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1. Introduction

Over the last century, seismologists have learned to constrain the velocity of seismic waves increasingly 
well, but its interpretation in terms of temperature, density, viscosity, and composition of the Earth’s in-
terior is nonunique and remains problematic. As opposed to their speed of propagation, the amplitude of 
seismograms is directly related to anelastic dissipation; knowing how the Earth attenuates seismic waves, 
and how such attenuation changes with location within our planet, would tell us much more about its 
properties than we currently know. However, measures of amplitude carry important uncertainty, and the 
theory relating seismogram amplitude to Earth parameters is cumbersome and occasionally (e.g., Boschi 
et�al.,�2019; Menon et�al.,�2014) controversial.

Several studies have shown that cross correlations of seismic ambient noise approximately coincide with 
the surface-wave Green’s function associated with the two points of observation. By analyzing the phase of 
the empirical Green’s function, it is possible to successfully image and monitor the velocity structure of the 
Earth’s interior (see the reviews by, e.g., Boschi & Weemstra,�2015; Campillo & Roux,�2014). The informa-
tion on the anelastic properties carried by its amplitude, on the other hand, is less accurately reconstructed 
by cross correlation (e.g., Lehujeur & Chevrot,�2020). Initial attempts to constrain surface-wave attenuation 
from ambient noise (e.g., Lawrence & Prieto,�2011; Prieto et�al.,�2009) were based on the assumption that 
attenuation could be accounted for by simply taking the product of the Green’s function and an expo-
nential damping term. Tsai�(2011) showed that these works omitted a multiplicative factor dependent on 
source parameters, which, if not accounted for, is likely to introduce a bias in the attenuation estimates; 
Weemstra et�al.�(2013) chose to treat that factor as a free parameter in their formulation of the inverse prob-
lem. However, Weemstra et�al.�(2014) showed an additional difficulty associated with the normalization of 
cross correlations, used in ambient-noise literature to reduce the effects of, e.g., strong earthquakes; spectral 
whitening or other normalization terms affect the amplitude of the empirical Green’s function, biasing the 
measurements of attenuation. Boschi et�al.�(2019) derived a mathematical expression for the multiplicative 
factor relating normalized cross correlations to the Rayleigh-wave Green’s function; numerical evaluation 

Abstract  We evaluate, by numerical tests, whether surface-wave attenuation can be determined from 
ambient-noise data. We generate synthetic recordings of numerically simulated ambient seismic noise 
in several experimental setups, characterized by different source distributions and different values of 
attenuation coefficient. We use them to verify that the source spectrum can be reconstructed from ambient 
recordings (provided that the density of sources and the attenuation coefficient are known) and that true 
attenuation can be retrieved from normalized cross correlations of synthetic signals. We then apply the 
so validated method to real continuous recordings from 33 broadband receivers distributed within the 
Colorado Plateau and Great Basin. A preliminary analysis of the signal-to-noise ratio as a function of 
azimuth reveals a SW-NE preferential directionality of the noise sources within the secondary microseism 
band (6–8�s), consistent with previous studies. By nonlinear inversion of noise data we find the 
attenuation coefficient in the area of interest to range from ��1�×�10�5 �m�1  at 0.3�Hz to ��4.5�×�10�7 �m�1  
at 0.065�Hz, and confirm the statistical robustness of this estimate by means of a bootstrap analysis. 
The result is compatible with previous observations based on both earthquake-generated and ambient 
Rayleigh waves. In this regard, the method proves to be promising in accurately quantifying surface-wave 
attenuation at relatively high frequencies.
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showed it to be equal to 1, under the assumption of a spatially uniform source distribution, confirming the 
speculation of Prieto et�al.�(2009).

It can be inferred from the mentioned theoretical contributions, as well as from that of Nakahara�(2012), 
that—in an idealized situation (spatial and spectral uniformity of source distribution)—surface-wave at-
tenuation can be measured from seismic ambient-noise data. The purpose of this study is to quantify the 
error that is caused, in such attenuation estimates, by applying the algorithm of Boschi et�al.�(2019, 2020) 
to recordings of nonidealized, more realistic seismic noise. We model those by numerical simulation of the 
signal resulting from a suite of increasingly non-uniform source distributions. We then invert the synthetic 
data and evaluate the similarity of the thus obtained attenuation estimates to the attenuation model used 
to compute the data.

Our inversion technique differs from those implemented by other authors in several aspects. First of all, we 
determine phase velocity through a preliminary, independent inversion: this is preferable to constraining 
velocity and attenuation at the same time, since phase velocity is directly related to the “zero crossings” of 
the Green’s function in the frequency domain and independent of its amplitude (e.g., Boschi et�al.,�2013; Ek-
ström et�al.,�2009). The so obtained velocity is then a fixed parameter of the attenuation inversion. Second, 
we do not average ambient-noise cross-correlation data over azimuth and/or distance, and we minimize 
the sum of misfits associated with each interstation pair. Earlier work by Menon et�al.�(2014), as well as 
the synthetic tests presented here, indicate that this contributes to “regularizing” the inversion, resulting 
in an apparently more accurate solution. Third, cross correlations are systematically processed in the time 
domain, prior to inversion, so as to remove any signal associated with surface-wave overtones.

The results of our numerical tests, discussed in Section�4, indicate that our approach can potentially con-
tribute to constraining surface-wave attenuation at regional and continental scale, where Rayleigh-wave 
fundamental mode dominates the seismic ambient noise. A preliminary application to USArray is given 
in Section�5. The relative success of our tests both confirms the validity of the theory (summarized in Sec-
tion�2) and shows that our inversion strategy (described in detail in Section�3) is sound.

2. Theory

2.1. Rayleigh-Wave Green’s Function

Following, e.g., Tsai�(2011) and Boschi et�al.�(2019), we assume that surface-wave attenuation can be ac-
counted for by replacing the equation governing the displacement of a lossless, stretched membrane with 
that of a damped membrane equation. We define the 2-D Green’s function as the membrane response to 
impulsive initial velocity generated at xS and recorded at x (e.g., Boschi et�al.,�2019, Appendix A),
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where i, �, c, and � denote imaginary unit, angular frequency, phase velocity and attenuation coefficient, 

respectively; |x � xS| is the distance between the impulsive source and the receiver, and � � � ���
���+  a zero-order 

Hankel function of the second kind. Equation�1 is equivalent to Equation 8 of Boschi et�al.�(2019), except for 
a constant factor—dubbed P by Boschi et�al.�(2019)—that served to keep track of the physical dimensions 
of G2D and that is omitted here for simplicity. As shown by Boschi et�al.�(2019), provided that attenuation is 
relatively weak, i.e., �����/c, Equation�1 can be reduced to the more convenient, approximate form
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employed throughout this study.
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2.2. Cross Correlation of Ambient-Noise Recordings

By the properties of the Green’s function, a signal of amplitude h(�) and phase � emitted at x and recorded 
at xA reads � � �

�
�

�� � �� � � �� x x� � � . The vertical-component, Rayleigh-wave displacement associated with a 
set of NS sources with the same amplitude h(�), but different phase, is then
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�
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where the index j identifies the source. Let a second receiver, located at xB, also record the signal emitted 
by the same sources. In the frequency domain, the cross correlation of recordings made at xA and xB is then 
given by
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(e.g., Press et�al.,�1992, Section 13.2), where * denotes complex conjugation.

Seismic surface-wave ambient noise is usually described by Equation�3, with the additional requirement 
that the phases �1, � 2, � 3, … be random (uniformly distributed between 0 and 2�). Under this assumption, 
it has been shown (Boschi & Weemstra,�2015; Weemstra et�al.,�2014) that, if the statistical expectation (e.g., 
Bendat & Piersol,�2011, Equation�3.8) E[…] of Equation�4 is taken, the j��z�k terms (“cross terms”) cancel out 
and
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In the following, we shall drop the symbol E[…] for the sake of simplicity. In a passive seismology experi-
ment as the ones we are concerned with, statistical expectation cannot be evaluated directly from the data, 
which are seismic traces of finite duration. It is assumed that the finite-time cross correlation of seismic 
ambient noise coincides with its expectation. Our work hypothesis, similar, e.g., to Boschi and Weem-
stra�(2015), is that this condition is approximately verified, in ambient-noise seismology, if sufficiently long 
time series (typically one year) are considered: in that case, a large number of sources distributed over the 
entire real plane, with random uncorrelated phases, should eventually be sampled. In practice, we call 
“diffuse” (e.g., Boschi & Weemstra,�2015, Section 3; Kinsler et�al.,�1999, Section 12.1) a wave field that meets 
this requirement. (The purpose of this study, in a sense, is to evaluate how far real data are from such an 
idealized situation).

As shown by Boschi et�al.�(2019), under this assumption the sum at the right-hand side (RHS) of Equation�4 
can be replaced by an integral, and combined with the reciprocity theorem for a lossy membrane (Section 
2.2 of Boschi et�al.,�2019) to yield
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where the operator �}� ª � º� ¬ � ¼�)  maps a complex number into its imaginary part, � is the surface density of noise 
sources, and the factor � � � � � ��S arises from the correction of the algebraic error found in Boschi et�al.�(2019, 
2020). Equation�6 stipulates that the amplitude of the cross correlation of ambient-noise recordings carries 
the information on the surface-wave attenuation coefficient �. This means that � can be retrieved from 
the data, if interstation phase velocity and spatial density and power spectral density of noise sources are 
known.
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2.3. Power Spectral Density as Normalization Term

As shown by Boschi et�al.�(2019), the RHS of Equation�6 can be manipulated algebraically, to find an expres-
sion for the cross correlation of ambient noise where the source parameters h2(�) and � conveniently cancel 
out. In the following, we rederive the result of Boschi et�al.�(2019) in a slightly different fashion, showing 
explicitly that our formulation is in agreement with that of Nakahara�(2012). (The result of Nakahara�(2012) 
had been overlooked by Boschi et�al.�(2019).

Let us rewrite Equation�2 as
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(e.g., Boschi & Weemstra,�2015), where J0 and Y0 denote zeroth-order Bessel functions of the first and the 
second kind (e.g., Abramowitz & Stegun,�1964), respectively. Substituting Equation�7 into 6 yields
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It follows from Equation�8 that cross correlating the signal recorded at an arbitrary location x with itself, 
one obtains
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Similar to Boschi et�al.�(2019), this formulation provides an analytical expression for h2(�) via Equation� 9, 
which can be rewritten
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where following the assumption that h is the same for all noise sources, we replaced |s(x, � )|2 with its 

average � � � �� � �s x x� �  over all available receiver locations x. Upon dividing Equation�8 by 9, we find
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where again, |s(x,�)|2 is replaced by the average � � � �� � �s x x� � . Importantly, Equation�11, adopted in this 

study, coincides with Equation 52 of Aki�(1957), except for the damping term e� �� x x� � , and is consistent 
with Equation 9 of Prieto et�al.�(2009) and Equation 31 of Nakahara�(2012).

Equation�11 should be compared with Equation 30 of Boschi et�al.�(2019), i.e.,

� �

�

�
� �

�
�

� � � �x x

x

x x

x

x� � �

� � �

� �

� �� � �

� �� � � �
� � � �

�
� �

��

�
��

�

�
��

�

� �
� �� �� x

�
� (12)

where the mentioned algebraic error (a factor � � � � � ��S) has been corrected and
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Comparing Equations�12 and 11 provides an analytical expression for the integral at the right-hand side of 
Equation�13,

� � � �� � � � � �
�F

� , � F� D � Z
�S�D�Z

�| (14)

which Boschi et�al.�(2019) were unable to solve analytically. We show in Figure�1 that our numerical eval-
uation of I(�, �, c) (which exploits Gaussian quadrature, as provided by the SciPy Python library, Jones 
et�al.,�2001) is consistent with the expression at the right-hand side of Equation�14, if the conditions for the 
theoretical validity of our formulation are met. This further validates the formulation of Boschi et�al.�(2019).
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Figure 1. I(�, �, c) (gray, solid) and its analytical counterpart 
�F

�S�D�Z
 (black, dashed) as functions of frequency, shown for different values of attenuation 

coefficient �. The phase velocity c�=�c(�) is chosen to vary smoothly between 0.05�Hz (where c�=�3526�ms�1 ) and 0.25�Hz (2851�ms�1 ), as illustrated in Figure�S1. 
The same values of c(�) are employed in the numerical simulations of Section�4.
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The left-hand side (LHS) of both (11) and (12) represents the data, i.e., the normalized cross correlation of 
ambient noise records, while its RHS is our theoretical model. Importantly, as first pointed out by Boschi 
et�al.�(2019), h(�) and � cancel out in the derivation that leads to Equation�11 and/or 12; it follows that these 
equations can be used, through an inverse problem, to determine � from the data without prior knowledge 
of source density and frequency content (as long as both are constant in space). In addition, if the LHS of 
Equations�11 and 12 is calculated as an ensemble-average of relatively small temporal windows with respect 

to the entire recording time, the normalization term � � � �� � �s x x� �  mitigates the effect of possible anom-

alous, ballistic signals like, e.g., large or nearby earthquakes (Boschi et�al.,�2019). This is often necessary 
when working with real data and commonly accomplished by one-bit normalization or spectral whitening 
(e.g., Bensen et�al.,�2007); these empirical normalization terms, however, albeit useful for retrieving phase 
or group velocities since they leave the phase of the cross correlations unchanged, are doomed to introduce 
a bias in their amplitude and therefore in the resulting estimates of � (Weemstra et�al.,�2014).

We emphasize that Equation�11 (or 12) only holds if all our theoretical assumptions on the nature of ambi-
ent noise and propagation medium are valid, i.e., (i) the seismic ambient field is diffuse, (ii) source density 
and frequency content are both constant in space, and (iii) ���� �/c; in such scenario, both its RHS and LHS 
are purely real. When working with observational data, these assumptions are not strictly verified, and the 
numerical value of the LHS, as obtained from the data, is only approximately equal to the theoretical model 
at the RHS; this is why in ambient-noise literature empirical Green’s functions commonly show a nonzero 
imaginary part, and are referred to as “complex coherency” (e.g., Weemstra et�al.,�2014) to distinguish them 
from the true Green’s function.

3. Inverse Problem

Equation�11 allows to formulate an inverse problem to determine � from cross correlations of recorded am-
bient signal. Because Equation�11 holds for all station pairs, it is desirable that the cost function be related 
to the weighted sum of the squared differences between LHS and RHS of Equation�11, calculated for each 
station pair; since the RHS is an oscillatory function of � (through the Bessel function J0), and � only affects 
its envelope but not its oscillations (e.g., Boschi et�al.,�2019; Prieto et�al.,�2009), we introduce the envelope 
function env to define the cost function
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 (15)

where xi and xj denote the positions of the two receivers, and the sum spans all possible station pairs. The 

weight 
��

� L � M��� [ � [ is chosen based on the fact that larger interstation distances are associated with smaller 

amplitudes of the cross correlations, due to geometrical spreading, which would result in smaller absolute 
values of misfit if not weighted accordingly. cij(�) denotes the average phase velocity, at frequency �, be-
tween receivers at xi and xj; for each station pair, we determine its value before minimizing C(�, �) by appli-
cation of the method described by Kästle et�al.�(2016). The minimum of C(�, �) can then be found through 
some form of “grid-search” over �, for a discrete set of values of �. Formula� 15 for C(�, �) was selected 
after experimenting several other options, as partly documented in Boschi et�al.�(2019). After a suite of pre-
liminary tests, we chose to implement the envelope function by fitting a combination of cubic splines (De 
Boor,�1978) to the maxima of the absolute value of the real part of their arguments; the envelopes are then 
smoothed by means of a running average performed with a Savitzky-Golay filter (Savitzky & Golay,�1964). 
Smoothing is motivated by the fact that, if the anelastic properties of the Earth are assumed to be smoothly 
varying with depth, the same behavior is expected for the amplitude of adjacent peaks of the real coherency; 
abrupt amplitude variations are ascribed to a nonperfectly diffuse wavefield or, in the case of real record-
ings, simply to noisiness of the empirical Green’s function.
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The summation over receiver pairs i, j at the RHS of 15 involves all the available receivers and, if the array 
has good azimuthal coverage, most azimuths of wave propagation. Minimizing C(�, �) therefore involves 
finding one function �(�) such that a good fit is simultaneously achieved at all azimuths; this has a reg-
ularizing effect on the inversion, and should reduce the effects of nonhomogeneity in azimuthal source 
distribution.

Previous studies (e.g., Prieto et�al.,�2009; Weemstra et�al.,�2013) formulated inverse problems whose data 
consisted of azimuthally averaged cross correlations calculated over several station pairs; this was based on 
the idea that azimuthal averaging is necessary to retrieve a reliable, purely real empirical Green’s function 
(e.g., Asten,�2006; Yokoi & Margaryan,�2008). Menon et�al.�(2014), however, show that slightly different in-
terstation distances or a laterally inhomogeneous phase velocity would introduce a phase offset of the cross 
correlations involved in the average. This would result in an “attenuation-like” effect (Figure�2 of Menon 
et�al.,�2014), i.e., in a fictitious decrease of the amplitude of the averaged coherency and thus in a bias of 
the estimates of �.

4. Numerical Validation

We simulate ambient signal via a very large number of randomly distributed, uncorrelated point sources. 
We next solve an inverse problem, as described above, to retrieve the theoretical value of �; we also verify 
numerically the emergence of coherent signal in the cross correlations due to cancellation of cross terms in 
Equation�4, and the validity of Equation�10, which relates recorded ambient noise and the frequency spec-
trum of ambient-noise sources. The simulation is carried out in four different experimental setups. First, we 
present the “ideal” case of a spatially uniform distribution of sources (Figure�2a). Since real-world ambient 
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Figure 2. Sources (blue dots) and stations (red triangles) used for simulating seismic noise. (a), (b), (c), and (d) indicate 
the source distributions used in Sections�4.1 (uniform source distribution), Section�4.2 (azimuth-dependent source 
density), Section�4.3 (no sources in the near field), and Section�4.4 (“patchy” source distribution), respectively.
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sources are not distributed uniformly (e.g., Hillers et�al.,�2012), we next discuss the cases of an azimuth-
ally heterogeneous source distribution (Figure�2b) and of a distribution characterized by absence of noise 
sources in the vicinity of the receivers (Figure�2c). Finally, we show the results obtained through a “patchy” 
distribution, characterized by a variable density of sources both in space and in azimuth (Figure�2d).

4.1. Uniform Source Distribution

Our first experimental setup consists of 200,000 point sources randomly distributed both in the near and far 
field of 29 receivers, within a circle of radius R�=�1�×�107�m centered at the receiver array (Figure�2a). Source 
locations are defined by their polar coordinates �, r with respect to one station located at the center of the 
array; random values of � between 0 and 2�, and of n between 0 and 1 are generated, and  (the 
square root results in a linear growth of the number of sources with increasing distance from the center of 
the circle, hence constant source density in space). The receivers are randomly deployed in the central part 
of such distribution on 4 concentric circles, with radii of 45, 90, 135, and 180�×�103�m.

4.1.1. Simulation of Seismic Ambient Noise

In each of two experiments, synthetic data are generated using different models of attenuation, i.e., (i) con-
stant attenuation with ��=�1�×�10 �6 �m�1 , and (ii) frequency-dependent ��=��(�), chosen to vary linearly from 
3�×�10�7  at 0.05�Hz to 1�×�10�6 �m�1  at 0.25�Hz. (A third experiment, with constant ��=�5�×�10�7 �m�1  is illus-
trated in the supplementary materials.) In all numerical simulations, we employed a fixed, frequency-de-
pendent phase velocity c�=� c(�), which decreases monotonously (and almost linearly) between 0.05�Hz 
(where c�=�3526�ms�1 ) and 0.25�Hz (2851�ms�1 ), with a slight kink around 0.07�Hz where its derivative with 
respect to time decreases with increasing frequency (Figure�S1). We consider these values to be realistic, 
based, e.g., on Mitchell�(1995) and Ekström�(2014).

Each numerical test consisted of 25,000 realizations (Cupillard & Capdeville,�2010; Weemstra et�al.,�2015). 
At each realization, every source emits an independent signal of constant amplitude h(�)�=�1 and random 
phase � between 0 and 2�. The displacement at the receivers due to the impulsive sources is computed, 
at each realization, via Equation�3; the LHS of Equation�11 is then implemented for a pair of stations 
xA, xB by ensemble-averaging the normalized cross correlations (calculated for each realization k) over NR 
realizations,

 (16)

4.1.2. Cancellation of Cross Terms and Source Spectrum

Real and imaginary parts of normalized cross correlations, calculated by ensemble-averaging over an in-
creasing number of realizations as in the RHS of Equation�16, are shown in Figure�3 for a pair of receivers 
with interstation distance of 67,600�m. For both chosen values of �, the increase in the smoothness of the 
real parts and the decrease in the amplitude of the imaginary parts with the number of realizations bring 
evidence of the cancellation of cross terms of Equation�4. An analogous result is obtained through the syn-
thetic recordings generated with ��=�5�×�10�7 �m�1 , as illustrated in Figure�S2.

Equation�10 indicates that it is possible to retrieve the source spectrum h(�) if source density � and atten-
uation coefficient are known, provided that h is the same for all sources (Section�2.2); we show in Figure�4 
that, implementing Equation�10, h(�)�=�1 is retrieved correctly, at least to the second decimal digit, in case 
of a uniform source distribution. This result validates numerically the derivation of Equation�10. Figure�4 
also shows that, when the true � is unknown, the observed values of � (obtained by minimization of the cost 
function C(�, �), as explained in the following paragraph) can be used to implement Equation�10, allowing 
one to achieve only slightly worse accuracy.

4.1.3. Retrieval of the Attenuation Coefficient

The cost function C(�, �) in Equation� 15 is evaluated by means of a 1-D grid search over 275 values of � 
evenly spaced on logarithmic scale between 5�×�10�8  and 1�×�10�4 �m�1 . Figure�5 shows that, on average, the 
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minima of C(�, �) correspond to the values of � used for generating synthetic recordings, i.e., the synthetic 
test is successful. In the same figure, we show for both numerical tests the datafit obtained by substituting 
into Equation�11 the values of �(�) retrieved by minimizing C(�, �), and can be considered good at all the 
investigated interstation distances. An analogous result is obtained through the synthetic recordings gener-
ated with ��=�5�×�10 �7 �m�1 , as illustrated in Figure�S7.

4.2. Azimuth-Dependent Source Density

In a second numerical simulation, the spatial distribution of sources is modified while all other parameters 
are left unchanged; the nonuniformity in the source distribution is implemented by generating random 

values k between 0 and 2�, and obtaining source azimuth from k via the formula ; 

, with 0��d�n�<�1, as above. The spatial distribution of sources thus obtained is characterized by 
a higher density to the South-West of the array (Figure�2b). Synthetic data are generated using the phase 
velocity c�=�c(�) of Section�4.1, and a constant attenuation coefficient ��=�1�×�10�6 �m�1 . In analogy with the 
first numerical test, seismic ambient noise has been simulated for 25,000 realizations, with h(�)�=�1 and 
random phase � between 0 and 2�.
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Figure 3. Real (black) and imaginary (gray) parts of LHS of Equation�16, obtained for a pair of receivers with interstation distance of 67,600�m by ensemble-
averaging over (top) 25, (middle) 500, and (bottom) 25,000 realizations. Results are shown for both ��=�1�×�10�6  and ��=��(�), used in the experimental setup 
of Section�4.1 (uniform source distribution). Note the slightly different amplitudes of the real coherencies, as expected for media characterized by different 
attenuation coefficients.
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We verified the emergence of coherent signal in the normalized cross correlations at increasing number of 
realizations, as illustrated in Figure�S3. As expected, the cross terms cancel out, but, in comparison with the 
previous section, we found slightly larger imaginary parts of the cross spectra; this can be ascribed to the 
nonuniform distribution of the noise sources (see Section�2). The source spectrum h(�), retrieved from the 
synthetics, is shown in Figure�4 to be closed to the true value of 1; this indicates that Equation�10 allows 
estimating the frequency content of the noise sources accurately, even if the assumption of diffuse ambient 
field is not exactly met.

Following the same procedure as in Section�4.1.3, we obtained minima of C(� , � ) which correspond, on aver-
age, to the true attenuation ��=�1�×�10�6 �m�1 . This is illustrated in Figure�6, together with the datafit obtained 
by substituting into Equation�11 the best values of �(� ) for the same station pairs employed in Figure�5.

The above results show that, even if the spatial distribution of noise sources is slightly nonuniform, the 
value of �(�) can be reconstructed correctly from the cross correlation of ambient noise: we have achieved 
this, as anticipated, by neglecting possible lateral heterogeneities in �(�), and minimizing a cost function 
where as many azimuths of propagation as possible are simultaneously included. In practice, this means 
that surface-wave attenuation can be estimated based on ambient noise, even when the noise field is not 
exactly diffuse. This is indeed the case in most practical applications.

4.3. No Near-Field sources

Sources are uniformly distributed in space, as in Section�4.1, but starting at a minimum distance of 
900�×�103�m from the station that defines the center of the array (Figure�2c). We implement 25,000 realiza-
tions with the same phase velocity c�=�c(�) as before, attenuation ��=�1�×�10�6 �m�1 , and h(�)�=�1. Again, a 
random phase � between 0 and 2�, newly generated at each realization, is assigned to each source.

In analogy with the experiments above, we verified the emergence of coherent signal in the cross correla-
tions due to the cancellation of cross terms. The amplitude of the imaginary part of the cross spectra turned 
out to be similar to that obtained for an azimuthally heterogeneous source distribution (see Figure�S4). On 
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Figure 4. Absolute value of source amplitude |h(�)|, retrieved in the synthetic tests described in Sections�4.1 (uniform source distribution, black),�4.2 (azimuth-
dependent source density, red), 4.3 (absence of near-field sources, blue), and 4.4 (“patchy” source distribution, orange). In all cases, synthetic data are computed 
with h(�)�=�1 (gray) and ��=�1�×�10 �6 �m�1 . |h(�)| is calculated by substituting into Equation�9 both the true value of � (left) and the ones inferred from the cross 
correlations (right), and then taking the square root; the estimates of � have been obtained by minimizing the cost function C(�, �) (Section�3). In the case of a 
uniform source distribution, analogous results are obtained through the synthetics generated with ��=�5�×�10�7 �m�1  and ��=��(�), as shown in Figure�S5.
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the other hand, the real part is systematically larger than those observed in the previous experiments. As 
in Sections�4.1 and 4.2, we then used the synthetic data to quantify source spectrum h(�) and attenuation 
�(�) (Figures� 4 and 7). We infer from the results thus obtained that the absence of near-field sources leads 
to a significant underestimate of both h(�) and �(�) (the latter by a factor of about 5), in agreement with 
the theoretical findings of Tsai�(2011).

4.4. “Patchy” Source Distribution

About 100,000 sources are uniformly distributed in space, as in Section�4.1, and 100,000 sources are concen-
trated in discrete regions (Figure�2d). As in the previous section, we implemented 25,000 realizations using 
the phase velocity c�=�c(�), attenuation ��=�1�×�10�6 �m�1 , and h(�)�=�1, attributing to each source a random 
phase � between 0 and 2� newly generated at each realization.

We first used the so generated synthetic recordings to compute the normalized cross correlations, whose 
smoothness indicates that the cross terms canceled out, as predicted by the theory (Figure�S5). Due to the 
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Figure 6. Top panel: cost function C(�, �) associated with the numerical experiment of Section�4.2 (azimuth-
dependent source density) shown (after normalization) as a function of attenuation coefficient and frequency. Red 
dots mark the values of � for which C(�, �) is minimized at each frequency; the yellow line indicates the assumed 
attenuation model ��=�1�×�10 �6 �m�1 , used for generating synthetic recordings. Bottom: normalized cross correlations 
(black) fitted by the model (red) obtained by substituting into Equation�11 the values of �(�) which minimize C(�, �). 
Within each subplot, the interstation distance is indicated on the upper right.

Figure 5. (a) Top panel: cost function C(�, �) associated with the numerical experiment of Section�4.1 (uniform source distribution) shown (after 
normalization) as a function of attenuation coefficient and frequency; red dots mark the values of � for which C(�, �) is minimized at each frequency; the 
yellow line indicates the assumed attenuation model ��=�1�×�10�6 �m�1 , used for generating synthetic recordings. Bottom: normalized cross correlations (black) 
fitted by the model (red) obtained by substituting into Equation�11 the values of �(�) which minimize C(�, �). Within each subplot, the interstation distance is 
indicated on the upper right. (b) Same as (a), but obtained through the synthetic recordings generated with a frequency-dependent ��=��(�), varying between 
3�×�10�7 �m�1  at 0.05�Hz and 1�×�10�6 �m�1  at 0.25�Hz.
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strong lateral heterogeneity characterizing this source distribution, we found, on average, larger imaginary 
parts of the cross spectra than what we observed in the experiments above. We then used the cross spectra 
to reconstruct h(�) (Figure� 4), finding values �25% less than the true frequency spectrum used to generate 
the synthetics: a much better result than what we achieved in the case of a distribution characterized by 
absence of near-field sources. Finally, we inverted the synthetic data using Equation�15 to obtain estimates 
of the attenuation coefficient that fluctuate around the true value of �. Overall, we observed a lower accu-
racy in this experimental setup than those of Sections�4.1 and 4.2 (compare Figure�8 with Figures�5 and 6), 
but still acceptable considering the extreme spatial and azimuthal heterogeneity of the source distribution.

5. Preliminary Application to a Small Subset of USArray

5.1. Data Set

We downloaded continuous vertical-component recordings from 33 broad-band receivers belonging to the 
transportable component of the USArray network (Figure�9) and operating between February 2007 and Au-
gust 2008. Each seismogram has been demeaned, detrended, tapered (5%), and bandpass-filtered between 
0.01 and 0.5�Hz before deconvolving the instrumental response to displacement; eventual gaps present in 
the waveforms have been zero-padded, in order to obtain continuous time-series. From all those continuous 
data, we computed 509 empirical Green’s functions (i.e., LHS of Equation�11), by ensemble averaging cross 
spectra calculated in 6-h long windows. To reduce the effects of temporal variability and/or seasonality 
of noise sources, we only cross-correlated pairs of receivers that recorded simultaneously for more than 
9�months.
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Figure 7. Same as Figure�6, but obtained through the numerical experiment of Section�4.3 (no sources in the near 
field).
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Figure 8. Same as Figures�6 and 7, but obtained through the numerical experiment of Section�4.4 (“patchy” source 
distribution).

Figure 9. Seismic stations (red triangles) from the USArray project transportable network, forming the data set 
described in Section�5.1.
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We next “pre-process” the normalized cross correlation, to better isolate the fundamental-mode amplitude 
signal that is relevant to the subsequent attenuation inversion, i.e., the “stationary points” of the frequen-
cy-domain cross correlation curves (Figure�10). This processing was not carried out in the synthetic tests 
discussed above, but is likely to be necessary when dealing with real-world ambient signal. The procedure 
we have designed consists of three steps. (i) We inverse-Fourier transform our frequency-domain cross cor-
relations to the time domain; (ii) we zero-pad the resulting time-domain traces at times corresponding to 
velocities lower than 2�km s�1  and higher than 5�km s�1  (the same cosine taper is applied at the two ends of 
this interval), i.e., all signal that is much faster or slower than the typical fundamental-mode surface wave; 
(iii) we forward-Fourier transform the padded cross correlations back to the frequency domain. Through 
this procedure, most of the signal that is not associated with the Rayleigh-wave fundamental mode (i.e., the 
Rayleigh-wave overtones; the body waves) is eliminated. By the properties of the Fourier transform, this has 
also the effect of “smoothing” the frequency-domain cross correlation (Figure�10).

The thus achieved (normalized) cross correlations served us to retrieve Rayleigh-wave dispersion curves in 
the frequency range between 0.3 and 0.04�Hz (we used the Kästle et�al.�(2016)’s automated algorithm) and 
the envelopes to be used in the inversion.

5.2. Signal-To-Noise Ratio

We show in Figure�10 four normalized cross correlations associated with receiver pairs that are charac-
terized by significantly different interstation distances. The fact that the imaginary part of the empirical 
Green’s function is nonzero indicates that the assumptions described in Section�2 are not exactly met by 
our observations, because the ambient wavefield is not perfectly diffuse (Boschi & Weemstra,�2015). To 
estimate possible azimuthal biases introduced in the recordings, we therefore performed a signal-to-noise 
ratio (SNR) analysis; this allows to assess the presence of preferential directionality of the noise sources, 
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Figure 10. Real (black) and imaginary (gray) parts of smoothed (Section�5.1), normalized cross correlations calculated for four different station pairs. The 
envelope of the real parts, used in the inversion for �, is shown in blue. At the upper right corner of each subplot, station codes and interstation distance are 
specified.
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thus giving indication of the diffusivity of the ambient wavefield. The analysis has been carried out by nar-
row-bandpass filtering and inverse-Fourier transforming all the available cross spectra; in the time domain, 
the SNR is then calculated by taking the ratio of the maximum signal amplitude to the maximum of the 
trailing noise (e.g., Kästle et�al.,�2016; Yang & Ritzwoller,�2008). In this analysis, “signal” refers to the seg-
ment of ambient-noise cross correlation that contains the Rayleigh-wave fundamental mode propagating 
between the two relevant receivers. In practice, this corresponds to the temporal window identified by a 
velocity range between 2 and 4.2�km s�1 .

We infer from visual inspection of the results thus obtained (Figure�11) that the ambient field is relatively 
isotropic within the study area, at least in the frequency band associated with the primary microseisms, 
i.e., from �10�s to �20�s period, peaking at �14�s (e.g., Friedrich et�al.,�1998): compare, e.g., with Figure�12 
of Kästle et�al.�(2016), where a strong nonuniformity in the source distribution can be appreciated from 
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Figure 11. Signal-to-noise ratio at different periods as a function of azimuth, as inferred from the normalized cross correlations. The length of the red segments 
is determined by the value of SNR, while their orientation coincides with the azimuth/back-azimuth of the respective station pair. 0° corresponds to the north, 
90° to the east, etc.
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exactly the same analysis. Our measurements of SNR at the central periods of the secondary microseisms 
band are characterized by a relative maximum along the SW-NE direction (see the periods of 6 and 8�s in 
Figure�11). This was also noted by, e.g., Landès et�al.�(2010) and Tian and Ritzwoller�(2015), who identified 
in the central Pacific Ocean a probable source region of secondary microseisms (see Figure 8 of Tian & 
Ritzwoller,�2015). However, the preferential directionality of noise emerging from our SNR analysis is less 
prominent. This result confirms the known seasonality of ambient noise sources (e.g., Hillers et�al.,�2012; 
Tanimoto et�al.,�2006). Ensemble-averaging over several months of recordings reduces this effect, and the 
resulting empirical Green’s functions better approximate those that would be obtained from a truly diffuse 
ambient field.

5.3. Results and Discussion

To retrieve the attenuation coefficient within the study area, we performed a 1-D grid search over 275 values 
of � evenly spaced on a logarithmic scale between 5�×�10�8  and 1�×�10�4 �m�1 ; in analogy with Section�4, 
minimization of the cost function C(�, �) allowed us to identify the best fitting value of � at each frequency, 
as shown in Figure�12 . In the same Figure we also show, for four different station pairs, the datafit obtained 
by substituting into Equation�11 the values of �(�) which minimize C(�, �). The source spectrum of the 
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Figure 12. Top panel: cost function C(�, �) shown (after normalization) as a function of attenuation coefficient and 
frequency. The red dots mark the values of � for which C(�, �) is minimized at each frequency. The dashed yellow 
line is calculated, at each frequency, as µ�±��, where µ and � indicate mean and standard deviation of the values of � 
retrieved from the bootstrap analysis. Yellow marks indicate average measurements of alpha as collected in the vicinity 
of the study area in previous studies (i.e., ; Al-Khatib & Mitchell,�1991; Lawrence & Prieto,�2011; Lin,�1989; Patton 
& Taylor,�1984, as specified in the legend). Bottom: normalized cross correlations (black) fitted by the model (red) 
obtained by substituting into Equation�11 the values of �(�) which minimize the cost function C(�, �). The datafit is 
shown for the same station pairs of Figure�10. Within each subplot, station codes and interstation distance are indicated 
on the upper right. The frequency band spanned by the models is determined by the availability of phase-velocity 
measurements.
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study area, as inferred from our measurements of �(�), c(�), average power spectral density, and assuming 
a constant source density �, is shown in the supplementary materials (Figure�S8).

We assessed the uncertainty associated with � via a bootstrap analysis: in practice, we minimized C(�, �) 
100 times, randomly removing 20% of the cross correlations at each iteration. The resulting set of �(�) al-
lowed us to estimate the statistical robustness of the values of attenuation retrieved from the inversion; in 
this regard, its average approximately coincides with the red curve showed in Figure�12a, with the largest 
differences being � 2�×�10�7 �m�1  at 0.04�Hz, whereas its standard deviation is at least one order of magnitude 
smaller than the mean values at all frequencies, varying from 3.18 × 10�7 �m�1  at 0.3�Hz to 3.42�×�10�8 �m�1  
at 0.04�Hz.

We infer from Figure�12 that our estimates of �, and their dependence on �, are similar to those found by 
Patton and Taylor�(1984) and Lin�(1989) from earthquake-based Rayleigh waves; at the same frequencies, 
the values proposed by Lawrence and Prieto�(2011) based on seismic ambient noise are slightly larger. At 
higher frequencies (> 0.2�Hz), our measurements fit well those that would be obtained by linearly extrap-
olating the values of � reported by Lin�(1989). At frequencies lower than �0.065�Hz (periods���16�s), on 
the contrary, we observe an increase of �, in disagreement with some of the early observations shown in 
Figure�12.

As shown in Section�4.3, attenuation is significantly underestimated if the distribution of noise sources is 
limited to the far field of the receivers. If this was the case in the real world, we should observe a signif-
icant discrepancy between ambient-noise- and earthquake-based attenuation estimates, the latter being 
systematically larger than the former. Our estimates, however, are compatible with those obtained from 
earthquakes by previous authors in the area of interest. This suggests that ambient noise in the frequency 
range relevant to this study might be generated in the relative vicinity of our receiver array, i.e., within the 
continent; alternatively, other complex non-homogeneities in the distribution of noise sources might com-
pensate for the lack of sources in the near field. This issue merits further attention, but is beyond the scope 
of our current study.

6. Conclusions

We have validated numerically the method proposed by Boschi et�al.�(2019, 2020) to quantify the attenua-
tion of Rayleigh waves from the cross correlation of seismic ambient noise. We achieved this by simulating 
the displacement associated with 200,000 impulsive sources and recorded by 29 receivers. In all our simula-
tions, we imposed realistic values of phase velocity and attenuation (��=�5�×�10�7 �m�1 , ��=�1�×�10 �6 �m�1 , and 
a frequency-dependent ��=��(�) ranging from 3�×�10 �7  to 1�×�10�6 �m�1 ). Synthetic data were generated and 
inverted based on a suite of different setups. We first considered the “ideal” case of a uniform distribution 
of noise sources; then we implemented three different spatially heterogeneous source distributions: the first 
characterized by significant azimuthal variations in source density, another by the absence of noise sources 
in the near field of the receivers, and the third involving rapid source density variations with both distance 
and azimuth (i.e., a “patchy” source distribution). For each experimental setup, we first verified the cancel-
lation of the “cross terms,” predicted by the theory (Equation�4) when the ambient wave field is diffuse and 
the spectrum of emitted noise does not change as a function of source location; we then verified that the 
source spectrum is reconstructed accurately, as predicted by the theory, if the source density and attenua-
tion coefficient � are known. Finally, we performed an inversion to measure � from normalized cross corre-
lations of synthetic recordings, through the cost function C(�, �). The definition of C(�, �) involves a sum 
over all available station pairs and therefore all available propagation azimuths; importantly, this reduces 
the unwanted effects of nonuniformities in source distribution. We successfully retrieved the correct values 
of � in synthetic experiments where noise sources had been deployed in both the near and far field, with 
good accuracy over a broad frequency range. This result confirms that it is possible to estimate attenuation 
reliably, even if the assumption of a diffuse wavefield is not exactly met by the data. On the other hand, we 
inferred from the third experiment that when noise sources are absent from the near field of the receivers 
both source spectrum and attenuation are significantly underestimated.
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Having validated our method by synthetic tests, we compiled a data set of noise recordings using 33 broad-
band receivers distributed within part of the Colorado plateau and of the Great Basin. We first used this 
data set to quantify the diffusivity of the ambient wavefield, calculating the signal-to-noise ratio (SNR) as 
a function of azimuth within the area of interest. The SNR proved to be rather homogeneous in the energy 
band characteristic of the primary microseisms (centered at the period of 14�s), but revealed a SW-NE pref-
erential directionality of the noise sources within the secondary microseism band (6–8�s); this observation 
is compatible with what reported in previous studies. When inverting the data to constrain �, the effects of 
SNR inhomogeneity with respect to azimuth are reduced both by ensemble averaging over time, and implic-
it averaging over azimuth in the definition of C(�, �). The resulting estimates of �, confirmed by a bootstrap 
analysis, range from � 1�×�10�5 �m�1  at 0.3�Hz to � 4.5�×�10�7 �m�1  at 0.065�Hz; in this frequency range, those 
values are compatible with previous observations made on the basis of both earthquake-generated and 
ambient Rayleigh waves.

Data Availability statement

The facilities of IRIS Data Services, and specifically the IRIS Data Management Center (http://ds.iris.edu/
ds/nodes/dmc/), were used for access to waveforms, related metadata, and/or derived products used in this 
study. The authors used publicly available seismic data from the Transportable Array (TA) seismic network 
(https://doi.org/10.7914/SN/TA).
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