N

N

Characterization with dense array data of seismic
sources in the shallow part of the San Jacinto fault zone
Chloé Gradon, Philippe Roux, Ludovic Moreau, Albanne Lecointre, Yehuda

Ben Zion

» To cite this version:

Chloé Gradon, Philippe Roux, Ludovic Moreau, Albanne Lecointre, Yehuda Ben Zion. Character-
ization with dense array data of seismic sources in the shallow part of the San Jacinto fault zone.
Geophysical Journal International, 2021, 224, pp.1133-1140. 10.1093/gji/ggaadll . insu-03594416

HAL Id: insu-03594416
https://insu.hal.science/insu-03594416
Submitted on 17 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://insu.hal.science/insu-03594416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Geophysical Journal International

Geophys. J. Int. (2021) 224, 1133-1140
Advance Access publication 2020 August 28
GJI Seismology

doi: 10.1093/gji/ggaa411

Characterization with dense array data of seismic sources in the
shallow part of the San Jacinto fault zone

Chloé Gradon,' Philippe Roux,! Ludovic Moreau “,! Albanne Lecointre' and Yehuda

Ben Zion?

nstitut des Sciences de la Terre, Université Grenoble Alpes, CNRS UMR 5275, Maison des Géosciences, 1381 Rue de la Piscine, 38400 Saint Martin
d’Heres, France. E-mail: chloe.gradon@univ-grenoble-alpes.fr
2 Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA

Accepted 2020 August 21. Received 2020 August 20; in original form 2020 February 5

SUMMARY

We analyse dominant sources identified in a catalogue of more than 156 000 localizations
performed using a 26-d data set recorded by a dense array set on the San Jacinto fault near
Anza, in California. Events were localized using an array processing technique called Match
Field Processing. As for all array processing techniques, the quality of the event position
decrease when the events are outside of the array. We thus separate localizations in and
outside the array using simple geometrical conditions. We compare the time distribution of the
localization to additional data such as meteorological data, day of human activity as well as
existing catalogues to determine the nature of the dominant events located using our method.
We find that most of the events located outside of the array could be attributed to a surface
structure excited by wind. On the other hand, part of the localizations under the array occur
during regional earthquakes and could correspond to diffraction on the fault’s heterogeneities.
The rest of the localizations inside the array could be generated by the fault itself.

Key words: Computational seismology; Earthquake source observations; Wave propagation.

1 INTRODUCTION

Studying the top 500 m of the crust in general, and fault zones
in particular, is highly challenging since the shallow material has
extreme properties—such as very low P- and S-velocities (Vp and
Vs), low attenuation Q values (Liu et al. 2015), and very high
Vp/Vs ratios (Qin et al. 2020)—that make it highly susceptible
to non-linear behaviour and temporal changes. Local and regional
carthquakes, along with rain and temperature changes, produce rock
damage (reduction of Vp, Vs, Q) in broad shallow regions around the
faults with very large coseismic changes in the top 100 m. To provide
detailed understanding of the shallow structure and dynamics of
fault zones, temporary dense arrays have been installed in the last
few years to enable high-resolution imaging and monitoring studies
(Ben-Zion et al. 2015, Fig 1). The improved spatial coherency at
high frequencies has allowed the use of noise-based tomography
to image finer details of the Newport-Inglewood Fault (Lin et al.
2013) and the San Jacinto Fault Zone (SJFZ, Hillers et al. 2016;
Roux et al. 2016; Mordret et al. 2019; Zigone et al. 2019), with
scales ranging from hundreds to tens of metres.

Another aspect made possible by continuous recordings at dense
arrays is the ability to detect and locate small surface and subsur-
face events. Taking advantage of spatial coherence on dense seismic
arrays, we recently showed that combining Match Field Processing

© The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved. For
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(MFP) with Markov-Chain Monte Carlo (MCMC) sampling pro-
vided a large number of new detections in the vicinity of the SIFZ
(Gradon et al. 2019). The spatial coherence allows us to keep an
analytic homogeneous model depending on only three parameters
(horizontal positions x, y and apparent velocity v) ensuring high
efficiency of the algorithm. The use of MCMC further reduces the
computational time compared to grid search approaches and pro-
vides statistical information that can be useful when interpreting
the data.

Continuous seismic waveforms consist mostly of wind-related
signals, air/train/vehicle-traffic events and other natural and anthro-
pogenic sources of ground motion (Riahi & Gerstoft 2016; Inbal
et al. 2018; Meng & Ben-Zion 2018a,b). These signals are similar
to earthquake and tremor waveforms, so they can produce false de-
tection of shallow weak seismic events. To address the challenge
of separating subsurface from surface events, the MFP-MCMC lo-
calization method used the frequency of the analysis as a ‘filter’
for separating sources at the surface and sources at depth: surface
sources are detected at lower frequencies than deep sources, because
the apparent velocity measured at the array increases with depth. In
practice, surface sources such as shots and moving vehicles were
successfully detected and located by extracting the epicentral po-
sition (x,y) and the apparent velocity v of the propagating waves
(Gradon et al. 2019). In those cases, we obtained a good resolution
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Figure 1. (a) Position of the array on the San Jacinto Fault Zone in Southern California. (b) Geometry of the 1108 sensor array and situation with respect to
fault traces (black lines) and local topography (Map data, Google 2017). Each black dot corresponds to a station.

for epicentral coordinates for events inside the array, and velocities
that are consistent with previous studies (Mordret et al. 2019).

Shallow sources located outside the array were also successfully
detected based on the same approach (Gradon ez al. 2019). However,
the use of a homogeneous velocity model to compute the replicas for
source localization has limitations, since the trade-off between depth
and velocity results in a strong ambiguity on the two parameters. It
is therefore essential to identify the dominant sources outside the
array to further our analysis. In the last decade, machine learning
algorithms trained with labeled data sets of common signals have
speed up considerably classification of different parts of continuous
waveforms and improve detection of small events (Diersen et al.
2011; Reynen & Audet 2017; Chen 2018). However, an a priori
knowledge on the events characteristics is required to train and/or
use the algorithms efficiently.

The goal of this paper is to provide a more comprehensive inter-
pretation of the entire 26-d data set for dominant shallow sources
either detected inside or outside the dense array located in the dam-
age structure of the SJFZ. The paper is structured as follows. In
Section 2, we detail our event classification algorithm based on
the output of the MFP-MCMC algorithm. Sections 3 and 4 give
a seismic interpretation to shallow events located either outside or
below the array, respectively. Section 5 provide a discussion of the
preformed research and useful future studies.

2 EVENT CLASSIFICATION

In our previous study (Gradon et al. 2019), we performed a scan
of a 26-d long data set recorded on the San Jacinto Fault by a
dense array of sensors (Fig. 1). The problem consisted of (i) de-
tecting very shallow events (less than 500 m depth) in poor SNR
conditions, (ii) separating between surface-generated events due
to anthropogenic activities from microseismic events at shallow
depths and (iii) estimating their location. We applied a Match Field
Processing technique to achieve this estimation by comparing the
data in successive time windows to a simple homogeneous acoustic
forward model. This comparison was performed in the frequency
domain using the Bartlett operator that consists in the projection
of the synthetic field on the cross-spectral density matrix, which
contains the auto-correlation and intercorrelation between sensors
(Capon 1969; Cros et al. 2011; Vandemeulebrouck et al. 2013). In
our case, we only work with phase information because it is less
sensitive to medium heterogeneity.

The MFP technique was developed originally for simpler appli-
cations of acoustic waves propagating in the ocean (e.g. Kuperman

and Turek 1997; Baggeroer et al. 1993). The synthetic wavefield is
usually computed using a fixed medium velocity for a grid of point
sources in three dimensions. Applying the method for localization of
near-surface sources recorded by seismic arrays around a fault zone
is considerably more challenging because the velocity structure of
the medium is more complex and a wide variety of noise sources
contribute to the recorded ground motion (e.g. Riahi & Gerstoft
2016; Meng & Ben-Zion 2018a,b). The 26-d continuous recording
of the data also required an efficient localization tool in terms of
computation time. To address these difficulties, we first augmented
the method for source localization by using the frequency of study
as a ‘filter’ separating sources at the surface and at depth. Given
the dimensions of our array, we determined that using a centre fre-
quency of 4 and 16 Hz would focus the sensitivity of our method
to surface sources and deeper sources, respectively. Regarding the
heterogeneity of the medium, we computed the synthetic wavefield
for a range of apparent velocities as well as source positions. Tak-
ing advantage of our ‘frequency filter’ and of the fact that apparent
velocity can be used as a proxy for depth, we kept an analytic ho-
mogeneous model depending on only three parameters (X, ¥ and
Vap). We took this cylindrical wave approach instead traditional 3-D
back-projection to insure the efficiency of the algorithm. The use of
MCMC further reduced the computational time compared to grid
search approaches, allowing us to retrieve global maxima and the
Bartlett output shape (Gradon et al. 2019).

Using the Metropolis—Hastings algorithm and supposing a uni-
form probability distribution as an a priori, we calculated the prob-
ability density function (PDF) of the parameters for each time win-
dows. This PDF is represented by a cloud of points providing the
most probable epicentral position of the source and correspond-
ing apparent velocity (Fig. 2, Gradon et al. 2019). In addition to
representing the PDF using the density of points in the cloud, we
also include the value of the Bartlett operator output, normalized
between 0 and 1, using a colourscale. In the remainder of this paper,
the term MFP-MCMC output will refer to both the PDF and the
Bartlett operator value.

The previous study demonstrated that the choice of frequency
for the MFP-MCMC operator (4 and 16 Hz) constrains the range of
depths of the localized sources at the surface and at depth, respec-
tively (Gradon ez al. 2019). As the present paper focuses on sources
at shallow depth, we will only consider the results of the 16 Hz
scan. Around 156 000 ‘shallow depth’ localizations are obtained.
We take advantage of this large number to perform a statistical ap-
proach that helps in identifying the dominant sources present during
the 1-month experiment.
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Figure 2. Example of different PDF outputs associated with the MFP-MCMC localization algorithm with their envelopes (black) and fitted ellipses (red). On
each panel, the gray line corresponds to the spatial limits of the geophone array. (a) MCMC-MFP output associated with a localization categorized as outside
of the array. (b) MCMC-MFP output associated with a localization categorized as inside the array. (¢) MCMC-MFP output associated with a localization
categorized as undetermined. (d) Other MCMC-MFP output associated with a localization categorized as undetermined.

One main motivation behind this approach is to compensate for
the bias introduced by the simple forward model used for localiza-
tion. This strategy was implemented in an earlier study by Chmiel
et al. (2019), where MFP was implemented with a minimization
algorithm based on the downhill simplex search method. In this
case, a localization is manifested by a single point associated with
a Bartlett operator value that quantifies the likelihood of a source at
this position. A source is localized if its associated Bartlett operator
value is higher than a chosen threshold.

In our processing, we sample from the source probability distri-
bution. Thus, we can go one step further and use the shape of our
MCMC-MFP output as an additional criterion to select localizations
of higher quality. Diffraction laws give us the expected size of the
source distribution for a given source position and array geometry
(Figs 2a and b). In the case of the Bartlett operator, they state that
the “focal spot’ associated to a point source inside the array is of the
same order as the half wavelength. In addition, if we consider that
only point source are detected, we can expect circular focal spots
inside the array and radially elongated focal spots outside of it.

To evaluate the focal spot size automatically, we fit an ellipse to
the envelope of the MCMC output at —3 dB, that is taking only
into account the points that have an output value for the Bartlett
operator greater than half of the maximum. In practice, an event is
categorized as outside the array if:

(1) lshortaxis <12 llongaxis

(2) hongaxis > 200 m = 1/4 [,

(3) lshortaxis < 600 m = 3/4 lap

(4) Most of the points of the output are located outside the array,

with Lgoraxis the length of the short axis, fiongayis the length of the
long axis and /,, the maximum aperture of the array.

While condition 4 is technically self-sufficient, the other condi-
tions eliminate distorted outputs. Condition 1 and 2 insures that we
have an elongated output while condition 3 discards outputs with
multiple optima that we cannot interpret.

Table 1. Number of classified localizations.

Shallow depth localizations at 16 Hz

Nb of localizations inside array 6316 (3 per cent)
Nb of localizations outside array 150555 (91 per
cent)

Nb of rejected localization 10003 (6 per cent)

Similarly, an event is categorized as inside the array if:

(1) lshortaxis > 1/2 Zlongaxis

(2) Lportaxis < 400 m = 1/2 I,

(3) llongaxis <400m =1/2 lap

(4) Most of the points of the output are located inside the array.

Fig. 2 illustrates these conditions on four examples of MCMC-
MEFP outputs, with their envelopes and fitted ellipses. We remove all
localizations with outputs that do not meet the conditions presented
above (Figs 2¢ and d). These localizations have misshapen or am-
biguous outputs that could correspond to the sampling of side lobes
by the MCMC-MFP algorithm or aliasing effects and are therefore
considered poor-quality localizations.

The above-mentioned criteria are based on the hypothesis that
one point source per time window can be localized. This means that
localizations of multiple or distributed sources will be discarded.
The conditions of classification are deliberately restrictive because
this scheme is very simple and relies on a low number of conditions.
Given the fact that we have hundreds of thousands of detections, we
decided to use a fast and easily implemented strategy. We choose
to keep restrictive conditions to insure the robustness of our classi-
fication because the main goal is to find strong evidence of events
in the shallow crust. As the remaining localizations are separated
into two categories, inside and outside the array, we will study these
categories separately.

An examination of the distribution of the localizations (Table 1)
reveals that the majority of the shallow depth localizations at 16
Hz corresponds to sources outside of the array.
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3 LOCALIZATIONS OUTSIDE THE
ARRAY

Because localizations of events outside of the array have low radial
resolution, we can reduce the outputs from a (X, ¥, v) point could to
a direction and a velocity. This will result in a simpler representation
and facilitate our analysis. We determine a backazimuth from the
MCMC-MFP outputs of localizations outside of the array. This is
achieved by fitting a line to the PDF output and computing the
angle between this line and the north. The localizations can then be
represented in polar plots with the apparent velocity as the radial
coordinate (Fig. 3a). We see dominant localizations around 309°
with apparent velocities ranging from 3500 to 5000 ms™'. This
direction coincides with the strike direction of the SJFZ (blue cones
in Fig. 3a).

Because apparent velocity can be used as a proxy for depth,
we can hypothesize that the dominant sources outside the ar-
ray, with backazimuths centred on 309°, are good candidates
for subsurface sources. Their apparent velocities, ranging from
3500 to 5000 ms™' indicate waves coming from depth, but still
traveling in the subsurface. However, the position of the sources
outside the array could also mean that these waves are diving body
waves emitted from sources at the surface. The use of the 16 Hz fre-
quency does filter surface sources inside the array, as they emit
waves at lower apparent velocities, but diving P waves emitted by
sources far from the array would have higher velocity and could be
measured at such frequency.

Fig. 3(b) shows the analytical incidence angle, or tilt angle, asso-
ciated with apparent velocities ranging from 1000 to 6500 ms™'. We
derive this incidence angle using Snell’s law and analytical ray trac-
ing for propagation in a homogeneous gradient model (Meng &
Ben-Zion 2018a). In practice, we use an average 1-D gradient ve-
locity model (shown as black line in Fig. 3¢) obtained from a shal-
low velocity model inverted by Mordret et al. (2019) using ambient
noise recorded at the array (background colours, Fig. 3c).

Apparent velocities associated with the dominant source corre-
spond to incidence angles ; ranging from 10° to 13° (yellow area
in Fig. 3b). Using this information and our model, we compute the
wave paths associated with the dominant source. For apparent ve-
locities ranging from 3500 to 5000 m s, the rays reach the surface
2.2-3.9 km northwest of the array. We represented the correspond-
ing area in Fig. 4. It is located on a residential sector that is a
potential source of surface noise. Road 371 is also contained in the
area of interest. The signal could also be produced by wind interact-
ing with tall structures present along this direction (Johnson et al.
2019). We note the presence of a monopole cell tower 3 km away
from the centre of the array that could be a good candidate for such
a source. Indeed, a 1-D simulation shows that the 3rd flexural mode
of this tower corresponds to a resonant frequency at 16 Hz.

We examine the variations of the cumulative localizations with
time to find information on the nature of the source. If a source is
anthropogenic or due to traffic, we expect a variation of the local-
izations during the week, with a decrease in activity on Sundays, for
example. Fig. 5(a) shows the localizations stacked in 15-min bins
for the duration of the experiment (black curve). An average was
computed using a moving window of 4.5-hr length (blue). Sundays
are highlighted in grey. In Fig. 5(b), we represent the spectrogram of
the activity. It exhibits two main components at 12-hr and 24-hr pe-
riods. However, there are no clear correlations between the activity
of the dominant source and anthropogenic activities.

We also compare the average daily variations of localizations to
weather data measured at a station 3 km northeast of the array. To

remove potential long-term trends prior to averaging, the number of
hourly localizations is normalized by the number of daily localiza-
tions. Thus, we obtain an hourly percentage of localization for each
day. These hourly percentages are averaged and represented in green
in Fig. 6. For the weather data, we average the variation relative to
the daily mean. As expected, the temperature and wind gust veloc-
ity show a daily cycle, which does not directly correlates with the
12-hr periodicity of the MCMC-MFP localizations (Fig. 6). How-
ever, the maxima of MCMC-MFP detections, at sunset and sunrise
respectively, correspond to strong variations of temperature and of
the wind gusts velocity.

4 LOCALIZATIONS INSIDE THE ARRAY

We also obtain a significant number (~6000) of localizations under
the array. Figs 7(a) and (b) show the stack of the localizations in
10 m x 10 m bins for two apparent velocity ranges. For the sake of
clarity, we only stack the maximum of the MFP output instead of
the entire PDF distribution.

For lower apparent velocities, which correspond to shallower
depth (Gradon et al. 2019), the dominant cluster of source is 200-m
distant from the geological fault trace (Fig. 7a). Using the 1-D gradi-
ent model introduced in the previous section (Fig. 3), these sources
are located at depth between 150 and 390 m. This is consistent
with the velocity model from Mordret ez al. (2019), which reveals a
complex structure ranging from 50 to 400 m deep, at this location,
with alternating low and high velocities anomalies (Figs 7c—¢). We
hypothesize that this complex structure yields localized seismic ac-
tivity. At higher apparent velocities (Fig. 7b), sources are clustering
closer to the geological fault trace where microseismic activity is
also expected.

Another interpretation would be that we localize scatterers in-
stead of sources. In this case, far-field waves diffracted by Fault-
related heterogeneities under the array would trigger a localiza-
tion by the algorithm. To investigate this further, we compare
the time distribution of our localization to expected first arrival
times computed from a regional catalogue from Ross et al. (2019),
and to picks made on the data from a borehole located under the
array.

We first computed theoretical arrival times at the array for the
regional catalogue from Ross et al. (2019) using a mean velocity of
6000 ms~' and compared them to our catalogue. We also took into
account the magnitude and distance of each earthquake to remove
manually the events that were too far away to be detected. Only 50
of'the localizations occur less than 2 s after the expected first arrival
time at the array (Fig. 8a). For longer time delays, we verified that
our detections were contained within the coda of the earthquake.
To do so, we used data from a high quality 3C borehole station
located under the array to extract the time signals corresponding to
the earthquakes in the regional catalogue. If one of our detection:
(1) occur less than 2 s after a regional earthquake first arrival or (2)
is contained in the coda of an earthquake visible on the borehole
data, we consider it to be correlated with an earthquake. Using the
borehole data, we were also able to find correlation between some
of our detection and additional earthquakes that were not in the
catalogue. Some of the additional earthquakes were more than 30 s
long and could be global earthquakes that were not included in the
regional catalogue.

Over the 26 d, around 50 per cent of the MCMC-MFP localiza-
tions below the array can be correlated to regional earthquakes
outside of the array. The amount of MCMC-MFP localizations
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during regional earthquakes varies visibly from day to day rang- additional sources. Only half of our localizations can be linked to
ing from 90 to 20 per cent of the total daily localizations (Fig. 8b). seismic activity outside of the array. The other half could either be
The days with low percentage (136, 143 and 148) have the high- related to undetected regional events or to the fault activity under the

est number of localizations. This could be due to the presence of array.
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5 DISCUSSION

The results of this work highlight the high number and diversity of
sources that produce packets of seismic energy that are included
in continuous recorded waveform. Localizing sources at shallow
depth in a fault zone environment raises several challenges. Shallow
sources are expected to have weak energy, high frequency content
and short duration (Kwiatek & Ben-Zion 2014). These character-
istics result in signals with poor SNR. In the SJFZ, weak seismic
events overlap with remote ongoing seismicity, which is dominated
by surface waves (Roux et al. 2016).

The large number of shallow detections and localizations (more
than 156 000 in 26 d) provided by the dense array deployment at the
SJFZ has significant implications on the rheology and dynamics of
the top 500 m of the crust, because at least a fraction of the localiza-
tions are likely to be shallow depths events in the vicinity of faults
generating phase-coherent wave fronts with high apparent veloci-
ties. On the other hand, we observe that more than 90 per cent of the
events were located outside of the array and may find their origin in
wind gust excitation of a tower locater 3 km away from the centre
of the array and other obstacles above the surface. This underlines
the need for caution when interpreting localizations obtained from
continuous records processing (Inbal ez al. 2018; Meng & Ben-Zion
2018b; Johnson et al. 2019). The ~6300 microseismic events that

were located beneath the array originate from identified weakness
zones in the SJFZ. They seem to have two origins that are difficult
to distinguish from each other. Half of them occur close in time
to regional events and may simply correspond to waves scattered
by various structures in the SJIFZ below the array. The other half
do not seem connected to earthquakes in any catalogue and may
be due to genuine failure process occurring at shallow depth along
the SJFZ.

For these last set of events, it would be interesting to estimate the
magnitude of the sources and examine if the frequency-size distribu-
tion of events in the top crust follows the Gutenberg—Richter statis-
tics. Unfortunately, most of these microseismic events are buried
within ambient seismic noise and can only be extracted through
phase-matching techniques as performed with the MFP-MCMC al-
gorithm. The magnitude of these events is then very difficult to
establish with satisfactory confidence interval. Taking advantage of
the array gain provided by the dense array can help provide relative
magnitude estimates. This type of analysis may be the subject of a
future study.

Another continuation of this work could be the inclusion of ma-
chine learning to our possessing. In order to process the high number
of localizations in our catalogue, we only used a very simple clas-
sification method based on the shape of the MCMC-MFP outputs.
Using machine learning would allow us to use conditions that are
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Figure 7. Cumulated outputs of localizations under the array at 16 Hz. The maximum of the outputs are stacked into 10 m x 10 m bins and summed over
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more complex and increase the number of classes. Another issue
with our processing is the fact that we reduce our signal to short
time windows (0.25 s), with several windows often covering a single
event. Using our catalogue, we could reprocess the data to extract

shorter or longer time windows containing the signal associated to
each event. These adjustable time windows could then be used as
a priori information to detect new events using machine learning
techniques or template matching.
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