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1.  Introduction
The NASA InSight mission successfully landed on Mars in November 2018 (Banerdt et al., 2020). Since 
then, the SEIS package, consisting of two three-component seismometers (Lognonné et al., 2019), and the 
heat flow and physical properties package ( 3HP ) (Spohn et al., 2018) were deployed directly onto the sur-
face of Mars. 3HP  consists of a self-hammering probe, referred to as the “mole,” that penetrates into the 
shallow subsurface of the Martian regolith with the aim to take thermal conductivity and temperature 
measurements in order to better understand the Martian planetary heat flow. The hammering mechanism 
of the mole is designed to slowly dig into the regolith at a rate of about 0.1–1 mm per hammer stroke (Kedar 
et al., 2017). This means that thousands of repeated hammer strokes are needed to reach the target depth 
of 5 m.

3HP  hammering generates seismic signals that are recorded by SEIS. These signals can potentially be used to 
image the shallow subsurface just below the lander (Golombek et al., 2018; Kedar et al., 2017). However, the 
seismic analysis of the 3HP  hammering signals does not address one of the primary mission goals and the 
experiment was not conceived before finalizing the system design. Therefore, the data acquisition for this 
opportunistic experiment had to be implemented with the constraints given by the already designed seismic 
data acquisition flow. Hence, the need to develop the reconstruction workflow discussed in this paper.

Abstract  In December 2018, the NASA InSight lander successfully placed a seismometer on the 
surface of Mars. Alongside, a hammering device was deployed at the landing site that penetrated into the 
ground to attempt the first measurements of the planetary heat flow of Mars. The hammering of the heat 
probe generated repeated seismic signals that were registered by the seismometer and can potentially 
be used to image the shallow subsurface just below the lander. However, the broad frequency content of 
the seismic signals generated by the hammering extends beyond the Nyquist frequency governed by the 
seismometer's sampling rate of 100 samples per second. Here, we propose an algorithm to reconstruct the 
seismic signals beyond the classical sampling limits. We exploit the structure in the data due to thousands 
of repeated, only gradually varying hammering signals as the heat probe slowly penetrates into the 
ground. In addition, we make use of the fact that repeated hammering signals are sub-sampled differently 
due to the unsynchronized timing between the hammer strikes and the seismometer recordings. This 
allows us to reconstruct signals beyond the classical Nyquist frequency limit by enforcing a sparsity 
constraint on the signal in a modified Radon transform domain. In addition, the proposed method reduces 
uncorrelated noise in the recorded data. Using both synthetic data and actual data recorded on Mars, we 
show how the proposed algorithm can be used to reconstruct the high-frequency hammering signal at 
very high resolution.

SOLLBERGER ET AL.

© 2021. The Authors. Earth and 
Space Science published by Wiley 
Periodicals LLC on behalf of American 
Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

A Reconstruction Algorithm for Temporally Aliased 
Seismic Signals Recorded by the InSight Mars Lander
David Sollberger1 , Cedric Schmelzbach1 , Fredrik Andersson1, 
Johan O. A. Robertsson1 , Nienke Brinkman1 , Sharon Kedar2 , 
William B. Banerdt2 , John Clinton1 , Martin van Driel1 , Raphael Garcia3 , 
Domenico Giardini1 , Matthias Grott4 , Thomas Haag1, Troy L. Hudson2 , 
Philippe Lognonné5 , Jan ten Pierick1, William Pike6 , Tilman Spohn4 , 
Simon C. Stähler1 , and Peter Zweifel1

1Institute of Geophysics, ETH Zürich, Zürich, Switzerland, 2Jet Propulsion Laboratory, California Institute of 
Technology, Pasadena, CA, USA, 3Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France, 
4DLR Institute of Planetary Research, Berlin, Germany, 5Université de Paris, Institut de Physique du globe de 
Paris, CNRS, Paris, France, 6Department of Electrical and Electronic Engineering, Imperial College London, South 
Kensington Campus, London, UK

Key Points:
•	 �Hammering of the InSight heat 

probe generates high-frequency 
seismic signals that exceed 
the Nyquist frequency of the 
seismometer

•	 �We developed a new data acquisition 
and reconstruction workflow that 
allows for the recovery of the full-
bandwidth hammering signals

•	 �During hammering, we deliberately 
turned off the seismometer's anti-
aliasing filters and reconstructed the 
aliased signal using a sparseness-
promoting algorithm

Correspondence to:
D. Sollberger,
david.sollberger@erdw.ethz.ch

Citation:
Sollberger, D., Schmelzbach, C., 
Andersson, F., Robertsson, J. O. A., 
Brinkman, N., Kedar, S., et al. (2021). A 
reconstruction algorithm for temporally 
aliased seismic signals recorded by the 
InSight Mars lander. Earth and Space 
Science, 8, e2020EA001234. https://doi.
org/10.1029/2020EA001234

Received 20 APR 2020
Accepted 18 JUN 2021

10.1029/2020EA001234

Special Section:
InSight at Mars

RESEARCH ARTICLE

1 of 15

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6408-6681
https://orcid.org/0000-0003-1380-8714
https://orcid.org/0000-0002-3292-385X
https://orcid.org/0000-0002-1842-0834
https://orcid.org/0000-0001-6315-5446
https://orcid.org/0000-0003-3125-1542
https://orcid.org/0000-0001-8626-2703
https://orcid.org/0000-0002-8938-4615
https://orcid.org/0000-0003-1460-6663
https://orcid.org/0000-0002-5573-7638
https://orcid.org/0000-0002-8613-7096
https://orcid.org/0000-0002-5879-6633
https://orcid.org/0000-0002-1014-920X
https://orcid.org/0000-0002-7660-6231
https://orcid.org/0000-0002-9322-6660
https://orcid.org/0000-0002-0783-2489
https://doi.org/10.1029/2020EA001234
https://doi.org/10.1029/2020EA001234
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-9100.INSIGHT
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020EA001234&domain=pdf&date_stamp=2021-08-11


Earth and Space Science

SEIS is deployed in close proximity to the 3HP  mole at a distance of 1.18 m (Figure 1). As a result, the 
travel times of seismic waves generated by the hammering of the mole are extremely short (just a few mil-
liseconds). In order to extract subsurface information from the seismic data (such as seismic velocity and 
reflectivity), it is thus of crucial importance to have a high temporal resolution for both the recorded seismic 
signal and the origin time of each mole stroke (i.e., the time the hammer stroke occurs). The latter is known 
with an accuracy of 1.7 milliseconds from the measurements of an accelerometer that is mounted inside 
the mole (Spohn et al., 2018). In this paper, we develop a method to additionally increase the temporal res-
olution of the recorded seismograms beyond the nominal sampling rate of the seismometer. Increasing the 
temporal resolution is a critical step since the nominal sampling interval of SEIS is longer than the expected 
seismic travel time between 3HP  and SEIS, effectively preventing the extraction of seismic velocities (Kedar 
et al., 2017).

SEIS is operated with on-board digital anti-aliasing filters to prepare the 
seismic information to be returned to Earth with a maximum sampling 
rate of 100 samples per second (sps). This sampling rate provides suf-
ficient temporal resolution for most of the anticipated Martian seismic 
signals such as marsquakes and meteorite impacts (Giardini et al., 2020; 
Lognonné et al., 2019). However, the impulsive seismic signals generated 
by 3HP  hammering are very broad-band and may contain frequencies up 
to and beyond 250 Hz (Kedar et al., 2017). The application of the nom-
inal anti-aliasing filter would thus result in a severe loss of information 
during acquisition. Figure 2 shows the signal of a single hammer stroke 
measured using a commercial seismometer in an analog experiment con-
ducted on Earth in the Nevada desert. The pass region of the nominal 
SEIS anti-aliasing filter is marked in red. Note how a significant portion 
of the information including the dominant signal energy between 100 
and 150 Hz would be lost using the nominal anti-aliasing filter.

Given the fact that the idea of using 3HP  as a seismic source was con-
ceived after the implementation of the seismic acquisition hardware, the 
InSight science team had to find ways to circumvent limitations of the ex-
isting acquisition hardware, such as the insufficient sampling rate. With 
the goal to enable the analysis of seismic information beyond the high-
est nominal Nyquist frequency of SEIS (i.e., 50 Hz), we designed a data 
acquisition and reconstruction workflow that consists of (a) recording 
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Figure 1.  Configuration of SEIS and 3HP  on Mars. The orientation and location of the three components of the short-
period (SP) and very broadband (VBB) seismometers are marked in red and blue, respectively. The azimuths of the SP-
U, SP-V, and SP-W axes from North are 285°, 105.2°, and 345.3°, with an inclination from the horizontal of −89.9°, 0°, 
and 0°, respectively. The axes of the VBB sensor are all inclined with respect to the horizontal providing a set of three 
close-to-orthogonal components in a so-called Galperin configuration. See Lognonné et al. (2019) for details.

0 0.5 1.0 m

Wind and 
Thermal Shield

SEIS

SP-U

SP-V

VB
B-

V

V
B

B
-U

VBB-W

SP-W

H
P

3

Mole

1.18 m

N

Figure 2.  Amplitude spectral density of an 3HP  hammering seismic signal 
obtained in an analog experiment on Earth. The response of the nominal 
SEIS anti-aliasing filter is shown in red. The proposed digital all-pass filter 
passes information throughout the complete bandwidth (green). As a 
result, the recorded seismic signals will be aliased by several factors when 
downsampled to 100 samples per second.
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aliased data by replacing the nominal anti-aliasing finite-impulse response (FIR) filters by all-pass filters 
and (b) reconstructing the data at a high sampling rate using a sparseness-promoting algorithm. We illus-
trate the success of our method in recovering the high frequency information from the hammering signals 
using both synthetic data and actual data from Mars.

The 3HP –SEIS experiment marks, to the best of our knowledge, the first active seismic experiment ever 
conducted on Mars (Brinkman et al., 2019). A similar robotic active seismic experiment on an extraterres-
trial object has only been attempted once before on the comet 67P Churyumov–Gerasimenko during the 
Rosetta mission and allowed for the extraction of the comet's elastic properties (Knapmeyer et al., 2018). On 
the lunar surface, the Apollo astronauts conducted active seismic profiling experiments using mortar and 
explosive sources (Brzostowski & Brzostowski, 2009; Nunn et al., 2020), in order to characterize the shallow 
subsurface structure at the Apollo 14, 16, and 17 landing sites (Cooper et al., 1974). In recent years, the 
Apollo active seismic data have been re-processed with modern analysis tools that allowed for the extrac-
tion of novel information on the near-surface structure of the Moon (Haase et al., 2019; Heffels et al., 2017; 
Larose et al., 2005; Phillips & Weber, 2020; Sens-Schönfelder & Larose, 2008; Sollberger et al., 2016).

2.  SEIS Data Acquisition Flow
The two seismometers in the SEIS package (VBB and SP) nominally cover a combined seismic bandwidth 
from 0.01 to 50 Hz (Lognonné et al., 2019). Even though the instruments would be capable of measuring 
data at higher frequencies than 50 Hz, this upper limit is imposed by the maximum sampling rate of the 
acquisition hardware (100 sps). The two seismometers record continuously and the data are stored inside 
a buffer on-board the lander. From there, the data are first uplinked to the relay satellites orbiting Mars 
(usually about two uplink passes per day) and subsequently downlinked to Earth. Due to the limited storage 
space of the buffer (64 Gigabit of flash storage) and data transfer bandwidth limitations, the data volume 
that can be transferred to Earth is restricted. The continuous seismic data is therefore down-sampled direct-
ly on-board the lander to a lower sampling rate before it is sent to Earth. Based on the continuous low-rate 
data, event data at a higher sampling rate (up to 100 sps) can be requested for periods of time where seismic 
signals are observed. In this section, we describe how the data decimation process is implemented inside 
the space craft electronics and illustrate the changes that were implemented for the 3HP  hammering exper-
iment to recover the high-frequency information of the hammering signals.

The SEIS signals pass through the data acquisition and decimation flow illustrated in Figure 3. The analog 
voltage signal from the seismometers first passes through an analog anti-aliasing filter, before it is digitized 
by the sigma-delta analog to digital converter (ADC) on-board the lander at a sampling rate of 32 kHz. Sub-
sequently, the signal is passed through an additional digital 3(sin( )/ )x x  (also called 3sinc ) low-pass filter with 
a cut-off frequency of 500 Hz and decimated to a sampling rate of 500 sps. The 500 sps signal is then passed 
through a digital FIR filter (FIR1 and FIR2 in Figure 3). Nominally, this filter is set to be a low-pass with a 
cut-off of 39.8 Hz (−3 dB half-power point) in order to avoid aliasing in the final 100 sps data product. The 
FIR filters of each of the two seismometers can be individually changed by uploading new filter coefficients 
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Figure 3.  Acquisition and digitization of seismic signals recorded by the two SEIS seismometers. The filtering step in 
the red box can be changed from Earth by uploading different filter coefficients to the lander. Different filters can be 
uploaded for very broadband (VBB) and short-period (SP) (finite-impulse response (FIR)1 and FIR2, respectively).
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to the lander. During 3HP  hammering, we replaced the nominal FIR an-
ti-alias filter on the SP sensor by an all-pass filter (FIR1 in Figure 3) in 
order to avoid losing the information above 50  Hz. As a consequence, 
the decimated signal at 100 sps contains signal up to 500 Hz, which are 
aliased and thus overlapping the 0–50 Hz range correspondingly.

The impulse time and frequency responses of both the nominal (39.8 Hz 
cut-off) and the proposed all-pass filters are shown in Figure 4. Note that 
the proposed all-pass filter has a flat frequency response over the full 
bandwidth. Consequently, its impulse response in time corresponds to 
a single spike. Because the FIR filter coefficients are implemented in the 
SEIS electronics as signed 32-bit integer numbers, the maximum possible 
amplitude of the spike is  31 32(2 1)/(2 ) 0.5. As a consequence, the raw 
data need to be multiplied with a factor of 2 during the conversion from 
digital counts to volt, which results in the loss of 1 bit of resolution (the 
nominal resolution is 24 bits). Furthermore, the all-pass filter was imple-
mented with a group delay of 0.244 s, whereas the nominal FIR filter has 
a group delay of 0.24 s (see delay between the black and the red curves in 
the top of Figure 4).

3.  Theory
The rules dictating the sampling of signals are governed by the Nyquist–
Shannon sampling theorem (Shannon,  1948), stating that in order to 
reconstruct a signal from its samples, the signal must contain no infor-
mation at and above the Nyquist frequency corresponding to half the 

sampling frequency. However, the Nyquist–Shannon sampling theorem assumes sampling of a single quan-
tity of the underlying signal. If multiple data types, corresponding to data filtered before sampling with 
linearly independent filters in the domain of sampling are available, then the Nyquist–Shannon sampling 
criterion is relaxed proportionally to the new degrees of freedom added to solve the problem. This so-called 
generalized sampling theorem (Papoulis, 1977) provides the mathematical framework for the reconstruc-
tion algorithm we propose in this paper.

In case of the 3HP  hammering signals, we have access to multiple realizations of approximately the same 
signal from subsequent mole strokes. Because the source triggering and sampling process are unsynchro-
nized, the different realizations will appear as if they have been filtered in time with different Fourier shift 
filters (i.e., the 100 sps sampling comb is randomly shifted in time for each hammering signal). While the 
use of the generalized sampling theorem as described above relies on multiple realizations of the same 
signal, we allow for the reconstruction of smoothly varying signals by exploiting the inherent linear data 
structure when the hammer recordings are rearranged into a 2D signal (with time relative to the hammer 
stroke on one axis and space on the other), causing the signal to have a sparse representation in the Radon 
transform domain.

Reconstruction problems are inherently underdetermined (i.e., the number of samples that are sought to be 
recovered is always greater than the number of data points that are available to constrain the problem). Such 
problems thus need to be regularized in some way, which means that a priori information about the signal 
must be included to achieve a successful reconstruction. Recent advances in signal processing make use of 
signal sparsity as a priori knowledge to regularize the underdetermined reconstruction problem (Candès 
et al., 2006a, 2006b; Donoho, 2006). Sparsity is thereby usually described either by the 0- or the 1-norm 
of the signal and penalties are given to reconstructions with high 0- or 1-norm. A prerequisite is that the 
signal has a sparse representation in some transform domain and the success highly depends on the com-
pressibility of the signal and thus the selection of the sparsifying transform (i.e., an operator mapping the 
signal data vector to a sparse vector). The concept of sparsity-constrained reconstruction has been success-
fully applied, for example, to accelerate magnetic resonance imaging (Lustig et al., 2007) or to interpolate 
seismic data (Herrmann & Hennenfent, 2008).
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Figure 4.  Impulse responses and frequency responses of the digital 
finite-impulse response (FIR) filters implemented in the SEIS acquisition 
electronics.
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Here, we devise a signal reconstruction algorithm using sparsity constraints. The key characteristics of the 
3HP  seismic signals that are exploited for reconstruction are:

1.	 �The hammering signal is highly repeatable and only slowly varying in space (depth) due to the slow 
penetration rate of the mole.

2.	 �The signal sample times of repeated hammering signals are different since the trigger time of the ham-
mer mechanism is unsynchronized with the sampling process of SEIS.

As we will demonstrate in the following, these characteristics have the effect that the hammering signals are 
highly compressible using a modified Radon transform. This property, in addition with the quasi-random 
sub-sampling of the signal due to the unsynchronized timing between the hammer strokes and the record-
ing system provides the foundation for successful sparse reconstruction.

3.1.  Signal Compressibility

Let ( , )d t x  be a 2D signal (e.g., seismic data) of time variable t and space variable x. The linear Radon trans-
form allows for representing the signal as a superposition of integrals over straight lines (Radon, 1917). 
Each point in the transform domain (in the following referred to as  -p-plane) then corresponds to the 
line integral of ( , )d t x  over the straight line with intercept time   and slope (or slowness) p. Here, we begin 
with the inverse Radon transform (i.e., the operation corresponding to the summation of all points passing 
through a line). It can be formulated in the following way

     
 




    ( , ) ( , ) ( , ) ( ) ,d t x m p m p t px d dp� (1)

where  ( , )m p  is the representation of the signal in the  -p-plane,   is the inverse Radon transform oper-
ator, and   ( )t px  is the basis function of the transform describing lines of slope p and intercept time  .

If the signal ( , )d t x  shows an underlying 2D linear structure, it will focus at sparse locations in the Radon 
transform domain, since the transform compresses each line to a point (i.e., the Radon transform is a spar-
sifying transform for such a signal).

In the following, we assume that ( , )d t x  is a seismic signal. Seismic data are always band-limited due to the 
blurring effect caused by the band-limited source wavelet. This reduces the temporal focusing capabilities 
and thus the sparsifying potential of the conventional Radon transform for seismic data. A sparser  -p-rep-
resentation of the data can be found when information on the seismic wavelet (i.e., the source-time function 
of the seismic source) is included into the basis function of the transform (Gholami, 2017).

Let ( )w t  be a suitably defined, known wavelet that is, a reasonable approximation to the actual source time 
function of the seismic source. We now modify the basis function of the Radon transform to find a sparser 
 -p-plane representation of the signal by including information on the wavelet (Gholami, 2017). The mod-
ified basis function now reads:

       ( ) ( ) ( ).w t px w t t px� (2)

This new basis function is still constant along all lines of slope p but at a fixed point in space x, it is a wave-
let shifted in time. This allows for a particularly good representation of seismic signals as a super-position 
of band-limited transient plane waves. It can be shown that this modified Radon transform can simply be 
expressed by the conventional Radon transform and an additional deconvolution with the wavelet ( )w t . For 
the inverse of this modified Radon transform, it follows that (Gholami, 2017):

d t x m p w t px d dp

m p w t

w

w

( , ) ( , ) ( )

( , )[ ( )

  

 

















 

 

  

  (( )]

( ) ( , ) ( ) ( )

t px d dp

w t m p t px d dp w t mw w

 

     







 

 

     (( , ), p

� (3)

SOLLBERGER ET AL.

10.1029/2020EA001234

5 of 15



Earth and Space Science

where ( , )wm p  are the  -p-coefficients of the signal in the modified Radon transform domain. Equation 3 
makes the implementation straightforward as it allows one to use existing Radon transform routines. In the 
following, we make use of a recently published, fast implementation of the Radon transform (Andersson & 
Robertsson, 2019).

3.1.1.  Discrete Implementation

For the discrete implementation of this modified Radon transform, let  Md  , and  Nm   be vectors 
containing discrete samples of the signal coefficients in the t-x- and  -p-planes, respectively. The number 
of discrete samples are given by  t xM n n , and  pN n n , with tn  being the number of time samples, xn  the 
number of samples in space, n  the number intercept times, and pn  the number of slowness values. In the 

following  . p is the  p-norm of a vector and (using the example of m) is defined as  m
p i

M

i

p p
m: 


 


 1

1

. 

The discrete forward Radon transform can now be formulated in the form of an optimization problem based 

on Equation 3 to find the best-fitting (in a least squares sense)  -p-representation m̂ of the signal as:

m d WR m

m

  arg min * .
2

� (4)

Here,  M MW   is a block-diagonal matrix with xn  blocks, each block corresponding to a Toeplitz matrix 
 nt ntT   that is, constructed from the wavelet by cyclic permutation. Left multiplication with W corre-

sponds to a convolution with the wavelet. The matrix  M NR   is the Radon transform matrix, which 
is readily implemented in the frequency domain with the elements given by  i p xj k

jkR e , where  is the 
angular frequency. The asterisk marks the Hermitian conjugate operator. The solution of the optimization 
problem typically requires some form of stabilization, such as Tikhonov regularization.

The improvements in signal compressibility that can be achieved using the modified, sparse Radon trans-
form compared to the conventional Radon transform are illustrated in Figure 5. A synthetic signal is shown 
that comprises two band-limited plane waves, the first with slowness 1p  = 0 s/m and intercept time 1 = 0.15 s 
and the second with slowness 2p  = 0.25 s/m and intercept time 2 = 0.16 s (Figure 5a). The conventional, 
linear Radon transform focusses the two waves at the expected locations in the  -p-plane (Figure 5b). Note 
that the temporal resolution is limited due to the sub-optimal choice of the basis function. Additionally, the 
energy of the two events smears out due to the limited aperture of the data in the space direction. The mod-
ified Radon transform accounts for the band-limited nature of the data and allows to effectively compress 
each plane wave to a single point in  -p-space (Figure 5c).
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Figure 5.  (a) Two linear band-limited events in the space-time domain. (b) Conventional linear Radon transform of the data in (a). (c) Sparse, modified Radon 
transform.
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3.2.  Signal Reconstruction

The reconstruction problem can be understood as a modified version of the forward Radon transform with 
an additional sparsity constraint. Instead of having access to the fully sampled data d, we only have access to 
the sub-sampled data  Pb  , where P is the number of sub-samples ( P M). For the specific problem of 
reconstructing the 3HP  seismic signals, b is under-sampled in time and thus shows pronounced aliasing. In 
order to reconstruct d, we need to solve an underdetermined optimization problem. Here, we formulate the 
signal reconstruction problem in the form of the following basis pursuit denoise problem (BPDN), seeking 
for the sparsest set of  -p-coefficients that explains the data with a misfit smaller than   (an estimate of the 
noise level in the data) by 1-norm minimization:

m m b GWR m

m

   arg min
1 2

s t. . .� (5)

Here, the matrix  P MG   is the sampling operator selecting those samples from the model that are con-
tained in the observed data b. G can be easily constructed from the identity matrix by deleting rows cor-
responding to samples that are not included in b. We use the solver SPG1 (van den Berg & Friedland-
er, 2009, 2011), which allows for an efficient solution of the BDPN problem by breaking it down into a series 
of so-called LASSO problems, each of the form

m b GWR m m

m

   arg min
2 1

s t
k

. . ,� (6)

where k is the 1-norm constraint for the solution of the thk  LASSO problem (k  being the iteration coun-
ter). For a well-defined series of constraints      0 1 k, the solution converges to the solution of the 
BDPN problem (Equation 5), as soon as the least-squares misfit reaches the pre-defined error level  . It 
turns out that the series of 1-norm constraints k can be readily defined using a Newton root-finding meth-
od on the Pareto curve (van den Berg & Friedlander, 2009). The Pareto curve traces the optimal trade-off 
between the least-squares misfit and the 1-norm of the solution. It is convex, decreasing and continuously 
differentiable. Each solution of the k  LASSO problems lies on the Pareto curve and the slope of the curve 
at that point can be expressed in closed form (van den Berg & Friedlander, 2009). This property is used to 
find the optimal 1-constraint for the next LASSO problem using Newton's method. At each iteration, the 
new LASSO problem can be “warm-started” using the solution of the previous iteration. For details on this 
procedure, we refer the reader to (van den Berg & Friedlander, 2009, 2011) and Appendix B in (Lin & Herr-
mann, 2013). After convergence, the reconstructed signal d̂ can be found by ˆ ˆd WR m .

There are three user-specified input parameters for the reconstruction algorithm: (a) the target data misfit 
  (i.e., the noise level in the data), which can be estimated directly from the data during periods where the 
hammer is not active, (b) the source wavelet, and (c) the slowness range that is, used to parameterize the 
Radon transform. This slowness range is naturally bounded by the lowest seismic velocities in the medi-
um, which are typically shallow S-wave velocities. In the  -p plane, all signal must thus be contained in 
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the cone-shaped, convex set   {( , ) : } p p
c

1

0

, where 0c  is the lowest seismic velocity in the medium. 

This puts an additional constraint on the reconstructed signal (i.e., it must only have support within ). 
Everything outside the set  corresponds to noise. On Mars, the shallow near-surface seismic shear wave 
velocities are expected to be very low, on the order of 0c  40–50 m/s (Morgan et al, 2018). The proposed 
reconstruction algorithm is summarized in Algorithm 1.

4.  Numerical Example
In order to illustrate the reconstruction algorithm, we generated synthetic data using a time-domain fi-
nite-difference method for heterogeneous elastic media (Virieux,  1986). We used a near-surface veloc-
ity model that is, based on mechanical tests conducted on regolith simulants in the laboratory (Delage 
et al., 2017; Morgan et al., 2018). Additionally, we added 2D stochastic velocity fluctuations based on a Von 
Kármán model (Goff & Holliger, 2003; Korn, 1993) in order to simulate a heterogeneous subsurface. For 
illustration, the P-wave velocity distribution of the final model is given in Figure 6.

Making use of source-receiver reciprocity, we then generated synthetic seismic data for a total of 1,000 mole 
positions in a single computation by placing a vertically directed force source at the location of SEIS (marked 
by a red asterisk in Figure 6a) and 1,000 receivers spaced vertically at 5 mm from the surface down to a 
depth of 5 m at a lateral offset from SEIS of 1.5 m at the surface (receivers marked by the black line in Fig-
ure 6a). We used an experimentally determined source-time function from an analog experiment on Earth 
with a dominant frequency of about 150 Hz. We then interpolated the computed data to a receiver spacing 
of 1 mm in order to emulate the actual penetration rate of the mole. Finally, we concatenated all of the 
resulting 5,000 hammering signals to a single, continuous record. The time differences between individual 
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Figure 6.  (a) Input velocity model for synthetic data computation. (b) Synthetic data set emulating 60 s of 3HP  hammering recorded by SEIS. (c) Zoom-in into 
the first hammer stroke.
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hammer strokes were chosen from a normal distribution with a mean value of 3.7 s and a standard deviation 
of 0.1 s to mimic the real duration and variations of the mole's hammering cycle (Spohn et al., 2018).

The first 60 s of the resulting record are shown in Figure 6b. A zoom-in showing the first hammer stroke 
is provided in Figure 6c. The red line marks the unaliased data sampled at 32 kHz before it would pass 
through the down-sampling flow on-board the lander (see Figure 3). The black line marks the same signal 
after passing through the on-board acquisition flow using the proposed all-pass FIR filter in the final step 
(see Figure 4) before decimating the signal to 100 sps. Note that the signal is now severely undersampled 
(aliased). We then additionally added noise to the signal giving the signal marked by the blue line in Fig-
ures 6b and 6c, which now corresponds the final input that we used to test the proposed reconstruction 
algorithm. The added noise corresponds to actual noise that was measured on Mars during an early phase 
of the InSight mission with the proposed all-pass FIR filter on the SP sensor.

For reconstruction, we then sorted the data into a 2D matrix, where each column corresponds to a single 
hammer stroke signal (Figure 7). Note that the zero-time corresponds to the time when the hammer strike 
occurs. This zero-time time can be retrieved with an accuracy of 1.7e−3 s from the measurements of an 
accelerometer that is, mounted inside the mole (Spohn et al., 2018). The left panel in Figure 7 shows the 
assembled data matrix of the unaliased reference signal at a sampling rate of 2,000 sps. For the test, we only 
use 10 min of data (160 hammer strokes). Note that the signal is only slowly varying with depth (due to the 
slow penetration rate of the mole and the repeatability of the hammering signal), resulting in the linear 
structure that is, exploited by the proposed reconstruction algorithm.

The second panel from the left shows the reference data with added real noise as measured on Mars with the 
all-pass FIR filter. The samples contained in the 100 sps, aliased data (input to the reconstruction algorithm) 
are given in the third panel. Note that even though the signal is regularly sampled in time (at 100 sps), the 
sampling in 2D appears to be close to random. This is due to the fact that the timing of the hammer strokes 
is not synchronized with the SEIS recording system. The respective sub-sampling of each hammer signal 
depends on the duration of the hammer cycle (subject the small variations caused by ambient conditions) 
and the relative positions of the mole and SEIS. As a result, each repeated signal is sub-sampled differently, 
resulting in the random 2D sampling pattern, which provides an optimal basis for the proposed reconstruc-
tion algorithm using the generalized sampling theorem (Papoulis, 1977).

We then estimated an average source-time function from the aliased data, by combining the samples of 
20 neighboring hammer stroke signals to a single trace at 2,000 sps, from which we extracted a wavelet by 
time-windowing the first-arrival.
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Figure 7.  Application of the proposed reconstruction algorithm to a synthetic test data set (see text for details).
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The output of the proposed reconstruction algorithm (reconstructed to a sampling rate of 2,000  sps) is 
shown in the fourth panel in Figure 7. For the parametrization of the Radon transform, we used slow-
ness values ranging from 0.04  s/m to 0.04  s/m (reconstruction is limited to events with a minimum 
absolute apparent velocity greater than 25 m/s). The high-frequency signal is accurately retrieved by the 
reconstruction algorithm. Note that random noise appears to be suppressed in the output compared to the 
noise-contaminated input data. This is a positive side-effect of the proposed reconstruction approach owing 
to the properties of the Radon transform. The integration along straight lines will cause coherent energy 
(signal) to add constructively and focus in the Radon domain, while random noise tends to spread out over 
the whole domain and cancel out. By promoting sparsity of the signal in the Radon domain, the signal is ef-
fectively denoised since only the largest coefficients (corresponding to signal) are kept in the reconstruction. 
The rightmost panel in Figure 7 shows the reconstruction residual (i.e., the difference between the refer-
ence and the reconstructed signal). Note that the residual is mainly dominated by noise, indicating that the 
underlying signal was successfully reconstructed. Some minor reconstruction errors seem to be present at 
the edges for the events with the lowest apparent velocity. These errors are likely Radon transform artifacts 
(linear flares) caused by the truncation of the data set (Andersson & Robertsson, 2019).

In order to further illustrate the performance of the reconstruction algorithm, we provide the result for a 
single hammering signal in Figure 8. The top panel shows the result in the time domain. The black line cor-
responds to the fully sampled reference signal. The noise-contaminated samples at 100 sps that are used for 
the reconstruction are marked by asterisks. The reconstructed signal is plotted in red. Note that the recon-
struction result is close to the noise-free reference signal (black). An inspection of the amplitude spectrum 
(bottom panel) confirms that the reconstruction appears to recover the underlying signal throughout the 
entire signal bandwidth.

4.1.  Sensitivity on the Source Wavelet

The task of directly estimating the source wavelet from the data can be challenging in cases where the signal 
is dominated by strong resonances that lead to a quasi-monochromatic appearance of the data. Additional-
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Figure 8.  Reconstruction result illustrated on a single hammering signal (hammer stroke no. 60 in Figure 7). Top: Time domain result. Bottom: Frequency 
domain result.
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ly, in certain cases the waveform of first-arriving wave does not accurately represent the source-time func-
tion (e.g. due to interference of different arrivals). It is thus critical to evaluate how much the reconstruction 
results suffer from a poorly estimated wavelet. To address this issue, we performed a sensitivity analysis 
using the synthetic data set described above (noise-free version).

Reconstruction results are shown in Figure  9 in comparison to the reference for different strategies of 
choosing the wavelet basis: (a) the wavelet is directly estimated from the aliased data by combining sam-
ples from neighboring traces as described above, (b) the wavelet is pre-described by a Ricker wavelet with 
a center-frequency corresponding to the actual dominant frequency in the data (150 Hz), (c) the wavelet is 
pre-described by a Ricker wavelet with an overestimated center-frequency (200 Hz), and (d) the wavelet is 
simply set to a Dirac delta function. The first three approaches (a)–(c) all yield almost identical results with 
a residual reconstruction error smaller than 1 percent compared to the ground truth. Thus, a slight error in 
the estimation of the wavelet only has a minor impact on the reconstruction results. Choosing a Dirac delta 
function as wavelet basis clearly leads to poorer results (reconstruction error of about 10%). Nevertheless, a 
more suitable wavelet can easily be found from such an initial result by Wiener deconvolution, as proposed 
by Gholami (2017). The wavelet can be iteratively adapted until no change in the reconstruction result is 
observed.

The relatively minor impact of the wavelet on the reconstruction quality can be explained by the way the 
data is compressed by the Radon transform. The major contribution to the compression comes from the 
mapping of near-horizontal (slowly varying) features in the horizontal (spatial) direction to points in the 
Radon transform domain. In comparison, the compression of features in the temporal direction due to the 
choice of the wavelet basis only amounts to a minor contribution of the overall compression rate.
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Figure 9.  Impact of the user-prescribed source wavelet on the reconstruction result. Top row: Full data set. Bottom row: Zoom-in into the area labeled with a 
red box. The wavelet used for reconstruction is shown in the top left corner. The shown reconstruction results are obtained using (a) a wavelet estimated directly 
from the aliased data (see text for details), (b) a Ricker wavelet with the correct center frequency of the signal of 150 Hz, (c) a Ricker wavelet with an over-
estimated center-frequency of 200 Hz, and (d) a Dirac delta function.
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5.  Mars Data Example
We applied the proposed reconstruction algorithm to actual signals recorded on Mars (InSight Mars SEIS 
Data Service, 2019). The 3HP  mole began its hammering operations on Mars on February 28, 2019. After 
about the first five minutes of hammering (80 strokes), the mole got stuck at a depth of about 30 cm and 
did not make any significant progress in depth anymore. In an attempt to recover the mole and to extract di-
agnostics on the cause of the encountered anomaly, the mole has conducted close to 10,000 hammer strokes 
that did not result in any significant progress in depth. All strokes were recorded by both SEIS seismometers 
with a high signal-to-noise ratio.

We apply our reconstruction algorithm to data from a short hammering session, consisting of 200 hammer 
strokes (about 12  min of hammering) carried out on Mars on March 26, 2019. During this hammering 
session, the SP sensor was operated using the proposed all-pass FIR filter (Figure 4) while the VBB sensor 
was operated with the nominal anti-aliasing filter (no signal above 50 Hz recorded). Due to the encountered 
problems, the mole did not make any noticeable progress in depth during the 200 hammer strokes.

The data are characterized by a high signal-to-noise ratio on both the SP and VBB sensor. The VBB data 
confirmed that the hammering signal is highly repeatable. The aliased, 100 sps signals (recorded on the SP 
sensor) of all 200 strokes arranged in a 2D matrix are shown in the left panel in Figure 10. Since the acceler-
ometers mounted inside the mole need to be calibrated and did not provide sufficiently precise information 
on the trigger time of the hammer strokes for the first few hammer sessions, we had to rely on a different 
approach to align the data: We first upsampled the 0–50 Hz data from the VBB sensor to 2,000 sps and then 
used a cross-correlation procedure to align the individual hammer stroke signals. This procedure allowed 
us to find the relative shifts of the 100 sps subsampling comb function from stroke to stroke, which we used 
to determine the subsampling operator (matrix G in Equation 5). Note that, as a result of this procedure, 
the zero-time in Figure 10 does not correspond to the actual hammering time. For later sessions, we could 
directly use the calibrated trigger time from the mole.

The reconstruction result for the 200 hammer strokes is given in the second panel in Figure 10. As expect-
ed, the signal characteristics do not significantly change between different hammer strokes. Differences in 
the signal at later times (later than 0.15 s) are likely caused by variations in the timing of the second and 
third sub-stroke of the hammering mechanism (Spohn et al., 2018). The frequency spectra displayed in the 
right-most panel of Figure 10 illustrate that the signal contains a significant amount of information above 
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Figure 10.  Application of the proposed signal reconstruction algorithm to actual data recorded on Mars. Left two panels: Time domain result. Right: Frequency 
domain result.
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the original Nyquist frequency of 50 Hz. Note that this information would have been lost using the nominal 
anti-aliasing filters. The low-frequency portion of the signal is dominated by long-lasting reverberations fol-
lowing the first arrival. These reverberations have a dominant frequency of about 25 Hz, as can be seen from 
the frequency spectra in the right panel of Figure 10 (distinct peak at 25 Hz for each stroke). The successful 
reconstruction of these reverberation illustrate that also quasi-monofrequent signals can be recovered well 
by our algorithm. The cause of the reverberations is currently under investigation.

5.1.  Results on Martian Near-Surface Properties

The high-sampling rate data that we obtained by applying the proposed reconstruction algorithm allowed 
us to successfully estimate the P-wave velocity in the top first meter of the Martian regolith. The travel time 
of the first-arriving wave was determined to be 9.40  2.68 milliseconds over a distance of 1.11 m (with the 
mole tip at a depth of 33 cm pointing toward SEIS) resulting in a P-wave velocity of  1118 34 ms  (Lognon-
né et al., 2020). Note that the extracted travel time is shorter than the nominal SEIS sampling interval of 
10 milliseconds, which illustrates the importance of the proposed reconstruction algorithm for the seismic 
analysis of the mole hammering data.

Unfortunately, the encountered anomaly with the mole could not be resolved and mole operations had to be 
terminated in January 2021 with the mole remaining stuck at a depth of about 40 cm. Unexpected soil prop-
erties were identified to be the cause of the anomaly providing insufficient friction to compensate for recoil 
during hammering (Hudson et al., 2020). As a result, the high-resolution active seismic data are limited to 
hammer strokes that all occurred at approximately the same depth. This exacerbates the extraction of geo-
logical information from the data beyond the estimation of P-wave velocities. The additional identification 
and imaging of reflections from subsurface discontinuities would require the observation of seismic signals 
originating from various mole depths. Nevertheless, our results constitute the first in-situ measurement of 
regolith seismic velocities on Mars. Limited telemetry bandwidth will remain an issue for the foreseeable 
future in space exploration and solutions to reduce the data volumes, such as the sampling and reconstruc-
tion approach described in this paper, could therefore prove valuable for future space missions.

6.  Conclusion

The high-frequency information of the 3HP  hammering signal (frequencies above the nominal Nyquist 
frequency of 50 Hz) can be accurately recovered by the proposed reconstruction algorithm. Since the ham-
mering time of the mole is uncorrelated with the sampling time of the seismometer, multiple realizations 
of approximately the same signal are recorded, where each realization appears to be filtered with a Fouri-
er-shift filter. This allows for the recovery of the full-bandwidth signal by the application of the generalized 
sampling theorem. Since the signal is smoothly varying with depth as the mole slowly penetrates into the 
subsurface, we additionally make use of the Radon transform, which allows us to account for the resulting 
slope in the 2D signal. The maximum rate of change of the signal with depth is prescribed by the lowest 
propagation velocities in the Martian ground, defining a limited area in the Radon transform domain where 
the signal has support. Reconstruction is then achieved by finding the sparsest set of Radon coefficients in 
this area that fit the data within the noise, allowing us to unwrap several orders of aliasing. We have demon-
strated that this approach is robust also in the presence of high levels of random noise due to the inherent 
properties of the Radon transform.

The proposed reconstruction algorithm could be adapted to similar problems of repeated and only smoothly 
varying aliased and (quasi-)randomly sampled signals in situations where sufficiently dense sampling along 
one dimension is not possible.

Data Availability Statement
High-rate seismic data from 3HP  hammering obtained using the reconstruction algorithm described in this 
paper is made available in a public repository at https://doi.org/10.5281/zenodo.4001920.
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