but with some caution depending on the considered domain ofm, on the required precision, and depending on
the particular pair of nodes considered.

Our explicit solutions are useful to study practical cases. By replacing the basic resistors by reactive
components (capacitors and inductances), the impedance response can also be calculated analytically. For
example, equations (30) and (34) can be used to evaluate the effect of adding covering resistances at the top and
at the bottomof a three-layer triangular pile of a basic reactive element (figure 8). As an illustration, we take a
basic elementmade of an inductance L0 in series with a resistorR0 and a capacitanceC0 in parallel (figure 8(a)).
Resistance b in ourmodel is replaced by a complex impedanceZ0 depending on frequency f [30]:

( ) ( )w
w

= +
+

Z i L
R

i R C
0

1
, 360 0

0

0 0

where i is here the square root of−1 andω=2πf. The variations with frequency of the impedancesZ06(3) and
( )


Z 417 (figure 8(b)) show a transition from a low-frequency limit, obtainedwhen b is replaced byR0, to the high-
frequency limits 2 from equation (30) and 4/3 from equation (34), respectively. The variationwith frequency
during the transition depends on theR0, L0 andC0 parameter values. The effect of piling upmore layers on the
frequency response can easily be studied as the analytical expressions can be obtained for any number of layers.

The expressions we have obtained abovewerefirst checked using a numerical code based on node reduction
usingKennelly’s theorem. These expressions can also be comparedwith the exact solutions of them×3
cylinder and globe networks given by Tan’s RTmethod [29]. The obtained expressions of two-point resistances
withm smaller than 4, elaborated in detail in appendix C, correspond exactly to the explicit expressions given in
tables 1 and 2. As the twomethods are completely independent, the comparison is highlymeaningful. In Tan’s
RTmethod, general and elegant expressions are obtained, and particular simple cases areworked out
progressively in a recursivemanner. Here, an opposite approach is used.We start from a simple fundamental

Figure 7.Convergence of two-point resistances in them×3 globe network as a function ofm. (a)Edge resistance (R12), resistance
between twomiddle internal nodes along the axis (RM), and resistance between two internal nodes along the axis separated by one
middle node (RM′). (b)Difference between the limit value at largem (R

∞
) and the resistance for a givenm. Three values of b are

considered: b=1 (full line), b=0.1 (dotted line) and b=10 (dash-dot line).
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unit cell (figure 3(a)), thenmore andmore complicated networks are built up by combining different variants of
the unit cell.

Beyond the actual practical cases considered in this paper, themethod described here appears useful to
complement the derivations using generalmethods such as the RTmethod orGreen functions [19–22]. Our
method can be analyzed as follows. First, we have stated the relations between two-point resistances resulting
from the general symmetry properties, in particular near the terminal nodes. Then, we have established and
solved a root network (figure 3), fromwhere various types of iterative relations follow. In this case, we have
obtained all two-point resistances between closest neighbours. Finally, we have shown that other basic root
networks can be solved (figure 6), here with one or two intermediate frames (appendix B), and further relations
have been inferred. This approach is general and should be attempted in other types of networks, such as the
m×4 cylinder and globe networks, for which explicit expressions have been also obtained from the RTmethod
[29]. Inmore complex networks with symmetries of higher orders, even if it turns out that our direct approach is
not simpler than the general RT summations and that not all two-point resistances potentially can be derived,
even partial recurrence relationswill be useful to obtain limit cases and discuss the relevance of a given network
tomodel a situation of concern. Analytical expressions and limit values aremeaningful tools to evaluate the
capacity of a given network topology to account for observations. Our approach does not replacemore powerful
and complete calculationmethods, but it provides a useful assessment of properties.

7. Conclusions

In this paper, we have shownhow the explicit expressions for all closest neighbour resistances inm×3
scaffolding (cylinder) and globe networks result from a single recurrence relation ( )+ =R m 101

( ( )) ( ( ))/+ + +b R m b R m2 2 6 2 3 ,01 01 equation (4), obtained by using only the Y-Δ transform (Kennelly’s
theorem). Furthermore, by using van Steenwijk’smethod, we have obtained explicit expressions for resistances
across one (section 5), two ormore intermediate frames (appendix B). These calculations illustrate how the
symmetry properties (planar and 3-fold invariance around a central axis) can be combinedwith a repeated
pattern of resistors.

Our expressions coincidewith the explicit results that can be inferred from the general expressions given by
the RTmethod [29]. Thus, our derivation provides a completely independent verification, and this comparison
enhances the confidencewe can have in bothmethods to obtain explicit analytical expressions. Such analytical
results are useful to check numerical codes in practical applications, and to evaluate the relevance of a given
network topology tomodel the physical systemof concern and comparewith experimental data.

In the case of them×3 networks considered here, our analysis complements the general results by giving an
appreciation of the consequences of the repetition of basic unit cells to construct extended networks with 3-fold
invariance. By such analysis, we learn to be aware of the different types of relations of the two-point resistance
appearing in such three-dimensional networks andwe understand their origin. In complex networks, it will

Figure 8.Comparison of the impedance response. (a)Resistor b of the horizontal frame is replaced by an element including an
inductance L0 and a resistanceR0 in parallel with a capacitanceC0. (b)Considered impedance between top and bottom frame of the
3×3 cylinder network. (c)Considered impedance between top and bottom frame of the 4×3 globe network. (d)Modulus of
impedance as a function of frequency for two different values of L0 andC0, keepingR0=2Ω.
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remain useful to complement general expressions by relationswhich are direct consequences of the rotational

and translational symmetry properties [33]. Since networks offer amodelling approachwith a rapidly growing

range of applications, frommaterial science [10] and geophysics [2, 14–16] to biological systems [34], the

exploration of the rich properties of resistor networks in three dimensions and theirmathematical descriptions

will remain a vast research area for the coming years.
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AppendixA

Two-plus-one legs corner theorem

Consider a node, labelled 0, with three branches connected to a networkwith a plane of symmetry containing

this node and one of the branches (figure A1).Without loss of generality, we assume that the resistance of the

branch in the symmetry plane, connecting node 0 to a node labelled 3, is unity and the resistance connecting 0 to

the two other nodes 1 and 2 is b. The equivalent diagrambetween nodes 1, 2 and 3, capturing the rest of the

network, is an isosceles triangle with one equivalent resistanceA between nodes 1 and 2, and two equal

resistancesB for the branches 3–1 and 3–2 (figure A2). This arrangement constitutes the reduced network in the

considered problem.
Belowwe show that the two-point resistances between the nodes are related, andwewill derive expressions

with resistance b as a parameter. This demonstration ismore general than the case treated previously, whichwas

assuming b=1 [8]. To express the two-point resistances, we use van Steenwijk’smethod. For this purpose, we

derive the current distribution corresponding to the injection of a unity current, and extracting current 1/3 from

each of the other three nodes, for each class of possible injection nodes of the problem. In the present case, three

configurations need to be considered (figure A2).

Figure A1.General case of a corner node 0with three legs in a networkwith a plane of symmetryΠ containing node 0 and one leg.
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In thefirst configuration (figure A2(a)), unity current is injected at node 0. Callingα0 the current in branch
0–2, all other currents in the reduced network can be inferred by symmetry or by current conservation. The
current between nodes 1 and 2 is zero. Using the closed loop 0–1–3, we have:

⎛⎝ ⎞⎠ ( )a a a= - + -b B1 2
1

3
, A10 0 0

giving:

( )a =
+

+ +
B

b B

1

3

3

2
. A20

In the second configuration (figure A2(b)), unity current is injected at node 3. Callingα3 the current in
branch 3–1, similarly, all other currents in the reduced network can be inferred by symmetry or by current
conservation, with zero again between nodes 1 and 2. Since the configuration offigure A2(b) is the same as the
configuration offigure A2(a)when b andB are exchanged, we have:

( )a =
+

+ +
b

b B

1

3

3

2
. A33

In the third configuration (figure A2(c)), when unity current is injected at node 1, the planar symmetry of the
network is not verified by the currents andwe need to introduce three unknown currents:α1 (between nodes 1
and 2),β1 (between nodes 1 and 3) and γ1 (between nodes 0 and 3). These unknowns are constrained using the
closed loops 1–2–3, 1–3–0 and 1–2–0 giving, respectively:

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛⎝ ⎞⎠

⎛⎝ ⎞⎠

( ) ( )

a b g

b g a b

a a b g

= + -

= + - -

= - - - -

A B

B b

A b

2
1

3

1

2 2 2
1

3

. A4

1 1 1

1 1 1 1

1 1 1 1

From equation (A4), eliminating γ1, which is not needed afterwards, we extract the values ofα1 andβ1:

⎧
⎨
⎪

⎩⎪ ( )( )

( )

a

b

=
+ +

=
+ + + + +

+ + + +

Bb

AB Ab Bb

AB ABb Ab Ab Bb Bb

b B AB Ab Bb

4

3 2

3 5 3 2 2

3 2 2

. A5

1

1

2 2

To obtain the two-point resistanceRij between nodes i and j, we subtract the voltage drop resulting from the
current configurationwith injection at node i, from the voltage drop resulting from the current configuration
with injection at node j, which gives the total voltage drop corresponding to the total current 1+1/3 injected at
node i and extracted at node j. Thus, we have:

Figure A2.Equivalent diagram in the situation offigure A1.Node 0 is the corner node and node 3 is in the plane of symmetry with
node 0. Resistance of branch 0–3 is 1, and b for branches 0–1 and 0–2. Equivalent resistance between nodes 1 and 2 isA, andB between
nodes 3 and 1, and between nodes 3 and 2. (a)Current configuration in the equivalent networkwhen a unity current is injected at node
0. (b)Current configuration in the equivalent networkwhen a unity current is injected at node 3. (c)Current configuration in the
equivalent networkwhen a unity current is injected at node 1. Current is counted positive in the direction of the arrow.

14



⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

( )

( )
( )( )

( )
( )( )

( )

a a

a

a a b

a b

= - + - =
+

+ +

= =
+ +

= + - - =
+ + + + +
+ + + +

= + =
+ + + + +
+ + + +

R
b B

b B

R A
ABb

AB Ab Bb

R b b
AB AB Ab ABb Bb B b

b B AB Ab Bb

R B B
AB ABb Ab Ab Bb Bb

b B AB Ab Bb

3

4
1 2 1 2

2

3

4
2

2

2

3

4
1

2 2

2 2

3

4

2 2

2 2

. A6

03 0 3

12 1

01 0 1 1

2 2

13 3 1

2 2

The expression forR03 corresponds to the unity resistor in parallel with b+B, as expected. From thefirst
and second equations in equation (A6), we extractA andB:
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whichwe can inject into the third and fourth equations, andwe can expressR01 andR13 in terms ofR03,R12

and b:
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These relations can be applied to any terminal node of them×n cylinder network, for example node 0.
Node 2 andnode 3 offigure A1 are then node n−1 and node n, respectively, of the cylinder network.We then
have:
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However, by rotational invariance, we have, in them×n cylinder network,R1(n−1)=R12 and
R1n=R0(n+1), andwe can rewrite equation (A9) as:
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In the case of them×3 cylinder network, we have the additional condition thatR12=R01, and
equation (A10) leads to:
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ExpressingR03 as a function ofR01 in the second equation and eliminatingR03 from the second equation, we
get equation (2), which is the expression used to obtain the results of table 1.

Appendix B

Two-point resistances across two andmore intermediate frames

Themethod presented in section 5 can be generalized tomore intermediate levels. Here, we illustrate the case of
two frames, shown infigure B1. Consider the configuration of currents when a unity current is injected at node 0
and current 1/11 extracted from the other eleven nodes (figure B1). By symmetry, the currents between nodes 1
and 2, between nodes 4 and 5, between nodes 7 and 8, and between nodes 10 and 11, are zero.We follow the
scheme offigure 6 and introduce three unknown currentsα,β and γ fromnode 0 to node 1, fromnode 3 to node
4 and fromnode 6 to node 7, respectively; all other currents are fixed by symmetry or current conservation
(figure B1). The three unknown currents are constrained by the closed loops 3-4-1-0, 6-7-4-3 and 9-10-7-6,
giving:
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hence:
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Figure B1. Equivalent diagramof an internal part of anm×3 cylinder or globe network, displaying 12 internal nodes and two
intermediate frame layers.
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Now, before solving explicitly, we establish an intermediate general relation between resistanceR09 and the
edge resistancesR01 andR9–10. The total voltage dropV09 fromnode 0 to node 9 is:

( )a b g= - - -V
30

11
6 4 2 . B309

Takingβ and γ from equation (B2), we can expressV09 in terms ofα only:

[ ( )( ) ] ( )a b g a= - - - = + + - + + +V
b

b b b b A
30

11
6 4 2

6

11
12 16 5 1 3 11 . B409

2

2

To express resistanceR09using the current configuration offigure B1, we subtract, from the current
configuration offigure B1, the current configuration obtainedwhen injecting a unity current at node 9 and
extracting current 1/11 at all other nodes. Then, we obtain a total current configurationwith current 1+1/
11=12/11 injected at node 0 and extracted at node 9. The resistance is now the total voltage drop divided by
the current 12/11. As in section 5, it is not necessary to calculate the second current configurationwhen injecting
a unity current at node 9. This is indeed the configuration depicted infigure B1, exchangingA andB.We thus
obtain an expression forR09:
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However, we also have:
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Consequently:
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Whenwe already haveR01 andR9–10 using themethods presented above, thenwe also have the expression
forR09using equation (B7). This equation can also be generalized iteratively when addingmore intermediate
frames.With only one intermediate frame (section 5), the corresponding relation is obtained from

( ˜ )/= +R V V8 906 06 06 and equation (25):
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Aswe did above, in the case of one intermediate frame, we can also solve explicitly equation (B2) to obtain
the expression ofα:
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andwe obtain:
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In the simplest case, we haveA=B=b, giving:
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In the case of an extended cylinder network, equation (B10) can bewritten:
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and the limit for large q and p is, withR01(p)=R01(q)=R01(∞), using equation (8):
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As in section 5, we can also derive resistances inm×3 globe networks. To get the expression of ( )

-R 5 ,1 10 we

apply equation (B12)withA=B=b′ andwe get:
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Wecan also obtain the expression of the internal resistance across two frames in them×3 globe network.
We replace in equation (B12)R01(q) andR01(p), by ˆ ( )-R m 101 1 and ˆ ( )-R m 1 ,01 2 respectively, and then, using
equation (8), we obtain:
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Using equations (B12) and (B15), we can obtainR3−12(5),R3−12(6), ( )

-R 6 ,4 13 ( )


-R 74 13 and so on.

AppendixC

Comparisonwith the results of Tan’s recursion-transformmethod

Our results for them×3 cylinder (table 1) and globe (table 2)networks can be comparedwith the results of
Tan’s RTmethod, explicitly given in this case [29]. Let usfirst consider them×3 cylinder network.

Following the notations used by Tan andTan in [29], them×3 cylinder network ismade of n=m−1
triangular framesAiBiCiwith 0�i�n of resistors r0 and the n+1 frames are connected by equal resistors r.
Here, we consider the two-point resistances between nodeA0 and all other nodes, given by the following concise
and elegant general expressions:
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where h=r/r0 [29], corresponding to h=1/b in our notations. Equation (C1) corresponds to equations (104)
and (107), respectively, of page 11 in [29]. To comparewith our results, we have expressed the two-points
resistances in equation (C1) in units of r and simplified the notations. The recursive coefficients in equation (C1)
are given by equation (4) of [29] as:
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where l and l̄are the roots of Tan’s characteristic equation. They are given by equation (101) of [29]:
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From equation (C3), we have the property that ¯ll = 1.

To obtain explicit expressions from equation (C1), we calculate some values of the recursive parameters Fk
andΔFk.We have F0=0, F1=1 andΔF0=1. For k=2, we have:
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For k=3, we have:
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Now, applying equation (C1), we get, form=2 (n=1):
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Form=3 (n=2), we obtain:
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Finally, forR01, we obtain, form=4 andm=5:
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The expressions from equations (C8)–(C11) coincide, when replacing h by 1/b, with the results given in
table 1 and equations (30) and (34) of section 5.

Examples of expressions can also be obtained for them×3 globe network. Using equation (103) of [29], we
have:
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whereGn andαn are given by equations (7) and (5) of [29], respectively:
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Using the results (C4-C7) given above, we have:
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Thus, we obtain the following explicit results for two-point resistances in them×3 globe network:

⎧

⎨

⎪⎪⎪

⎩
⎪⎪⎪

( )
( )

( )
( )( )

( )
( )( )

( )







a

a a

a a

= + =
+
+

= + =
+ +
+ +

= + =
+ + +
+ + +

R
h G

h

h

R
h G

h h

h h

R
h G

h h h

h h h

2
1

3

2

9

4 3

3 2 3

3
1

3

2

9

7 18 9

9 1 1 3

4
1

3

2

9

10 54 72 27

3 2 3 2 12 9

. C16

01
1
2

2

01
1 2

3

2

01
1 3

4

2 3

2

The expressions from equation (C16) coincide, when replacing h by 1/b, with the results given in table 2.
Incidentally, using equation (1), we have:
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