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François Pétrélis,1 Kristel Chanard,2 Alexandre Schubnel,3 and Takahiro Hatano4

1Laboratoire de Physique Statistique, Ecole Normale Supérieure,

PSL Research University, Université Paris Diderot Sorbonne Paris-Cité,
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Abstract

We investigate theoretically the effects of periodic-in-time modulations on the properties of earthquakes.

To wit, we consider successively the one dimensional Burridge-Knopoff (BK) model and the two dimen-

sional Olami-Feder-Christensen (OFC) model. Each model is modified to take into account either a mod-

ulation of normal stress or of shear stress acting on a fault. Despite the differences between the BK and

the OFC model, several results are observed in both models. In particular, we observe that earthquake oc-

currences correlate with stress modulation. The correlation is strongly dependent on parameters such as

the type of modulation, its frequency and amplitude, and in some cases on the magnitude of the considered

earthquakes.
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In the Earth’s crust, at seismogenic depths, transient changes in stress can be caused by various

sources. As such, the possibility that tides have an influence on earthquakes has been debated

for more than a century among seismologists [1]. Even though tidal stress modulations are small

compared to those of fault dynamics, they occur on a short timescale so that properties sensitive

to variation rates could be affected by tides. Models based on Rate and State (R & S) friction laws

[2] proposed that short-period stress transients are not effective at triggering earthquakes if they

occur faster than the characteristic earthquake nucleation duration. Similar R & S models were

used, later on, to explain the poor correlation between tidal loading and earthquakes [3].

However, several robust studies showed a statistically significant correlation between earth-

quakes and oceanic or solid Earth tides [4–7], and even at higher frequencies between dynamic

triggering from seismic waves and earthquakes [8]. Recent studies have also shown that the frac-

tion of large earthquakes increases when the tidal stress increases [9]. This effect depends on

the faulting geometry and correlation with the shear stress was only observed for reverse faulting

[10]. The correlation with tides has also been reported to have increased prior to several large

earthquakes and to have disappeared afterwards [11, 12].

Similarly, seasonal effects such as snow or water loadings are also possible sources of modu-

lation on faults. It has been reported that deep-focus earthquakes (magnitude larger than 7, depth

larger than 500 km) are two to three times more likely in summer [13]. Similarly, it has been

reported that the annual variation of terrestrial water mass is a possible source of modulation of

seismicity on faults in different tectonic settings such as the Himalayas of Nepal [14, 15], Califor-

nia [16, 17], in the New Madrid region [18] or in the Southwest of Japan [19].

Despite these numerous observations, only a few theoretical studies have considered this

problem. Considering one degree of freedom subject to periodic shear stress modulation, it was

shown that the earthquake rate is proportional to the frequency of the modulation [20]. Here we

consider two discrete models of fault with many degrees of freedom so that the size-dependent

properties (including the Gutenberg-Richter law) are investigated. A different approach would

have been to adopt a continuum model, but it generally fails to reproduce the GR law [21] and

therefore does not fit our purpose. For each of the two models, we investigate the properties of the

earthquakes when either normal stress or shear stress on a fault is modulated periodically in time.

Our results provide a quantitative explanation of the sensitivity to periodic loading of earthquake

statistical properties including the size distribution.
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FIG. 1: Schematics of the model. The i-th block is pushed by its neighbours and the moving plate of speed

V (t).

ONE DIMENSIONAL BURRIDGE-KNOPOFF MODEL

Description of the models

Our first analysis on the effect of stress modulation on earthquakes is based on the one-

dimensional Burridge-Knopoff (BK) model shown in Fig. 1, where a set of N sliders are located

on a line at positions x̂i. Each slider is connected to its nearest neighbours with a spring of stiffness

k̂2. The first and the last sliders are only connected to one neighbour. In addition, each slider is

connected with a spring of stiffness k̂1 to a plate that moves at constant velocity denoted by v̂0. To

make contact between this model and a continuum, these sliders should be interpreted as the ele-

ments of unit surface that constitute the fault. Thus, forces and stresses have the same dimension

in our model.

The driving force on the i-th slider is

τ̂i =−k̂2(2x̂i − x̂i+1 − x̂i−1)+ k̂1(v̂0 t̂ − x̂i) . (1)

If this driving force τ̂i reaches the static friction force F̂s at slider i, it starts to move with velocity

v̂i and is subject to the dynamic friction force

F̂d(v̂i) = F̂
1−δ

1+ 2α̂
1−δ v̂i

(2)

where δ and α̂ are positive constants. δ corresponds to the instantaneous stress drop from static

friction to dynamic friction. Note also that the dynamic friction decreases as the slip velocity v̂i

increases. Such friction is referred to as the velocity weakening friction, and α̂ represents the

amplitude of the negative velocity dependence. Then we are led to the equation of motion for
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slider i [22]:
d

dt
v̂i = τ̂i − F̂d(v̂i). (3)

In addition, each slider is not allowed to move backward and if its velocity vanishes with a negative

acceleration, it is set to zero.

Using the BK model described above, we analyze the effect of stress modulation on earthquake

occurrence. In natural earthquake faults, the stress modulation may affect both normal and shear

stresses, the amplitude of which depends on the faulting orientation. For instance, on strike-

slip faults, which dip vertically, normal stress is not much modulated, whereas reverse faults,

with lower dip angle, may be subject to relatively large modulation in normal stress. Taking

these geometrical effects into account, here we consider two extreme models: the normal stress

modulation (NSM) model and the shear stress modulation (SSM) model.

In the NSM model, the normal stress is modulated while the shear stress is constant. In the

equation, the normal stress modulation results in a modulated friction force. Thus, the static

friction reads

F̂s = F̂(1+ ε cosΩ̂t̂) , (4)

where ε is the amplitude of modulation and Ω̂ is the frequency. Similarly, the dynamic friction is

obtained by replacing F̂ with F̂(1+ ε cosΩ̂t̂) in Eq. (2).

The second (SSM) model consists in a modulation of the shear stress. More precisely, we as-

sume the additional driving force −F̂ε cosΩ̂t̂ in Eq. (1). This may result either from the periodic

stressing or from the modulation of plate velocity. As the normal stress is kept constant here, the

static and dynamic friction forces are also constants: i.e., we set ε = 0 in Eqs. (2) and (4). With

these definitions, the condition to initiate an EQ is the same as for the NSM model, whereas the dy-

namical equation is different. Importantly, the dynamic friction is independent of the modulation

phase (the value of Ω̂t̂) in the SSM model.

For the parameters that we consider here, the events during which sliders are moving occur

on a very short time scale compared to F̂/(k̂1v̂0) and 1/Ω̂ so that the time dependent term of the

dynamic friction (ε cosΩ̂t̂) and the position of the moving plate are set fixed to their values at the

beginning of the motion.

In both models, using 1/
√

k̂1 as unit of time and F̂/k̂1 as unit of length, we can set k̂1 and F̂ to

unity. In other words, we write k̂2 = k̂1K, v̂0 = v0F̂/
√

k̂1, α̂ = α
√

k̂1/F̂ and change variables us-

ing x̂ = xF̂/k̂1 and t̂ = t/
√

k̂1. Then the equations for x(t) involve only K = k̂2/k̂1, v0 = v̂0

√

k̂1/F̂
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and α = α̂F̂/
√

k̂1. There are thus seven dimensionless control parameters: N, δ , K, v0, α , ε , and

Ω = Ω̂/
√

k̂1.

Results

No modulation

Unless otherwise stated, we use δ = 0.01, N = 800, α = 1, v0 = 10−8, and K = 9 [23]. For

these parameters, the system alternates between a loading period in which the sliders are at rest

and the driving force τi increases linearly in time and a brief event initiated once one of the sliders

starts moving and can put into motion a varying number of sliders. These sudden events are

interpreted as the earthquakes (EQ) in the BK model. The system has a chaotic behavior and in

particular the size of the EQ fluctuates. The released energy during an EQ is characterized by

the magnitude M defined as M = log(∑i ∆xi), where ∆xi is the distance over which each slider

has moved during an event. For the parameters chosen here and in absence of modulation, the

distribution of M is an exponential, reminiscent of the Gutenberg-Richter (GR) law. Writing

P(M) = 10−bMs where Ms =
2
3

log(∑i ∆xi)/ log(10), the value of b ranges between 3/4 and 1 and

its exact value depends on the range of magnitude over which is it estimated.

Natural earthquakes display the GR law. To observe this law in the BK model, most of the

parameters have to be either large or small. In particular N is large to consider a large system, v0

is very small to have separated time scales between loading and events, and the stress drop δ is

small. The results will not be drastically changed if we increase further N or decrease v0 or δ . In

other words, we are in the limit of large N and small v0 and δ and no qualitative change will occur

if we modify their values.

Modulated normal stress (NSM) model

We start with a description of the results obtained with the NSM model. We have varied Ω

between 10−8 and 10−3. Compared to the mean interevent time T ≃ 3.3× 104 in absence of

modulation, or to the mean duration between motion of a given block which we estimate of order

N T ≃ 2× 107 or smaller, we span both regimes of fast and slow force modulation 3.3× 10−4 ≤
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FIG. 2: Probability density function (PDF) of magnitude M, for ε = 0; Ω = 10−7, ε = 0.03 and Ω = 10−3,

ε = 510−6. The three curves are nearly superimposed.

ΩT ≤ 33 and 0.2 ≤ ΩN T ≤ 2×104.

Amongst the most important properties of the solutions of the BK model are the statistical

distributions of the inter-event time T between two consecutive earthquakes and of the earthquake

magnitudes. As will be discussed later, the behavior of the system drastically changes for large

values of the modulation amplitude [24]. Otherwise, we observe that the mean inter-event time T,

its rms fluctuations and its distribution are independent of ε . Similarly, the magnitude distribution

remains unchanged, as can be seen in fig. 2. Stated differently, the modulation of the friction

force has no effect on these properties. Nevertheless, the system is affected by the modulation.

As displayed in fig. 3, the event rate dn
dt

varies with time with a period equal to that of the force

modulation.

To quantify this effect, we calculate for each event, its phase Φ defined as Ω te modulo 2π

where te is the time at which an event occurs. We then calculate the probability density function

(PDF) of the phase P[Φ], which is displayed in fig. 4.

We observe that the PDF is an harmonic function and is well fitted by 1
2π + asin(Φ−∆Φ)

(black curves in the figures). The amplitude a and the phase shift ∆Φ of the PDF’s harmonic

response characterize the sensitivity of the system to the force modulation. The amplitude a is an

increasing function of ε and Ω as shown in fig. 5.

We calculate the value εc(Ω) at which a reaches an arbitrary small value taken to be ac =
√

2×
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10−2 (fig. 6) and observe two behaviors: at large Ω it satisfies εc ≃ 8.2×10−10/Ω, and at smaller

Ω it crossovers to a constant value or to less steep behavior at least. The crossover frequency is of

the order of Ωc = 10−6. The results for a are collapsed if displayed as a function of ε/εc (fig. 7).

For moderate values of ε/εc, a linear behavior is observed of the form a ≃ 1.36×10−2ε/εc.

We note that for ε larger than roughly 10εc, P[Φ] vanishes for a given range of Φ, meaning

moments of quiescence in the system. More precisely, for very large ε , events occur only when

the friction force is the smallest. In that situation, some properties of the system change. In

particular, the distribution of the inter-event time displays peaks for values equal to multiples of

the force period. As a consequence, the mean and the standard deviation of the interevent time

start to depend on ε . In this regime, the effect of the modulation is very strong. In particular, it

leads to the absence of events for certain values of the phase. Because such properties have not

been observed (yet) by observational seismology, we focus on smaller values of the modulation,

ε ≤ 10 εc.

For large enough Ω and small ε , using the expression for εc, we obtain a ≃ 1.6×107 εΩ which

can be written as av0/(εΩ) ≃ 0.16. Using the dimensionless parameters, we expect a relation of

the form

a = Π(N,δ ,K,v0,α,ε,Ω) (5)

where Π is an unknown function. Having observed that a is linear in ε , we write this expression

as

a = εΩ/v0 h(N,δ ,K,v0,α,Ω) . (6)

For large Ω, the unknown function h = av0/(εΩ) is thus independent of Ω and takes the value

0.16. We have checked that the same value is obtained for Ω = 10−2 and v0 = 10−7, so that for

this range of parameters, h depends neither on v0 nor on Ω.

We have investigated the dependence of h = av0/(εΩ) on some of the other parameters by

changing Ω, α and N. The effects of the frequency and of the number of sliders are displayed in

fig. 8. As mentioned, for large Ω, h is a constant. It increases when Ω becomes smaller. The

variation with Ω is reduced when the number of sliders is decreased. In addition for large Ω,

reducing the number of sliders by a factor up to 4 leaves the value of h nearly unchanged.

The effect of the proximity to criticality is investigated by changing α . Indeed α = 1 corre-

sponds to the regime in which the GR law is observed for the widest range of magnitudes. When

α is large, a peak of events appears for large magnitudes which is reminiscent of characteristic
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earthquakes. As for small α , the largest events are less frequent which corresponds to an increase

in the b-value [25]. For 1/2 ≤ α ≤ 1, our results show that h is constant (fig. 8), and thus indepen-

dent of the b-value within this range. In contrast, h is decreased at larger α , i.e. by the existence

of characteristic events.

Having discussed the properties of a, we now discuss those of the phase-shift ∆Φ between −dFr

dt

and P[Φ] as a function of Ω (fig. 9). Its value is roughly independent of ε in the vicinity of εc. We

note that ∆Φ is close to 0 apart for the small values of Ω where it increases. This corresponds to

frequency Ω smaller than Ωc ≃ 10−6.

The large Ω regime corresponds to ∆Φ ≃ 0, so that events are more frequent when the decay

rate of the friction force is larger. Equivalently there are less events when the increase rate of the

friction force is larger. For smaller Ω, the behavior is changed. It appears that ∆Φ evolves towards

π/2. Events are then more frequent when the friction force is the smallest.

The analysis of the phase of the events presented so far has been made taking into account

all the events, independently of their magnitudes. To investigate how the triggering depends on

the magnitude, we focus on two parameter values: large frequency Ω = 10−3 and small frequency

Ω= 10−7. For values of ε slightly above εc, we have computed numerically very large set of events

and calculated the distribution of the phase PMs(Φ) obtained when only events of magnitude larger

than Ms are considered. For large Ω, the distribution of the phase PMs(Φ) is unchanged when we

change Ms. In constrast for smaller Ω, we observe a change in the distribution of the phase of the

events when Ms is changed (fig. 10).

Let us now detail properties observed at the small Ω. Considering all magnitudes, the events

are more likely to occur for ∆Φ between 0 (largest decay rate) and π/2 (force is the smallest).

Increasing Ms, for intermediate magnitude, the modulation of the phase decreases so that the

triggering is less visible. In contrast, if we consider only the very large magnitudes, we observe a

clear modulation of the phase of the events: they are more frequent when the friction force is the

largest. For Ms = 5.75 which corresponds to 2875 events over a total number of events of 1.15

billions of events, there are 1.3 times more events when the force is maximum than when it is

minimum. Considering all the magnitudes, we observe the opposite: 1.22 times more events at the

force minimum. This effect is also present at smaller values of ε , the amplitude of the modulations

of the phase distribution being reduced.

A different way to analyze this property is to study the GR law as a function of the phase. The

b-value calculated over intermediate values of M (0.5 < M < 3) varies with the phase (fig. 11).
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Finally, we calculated the cumulative moment (here equal to the cumulative displacement ∑∆Xi),

where the sum is taken over events of given phase (fig. 12). We note that the phase dependence of

the cumulative moment is similar to the one of the PDF of the phase of the large events. This is

expected for b-values lower than 3/2. Indeed the Gutenberg-Richter law corresponds to a moment

distributed as a power law with exponent 2b/3. Considering such a distribution cutted off at low

and large values, the average of the moment is dominated by the largest events if b < 3/2. In other

words, when the b-value is smaller than 3/2, large earthquakes dominate the moment release. In

such way, here, the moment release depends on the phase of the modulation Φ, this property being

true whether we consider all the events, or only those with M ≥ 0 or M ≥ 4.

We conclude the presentation of the results in this model by noting the non trivial differences

in the behavior when limits are taken. For the large Ω limit, the behavior depends on how the limit

is taken but does not depend on the magnitude of the considered events. At fixed ε , moments of

quiescence are observed and events only occur when the normal stress is the smallest. At fixed and

not too large εΩ, the response remains linear in εΩ and events are more likely to occur when the

stress decay rate is the largest. In the small Ω limit, event distributions depend on their magnitude.

Largest events occur when the stress is the largest, smallest event occur when the stress is the

smallest. The amplitude of the response is increasing with ε and linear for small ε .

Shear stress model

The results presented so far are obtained with a model that describes a modulated normal stress

(NSM). We now turn to the case of a modulation of the shear stress (SSM). The results in both

models are similar: EQ occur more often for given values of the phase. For moderate values of ε ,

the phase modulation is well fitted by a sin-function which amplitude is linear in ε . In this regime

and for the range of parameters that we consider, we obtain nearly the same values of h= av0/(εΩ)

for both models [32]. We observe a phase-shift close to ∆φ = 0 for all values of Ω. However, we

do not observe for the SSM a variation of the pdf of the phase PMs
(Φ) when we change Ms.

Even considering the largest possible values of Ms, the modulation of PMs
(Φ) remains the same

as the one obtained when considering all events. This means that the sensitivity on magnitude of

the phase-distribution of the EQ is strongly dependent on the nature of the modulation. It is not

present when the shear stress is modulated, whereas it is clearly visible when the normal stress is

modulated with a small frequency Ω.
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THE TWO DIMENSIONAL OLAMI-FEDER-CHRISTENSEN MODEL

Description of the models

The second system that we consider is the Olami-Feder-Christensen (OFC) model [29]. The

OFC model is a two-dimensional cellular automaton describing the evolution of N2 degrees of

freedom located on a square network. The dynamical variable Fi is called the stress.

Starting from an initial condition where all Fi are smaller than the maximum static friction

force F0, the system is at rest and a load increases the value of all the Fi until one of the degrees of

freedom, say j reaches F0. Then the value of F for all the neighbors of j is increased by the value

of Fj multiplied by a coefficient α . Subsequently Fj is set to zero. If for one of the neighbors, F is

larger than F0, the process continues. It stops when all values of Fi are smaller than F0.

These events are considered to be the earthquakes of the model. The magnitude of the event is

the number of degrees of freedom that have have reached F0. As the same degree of freedom can

reach F0 several times during the same event, the magnitude of the event can be larger than the

number of degrees of freedom involved in the event.

Boundary conditions play a very important role for the OFC model. Here, sites at the border

of the system follow the same dynamical rule as the ones in the bulk: they transfer α/4 of their

stress to their neighboors. Stress transferred outside of the system is lost. These standard boundary

conditions are called open boundary conditions.

In general, temporal aspects of the OFC system are not considered, but see [30] for a study of

foreshocks and aftershocks. Here we first assume that the loading of the system is performed at

fixed velocity, ı.e. the loading rate is constant so that during the load, all Fi are increased by a

term v0t. In addition we consider that the events are very brief compared to 1/v0 so that the time

does not evolve during the event. With these two assumptions, we can define a time of occurence

to each event, say T .

Periodic modulation of the system is first introduced by assuming that F0 is changed. This

corresponds to the modulation of the normal stress (NSM model) as described for the BK model.

Without loss of generality we thus consider that F0 = 1+ ε cos(Ωt).

We have considered a second model in which F0 is fixed to 1 but the stress is modulated. In

line with the studies on the BK model, this corresponds to a modulated shear stress model (SSM).

We thus add a term −ε cos(Ωt) to the stress Fi during the loading phases. In other words the stress

10



increases as v0t − ε cos(Ωt) when the degrees of freedom are at rest. The negative sign is chosen

so that the condition for initiation of an EQ is the same as when the friction force is modulated.
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Results

No modulation

Numerical simulations of the model have shown that for α smaller than 1/4, the dynamics

generates events of magnitude that is widely distributed. More precisely a G-R law is observed

with a b-value that varies with α [25, 29].

We have focused on two values of α , 0.15 and 0.225. We consider a system of size 302 close

to the N = 800 masses that we studied in the BK model. We set v0 = 10−6 and vary ε and Ω.

Modulated normal stress model (NSM)

Most results are similar to the ones observed in the BK model. For moderate ε , the GR law

is not modified but events occur preferentially for certain values of the phase, Φ = ΩT modulo

2π . Then, the distribution of the phase, PDF(Φ) is a harmonic function that we fit to obtain the

amplitude of the response a and the phase-lag with respect to the forcing.

We display in figure 13 the value of the response a as a function of ε .

We define εc, the value of ε at which a reaches 10−2
√

2. It is displayed in fig. 14. Two regimes

are observed: at large Ω, εc is proportional to Ω−1 and it saturates at small Ω.

At moderate ε , smaller than a few times εc, the response of the system is linear in ε . The results

for a as a function of ε/εc are collapsed on a master curve displayed in fig. 15.

The phase-lag between the modulation and the response is displayed in fig. 16. At large Ω,

events occur preferentially when the decay rate of F0 is the largest. Decreasing Ω, the system has

a tendency to generate more events when the friction force is the smallest.

We have also studied how the phase distribution is dependent on magnitude M. We consider ε

close to εc and have varied Ω and α . We have observed that for large enough Ω the distribution of

the phase is not dependent on M. In contrast, for smaller Ω the distribution changes with M.

The global behavior is similar to the one of the BK model, larger magnitudes have a distribution

peaked at a phase for which the friction force is the largest, while smallest events are more likely

when the friction force is the smallest. In terms of the magnitude distribution, this amounts to a

variation of the b-value as a function of phase, see fig. 18.
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FIG. 13: Amplitude of the modulation of the phase distribution a as a function of ε for top: α = 0.15 and Ω:

(◦ blue) 10−8, (� red) 10−7, (⋆ green) 10−6, (⋄ magenta) 10−4, (⋆ black) 10−2, (△ marron) 10−1; bottom:

α = 0.225 and Ω: (� red) 10−7, (⋆ green) 10−6, (⋄ magenta) 10−4, (⋆ black) 10−2.

20



10
-8

10
-6

10
-4

10
-2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

c

10
-8

10
-6

10
-4

10
-2

10
0

10
-9

10
-8

10
-7

c

FIG. 14: Top: εc as a function of Ω. Bottom: Ωεc as a function of Ω. Symbols stand for the values of α .

(•): α = 0.15, (�): α = 0.225.

21



0 1 2 3 4 5 6

/
c

0

0.02

0.04

0.06

0.08

0.1

a

FIG. 15: Amplitude of the modulation of the phase distribution a as a function of ε/εc for different frequen-
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14.

Modulated shear stress model (SSM)

We observe behaviors similar to the case of modulated normal stress with the only exception

that the distribution of the phase do not depend on magnitude.

DISCUSSION

Mechanisms responsible for the observed behaviors

Several properties due to a modulation of the normal stress or of the shear stress are observed

in both the one dimensional BK and the two dimensional OFC model. These properties are thus

likely to be generic and we now discuss their possible origin.

We first analyze the origin of the modulation of P[φ ], in the case of a modulation of the normal

stress unless otherwise stated.

For Ω larger than Ωc, the modulation favors the occurrence of EQ when the decreasing rate of
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Same data as in fig 17.

the normal stress is the largest. This results from the criterion to initiate an EQ: an event starts

when the loading force reaches the static friction. If the latter increases with time, it is more

difficult for the driving force to initiate an EQ, see illustration in fig. 19. This behavior does

not depend on the EQ magnitude. For the case of a modulated shear stress, we observe a similar

behavior, in which events occur when the increasing rate of the shear stress is the largest.

We can understand this regime quantitatively as follows. Driving of the upper plate leads to

the constant stressing rate of vo for each block. An event occurs at the moment when the shear

stress exceeds the static friction stress. In the case of normal stress modulation, the static friction

depends on time as 1+ ε cos(Ωt). Let Σi−1 be the difference between the residual stress and the

friction force after the i− 1-th event that took place at time ti−1. The time ti at which the total

stress reaches the static friction again is given by the solution of

v0(ti − ti−1)+Σi−1 = 1+ ε cos(Ωti), (7)

We note that this equation allows for multiple solutions if ε is large. Hereafter we assume suffi-

ciently small ε so that there exists a single solution for ti. Let us define the phase Φi = Ωti, we

have

Φi −
εΩ

v0
cos(Φi) = Φi−1 +Ω

1−Σi−1

v0
. (8)

We note θ0 the right hand side and observe that it contains the term Σi−1 which value is set by
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FIG. 19: Sketch of a loading phase. For a modulated friction force (NSM): the maximum load, max(τi),

increases linearly in time. The static friction force, Fs, is periodically modulated. An EQ starts when the

two forces are equal. Left: the modulation rate is comparable to the linear loading rate. The condition

for EQ occurence is more easily satisfied when the friction force decay rate is the largest. In the case of

a modulated shear stress (SSM), the same discussion is valid taking into account that the linear-in-time

increasing load contains only the term of constant shear rate whereas the oscillating term is equal to the

static friction force minus the modulated part of the shear stress.

Right: In the case of a very large modulation rate, the linear load appears nearly horizontal. Events occur

only at the minimum of the oscillating curve, thus when the friction force is the smallest.

the dynamics during the preceding EQ and varies with the event number i. We can express the

probability of Φi from the one of θ0 as

P[Φ] = P[θ0]
dθ0

dΦ
, (9)

and use from equation 8 that dΦ(1+ εΩ
v0

sin(Φ)) = d θ0, so that

P[Φ] = P[θ0] (1+
εΩ

v0
sin(Φ)) . (10)

When the variations of P[θ0] are small so that it can be considered as a constant, this equation

predicts the form of P[Φ] observed at large Ω : ∆Φ = 0 and a coefficient a proportional to ε .

Using the normalization of the PDF, we even obtain h = av0/(εΩ) = (2π)−1 ≃ 0.159 in perfect

agreement with the values measured at large Ω and α ≤ 1.

For Ω smaller than Ωc, events are more frequent when the friction force is the smallest. This

can also be understood from the criterion that controls the initiation of an event, see fig. 19. We
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note that at small Ω, the amplitude of force modulation ε required to observe a modulation of

the phase of the event is large. This is the not the case in the large Ω regime because then the

modulation of the phase takes place for very small values of ε as it results from a competition

between the load speed v0 and the speed of change of the friction force εΩ.

The behavior for small Ω is due to events of small magnitude that dominate the statistics if we

consider all events. If we consider only events above a magnitude Ms, the behavior changes with

Ms. In particular, for the largest magnitudes, events occur preferentially when the normal force is

the largest. For such rare events, the largest the friction force, the strongest is the load when the

event is initiated so that more energy is available to be transferred to the motion of the blocks.

For the case of a modulation of the shear stress, the regime of small Ω is different and in

particular does not depend on the magnitude of the events. This indicates that the sensitivity of

the effects of the modulation on the frequency or on the event magnitude is controlled by the

dynamics during the phases where the blocks are moving. More precisely, in the SSM for the BK

model, if we write the dynamical equations with xi, xi−1, xi+1 and their values at the beginning

of the event, the modulated term (ε cosΩt) does not appear in the equation and thus has no effect

on the dynamics. Similarly, for the OFC model, the modulation only affects the loading phase.

In contrast, in the NSM model, the modulation favors the motion for phase φ ≃ 0 and inhibits it

for phases close to π . This results in an increase in the number of small events for φ ≃ π when

the normal stress is minimum, and an increase in the number of large events for φ ≃ 0 when the

normal stress is maximum.

In the case where both the normal and the shear stress are modulated, a sensitivity to magnitude

is expected. The larger the normal stress modulation, the larger the sensitivity. More precisely, the

effect is large provided the modulated term has a noticeable effect during the dynamical phases:

reducing the acceleration for some values of the phase and enhancing it for other values.

Orders of magnitude for real earthquakes

To connect with observations performed on natural earthquakes, we need to use dimensional

quantities. The amplitude of the triggering effect for the moderate stress modulation can be written

a ∝
F̂εΩ̂

v̂0k̂1

. (11)
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We can then define the susceptibility of EQs to stress modulation as

χ ≡ ∂a

∂ (εF̂)
∝

Ω̂

v̂0k̂1

. (12)

The dimension of χ is the inverse of stress, and 1/χ is regarded as the characteristic stress, at

which the response of the phase distribution to stress modulation is of the order of unity. A

stress perturbation of 0.1/χ is thus sufficient to cause a significant correlation of EQs with stress

modulation. The denominator v̂0k̂1 in Eq. (12) is the stressing rate to the sliders, and therefore

the ratio of the modulation frequency to the stressing rate controls the sensitivity of EQs to stress

modulation.

Then we can compare our model with the natural EQs based on Eq. (12). The stressing rates

in natural earthquake faults and tectonic plate boundaries may be γ̇G, where γ̇ is the strain rate

and G is the shear modulus of the Earth’s crust. While G ≃ 30 GPa [31], the strain rate at tectonic

plate boundaries may vary by orders of magnitude. Here we adopt γ̇ ≃ 10−15 to 10−12 s−1 [26].

These values give the stressing rate of 3×10−5 to 3×10−2 [Pa/s]. The period of stress modulation

2π/Ω̂ ranges from half a day (Ω̂ ≃ 1.5×10−4 s−1) to nearly one month (Ω̂ ≃ 2.5×10−6 s−1) for

tides, while it may be half a year for seasonal loading (Ω̂ ≃ 2×10−7 s−1). Then the susceptibility

may range from 6.7× 10−6 to 5.0 [1/Pa], which corresponds to the characteristic stress of 0.2 to

1.5×105 [Pa]. The range is too broad to allow any quantitative comparison with the observation

data, but at least does not contradict to the typical stress modulation observed on the Earth: 103 to

104 [Pa] for tidal [3] and seasonal loading [35].

Magnitude sensitivity occurs in the case of low frequency modulation. Then, the crossover

frequency Ωc is of the order of 10−6, which can be expressed as Ω̂c ≃ 100v̂0k̂1/F̂ . We note that

F̂/v̂0k̂1 may be regarded as the the recurrence time of earthquakes at a given location, i.e. the time

interval between two sufficiently large events at a given place. With this definition, the crossover

time Tc = 2π/Ω̂c is roughly ten times smaller than the recurrence time of earthquakes. Namely,

if the period of normal stress modulation is comparable to the recurrence time of earthquake, it

can affect the b-value and the magnitude of EQs. This is the case of earthquakes with recurrence

time of the order of a few years subject to seasonal loading. In some sense, this mechanism also

provides a possible explanation for the change in the b-value observed during the evolution of a

fault between two very large events throughout the earthquake cycle [37]. Long term evolution of

the normal stress would then be due to tectonic motion and not to tidal or seasonal modulations.

27



Possible limitations

In the two models, it appears clearly that a large modulation of the stress rate results in strong 

correlations between stress rate and phase of the events. Yet, such correlations are not always 

reported.

A possible explanation for this disagreement lies in the absence of nucleation process in both 

models. As pointed out in [2], stress variations that would occur on time scales shorter than the 

nucleation time are expected to be inefficient at triggering earthquakes.

The absence of nucleation process in our models plays also a role for comparing with other 

models. The rate and state model of [33], see also [34], predict behaviors that depend on whether 

the modulation period is large or small compared to the nucleation time. At small period, an 

increased activity is predicted when the stress is large, whereas at large period, activity is large 

when the stress rate is large. The behavior in our models also depend on the modulation frequency. 

For instance for the NSM model, by increasing the modulation time, the response changes from a 

correlation with stress rate to a correlation with stress amplitude. The crossover period is a fraction 

of the recurrence time of the fault. We note that nucleation processes are absent in our models so 

that this can explain the absence of a sensitivity to stress amplitude at smallest modulation period 

as predicted in the rate and stress models. A possible scenario that would reconcile these models is 

that at period shorter than then nucleation time, a sensitivity (probably small) to stress amplitude 

takes place, at intermediate period, a stronger sensitivity to stress rate occurs, and at period larger 

than a fraction of the recurrence time of the fault a correlation with stress amplitude is recovered.

Another effect that is not taken into account in our model is the perturbation due to distant 

earthquakes. Such earthquakes act on a given fault as a source of noise due to the random emission 

of seismic waves. These waves can trigger earthquakes even at distance, and may thus mask the 

effect of tides.

An important result of this study is the possibility for a magnitude dependence of the properties. 

Magnitude dependence of seasonality of deep earthquakes have been discussed in [9]. For what 

concerns tidal effects, [13] reports that very large earthquakes occur near the time of maximal 

tidal stress whereas this tendency is not obvious for small earthquakes. In the model that displays 

magnitude sensitivity (NSM model for a small modulation frequency), we stress that the observed 

behaviors are not straightforward: for the parameters of fig. 10, events with largest amplitude occur 

more often when the normal force is the largest, very small events are more likely to occur when
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the normal force is the smallest and events of intermediate amplitude have a smaller sensitivity to

the modulation. We note that in natural data, the latter could easily be considered as not statistically

significant and would thus correspond to the small earthquakes reported in [9]. The smallest events

of the model would then either be undetected in natural data or inexistant.

Again, it is important to discuss why variations of the behavior with magnitude might be absent

in natural datas. The limitations mentionned earlier and due to the absence of nucleation process

and of dynamical triggering by distant earthquakes could be the cause. In addition, for the models

considered here, only a modulation of the normal stress results in magnitude dependence of the

correlation between modulation and EQ occurrences. In more general settings, both the normal

and the shear stresses are modulated. Then the larger the normal stress modulation, the larger the

sensitivity to magnitude. One of such tectonic settings is the subduction zone with a low dip angle.

In contrast for faults subject predominantly to shear stress modulation, no magnitude dependence

is expected.

Finally, considering a single harmonic component to model tidal forcing is obviously oversim-

plified. More realistic models are needed but it is satisfying that with such a simple hypothesis, a

variety of predictions can be made and compared to natural observations.

Prospects

From the point of view of statistical physics, this work is a study of the susceptibility of out-of-

equilibrium systems in the vicinity of a scale invariant regime. More precisely, the susceptibility

may be written as χ(k,Ω) with k being the wavenumber. Then Eq. (12) corresponds to this sus-

ceptibility at zero wavenumber k = 0 and we have studied its dependence on Ω here. Investigating

the effect of a finite wavenumber would be of interest and might define characteristic lengths of

the system. At k = 0, we identified a crossover frequency Ωc below which the linear susceptibility

changes behavior. In particular for a modulated normal stress, the susceptibility becomes mag-

nitude dependent. It would be of interest to investigate similar properties in other scale invariant

systems, even at equilibrium. Here, the fact that the magnitude dependence is not observed with a

modulated shear stress indicates that the two models do not belong to the same universality class,

even though the differences between them are apparently minor.

Following theoretical works could consider different friction laws (such as the R & S friction
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law) and more realistic modulations. In particular, a modulation made of two frequencies would be

a better model of tidal forcing when the different tidal components are of comparable amplitudes.

For large modulation frequencies and as in the present study, we expect an increase of the number

of events during the phases where the decay rate of the friction force is the largest. The behavior

at small modulation frequency and its possible magnitude dependence is also likely to lead to

interesting effects.

We did not identify clear change in the susceptibility in the vicinity of a large earthquake. In

the BK model without modulation, there already exists a clear decay in activity between before

and after a large EQ. This (unrealistic) property dominates the changes of behavior. More realistic

models would be useful to reveal possibly small variations in the susceptibility as an indicator of

mainschock.

From the point of view of data analysis, our results show that the behavior of the system de-

pends on several parameters. First, whether the normal or the shear stress are modulated, thus

on the type of fault and of loading. Second, on the ratio between the modulation time and the

inter-event time. Catalogs should be analyzed taking into account these parameters. It would also

be interesting to investigate whether some faults display quiescence, i.e. total absence of events

during some phases of the modulation, which is the most extreme regime identified in this study.
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