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1 INTRODUCTION

SUMMARY

We study predictions of reversals of Earth’s axial magnetic dipole field that are based solely on
the dipole’s intensity. The prediction strategy is, roughly, that once the dipole intensity drops
below a threshold, then the field will continue to decrease and a reversal (or a major excursion)
will occur. We first present a rigorous definition of an intensity threshold-based prediction
strategy and then describe a mathematical and numerical framework to investigate its validity
and robustness in view of the data being limited. We apply threshold-based predictions to
a hierarchy of numerical models, ranging from simple scalar models to 3-D geodynamos.
We find that the skill of threshold-based predictions varies across the model hierarchy. The
differences in skill can be explained by differences in how reversals occur: if the field decreases
towards a reversal slowly (in a sense made precise in this paper), the skill is high, and if the field
decreases quickly, the skill is low. Such a property could be used as an additional criterion to
identify which models qualify as Earth-like. Applying threshold-based predictions to Virtual
Axial Dipole Moment palacomagnetic reconstructions (PADM2M and Sint-2000) covering
the last two million years, reveals a moderate skill of threshold-based predictions for Earth’s
dynamo. Besides all of their limitations, threshold-based predictions suggests that no reversal
is to be expected within the next 10 kyr. Most importantly, however, we show that considering
an intensity threshold for identifying upcoming reversals is intrinsically limited by the dynamic
behaviour of Earth’s magnetic field.

Key words: Dynamo: theories and simulations; Magnetic field variations through time;
Palaeointensity; Reversals: process, timescale, magnetostratigraphy; Time-series analysis.

At first sight, the task seems hopeless because simulations of
Earth’s magnetic field suggest that the geomagnetic field is not

Earth possesses a time-varying magnetic field which is generated
and sustained by turbulent flow of liquid metal alloy in the core. The
field varies over a wide range of spatial and temporal scales, but
this paper focuses on the dynamics of the axial dipole component
over millions of years (Myr henceforth), which are relevant for
the investigation of dipole reversals. When a reversal occurs, the
intensity of the dipole collapses and then builds up in reversed
polarity, with the magnetic north pole becoming the south pole and
vice versa. Occurrence of dipole reversals is well-documented over
the past 150 Myr (Cande & Kent 1995; Lowrie & Kent 2004; Ogg
2012). We thus know that the last reversal occurred about 780 kilo
years (kyr henceforth) ago and that the average reversal rate over
the past 5-10 Myr is about 4 reversals per Myr (see, e.g. Morzfeld
& Buffett 2019). Given these numbers, we wonder if we can reliably
predict if a reversal can be expected to occur any time soon.

© The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved. For
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predictable beyond a century (Hulot ef al. 2010b; Lhuillier et al.
2011a). The typical time elapsed between two reversals is much
larger (often hundreds of millennia) which implies that the exact
timing of a reversal cannot be predicted until a reversal is just about
to happen (see also Hulot & Le Mouél 1994; Lhuillier et al. 2011b).
This predictability limit, however, concerns the field in its full detail,
and one may be able to identify macroscopic conditions that occur
over long timescales that are largely independent of the detailed
morphology of the field. For the remainder of this paper, we assume
that the predictability limit for reversals, viewed as macroscopic
features, is larger than the predictability limit of the field’s details.
This is motivated by the rich low-frequency dynamics of the long-
term dipole field (Constable & Johnson 2005), and by the recent
study of Morzfeld er al. (2017) that suggested this could possibly
be the case.
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In fact, many researchers have implicitly relied on this assumption
and studied precursors of dipole reversals. Examples include careful
investigations of the characteristics of past reversals (see, e.g. Valet
& Fournier 2016, for a recent review), studying the field structure
during reversals and excursions (Brown ef al. 2018), studying the
cause of the present fast decrease of the dipole field, which could
be a precursor for a reversal (see, e.g. Hulot ef al. 2002; Finlay
et al. 2016), and computational modelling (see, e.g. Olson et al.
2009). Besides these efforts, no consensus has been reached as to
what a reliable precursor for a reversal is (see, e.g. Constable &
Korte 2006; Laj & Kissel 2015). This is caused, at least in part,
by the fact that simulations and the palacomagnetic record indicate
that the details of dipole reversals vary greatly (see, e.g. Hulot ez al.
2010a; Glatzmaier & Coe 2015), even if their directional behaviour,
as recorded by lava flows, shows some degree of similarity from one
reversal to the next (Valet et al. 2012).

Here, we revisit these issues and specifically test the often sug-
gested possibility that a small value of the dipole’s strength could
be used as a natural indicator of an upcoming dipole reversal. Our
predictions do not distinguish between reversals and major excur-
sions that lead to a near or total collapse of the axial dipole field,
but end up with the axial dipole rebuilding with the same polarity
(see below for why). In this study, we therefore collectively refer to
reversals or such excursions as ‘low-dipole events’ (see Section 3
for a precise definition of a low-dipole event).

The idea is as follows. During a low-dipole event, the dipole
intensity drops to a very low value. Since the intensity is a con-
tinuous function, it must have approached this low intensity level
continuously. One may thus ask: can one identify a threshold with
the property that if this threshold is passed, the intensity will con-
tinue to decay and a low-dipole event will occur during a specified
time interval, called the prediction horizon. The prediction horizon
is critical to the usefulness of the prediction strategy. A prediction
horizon of several million years, for example, is not useful, be-
cause a low-dipole event is likely to occur over these timescales.
Similarly, a prediction horizon of a few hundred years is not useful
because the low-dipole event may be already in full-swing when
we catch it. Given that it takes several kyr for a dipole reversal to
take place, a useful prediction horizon should be at least several kyr
long.

‘We can now state the question we want to address more precisely:
Can we identify a threshold that is useful for predicting low-dipole
events? We study this question via a hierarchy of models, ranging
from simplified, low-dimensional models, to 3-D simulations of
Earth’s magnetic field. We identify, for each model, a threshold by
maximizing a skill score that quantifies the skill of the prediction.
When identifying a threshold one should keep in mind that the event
‘a low-dipole event will occur during the prediction horizon’ is rare
in comparison to the event ‘no low-dipole event will occur during
the prediction horizon’ (at least for useful prediction horizons); this
is addressed by using well-established skill scores that are robust
to imbalances of the occurrence of one event over another. We
carefully discuss the numerical robustness of our approach and
also study robustness with respect to the duration of the training
data that are used to identify a threshold. We then apply the same
methodology to palacomagnetic reconstructions and discuss the
geophysical implications of our study.

Overall, we introduce a new prediction strategy, apply it to four
models and two palacomagnetic reconstructions (PADM2M and
Sint-2000), and test it with a variety of skill scores. This causes
us to use a large number of acronyms, most of which are listed in
Table Al.

2 BACKGROUND: MODEL HIERARCHY
AND SKILL SCORES

We briefly describe the geomagnetic models we use and then outline
how to assess prediction strategies via skill scores and receiver
operator characteristic (ROC) curves. Readers who are familiar
with the models we use or with skill scores and ROC curves may
skip this part of the paper.

2.1 Numerical modelling of the geomagnetic field

A realistic model for the Earth’s magnetic field is a 3-D magneto-
hydrodynamic (MHD) model. Today’s MHD models are realistic
representations of Earth’s magnetic field over a large range of spatial
and temporal scales (Schaeffer et al. 2017; Aubert 2019; Wicht &
Sanchez 2019), but the simulation of dipole reversals remains a
computational challenge and the number of MHD simulations that
exhibit reversals remains limited (Lhuillier ef al. 2013; Olson et al.
2013). The reason is that Earth-like, high-resolution simulations of
the field are difficult to do, even with today’s supercomputers. As a
result, simulations that exhibit reversals often require that they be
pushed away from the Earth-like regime. For example, the Ekman
number is a control parameter which expresses the ratio of the
rotation timescale to the viscous timescale. Increasing the Ekman
number amounts to increasing the kinematic diffusivity of the fluid
and thereby the laminar character of the simulated flow. This in turn
decreases the required resolution and the time-to-solution. For this
reason, many reversing simulations are characterized by an Ekman
number that is much larger than the Ekman number of the Earth’s
dynamo.

An alternative to 3-D simulations are low-dimensional models.
The terminology is perhaps confusing here because the word ‘di-
mensional” does not refer to the spatial dimension, but the number
of variables within the model. In this terminology, a 3-D model is
high-dimensional because it contains a large number of variables
that describe the 3-D structure of the fluid flow and its interactions
with the magnetic field. The 3-D model we consider below has more
than three million variables and, hence, its dimension is O(10°).
Low-dimensional models aim to represent selected aspects of the
geodynamo—in our case the axial dipole over Myr timescales—
with only a small number of variables. The models we consider
have one or three variables and, hence, dimension one or three—six
orders of magnitude less than the 3-D model. Examples of low-
dimensional models include scalar stochastic differential equations
(SDE) that model the time evolution of the axial dipole as a particle
in a double well potential (Hoyng et al. 2001; Schmitt et al. 2001;
Buffett et al. 2013, 2014; Buffett & Matsui 2015; Buffett 2015;
Meduri & Wicht 2016; Morzfeld & Buffett 2019), scalar SDEs that
are inspired by MHD (Pétrélis et al. 2009), and systems of chaotic
differential equations that model the interaction of the dipole with
the non-dipole (quadrupole) field, coupled and perturbed by a ve-
locity variable (Gissinger 2012).

2.2 The model hierarchy

We consider three low-dimensional models and one 3-D simulation.
We give a concise description of all four models we use and refer to
the original works for further information. The 3-D model we use
is unpublished and, for that reason, we provide more information
about the 3-D model than the simpler models.
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Figure 1. Signed dipole as a function of time for the four models considered in this study. (a) G12, (b) P09, (c) DW and (d) 3-D. In each case, the amplitude is
scaled so that the average absolute value of the time series is one. Some reversals and excursions are highlighted in light red and light blue.

2.2.1 The deterministic G12 model

Following Gissinger (2012), we consider the ordinary differential
equations

dQ

— = — VD,

& nQ

b _ _pyvo (1)
a ’

drv

—=I -7 D,

dr +0

where © = 0.119, v = 0.1 and ' = 0.9. Here, D is the dipole
and the variable Q represents the quadrupole or, more generally,
the non-dipole field; V' is a velocity variable that couples D and
Q. A change in the sign of D corresponds to a dipole reversal. We
refer to this model as the G12 model. A typical simulation with
G12 is shown in Fig. 1. Here, model time 7 is scaled to represent
the G12 millennium timescale (1 dimensionless time unit = 4 kyr),
see Morzfeld et al. (2017). The simulation is done by discretizing
the differential equation by a fourth-order Runge—Kutta scheme
(Matlab’s ode45).

2.2.2 The stochastic P09 model

Pétrélis et al. (2009) derived a model for dipole reversals by consid-
ering the interaction of two modes. Using the symmetry of the equa-
tions of magnetohydrodynamics B — —B in an amplitude equation,
and by assuming that the amplitude has a shorter timescale than a
phase, a stochastic differential equation (SDE) of the form

dx = f(x)dr 4+ /2q dW, 2)

is derived for the phase, x, where f(x) and ¢ are defined below. In
eq. (2), Wis Brownian motion, a stochastic process with the follow-
ing properties: (i) W(0) = 0; (i) W(t) — W(t + At) ~ N(0, At)
and (iii) W(¢) is almost surely continuous for all # > 0 (see, e.g.
Chorin & Hald 2013). Here and below, A/(m, o) denotes a Gaus-
sian random variable with mean m, standard deviation o and vari-
ance o2

More specifically, the SDE for the phase is defined by

V2q =02/|a]. ©)

f(x) = ag + ap sin(2x),

We use the same parameters as in Pétrélis er al. (2009), o =
—185Myr !, ag/a; = —0.9. The dipole, D, can be calculated from
the phase by D = Rcos (x + xp). Following Morzfeld et al. (2017),
we set xo = 0.3 and R = 1.3 [the latter scales the dipole vari-
able D to have approximately the same time average as the relative
palaeointensity reported by the reconstruction of Sint-2000 (Valet
et al. 2005)]. For the reminder of this paper, we refer to this model
as the P09 model.

Note that the parameters define the model’s timescale. The pa-
rameters are chosen so that the P09 model exhibits reversals and
excursions, and so that its reversal rate is comparable to that of
Earth’s dipole. This is illustrated in Fig. 1, where a typical simula-
tion result with this model is shown. For a simulation we discretize
the differential equation using a forward Euler-Maruyama method
(Kloeden & Platen 1999). The time step is 1 kyr.

2.2.3 The double well model

A simple model for reversals of a quantity (not necessarily Earth’s
dipole field) is a particle in a double well potential. Such a model is
defined by an SDE model as in eq. (2), and with an f{x) that is equal
to the negative gradient of a double well potential. Variations of this
model for geomagnetic dipole reversals have been considered by
many researchers (Hoyng et al. 2001; Schmitt et al. 2001; Buffett
et al. 2013, 2014; Buffett & Matsui 2015; Buffett 2015; Meduri &
Wicht 2016; Morzfeld & Buffett 2019). The basic idea is that the
state, x, of the SDE is within one of the two wells of the double
well potential and is pushed around by noise (the Brownian motion
/2q dW). When the noise builds up towards one side of the well,
the state may cross over to the other potential well. One can identify
a transition from one well to the other as a reversal of Earth’s dipole.

We use a recent version of this model, called the Myr model in
Morzfeld & Buffett (2019), for which

ifx >0

(* —x),
ifx <0’ @

(x +Xx),

where y = 0.1 kyr™!, ¥ = 5.23 x 102 Am? and ¢ = 0.34 x 10*
A’m* kyr~!. These parameters define the model’s natural timescale
and the values we chose are based on configuration (a) in Morzfeld
& Buffett (2019), which implies that the model’s reversal rate is

f(x)zy?{
X
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comparable with Earth’s reversal rate. For the reminder of this
paper, we refer to this model as the DW model. A typical simulation
of this model is shown in Fig. 1. For a simulation we discretize the
equation using a fourth-order Runge—Kutta for the deterministic
part and a forward Euler—-Maruyama for the stochastic component
(Kloeden & Platen 1999). The time step is 1 kyr.

2.2.4 The 3-D model

We consider a 3-D, convection-driven, dynamo simulation which
exhibits polarity reversals and dipole excursions. The simulation
we consider has not yet been published and is part of an ensemble
of reversing simulations run by N. Schaeffer (ISTerre, CNRS, Uni-
versité Grenoble Alpes), A. Fournier and T. Gastine (both affiliated
with Université de Paris, Institut de Physique du Globe de Paris).
We refer to this simulation simply as the 3-D model for the rest of
this paper.

The 3-D model uses a pseudo-spectral approximation to solve
the set of equations governing rotating dynamo action in a spheri-
cal shell geometry (see, e.g. Christensen & Wicht 2015, for details).
The scales chosen to non-dimensionalize the set of equations are the
same as those used by for example Schaeffer ez al. (2017). The radius
ratio of the inner-core boundary to the core-mantle boundary is set
to its present-day value. The 3-D model has no-slip boundary condi-
tions on the inner-core and core—mantle boundaries, and it assumes
that the inner core is conducting. The four non-dimensional control
parameters, as defined, for example in Schaeffer ez al. (2017), are
as follows. The Ekman number is 10~#, the Prandtl number is 1, the
magnetic Prandtl number is 3 and the Rayleigh number is 15 000.
These choices result in an average hydrodynamic Reynolds number
of 216 (recall that the hydrodynamic Reynolds number is defined as
the product of the root-mean-squared velocity and the shell thick-
ness divided by the kinematic viscosity). The open-source, freely
available xshells code! is used to numerically solve the equations.
This code combines the finite difference method in the radial direc-
tion with a spherical harmonic representation of field variables in
the horizontal direction, using the dedicated SHTns library (Scha-
effer 2013). To ensure numerical convergence, a hyperdiffusivity is
applied beyond spherical harmonic degree 55.

The resolution of the 3-D model is defined by the triplet (V,,
Cinax> Mmax ), giving the number of points used in the radial direction
together with the maximum degree and order used in the horizontal
approximation of field variables with spherical harmonics. Since
five scalar fields are discretized, the total number of degrees of
freedom of a simulation is O (5N, ¢maxmmax)- Namely, the triplet
defining the resolution is ( 144,79,63), which results in about 3.6
x 10 ¢ variables — recall that G12 has three variables, P09 and DW
have one variable.

As discussed above, time in the 3-D model is non-dimensional. To
scale to geophysical time, one first computes the non-dimensional
secular-variation timescale of the non-dipole field up to spherical
harmonic degree 13, based on the average power spectra of the mag-
netic field and its secular variation (see Lhuillier e al. 2011b). The
rescaling of the time axis is then performed under the assumption
that the dynamo simulations and the Earth share the same secular-
variation timescale, equal to 415 yr. With this scaling, the simulation
time of the 3-D model is 147 Myr; the time step is 43.09 yr. The
number of reversals that occur during this time frame is 109.

Uhttps://nschaeff bitbucket.io/xshells/

In contrast to the other models described above, its 3-D nature
makes this dynamo model amenable to quantitative comparisons
against more observed properties of the Earth’s magnetic field
than just the axial dipole. From a morphological standpoint, the
3-D model produces a magnetic field whose large-scale properties
at the core—mantle boundary are in ‘good’ agreement with well-
established observations, according to the four criteria introduced
by Christensen et al. (2010):

(1) the axial dipole to non-axial dipole energetic ratio;

(i) the equatorially symmetric to antisymmetric non-dipole en-
ergetic ratio;

(iii) the zonal to non-zonal energetic ratio;

(iv) the flux concentration factor.

The terrestrial reference values for these four quantities are re-
spectively (1.4, 1.0, 0.15, 1.5, Christensen et al. 2010). For the 3-D
model, we compute average values of these quantities of, respec-
tively (0.72, 1.36, 0.18, 2.45). This leads to an average misfit 2 of
1.94, while the median value of x? over the course of the numerical
integration is 2.89. We refer to Christensen et al. (2010) for further
details.

From a palacomagnetic perspective, it is worth noting that Sprain
et al. (2019) recently introduced a method to assess the degree of
spatial and temporal agreement of a simulated dynamo field with
the long-term (~10 Myr) palacomagnetic field. The agreement is
defined on the basis of five properties of the palacomagnetic field,
namely the inclination anomaly, the virtual geomagnetic pole disper-
sion at the equator, the latitudinal variation in virtual geomagnetic
pole dispersion, the normalized width of virtual dipole moment
(VDM) distribution, and the dipole field reversals (in terms of the
relative time spent by the dipole at transitional latitudes lower than
45°). This quantity, termed AQpy, is the sum of five misfits, one
for each criterion. For the 3-D model, we find the following values
of the misfit for each criterion

A Qpp(inclination anomaly) = 0.84,
A QOpum(equatorial dispersion) = 0.39,
A Qpnm(latitudinal dispersion) = 0.95,

A Qpy(VDM distribution) = 0.81,
A Qpm(reversals) = 1.45,

for a total AQpy = 4.43. This value is good, according to Sprain
et al. (2019), who argue that individual misfits lower than unity
indicate an adequate similarity with the palaeomagnetic field. For
the study of interest here, we note that the width of the VDM
distribution is adequately captured by the 3-D model. On the other
hand, the simulated dipole spends a fraction of time at transitional
latitudes (1.2 per cent of the model integration time) smaller than
what is inferred for Earth over the last 10 Myr, which is expected
to lie somewhere between 3.75 and 15.0 per cent (see Sprain et al.
2019, for details). In summary, based on a series of metrics that
have come to the fore, this 3-D model compares favourably against
the recent and more ancient geomagnetic field.

2.3 Similarities and differences across the model hierarchy

Fig. 1 shows the axial dipole as a function of time for each model,
scaled so that the average absolute value of the time series is one,
and with the sign indicating polarity: a negative sign indicates to-
day’s polarity, a positive sign corresponds to a reversed polarity.
The figure shows the evolution of the models’ dipoles on their
natural timescales described above. Each model exhibits reversals
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Figure 2. Scaled histograms of the dipole intensities of the four models and two palacomagnetic reconstructions (PADM2M and Sint-2000). (a) G12, (b) P09,
(c) PADM2M, (d) DW, (e) 3-D and (f) Sint-2000. The y-axes of all histograms are scaled so that the area under the graph is equal to one and the x-axes are
scaled so that one corresponds to the average intensity. Also shown is the skewness which indicates the degree of asymmetry in the distribution. A thicker tail
near zero suggests that a model, or reconstruction, lingers in a state of low intensity.

and excursions as observed in palacomagnetic reconstructions, for
example PADM2M and Sint-2000 (Valet et al. 2005; Ziegler et al.
2011), but these events occur over different timescales and, for some
of the models, the events also occur over timescales that are different
from what is observed in Earth’s axial dipole field. The 3-D model,
for example, has a reversal rate of about 0.7 reversals per Myr, but
the reversal rates of the DW and P09 models are about 5 reversals
per Myr, which is comparable to the average reversal rate of Earth
over the last 25 Myr (Ogg 2012). In addition, the way a reversal
occurs in each model can be different. Reversals of the G12 model
are characterized by a continuous decay in intensity, immediately
followed by a rapid increase in intensity. The DW lingers at low
intensity longer than the other models (see also Fig. 2). We also
observe that the DW and 3-D models, and to a lesser extent the PO9
model, exhibit multiple, rapid fluctuations in sign during a reversal,
see Fig. 4. This behaviour is not observed in the G12 model.
Differences between the various models can be illustrated fur-
ther by comparing histograms of their intensities, shown in Fig. 2,
which also provides the models’ Pearson’s moment coefficient of
skewness [third standardized moment, Kenney & Keeping (1966)]
for the four models. It is clear that all models, except G12, are char-
acterized by a negative skew. Thus, the P09, DW and 3-D models
spend more time at a lower than average intensity than at a higher
than average intensity. The G12 model tends to spend more time
at a higher than average intensity than at a lower than average in-
tensity. The DW model has the smallest skew (in amplitude) and a
thicker left tail than the other three models, which indicates that it
spends a considerable amount of time in low-intensity states (but
other formulations of double-well models, with different parame-
ters or even different parametrizations of the potential, may behave
differently). Also shown in Fig. 2 are histograms of the intensities

of two palacomagnetic reconstructions, PADM2M and Sint-2000
(Valet et al. 2005; Ziegler et al. 2011), which document the time
evolution of the virtual axial dipole moment (VADM) over the past
2 Myr at a frequency of 1 per kyr. PADM2M and Sint-2000 thus
contain 2000 points and the histograms are not as well resolved as
those of the four models (for which we used substantially longer
simulations). This is also evident from the difference in the skew-
ness, which is positive for Sint-2000, but negative for PADM2M.
These values should be used with caution, because the estimates
of skewness are contaminated by large sampling error (based on
only 2000 intensities) and by the fact that low intensities (below
10 per cent) are not present in these reconstructions. In view of the
large uncertainty in the reconstructions, all four models are reason-
able, at least qualitatively in view of Figs 1 and 2, although all four
models are constructed from drastically different assumptions and
with very different modelling goals in mind.

2.4 Predictions, skill scores and ROC curves

We want to predict whether a low-dipole event will occur within
an a priori specified time interval, called the prediction horizon.
We thus consider only two outcomes of an experiment. Outcome
1: yes, the event occurred during the prediction horizon; outcome
2: no, the event did not occur during the prediction horizon. As is
common, we denote the outcomes of an experiment by ‘positives’
and ‘negatives’:

Positive (P): the event occurred.
Negative (N): the event did not occur.

With two possible outcomes of an experiment, a prediction can
result in one of four possibilities:
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True positive (TP): predict that an event will occur and the event
occurs.

False positive (FP): predict that an event will occur, but the event
does not occur.

True negative (TN): predict that an event will not occur and the
event does not occur.

False negative (FN): predict that an event will not occur, but the
event occurs.

The concepts and ideas described here have been used in many
areas. We make an effort to be consistent in the terminology and
to bring up only the definitions we need, sticking to commonly
used names (Fawcett 2006; Joliffe 2016; Chicco & Jurman 2020).
For a more thorough review of the such predictions in the context
of (medical) imaging, see Barrett & Myers (2003), Chapter 13,
where, a prediction strategy of the type discussed here is called a
binary decision. In the language of machine learning, the problem
of predicting ‘an event will occur within the horizon’ or ‘no event
will occur within the horizon’ is called a classification problem,
similar to distinguishing dogs from cats (Goodfellow et al. 2016).

It is clear that a good prediction strategy should be characterized
by a large number of true positives and true negatives, but a small
number of false positives or false negatives. A skill score is a quan-
titative means for describing the quality of a prediction strategy.
There is a large number of skill scores and these usually require
that one applies the prediction strategy, say n times, followed by
counting the number P of positives that occurred, the number N of
negatives that occurred, and the true/false positives and true/false
negatives. Which of the many skill scores is most appropriate de-
pends on the problem one wishes to solve. For example, one may
define the accuracy by

ACC= ——. )

A good prediction strategy should be characterized by a high ac-
curacy, but a bad prediction strategy may also be characterized by
a high accuracy. For example, the event ‘a low-dipole event occurs
within the prediction horizon’ is rare compared to the event ‘no
low-dipole event occurs within the prediction horizon’ (unless the
prediction horizon is large). This means that the prediction strategy
‘predict that no low-dipole event occurs within the prediction hori-
zon’ is characterized by a high accuracy, but this strategy is useless
because it can never achieve a true positive (the event ‘a low-dipole
event occurs within the horizon’ is never predicted). Other skill
scores, for example, the F; score

. 2TP ©)
"7 2TP+ FP+FN’
the critical success index (CSI)
TP
CSIl= ——————, (7
TP + FP 4+ FN

or Matthew’s correlation coefficient (MCC)

TP-TN — FP - FN
MCC = ) (®)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

are designed to alleviate these issues and are applicable in problems
where the occurrence of the event is rare.

One can also compute the true-positive-rate (TPR) and false-
positive-rate (FPR), defined by:

TP FP
TPR = —, FPR= —. ©)
p N

A

True positive rate (TPR)

d
R I

0 False positive rate (FPR)

Figure 3. Three examples of ROC curves. Two threshold levels, labeled 4
and B, are identified on one of the curves (see text for the definition of the
chance line).

TPR and FPR have the desirable property that they are independent
of the frequency of the event and a good prediction strategy should
have a high TPR and low FPR, independently of how often an event
occurs. Ideally, TPR = 1, so that all events are predicted correctly,
and FPR = 0, so that no false positives occur.

The bulk of this paper is concerned with predictions based on
whether the dipole is below a specified threshold. Naturally, one
may investigate how the skill of the predictions depends on the
threshold. For example, one can compute skill scores as functions
of'a varying threshold and determine an optimal threshold as the one
that maximizes the skill score. One can also compute the TPR and
FPR as functions of the threshold. The line that a varying threshold
traces out in TPR — FPR space is called the receiver operating
characteristic (ROC) curve. Three examples of ROC curves are
illustrated in Fig. 3. The figure also shows the chance line, defined by
a straight line at a 45° angle, on which the (FTR,TPR) points should
lie when randomly guessing occurrence of events, and varying the
probability with which one makes this guess.

The ROC curve of a good prediction strategy should be above the
chance line and should quickly transition from the origin towards
(0,1), thus being characterized by a high TPR and a small FPR.
One can use ROC curves as qualitative tools to assess different
prediction strategies. We have included labels for the three ROC
curves in Fig. 3, that identify which strategies are good, worse or
bad.

We note that, besides an impressively large body of work across
many disciplines, it remains difficult to unambiguously argue that
a prediction strategy is good or bad, or if one prediction strategy is
better than another. As a simple example, consider the green ROC
curve in Fig. 3 with threshold levels labeled by 4 and B. It is not easy
to say which threshold level one should choose. Threshold 4 leads
to the smallest FPR while also achieving TPR = 1, but threshold
B achieves a smaller FPR than threshold 4, at the cost of a slightly
smaller TPR. The difficulties arise because many issues, such as
how dangerous false positives are compared to false negatives, are
problem dependent and remain subjective.
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Figure 4. Excerpt of the 3-D simulation showing the signed dipole as a function of time (same scaling as in Fig. 1). Four events are labeled 4 — D.

3 FINDING THRESHOLDS FOR THE
PREDICTION OF LOW-DIPOLE EVENTS

In simple terms, our prediction strategy is

If the dipole intensity drops below a threshold, then the field
will continue to decay and a low-dipole event will occur within the
prediction horizon.

The situation, however, is more delicate because the models ex-
hibit complex behaviour while undergoing reversals or major excur-
sions. The subtleties can be illustrated by considering the excerpt
of the 3-D simulation shown in Fig. 4, where we highlight reversals
and major excursions during which the axial dipole field temporarily
changed sign. One wishes to define a reversal event as the transition
of'a strong dipole field in one polarity, to a strong dipole field in the
opposite polarity, rather than just a short-term temporary change
of polarity. In fact, the field may quickly change polarity several
times while the field is weak when undergoing a reversal. This oc-
curs in the 3-D simulation during the events labeled B and D in
Fig. 4. Similarly, one wishes to interpret event 4 (or C) as a single
major excursion, rather than a sequence of reversals. We thus revise
the simple prediction strategy above to ensure that each reversal
or major excursion, labeled by 4 — D in Fig. 4, is considered as a
single low-dipole event. A careful definition of low-dipole events is
provided below.

3.1 Precise formulation of threshold-based predictions

We introduce definitions that allow us to clearly specify the events
and predictions whose skill we want to study. We start with the
definition of the event we want to predict.

Definition: Low-dipole event. A low-dipole event starts when
the intensity drops below a specified value, called the start-of-event
threshold (ST), or if a the dipole changes its sign,” and ends when
the intensity exceeds a second specified value, called the end-of-
event threshold (ET). The event duration is the time interval from
start to end of the event.

This definition ensures that a low-dipole event describes reversals
and major excursions, because the field may drop below the ST, but
can build back up above the ET without changing polarity. Events
A and Cin Fig. 4 are examples of this situation. We also emphasize
that the event duration is defined implicitly by the start and end of an
event and may vary considerably across several low-dipole events.

2The addition of the ‘or-statement’ is relevant only in the context of palaeo-
magnetic reconstructions, see Section 5.

In Fig. 4, for example, the low-dipole event 4 has a much larger
event duration than event C, but both events are major excursions.

To define a strategy for predicting low-dipole events, we introduce
the prediction horizon (PH), which is the time window during which
we predict that a low-dipole event will start to occur. Note that we do
not make any prediction as to when precisely the low-dipole event
starts—we merely predict that a low-dipole event will start (or not)
at some point during the PH. We further make no predictions as to
when the low-dipole event will end. With the above definitions, the
prediction strategy can be stated precisely.

Definition: Threshold-based predictions for low-dipole events.
We predict that a low-dipole event will start to occur within the
prediction horizon if the intensity drops below a warning threshold
(WT); we predict that no low-dipole event will start during the
prediction horizon if the intensity is above the WT; we stop making
predictions from the time the low-dipole event started (intensity
below ST) until the event ends (intensity above ET).

We make no predictions while the event is observed, because a
prediction made while an event is happening is of limited use. Our
prediction strategy is illustrated in Fig. 5. In this illustration, ST and
ET are chosen such that Event 4 is a single event; fast oscillations in
polarity occur while the field is weak. The prediction strategy leads
to TNs followed by FNs and TPs for Events 4 and B. The false
negatives occur because, given the prediction horizon and average
intensity, the WT is small, so that the events tend to be predicted a
little too late. The figure also illustrates FPs, which occur when the
field drops below the WT, but no low-dipole event occurs because
the field does not continue to drop below the ST. True negatives
occur often, because reversals and low dipole events are rare. In the
figure, TNs occur whenever the ‘Truth’ (bottom) and the prediction
(centre) are both at zero.

Finally, note that with our definitions, one may require that

ST < WT < ET, (10)

because other choices for WT lead to rather strange prediction
strategies. If ET < WT, for example, then a low-dipole event would
be predicted immediately after an event just ended.

3.2 Scaling thresholds and rescaling time

For each model, we define all three thresholds (warning, start-of-
event, and end-of-event thresholds) as a fraction of the average
intensity of the model. Such a scaling of the thresholds makes com-
parisons across the hierarchy of models easier to understand. For
the rest of this paper we fix the start-of-event and end-of-event
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Figure 5. Illustration of the prediction strategy. Top graph: dipole (solid blue) as a function of time. The thin blue, green and red horizontal lines represent
the start-of-event, the end-of-event and the warning thresholds. Two low-dipole events are labeled 4 (reversal) and B (excursion), and we indicate their event
durations. Highlighted in red is a period of low intensity, which is not a low-dipole event, but where the low intensity causes false positives (FP). Towards
the right, we illustrate a prediction over a given prediction horizon, which will lead to true negatives (TN). The prediction horizon also defines the true labels
(see bottom panel). Centre graph: prediction as a function of time. The red line at zero corresponds to the prediction ‘no low-dipole event occurs during
the prediction horizon’, and the red line at one corresponds to the prediction ‘a low-dipole event occurs during the prediction horizon’. The thick black line
segments correspond to periods during which no prediction is made. For events 4 and B, we first observe TNs, followed by false negatives (FN), caused by the
warning threshold being small; then we observe TPs followed by a period during which no prediction is made. Bottom graph: true occurrences of low-dipole
events within the prediction horizon. The orange line at zero corresponds to negatives (N), that is ‘no low-dipole event occurs during the prediction horizon’.
The orange line at one corresponds to positives (P), that is ‘a low-dipole event occurs during the prediction horizon’.

thresholds as: ST = 10 percent and ET = 80 per cent. With these
choices, we focus on events that start when the intensity is very
low and which end when the field has nearly fully recovered (see
Fig. 4). The choice of ST = 10 per cent is guided by the consider-
ation that we want to focus on events that correspond to reversals
and major excursion. During a reversal, the signed dipole can reach
an arbitrarily low value, before switching sign. During a major ex-
cursion, the dipole amplitude is very low, but we do not necessarily
observe a switch in the sign. Moreover, palacomagnetic reconstruc-
tions, such as PADM2M and Sint-2000 (Valet et al. 2005; Ziegler
et al. 2011), have difficulties with resolving small dipole values.
The palacomagnetic reconstructions we consider below consist of
signed Virtual Axial Dipole Moments (VADM), which are proxies
for the true axial dipole magnitude. The weakest VADMs recorded
are about 10-20 per cent of the present axial dipole field intensity
(see, e.g. Constable & Korte 2006; Hulot et al. 2010a). This is caused
by (i) VADM reconstructions sensing the non-dipole field during
a low-dipole event; (ii) VADM reconstructions are temporally fil-
tered by sediment recording processes and (iii) additional smooth-
ing is introduced by modelling choices and stacking of the relative
palaeointensity (RPI) records (some of the individual records may
have a higher resolution and features that are not aligned in time
are smoothed out). As we will see, by choosing ST = 10 per cent,
we ensure that only events that experienced at least one temporary

change of sign in the axial dipole are considered as events of interest
within PADM2M and Sint-2000 (see Section 5).

Nonetheless, the precise values of ST and ET are not critical
because our overall approach is robust with respect to choices.
This is evident from a limited number of numerical experiments
we performed with different choices of ET and ST. Specifically, we
tried the combinations ST = 10 per cent and ET = 50 per cent, ST
= 20 percent and ET = 50 per cent, and ST = 20 per cent and ET
= 80 per cent and obtained qualitatively and quantitatively similar
results.

We rescale time in each model so that the prediction results are
comparable across the hierarchy of models. A natural choice for
this timescale is the average event duration (AED). That is, we
compute the average event duration given the natural timescale of
each model, and then rescale time so that one time unit corresponds
to one average event duration. The average event duration for each
of the models is listed in Table 1. For the simplified models (G12,
P09 and DW), the statistics of the event duration are computed from
simulations that include about 550 events. For the 3-D model, we
use the entire duration of the simulation to compute the statistics of
the event duration.

The prediction horizon is defined as a fraction of the average
event duration. We focus on the prediction horizon PH = 1 x AED,
that is we focus on short-term predictions of low-dipole events,
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Table 1. This table summarizes key results obtained throughout the paper. We list all information in this one table to make it easier to make connections between
the various quantities listed. Description of each column. First column: the model or palacomagnetic reconstruction considered. Second column: number of
low-dipole events in the verification portion of a simulation/palacomagnetic reconstruction. Values in brackets are the number of events in the training data.
Third column: maximum MCC (prediction skill) achieved for optimal WT (see Section 2.4 for the definition of MCC). Values in brackets are for training data.
Verification and training data are explained in Section 4.2 for the models and in Section 5.2 for the palacomagnetic reconstructions. Fourth column: optimal
WT that maximizes MCC over the training data (see Section 3.3). Fifth column: average duration of a low-dipole event (AED). Values in brackets are standard
deviations. Sixth column: average decay time (ADT) with standard deviations in brackets. See sections 4.1.2 (models) and 5.1 (palacomagnetic reconstructions)
for definitions of average event duration and decay time and their computation. Seventh column: ratio of average decay time to average event duration. All
results listed here correspond to a prediction horizon PH = 1, a start-of-event threshold ST = 10 per cent, and an end-of-event threshold ET = 80 per cent.

# of events MCC WT Event duration (AED) Decay time (ADT) p= %
GI2 554 (5) 0.96 (0.97) 30.75% 3.2 kyr (0.1 kyr) 26.9 kyr (2.0 kyr) 8.49
P09 551 (5) 0.57 (0.56) 54.50% 6.0 kyr (3.9 kyr) 10.8 kyr (5.0 kyr) 1.81
DW 551 (5) 0.31(0.30) 69.25% 16.1 kyr (12.2 kyr) 8.5 kyr (4.7 kyr) 0.53
3-D 368 (5) 0.12 (0.14) 17.50% 16.4 kyr (11.6 kyr) 5.7 kyr (4.2 kyr) 0.35
PADM2M 2(4) 0.62 (0.73) 50.75% 11.7 kyr (8.1 kyr) 25.5 kyr (10.9 kyr) 2.19
Sint-2000 2(4) 0.44 (0.77) 36.75 % 10.2 kyr (8.7 kyr) 32.0 kyr (15.1 kyr) 3.1

attempting to predict whether a low-dipole event will start with
a lead time comparable to the event’s duration. We also consider
prediction horizons of 0.5 x AED or 1.5 x AED, to show how
the prediction skill degrades with longer prediction horizons, but
also to demonstrate the robustness of our approach (which is not
sensitive to minor variations of the various parameters).

3.3 Finding thresholds via maximization of skill scores

For a fixed prediction horizon, we compute an optimal WT as fol-
lows. For a given dipole time-series, we compute a skill score for
varying WTs, using a regular grid with spacing of 0.25 per cent. The
WT that leads to the largest skill score is selected as the optimal
WT: WT = arg max Skill(WT).

This approach can be implemented with a variety of skill scores,
for example MCC, CSI or F,. For the short prediction horizons
we consider, we did not notice any significant differences in the
optimal WTs one finds regardless of which skill score is used, with
the exception of the ACC score, which is not robust with respect
to imbalances in the data (one event occurring more often than the
other). Below we present results obtained by using MCC, because it
recently has been reported to be more appropriate than the F; score
for binary classification (Chicco & Jurman 2020), but other skill
scores (not ACC) may be used to obtain similar results.

To prevent overfitting, it is necessary to validate a prediction
strategy by applying it to an independent data set. An optimal WT
is determined by using a given dipole time-series, which we call the
training data set. The optimal WT is then applied to an independent
time-series, which we call the verification data set, and the skill
score is computed for the verification data. For the simplified models
(G12, P09, DW), the verification data are independent simulations
(using different initial conditions in the case of the deterministic
G12 model and different initial conditions and random forcing in the
case of the stochastic P09 and DW models). For the 3-D model, we
compute the optimal WT by using only a portion of the simulation
as training data, and then use the remainder of the simulation as
verification data.

4 APPLICATION TO A HIERARCHY OF
MODELS

We apply threshold-based predictions to the models in the hierarchy.
For each model, we predict a low-dipole event about as far ahead of
time as one expects the event will last. In our terminology, this means

that the prediction horizon is equal to one average event duration
(PH =1 x AED), but we also consider slightly longer (1.5x) and
slightly shorter (0.5x) PHs. We also test if useful threshold-based
predictions can be made if the training period is short and, therefore,
contains only a small number of low-dipole events.

4.1 Skill of threshold-based predictions

4.1.1 Qualitative comparison and illustration

We first qualitatively assess threshold-based predictions by inspec-
tion of ROC curves. The ROC curves shown in Fig. 6 are computed
using the entire model run in the case of the 3-D model, and long
simulations with around 550 events for the G12, P09 and DW mod-
els, see Section 3.2. We note that, for all four models, the ROC
curves get closer to the chance line (higher false positive rate, lower
true positive rate) as the prediction horizon increases. This implies
that the predictions get worse, by any measure, as the prediction
horizon increases. This means, perhaps not so surprisingly, that
predictions via a threshold-based strategy are more difficult to do
when the prediction horizon is large. More interestingly, we note
that for any fixed PH, the ROC curves of the G12 or P09 models
are further from the chance line than the ROC curves of the DW
and 3-D models. This suggests a ‘ranking’ of the models in terms
of how skillful threshold-based predictions are.> We investigate this
ranking quantitatively via MCC skill scores below.

For each model, we illustrate threshold-based predictions for
which an optimal WT is found by maximizing MCC skill score,
as a function of the WT. The data sets used for finding the opti-
mal WTs are the entire model run in the case of the 3-D model,
and long simulations with around 550 events for the G12, P09 and
DW models, see Section 3.2 (no distinction between training and
verification data). This results in optimal WTs of WTmz =31.25
per cent, WTpog =43.00 percent, WTDW = 60.25 percent and
WT3D = 45.50 percent for, respectively, the G12, P09, DW and
3-D models. Results for a prediction horizon PH = 1 are shown
in Fig. 7; results for PH = 0.5 or PH = 1.5 are similar. We plot
excerpts of the dipole time-series of the four models, along with
two graphs that illustrate the predictions and their validity. Each
model is represented by one subfigure which contains three panels.
The top panel shows an excerpt of the dipole time-series. We show

3But a higher ranking in predictive skill does not imply that the model is
‘better’, that is, more similar to Earth’s axial dipole, see Section 5.
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Figure 6. ROC curves for the four models and three prediction horizons, with PH = 0.5 in green, PH = 1 in purple and PH = 1.5 in orange. (a) G12, (b) P09,
(c) DW (d) 3-D. A ROC curve is the collection of TPR/FPR pairs one obtains when varying the warning threshold. The thicker line corresponds to TPR/FPR
pairs for which ST < WT < ET. The thin lines continue the ROC curves for WT > ET. The figure-in-figure in (a) (ROC curves for G12) shows a zoom near
the (0,1) point to illustrate that the three ROC curves, corresponding to different PHs, do not overlap. The ROC curves are computed using long simulations,

containing a large number of low-dipole events (see text for details).

a time interval of 50 non-dimensional time units for each model
and each model exhibits two events during this time interval (recall
that time is scaled by the average event duration, AED, see Table 1).
The orange lines in the bottom of each subfigure are zero if no low-
dipole event starts within the prediction horizon, and they are one if
a low-dipole event starts during the prediction horizon. Because we
show the same time-interval in non-dimensional units, the intervals
during which the orange line is at one are of equal width across
all four subfigures. The red lines in the centre panels are zero if no
low-dipole event is predicted to start during the prediction horizon;
the lines are one if a low-dipole event is predicted to start during
the prediction horizon. Thus, the overlap of the red and orange lines
defines TPs, FPs, TNs and FNs, and a large overlap corresponds to
a skillful prediction. For example, a FP corresponds to a situation
where the orange is at zero while the red line is at one; a FN corre-
sponds to a situation where the orange line is at one while the red
line is at zero.

‘We note that predictions for the G12 model lead to a small number
of false positives or false negatives. In the excerpt shown for the
G12 model in Fig. 7, there is only one false positive, caused by the
prediction starting one time step too early (during the first of the
two events shown). For the DW and 3-D models, on the other hand,
we note a large number of false positives and false negatives, which
renders threshold-based predictions unreliable for these models.
Comparisons of the graphs for G12 and the DW and 3-D models
suggest that threshold-based predictions for the DW or 3-D model
are indeed worse, by any measure, than those for the G12 model.

In the case of P09, we note a larger number of false positives
and false negatives than in the case of G12, but false positives
or false negatives occur less frequently than for the DW or 3-D
models. Consistent with what was suggested by Fig. 6, the skill of
threshold-based predictions for the P09 model thus seems to fall in
between the skills of threshold-based predictions for the G12 (very
high skill) and DW/3-D models (very low skills).

4.1.2 Quantitative comparison and ranking

We compute MCC skill scores to quantitatively compare the skill of
threshold-based predictions for the various models. To avoid over-
fitting we now compute skill scores on verification data, that is data
that are nor used for computing the optimal WT, as described in
Section 3.3.

We generate training and verification data as follows. For the
G12, P09 and DW models, the training data are the long simu-
lations that were also used in Section 3.2. The verification data
are ten independent simulations, each of length 10*. For the 3-D
model, we create training and verification data by ‘chopping up’
the overall simulation as follows. We split the simulations into two
parts of equal length and use one for training and the other for
verification. We then repeat the procedure, but split the simulation
into three equally long portions, using one for training and two for
verification. Finally, we split the simulation into four equally long
portions, and use one for training and three for verification. This
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Figure 7. Illustration of threshold-based predictions for the four models. (a) G12, (b) P09, (¢) DW and (d) 3-D. The plots show predictions over a time period
of 50 dimensionless time units and for a prediction horizon of PH = 1. The corresponding (optimal) warning thresholds (expressed in percent of the average
intensity) are WTGU = 31.25 per cent, WTpog = 43.00 per cent, WTDW = 60.25 per cent and V\7T3D = 45.50 per cent for, respectively, the G12, P09, DW and
3-D models. These optimal WTs are computed using time-series of the four models that contain a large number of events (see text for details). For each model,
a dimensionless time is defined via a scaling of time with the average event duration (see text for details). Each sub-figure contains three panels. Top panel.
Blue: dipole time-series. Blue/green/red horizontal lines: start-of-event/end-of-event/warning thresholds. Centre panel. Graphs are zero if the threshold-based
prediction is ‘no low-dipole event will start during the prediction horizon;” graphs are one if the threshold-based prediction is ‘a low-dipole event will start
during the prediction horizon’. Bottom panel. The graphs are zero if no low-dipole event starts within the prediction horizon; the graphs are one if a low-dipole
event starts during the prediction horizon. Black lines in the centre and bottom graphs denote times when no predictions are being made.

procedure leads to six MCC scores over verification data. Generat-
ing multiple verification data sets in this way allows us to estimate
the variability in the skill of threshold-based predictions for all four
models.

Results are shown in Fig. 8, where we plot MCC scores for the
four models for threshold-based predictions with prediction hori-
zon PH = 1. We only show the results for a prediction horizon PH
= 1, but one obtains qualitatively the same results with PH = 0.5
or PH = 1.5. We note that the variation in skill over the different
verification data sets is small. This suggests that the verification
data sets are ‘large enough’ so that variation in the verification data
does not affect the scores. Moreover, our results confirm the rank-
ing of the skill of threshold-based predictions that we anticipated
from inspection of ROC curves. Specifically, we rank the models
(skill from high to low) in terms of their predictability via inten-
sity thresholding as: G12, P09, DW and 3-D. Indeed, we found that
this result is independent of the choice of skill score—one obtains

qualitatively and, to a large extent, quantitatively the same results
using, for example the F; or CSI skill scores.

This ranking and, more generally, the skill of threshold-based
predictions appears to be determined by an interplay of:

(1) The extent of variation in the dipole intensity: a high potential
for false positives results if the intensity dips to low values regularly,
but if no low-dipole event follows.

(i) The decay rate prior to a low-dipole event: a quick decay
results in a high potential for false negatives.

For (i), we recall the intensity histograms of Fig. 2, which show
that the P09, DW and 3-D models (low skill) spend more time
at low intensity values than the G12 model (high skill). For (ii),
we compute the average decay time (ADT), which measures how
quickly the dipole intensity decays prior to a low-dipole event. We
define the decay time as the absolute value of the time difference
between the start of the event and the last previous instance at which
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Figure 8. MCC skill scores (verification) of the four models for prediction
horizon PH = 1. For each model, several MCC scores are shown. The MCC
scores are computed over multiple sets of verification data. The training
data are long simulations containing many low-dipole events (see text for
details).

the field exceeded the end-of-event threshold (ET, 80 per cent of its
average value). We list the ADT for the four models in Table 1,
with standard deviations. These ADT should be compared to the
average event durations (AED), also listed in Table 1. Recall that
the event duration is defined by the time interval that starts when
the dipole intensity drops below a given start-of-event threshold (10
per cent of the average value) and ends when the dipole intensity
exceeds a given end-of-event threshold (80 per cent of the average
value). Thus, the average event duration describes how quickly on
average the dipole recovers to a large value after it dropped to a
low value. If the average decay time is larger than the average event
duration (ADT > AED), then low-dipole events occur slowly; if the
average decay time is smaller than the average event duration (ADT
< AED), then low-dipole events occur quickly. The two behaviours
are illustrated by the G12 and 3-D models in Figs 9(b) and (c).

In Fig. 9(a), we plot the ratio of the average decay time to the
average event duration for the four models (see Table 1). For brevity,
we introduce an abbreviation for this ratio:

ADT

~ AED’
We note that p follows a similar trend as the MCC score. In par-
ticular, the ranking of the models it leads to is identical to the
ranking inferred from the MCC skill score. This suggests that the
skill of threshold-based predictions is influenced by how quickly
low-dipole events occur with respect to their duration. If they oc-
cur slowly (ADT > AED, p > 1), then threshold-based predictions
have a high skill. If they occur quickly (ADT < AED, p < 1), then
threshold-based predictions may have a low skill.

o (1n

4.2 Robustness of skill to a short training period

Motivated by the fact that the observational record is short (the
PADM2M and Sint-2000 reconstructions that we investigate in Sec-
tion 5 extend over 2 Myr and contain only six low-dipole events),
we investigate the robustness of the optimal WT and corresponding
skill with respect to the duration of the training data. For each model
we compute an optimal WT for several training data sets of differ-
ent durations, and, hence, containing a different number of events.
Results for a prediction horizon PH = 1 are shown in Fig. 10(a).
For G12, we note that the optimal WT is nearly independent of the

duration of the training data set. This means that, for this model,
one can find a useful WT from a rather short training period. For
all other models, we observe a variation of the optimal WT as we
vary the duration of the training period. The variations are most
significant for the DW model, for which the optimal WT varies
from about 25 per cent to nearly 80 per cent (which is the maximum
allowed value). For P09, the optimal WT varies between 35 and 55
per cent, but there seems to be a plateau of nearly constant WT for
training data sets that contain 20-35 events. For the 3-D model, we
observe a variation of the optimal WT between 20 and 40 per cent.
Again, we note a plateau of nearly constant WT for training data
with 1040 events.

Variations in the optimal WT, however, do not necessarily im-
ply variations in the resulting MCC skill score. This is shown in
Fig. 10(b). Here, we use the optimal WTs obtained from the same
various training periods (and shown in Fig. 10a), but compute the
MCC over the verification data. For the simple models (G12, P09
and DW), the verification data are the long simulations (with about
550 events, see Section 3.2). For the 3-D model, the verification data
are the portion of the simulation that was not used during training.

We observe that the MCC skill score of threshold-based predic-
tions is nearly independent of the duration of the training data. This
is consistent across the hierarchy of models and suggests that the
shortness of the observational record may not be the critical limiting
factor for determining a useful WT. Our numerical results indeed
suggest that a useful WT can be found even if the training period is
short and comparable with the observational record.

The reason why the skill is independent of the duration of the
training data varies across the hierarchy. This can be understood
by considering how MCC depends on WT, which we compute and
show in Fig. 11. If the MCC versus WT graph is sharply peaked
around an optimal value, and if the peak is nearly independent of the
duration of the training period, then a good WT can be found even
with a limited amount of training data. This is the case for the G12
model. If the graph of MCC skill score plateaus for large values
of WT, then rather different WT values can produce a similar skill
scores. This is the explanation for why drastic variations in optimal
WT cause nearly no variations in the resulting optimal MCC in case
of the DW model in Fig. 10.

4.3 Impact of data filtering

Threshold-based predictions for the 3-D and DW model have a low
skill compared to P09 or G12. This could be due to the quick changes
in polarity that we observe in the 3-D and DW models, and that occur
on short timescales (recall Fig. 1). These are absent from the P09
or G12 models. Palacomagnetic reconstructions such as PADM2M
and Sint-2000, which are inherently smoothing the field they record
through the slowly depositing sedimentary process, also fail to show
such a behaviour. One may thus wonder if the 3-D or DW models
could become more amenable to threshold-based predictions if the
dipole is smoothed in an analogous way.

To test this possibility, we first consider the 3-D model, and rely
on the secular variation timescale T = 415 yr, which we already used
to scale time for this simulation. The idea is to test a filtering that
mimics the sedimentary process and makes physical sense from the
point of view of a 3-D dynamo. For 3-D dynamos, and for Earth’s
dynamo, the secular variation timescale defines the main timescale
with which the non-dipole field is behaving (Lhuillier ez al. 2011b).
It provides a natural separation between the times scales of the
long-term behaviour of the dipole field, which is the one we are
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Figure 9. (a) Ratio p of the average decay time (ADT) to the average event duration (AED) for the four models and two palacomagnetic reconstructions
(PADM2M and Sint-2000, see Section 5). Also shown is the p = 1 line (dashed). (b) Illustration of the decay time and event duration of an event for G12. (c)
Illustration of the decay time and event duration of an event for the 3-D model. The beginning of the decay is marked in green, the start of an event is marked in
orange and the end of an event is marked in red. The decay time is the time interval between the start of the decay and the start of an event. The event duration

is the time interval between the start and end of an event.
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Figure 10. (a) Optimal warning threshold as a function of the number of events contained in the training data. (b) MCC computed over verification data as a
function of the number of events contained in the training data. The prediction horizon is PH = 1.

most interested in here, and its short timescales. Smoothing over a
time period of 4t typically removes such short timescales (Hulot
& Le Mouél 1994). This corresponds to about 2 kyr. This is the
value we tested, as it also is roughly consistent with the smoothing
due to the sedimentary process in palacomagnetic reconstructions
such as PADM2M and Sint-2000. For example, the regularization
used to obtain the PADM2M reconstruction suppresses energy at
timescales of 5—10 kyr (Ziegler et al. 2011). It finally is short enough
compared to the decay time and event durations we identified for
the field produced by the 3-D (and DW) model (see Table 1). For
consistency, we then also used the same time filtering to filter the
time-series produced by the DW model. In both cases, we used a
moving average filter. Results are provided in Table 2, which lists the
optimal MCC of threshold-based predictions for the DW and 3-D
models with and without smoothing for three prediction horizons.

We found that the skill of threshold-based predictions only slightly
increases for the 3-D model, but hardly at all (to two digits) for the
DW model. Thus, skills associated with the DW and 3-D models
are nearly unchanged by the smoothing process, and remain smaller
than the skills associated with the P09 and G12 models.

4.4 Summary of results from the hierarchy of models

The hierarchy of models is consistent in that threshold-based pre-
dictions become more difficult, or, equivalently, less skillful, when
the prediction horizon increases. This suggests that threshold-based
predictions are at best useful for predicting low-dipole events with
a lead time that is comparable to the average duration of the event
(about 10 kyr on Earth’s timescales). Moreover, the machinery of
identifying thresholds by maximizing a skill score is robust in the
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Figure 11. MCC skill score as a function of WT for the four models. (a) G12, (b) P09, (¢) DW and (d) 3-D. The various graphs shown for each model differ
in the number of events contained in the training data (see text for details). The thin lines continue the curves for WT > ET.

Table 2. Maximum MCC of threshold-based predictions for the DW and
3-D models with and without smoothing (smoothing window is 47 ~ 2
kyr) for three different prediction horizons. Optimal warning thresholds
and MCC scores are computed over the entire run (no verification).

Prediction horizon 0.5 1 1.5

DW No smoothing 0.39 0.32 0.27
2 kyr smoothing 0.39 0.32 0.27

3D No smoothing 0.28 0.22 0.18
2 kyr smoothing 0.32 0.24 0.19

sense that the skill during training is comparable to the skill during
verification. Our overall approach is also robust with respect to the
precise choices of start-of-event and end-of-event thresholds, and
with respect to the choice of skill score (MCC, F; or CSI).

We observe strong differences in the skills of threshold-based
predictions across the various models. The DW and 3-D models ex-
hibit complex behaviour during reversals or excursions, with many
polarity changes during the low-dipole event and the decay time
is short compared to the event duration (fast reversals). The G12
model behaves differently: we do not observe quick polarity changes
during a G12 reversal, no major excursions occur, and the decay time
is larger than the event duration (slow reversals). The G12 model is
more amenable to threshold-based predictions than the DW or 3-D
models, because of its simpler reversing behaviour and because re-
versals are approached slowly. The P09 model falls in between the
DW and 3-D models and the G12 model.

Our numerical experiments with short training data sets, suggest
that the main difficulty for threshold-based predictions may not be
the shortness of the observational record. The hierarchy of models

is surprisingly consistent in that one may be able to determine useful
WTs, even if the training data are limited. The reasons for why this
stability occurs, however, vary across the hierarchy of models. For
the G12 model, low-dipole events are indeed easy to predict by a
threshold and this threshold can be found by optimizing skill scores
over short data sets. For the other models, the skill score is a nearly
flat function of the threshold, that is different thresholds can lead
to similar skill scores (recall Fig. 11). More importantly, the overall
skill of threshold-based predictions is low for the DW and 3-D
models, even when introducing some smoothing. Thus, threshold-
based predictions may be of limited use for the DW and 3-D models,
because false positives and false negatives occur frequently. Again,
the P09 model falls in between the G12 and DW/3-D models.

We summarize our main results about threshold-based predic-
tions for dipole models as follows.

(i) Across the hierarchy of models, the skill of threshold-based
predictions degrades with the prediction horizon.

(i1) Across the hierarchy of models, threshold-based predictions
are robust to minor variations of numerical details, such as choice
of skill sore (MCC or F1 or CSI), or choices of start-of-event and
end-of-event thresholds.

(iii) Across the hierarchy of models, useful WTs can be found
even if the duration of the training period is short and comparable
to the observational record. This suggests that the shortness of the
observational record is not the main issue that makes computing
WTs difficult. The reasons for why this is the case, however, differs
across the hierarchy of models.

(iv) The G12 model is more amenable (highest skill) to threshold-
based predictions than the DW or 3-D models (lowest skill). The skill
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of threshold-based predictions for the P09 model falls in between
the skills for G12 and DW/3-D. Furthermore, we found that skills
strongly correlate with the ratio of the average decay time to the
average event duration.

5 APPLICATION TO PALAEOMAGNETIC
RECONSTRUCTIONS

We now take advantage of the lessons learned from the hierarchy of
models and apply threshold-based predictions to the PADM2M and
Sint-2000 palaeomagnetic reconstructions, which provide proxies
of the Earth’s axial dipole intensity over the past 2 Myr (Valet et al.
2005; Ziegler et al. 2011). More specifically, PADM2M and Sint-
2000 report the virtual axial dipole moment (VADM) in increments
of 1 kyr for the past 2 Myr. We scale each reconstruction so that one
unit of relative palacointensity corresponds to its time average (5.32
x 1022 Am? for PADM2M, 5.81 x 102 Am? for Sint-2000). The
timing of reversals is based on the geomagnetic polarity timescale
of Cande & Kent (1995), with a slight modification for the Cobb
mountain sub-chron in the case of PADM2M (Morzfeld ez al. 2017).

We note that PADM2M and Sint-2000 are ‘data’ of the same pro-
cess, namely Earth’s dipole intensity over the past 2 Myr. Nonethe-
less, there are differences between PADM2M and Sint-2000, which
are due to variations in the processing and interpretation of raw
data, and also the raw data that goes into the two reconstructions.
This means that differences between PADM2M and Sint-2000 in-
dicate the level of uncertainty that is caused by difficulties with
observing Earth’s dipole over millions of years (see also Morzfeld
& Buffett (2019)). Moreover, the fact that the observational record
is short (2 Myr sampled in 1 kyr increments), implies that it is dif-
ficult to determine if any differences are (statistically) significant.
It is important to keep this ‘minimum level of uncertainty’ in mind
when evaluating threshold-based predictions for the palacomagnetic
reconstructions (note that we essentially treat the palacomagnetic
reconstructions as ‘data’, but we are aware that these reconstructions
are themselves ‘models”).

5.1 Event durations and decay times

Based on our definitions above, we compute the average and stan-
dard deviation of the event duration and decay times for the six
events of PADM2M and Sint-2000. Results using ST = 10 per cent
and ET = 80 per cent as before, are listed in Table 1 and these val-
ues should be compared with the corresponding values for the four
models. In this context, it is important to realize that PADM2M and
Sint-2000 never exhibit intensity values below 10 per cent of their
time average, which is why the definition of the low-dipole event
in Section 3.1 contains the ‘or-statement’: a low-dipole event starts
when the intensity drops below the ST or if the dipole changes its
sign.

We first note that PADM2M and Sint-2000 lead to results consis-
tent with each other (e.g. average event duration and average decay
times agree with each other within the corresponding standard devi-
ations). We also note that both average event durations and average
decay times fall within the range of values covered by the hierarchy
of models. Hardly any model, however, leads to values satisfyingly
matching those of PADM2M and Sint-2000 for both quantities. This
is best seen in Fig. 12, which shows the average decay time (ADT)
plotted as a function of the average event duration (AED) for the
four models and the palacomagnetic reconstructions.
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Figure 12. Average decay time (ADT) plotted as a function of the average
event duration (AED) for the four models and the palacomagnetic recon-
structions. Also shown are the error bars based on one standard deviation.
In the case of the G12 model, the standard deviation of the event duration is
too small to be visible as an error bar. Also shown is a 45° line that separates
models or data for which ADT > AED from models for which ADT < AED.

The average event duration of PADM2M or Sint-2000 is longer
than that of the G12 (shortest) and P09 models, and shorter than that
of'the DW and 3-D (longest) models. We note, however, that associ-
ated standard deviations may reconcile the average event durations
of the palacomagnetic reconstructions with those of the various
models, but only marginally so for G12, which intrinsically displays
little variation in the event duration. Moreover, the standard devia-
tions for the event durations of the palacomagnetic reconstructions
are quite comparable to those of the DW and 3-D models, but larger
than those of the P09 model, and are much larger than those of the
G12 model. Overall, the average event duration of the palacomag-
netic reconstructions lies in-between the average event durations of
the G12/P09 and DW/3-D models. We keep in mind that standard
deviations for the palacomagnetic reconstructions may be corrupted
by insufficient statistics, since the data document only six events.

The situation, however, is different when considering average
decay times. The average decay times of the palacomagnetic re-
constructions are much larger than those of the 3-D (shortest), DW
and P09 models, but comparable to that of the G12 model (longest).
The standard deviations are much larger than that of the G12 model,
and substantially larger than those of the P09, 3-D and DW mod-
els (P09, DW and 3-D models are comparable). This could be due
to insufficient statistics or to data uncertainties, as suggested by
the disagreement between the different values obtained with the
PADM2M and Sint-2000 data sets. From the perspective of average
decay times, it thus appears that the data are consistent with the G12
model.

Finally, we compute the ratio p of the average decay time to the
average event duration for both palacomagnetic reconstructions.
This leads to values of about two for PADM2M and three for Sint-
2000 (see Table 1), which is consistent with the already known fact
that intensity tends to decrease more slowly before a reversal than
it recovers after it (Valet et al. 2005). The ratio p of PADM2M and
Sint-2000 can also be compared to the corresponding ratios of the
four models in Fig. 9. We note that the ratios of the palacomagnetic
reconstructions are much larger than the corresponding ratios asso-
ciated with the 3-D (smallest) and DW models; they are comparable
to the corresponding ratio of the P09 model, and much smaller than
the corresponding ratio of the G12 model.
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5.2 Threshold-based predictions and their skills

We now apply threshold-based predictions to PADM2M and Sint-
2000 using the same techniques as above and, as before, consider
prediction horizons PH = 0.5, PH = 1 and PH = 1.5. Note that these
PHs correspond to about 6, 11 and 17 kyr in geophysical time. The
ROC curves of threshold-based predictions for PADM2M and Sint-
2000 are shown in Figs 13(a) and (b). These curves are computed
over the entire 2 Myr time window covered by the palacomagnetic
reconstructions. Inspecting the ROC curves qualitatively, we see that
the skill of threshold-based predictions decreases with the prediction
horizon. We observed this also for all four models. Comparing the
ROC curves of the palaecomagnetic reconstructions in Figs 13(a)
and (b) with the ROC curves of the models in Fig. 6, the ROC
curves of the palacomagnetic reconstructions resemble those of the
P09 model. Fig. 13(c) shows the curve traced out by the MCC
as when varying the WT for PADM2M and Sint-2000 (MCC is
computed over the entire 2 Myr time window). Again, we note that
the curves corresponding to the palacomagnetic reconstructions are
qualitatively similar to the corresponding curve of the P09 model
(see Fig. 11).

We also compute optimal MCC scores for PADM2M and Sint-
2000 via training and verification. We use the first 0.95 Myr, con-
taining four events, for training (finding an optimal WT) and use
the remaining 1.05 Myr, containing two events, for verification.
Table 1 lists these MCCs for PADM2M and Sint-2000, together
with the MCCs of the four models, when computed with training
data containing a comparable number of events (four events during
training for the palacomagnetic data and five events during training
for the models, see Section 4.2). Fig. 14 shows the (verification)
MCC scores for PADM2M and Sint-2000 along with those of the
models.

We first note from Table 1 that the MCC skill score drops from
training to verification and that the verification skills for PADM2M
and Sint-2000 are quite different. This is caused by the verifica-
tion periods being extremely short, with only two events during
verification. Thus, while the WT we find from a limited observa-
tional record may be quite accurate, it remains difficult to evaluate
the skill of threshold-based predictions. These difficulties are due
to the shortness of the observational record—we only have 2 Myr,
with six events, to base our training and validation on. Nevertheless,
we again find that palacomagnetic reconstructions tend to produce
verification MCC scores quite consistent with what could be an-
ticipated based on our analysis of the ratio of the average decay
time to the average event duration. The MCC associated with the
palaeomagnetic reconstructions, indicative of the skill of intensity
threshold based prediction, is indeed larger than the MCC recovered
for the 3-D (smallest) and DW models, comparable to that of the
P09 model, and much smaller than that of the G12 model.

We illustrate threshold-based predictions for the palacomagnetic
reconstructions and PH = 1 in Fig. 15. This figure first confirms
that the choice of the start-of-event (ST) and end-of-event (ET)
thresholds properly identifies the six events of interest. There are
five reversals and one major excursion, which corresponds to what
is known as the Cobb mountain subchron at 1.19 Myr, and is indeed
an event during which the field temporarily changed its polarity at
low intensity. This figure also illustrates the limitations of threshold-
based predictions when using PADM2M or Sint-2000. In the case
of PADM2M, with an optimal WT of WTpapuman = 50.75 per cent
(corresponding to 2.70 x 10?2 Am?), we note the occurrence of
two instances of false positives, where no low-dipole event is ob-
served, but a low-dipole event is predicted, (near the —1.5 Myr and

—0.25 Myr marks). One of these instances of false positives occurs
during training, the other during verification. Such false positives
do not occur in the case of the Sint-2000, which also has a lower
optimal WT of WTSim.zooo = 36.75 per cent (corresponding to 2.14
x 10?2 Am?). One may thus intuitively expect that the predictions
will have a lower skill when applied to PADM2M than to Sint-2000,
but in fact this is not the case: the skill during verifications is higher
for PADM2M than for Sint-2000, but the skill for training is higher
for Sint-2000 than for PADM2M. This is perhaps counter intuitive
because one is tempted to think of false positives that occur ‘far’
from a reversal as more severe than false positives or false neg-
atives that occur ‘close’ to a reversal. The MCC score, however,
does not apply special meaning to the categories of ‘positive’ and
‘negative’, so that predictions of the timing of the two reversals, for
example during verification, are more accurate for PADM2M than
for Sint-2000.

The ROC curves and the MCC skill scores for the palacomag-
netic reconstructions and models suggest that the predictive skill of
threshold-based predictions of the palaeomagnetic reconstructions
may be comparable to the skill of these predictions for the P09
model. Because it is difficult to verify threshold-based predictions
using the observational record only, we may use the P09 model to
investigate the skill of threshold-based predictions, applied to the
palaecomagnetic reconstructions. Threshold-based predictions (PH
= 1) for the P09 model are illustrated in Fig. 7 (note that the predic-
tions in Fig. 7 make use of a large training data set). Indeed, when
training threshold-based predictions for P09 with training data that
contains five low-dipole events (comparable to palacomagnetic re-
constructions), the optimal WT of the P09 model of 54.5 per cent is
quite comparable to that obtained for PADM2M (50.75 per cent) and
slightly more than that obtained for Sint-2000 (36.75 per cent), all
of which are consistent with the range of values found in Figs. 10
and 11. We also observe that the predictions for P09 are similar
to the predictions for the palacomagnetic reconstructions. We en-
counter a large number of true negatives, several false negatives,
for which the threshold-based predictions trigger a little too late,
and occasionally encounter false positives that occur during periods
when no low-dipole event occurs.

In summary, we conclude that threshold-based predictions are
feasible for the palacomagnetic reconstructions, but lead to mod-
erate success. They share similar characteristics as threshold-based
predictions for the P09 model, and suffer from similar caveats:

(i) Low-dipole events can be predicted only a relatively short
time ahead, that is the prediction horizon should be about one av-
erage event duration or less. On Earth’s timescale, this means the
prediction horizon should be about 10 kyr or less.

(i) Low-dipole events may be predicted a few kyr too late (false
negatives), which is significant in view of the relatively short pre-
diction horizon.

(ii1) One must be prepared for false positives to occur even when
no low-dipole event is about to happen.

The above conclusions are supported by two palacomagnetic
reconstructions, PADM2M and Sint-2000, but threshold-based pre-
dictions show some sensitivity to which reconstruction we use.
This is perhaps best illustrated by the predictions in Fig. 15, but it
is also clear from the skill scores in Table 1. As indicated above,
differences between results stemming from PADM2M or Sint-2000
establish an uncertainty that cannot be resolved, because this uncer-
tainty is caused by our limited ability to observe Earth’s dipole over
millions of years. In this context, we wish to point out that we did not
use other global models, for example PISO-1500 (Channell et al.
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1 (about 11 kyr) in purple, and PH = 1.5 (about 17 kyr) in orange. (a) PADM2M, (b) Sint-2000. An ROC curve is the collection of TPR/FPR pairs one obtains
when varying the warning threshold. The thicker line corresponds to TPR/FPR pairs for which ST < WT < ET. The thin lines continue the ROC curves for
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Figure 14. MCC of four models and two palacomagnetic reconstructions
(PADM2M and Sint-2000). The optimal WT is computed using training data
containing five events in the case of the models, and four events in the case
of the palacomagnetic reconstructions (see text for details).

2009), because it is biased towards the North Atlantic region due
to the fact that only stacks with a high sedimentation rate are used
(see, e.g. fig. 5 of Panovska ef al. 2019). Indeed, PISO-1500 is less
representative of the (global) axial dipole field than PADM2M and
Sint-2000 (see also Ziegler et al. 2011). Exploring the consequences
of such differences is beyond the scope of our work.

Finally, we want to bring a few details to the reader’s attention. In
particular, we want to emphasize that the average dipole intensity
and the average event duration for threshold-based predictions for
PADM2M or Sint-2000 are computed using the entire 2 Myr record.
One could also envision to compute the average intensity based
on training data only. We decided not to do so for the following
reasons. The average intensity defines the start and end of an event,
because start-of-event and end-of-event thresholds are defined in
terms of the average intensity. The average event duration, and
even the number of events, are implicitly defined by the start-of-
event and end-of-event thresholds and, thus, also depends on the
average intensity. The average event duration, in turn, is used in
the definition of the prediction horizon. In summary, the average
intensity directly affects (i) the number of events; (ii) the average
event duration and (iii) the prediction horizon. By computing the
average intensity over the 2 Myr reconstructions, we have assumed

these difficulties away and fix the average intensity a priori. We find
that this is more practically relevant because the average intensity
may be determined by using additional information. Nonetheless,
we also made threshold-based predictions for which we compute
the average event duration based on training data and the results are
nearly identical to the results we show above.

6 CONCLUDING COMMENTS

The main purpose of this study is to test the possibility that a low
value of the axial dipole intensity could be used as a natural in-
dicator of an upcoming dipole reversal. To answer this question,
we analysed a hierarchy of numerical models, and Earth’s axial
dipole field as documented by the PADM2M and Sint-2000 palaeo-
magnetic VADM reconstructions (Valet et al. 2005; Ziegler et al.
2011). More specifically, we test the possibility of relying on an
intensity threshold-based strategy, whereby once the axial dipole
intensity drops below a WT, it is predicted that the intensity will
drop further and lead to a low-dipole event (either a reversal or a
major excursion) within some specified time, called the prediction
horizon. Although the principle of such a strategy appears to be
fairly intuitive, implementing it in a robust way led us to introduce
a dedicated methodology.

Our method requires that we define a WT, a start-of-event thresh-
old (ST), an end-of-event threshold (ET) and a prediction horizon
(PH). Both ST and ET appear to be most conveniently defined in
terms the average intensity of the axial dipole (in practice ST =
10 percent and ET = 80 percent). ST and ET also define an aver-
age event duration (AED, average time elapsed between when the
intensity passes below the ST and when it recovers back to above
the ET). The prediction horizon is defined in terms of the aver-
age event duration and we consider predictions with PHs of about
one AED. Having chosen the ST, ET and PH, we identify the WT
by maximizing a skill score. Several skill scores have been tested,
and all adequate choices led to similar conclusions. Similarly, we
showed that the exact choices of the ST and ET percentages are
not critical, provided these properly bracket the events of interest.
The code we use to implement the prediction is available on github
(https://github.com/kjg136/Threshold). We archived the code used
to generate all figures in (https://doi.org/10.5281/zenodo0.4267116).
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Figure 15. Illustration of threshold-based predictions for the PADM2M [(a) and (c)] and Sint-2000 [(b) and (d)] reconstructions. The prediction horizon
is PH = 1 (about 11 kyr) and the optimal warning threshold computed over 0.95 Myr of training data, containing four events. The corresponding warning
thresholds (expressed in percent of the average intensity) are WTpapmam = 50.75 percent (2.70 - 1022 Amz) and WTSim-zooo = 36.75 percent (2.14 - 1022
Am?) for respectively PADM2M and Sint-2000. Panels (a) and (b) contain three subfigures. Top panel. Blue: dipole time-series. Blue/green/red horizontal
lines: start-of-event/end-of-event/warning thresholds. Centre panel. Graphs are zero if the threshold-based prediction is ‘no low-dipole event will start during
the prediction horizon’; graphs are one if the threshold-based prediction is ‘a low-dipole event will start during the prediction horizon’. Bottom panel. Graphs
are zero if no low-dipole event starts within the prediction horizon; graphs are one if a low-dipole event starts during the prediction horizon. Panels (c) and (d)
show magnifications during a time interval that includes the two reversals that occur during verification.

A first major conclusion is that the skills of intensity threshold-
based predictions vary surprisingly widely within the hierarchy of
numerical models we investigated (G12, P09, DW and 3-D models).
The only model that leads to a high skill (implying that the intensity
threshold-based predictions are reliable) is the G12 model. This re-
sult is in line with the results obtained by Morzfeld er al. (2017),
who identified a high skill of intensity threshold-based predictions
for this model, using a simpler strategy and a less robust analysis.
All other models lead to lower skills, implying that the intensity
threshold-based predictions are less reliable. This is, again, consis-
tent with Morzfeld e al. (2017), who investigated the P09 model
and a model (B13, Buffett ef al. 2013) similar to the DW model, but
did not investigate the 3-D model. In this study, we were able to rank
these skills more accurately and identify one key property that may
play amajor role in defining the skills of threshold-based predictions
in the context of numerical dynamos and VADM reconstructions
(PADM2M and Sint-2000).

This key property is that skills of intensity threshold-based pre-
dictions correlate with the ratio of the average decay time (defined
as the time between the start of the event and the most recent time
instance at which the intensity is equal to the end-of-event thresh-
old) to the average event duration. The larger this ratio, the better the
skill. The models and the PADMD2M and Sint-2000 reconstruc-
tions are consistent with this rule. As already noted, this asymmetry
between the way the field decreases towards a reversal and the way
it recovers its strength after the reversal is a well-known property

of the field (Valet ef al. 2005), which in fact may be related to the
more general tendency of the Earth’s magnetic field to spend more
time decreasing than increasing at any time (see, e.g. Ziegler &
Constable 2011; Avery et al. 2017). What this study thus suggests
is that this slight asymmetry is what defines the skill of inten-
sity threshold-based predictions when applied to Earth’s magnetic
field. Unfortunately, because this ratio is about two to three, the
skill of threshold-based predictions is limited. As our study further
shows, this, more than the relatively short duration of the Sint-2000
and PADMD2M reconstructions, is what likely makes intensity
threshold-based predictions using these data modestly reliable.

Despite the limitations we identified for intensity threshold-based
predictions, it is worth pointing out that today’s axial dipole field,
with a magnitude of about 7.8 x 1022Am? (Constable & Korte
2006), is much larger than the WTs we identified by using ei-
ther Sint-2000 (WTSim_zooo = 36.75 percent of the average 5.81
x 1022 Am?, which amounts to 2.14 x 10?2 Am?) or PADM2M
(WTpapnom = 50.75 percent of the average 5.32 x 102 Am?,
amounting to 2.70 x 10?2 Am?). Intensity threshold-based pre-
dictions thus suggest that no low-dipole event will occur within the
next 10 kyr. This is in line with many other recent predictions (see,
e.g. Constable & Korte 2006; Morzfeld et al. 2017; Brown et al.
2018).

As an interesting additional outcome of this study, we note that
testing the skills of threshold-based predictions on numerical dy-
namos is a fairly discriminating way of testing the Earth-like nature

Zz0z Aeniged 9z uo 3senb Aq 11.9186G/./2/1/52Z/e101e/B/wod dno-olwepeoe//:sdiy woli pspeojumoq



of the axial dipole field behaviour of the models. This skill is dis-
tinct from the ability of numerical simulations to reproduce the
frequency with which reversal occurs. This is evident from the fact
that threshold-based predictions have different skills for the DW
and P09 models, whereas both models are characterized by reversal
frequencies comparable to that of the Earth over the last 25 Myr
(about 5 reversals per Myr). As this skill appears to be correlated
with the ratio of the average decay time to the average event duration
(a measure of the asymmetry with which the field evolves towards a
reversal and next recovers its full strength), it also appears to be dis-
tinct from other criteria often used to characterize the Earth’s dipole
field behaviour, such as its frequency content (Constable & John-
son 2005), or the relative time spent in transitional periods (based
on dipole latitudes being less than 45°), as recently suggested by
Sprain et al. (2019). Furthermore, in spite of its favourable ratings
according to the criteria defined by Christensen et al. (2010) for the
recent field, and Sprain ez al. (2019) for the palacomagnetic field
(recall Section 2.2.4), the field produced by the 3-D model appears
to not match that of the Earth’s field (as described by PADM2M
and Sint-2000) in terms of intensity threshold-based prediction skill
(and ratio of the average decay time to the average event duration).
In agreement with the suggestions of Ziegler & Constable (2011)
and Avery et al. (2017), and since it appears to play a significant
role in the way reversals occur, we strongly encourage the com-
munity to also consider predictive skills and asymmetric tempo-
ral behaviour as additional criteria to identify Earth-like dynamo
simulations.

This study shows that intensity threshold-based predictions of
reversals appear to be of only limited value, but we emphasize that
we investigated these limitations for only one specific threshold-
based prediction, namely predicting whether a reversal or major
excursion occurs during a specified time window. Other types of
predictions might deal instead with the probability of a reversal
or major excursion during a specified time window. In this case, a
large number of reversals would be needed to test these predictions.
It is also worthwhile to comment on other routes to more robust
and reliable predictions. Taking advantage of machine-learning and
deep learning could be a possibility (Goodfellow ef al. 2016). In this
context, however, one should be careful to check that the shortness of
the palacomagnetic reconstructions is not a limiting factor, as deep
learning is known to work best when data availability is vast, and
only poorly when data are limited. Another approach is to rely on
merging the observations in a process called data assimilation (DA,
see, e.g. Carrassi ef al. 2018). This strategy has been successful
in numerical weather prediction because the atmospheric model
is of high quality, and because observations of the atmospheric
state are plentiful (Bauer et al. 2015). It currently is developing
in the field of geomagnetism (Fournier ez al. 2010). Using DA for
predicting dipole reversals, however, is difficult due to the lack of
a suitable 3-D model that can be run fast enough and the fact that
the observations are limited to the virtual axial dipole moment over
2 Myr. Here, the main difficulty lies in identifying, or creating,
useful models that are simple enough to allow for DA but complex
enough to represent all relevant timescales. Nevertheless, Morzfeld
et al. (2017) recently showed that using such an approach with the
G12 model and assimilating either PADM2M or Sint-2000, could
lead to some success. No similar success could be reached with
the P09 model, which was also tested. In that approach, indeed, the
key to success appears to be the dynamical way the axial dipole
produced by the model approaches reversals. It appears that the
way the G12 model approaches reversals is more similar to how
Earth’s axial dipole field approaches reversals, than the P09 model.
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This leads to the interesting possibility of finding a better suited
low-dimensional model with properties intermediate between the
G12 model (whose decay-time properties make it well suited for
DA) and P09 (with intensity threshold-based prediction properties
closest to that of the palacomagnetic reconstructions) leading to
better predictions of reversals several kyr ahead.
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Table Al. Acronyms used in this paper.
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Type Acronym Explanation
Outcomes of events P Number of positives
N Number of negatives
Outcomes of predictions TP True positive
FP False positive
TN True negative
FN False negative
Receiver operator characteristics TPR True positive rate (eq. 9)
FPR False positive rate (eq. 9)
ROC Receiver operator characteristic
Skill scores ACC Accuracy (eq. 5)
Fy Fy skill score (eq. (6)
CSI Critical success index (eq. (7)
MCC Mathews correlation coefficient (eq. 8)
Threshold-based predictions ST Start-of-event threshold
ET End-of-event threshold
WT Warning threshold
PH Prediction horizon
AED Average event duration
ADT Average decay time
p= % ratio of ADT and AED
Models G12 Differential equation model (Gissinger 2012)
P09 Stochastic model (Pétrélis et al. 2009)
DW Stochastic double well model (Morzfeld & Buffett 2019)
3-D model 3-D dynamo simulation (unpublished)
SDE Stochastic differential equation
MHD Magneto-hydrodynamic
DA Data assimilation
Data VADM Virtual axial dipole moment
PADM2M VADM reconstruction (Ziegler et al. 2011)
Sint-2000 VADM reconstruction (Valet ef al. 2005)
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