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S U M M A R Y
The anisotropy of granular media and its evolution during shearing are important aspects
required in developing physics-based constitutive models in Earth sciences. The development
of relationships between geoelectrical properties and the deformation of porous media has
applications to the monitoring of faulting and landslides. However, such relationships are still
poorly understood. In this study, we first investigate the definition of the electrical conductivity
anisotropy tensor of granular materials in presence of surface conductivity of the grains.
Fabric anisotropy is related to the components of the fabric tensor. We define an electrical
anisotropy factor based on the Archie’s exponent second-order symmetric tensor m of granular
materials. We use numerical simulations to confirm a relationship between the evolution of
electrical and fabric anisotropy factors during shearing. To realize the simulations, we build
a virtual laboratory in which we can easily perform synthetic experiments. We first simulate
drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and
0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor
of a set of deformed synthetic samples is computed using the finite-difference method. The
numerical results show that shear strains are responsible for a measurable anisotropy in the bulk
conductivity of granular media. The observed electrical anisotropy response, during shearing,
is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit
however a unique linear correlation, regardless of the shear strain and the initial state (porosity)
of the synthetic samples. The practical implication of this finding confirms the usefulness of
the electrical conductivity method in studying the fabric tensor of granular media. This result
opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution
of anisotropy of soils and granular rocks during deformation, for instance during landslides,
and to use the evolution of the conductivity tensor to monitor mechanical properties.

Key words: Electrical properties; Microstructure; Geomechanics; Electrical anisotropy.

1 I N T RO D U C T I O N

In the last three decades, electrical properties (electrical conductiv-
ity, streaming potential coupling coefficient and the material prop-
erties associated with induced polarization) have started to be used
to monitor non-intrusively the evolution of mechanical properties
of porous media (e.g. Arulanandan et al. 1981; Seladji et al. 2010;
Revil et al. 2015). For instance, electrical conductivity and induced
polarization can be used to monitor the compaction and shearing of
granular porous materials including sands and shales (e.g. Hausen-
blas 1995; Abu-Hassanein et al. 1996; Rinaldi & Cuestas 2002;
Koch et al. 2012). Self-potential can be used to monitor fracking
operations and to determine the moment tensor of the seismic events

(Mahardika et al. 2012; Haas et al. 2013). This has in turn applica-
tions to the monitoring of fracking, damage and healing, shearing
and the compaction response of porous media with applications
to the non-intrusive monitoring of slope stability, faults, volcanoes
and landslides. Electrical resistivity exhibits much more sensitivity
to anisotropy than other geophysical methods such as seismic (see
discussion in Woodruff et al. 2015).

In this paper, we are interested in the evolution of anisotropy
during shearing by simulating drained triaxial compression tests.
Anisotropy is indeed a key characteristic of sheared granular mate-
rials. It reflects the evolution of the petrofabric of the porous material
with time until a critical state is reached. The evolution of anisotropy
is in turn closely related to the spatial arrangement of the grains,
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pores and grain-to-grain contacts (contiguity). Anisotropy varies
during deformation because volumetric and shear strains can induce
changes in the microstructure of the materials (e.g. Cambou et al.
2004; Guo & Zhao 2013), especially in the discontinuities between
the grains, which is described itself through a fabric tensor (Oda
1982). Fabric anisotropy (and its evolution during shearing) controls
the directional nature of the shear strength, stress–strain behaviour
and other geotechnical properties of granular soils (Rothenburg
& Bathurst 1989; Collins & Muhunthan 2003) and can be under-
stood by looking at the properties of the fabric tensor. Therefore,
it is necessary to identify the role of fabric anisotropy in order to
develop physics-based constitutive models in Earth sciences (Gao
et al. 2010; Li & Dafalias 2012) and to apply geophysical meth-
ods to hydromechanical problems. The determination of granular
media fabric tensor in the laboratory is usually based on the anal-
ysis of microstructural images of the porous materials, which can
be obtained using advanced techniques such as neutron and X-ray
microtomography (e.g. Viggiani et al. 2004; Andò et al. 2012; Kim
et al. 2013) and scanning electron microscope images (e.g. Mirz-
ababaei & Yasrobi 2007). However, these heavy techniques require
sophisticated and costly equipments. This impedes their applica-
tions in most geotechnical laboratories and cannot be used up to
now for soil samples undergoing deformation. They also cannot be
used in field conditions. This is another motivation to use electrical
methods in the laboratory or the field: these methods are easy to
setup and very cheap. In addition, great progresses have been done
in developing fully physics coupled inversion of electrical resistivity
data (e.g. Jardani et al. 2013).

The electrical resistivity method has been extensively used to
characterize soil and rock properties such as porosity, moisture
content, hydraulic conductivity and Atterberg limits just to cite few
examples (e.g. Abu-Hassanein et al. 1996; Rinaldi & Cuestas 2002;
Bryson 2005). Some researchers have also explored the possibility
of using directional conductivity measurements to study the inherent
and induced anisotropy of soil and sedimentary rock fabrics (Aru-
lanandan & Kutter 1978; Anandarajah et al. 1996; Kuganenthira
et al. 1996; Friedman & Jones 2001; Wong 2003; Woodruff et al.
2015). The relationship between electrical and fabric anisotropies
seems intuitive because the electrical conductivity of soils and gran-
ular media in general is strongly dependent on both the pore (grain)
shapes and spatial arrangements (Mendelson & Cohen 1982; Fried-
man 2005). Both properties are known to control the fabric of gran-
ular porous media. Considering that the measurement of electrical
conductivity of porous samples is relatively easy and low cost in
both the laboratory and the field, we believe it could be a promis-
ing technique for the study of the fabric anisotropy in geotechnical
engineering and geosciences.

Despite this potential, two issues need to be clarified if we
want to apply the electrical conductivity method to monitor fab-
ric anisotropy. The key questions we want to answer in this paper
are the following:

(1) What is the most appropriate definition of an electrical
anisotropy tensor that would be tied to a fabric anisotropy ten-
sor? A suitable electrical anisotropy factor is not yet available, and
in practice, people use empirically different parameters to calcu-
late electrical anisotropy. For example, the ratio of the measured
directional effective conductivity, Aσ , is used to quantify electrical
anisotropy (e.g. Anandarajah et al. 1996). In addition, the literature
is populated by works in which Archie’s law is improperly used,
neglecting the effect of surface conductivity in the conductivity
equation. Actually, the measured effective conductivity is related

to two different conduction mechanisms. The first corresponds to
the pore water conductivity, which should be divided by the forma-
tion factor in saturated conditions. The second corresponds to the
surface conductivity and corresponds to conduction in the electri-
cal double layer coating the surface of the grains (e.g. Revil 2012,
2013a,b).

(2) How can we assess the relationship between the electrical
anisotropy factor and the fabric anisotropy factor? Although the
existence of such a relationship was proposed by Kuganenthira
et al. (1996), solid evidences are still needed, especially for granu-
lar media with different initial states (dense or loose). The lack of
experimental evidences is mainly because the current methods to
determine the fabric of porous media in the laboratory are costly.
For instance, to determine soil fabric evolution during shearing, the
entire triaxial apparatus has to be installed in the X-ray scan, which
requires significant modifications to both equipments. In contrast,
it is relatively easy to calculate the fabric and its anisotropy of syn-
thetic samples using discrete element method (DEM) simulations
(e.g. Rothenburg & Bathurst 1989; Yimsiri & Soga 2010; Guo &
Zhao 2013). In general, DEM simulation is relatively computation-
ally intensive, which could restrict the number of particles used in
calculations. However, it can provide detailed information on the
motion of geomaterials at particle level and therefore, with the avail-
ability of low-cost, high-performance computer, DEM simulation is
increasingly used in geomechanics to explore mechanical properties
of granular media (Scholtès et al. 2009; Scholtès & Donzé 2012). If
the directional electrical conductivity can also be calculated for syn-
thetic samples in DEM simulations, the numerical method could be
a powerful tool to study the relationship between electrical and fab-
ric anisotropies, which in turn has applications for field studies. This
calls for the development of a virtual computational rock physics
laboratory as advocated for instance by Dvorkin et al. (2011) for
seismic, mechanical and electrical properties and more recently by
Torskaya et al. (2014) and Shabro et al. (2014).

The objective of this study is therefore twofold: (1) a clear defini-
tion of the electrical anisotropy factor should be developed and (2)
a numerical method for the study of the fabric/electrical anisotropy
relationship should be achieved. We first discuss electrical conduc-
tion mechanisms in porous media. Based on this model, we define
an electrical anisotropy tensor from which we can compute an elec-
trical anisotropy factor. This factor needs to be analogous to the
fabric anisotropy factor determined from the fabric tensor (Oda
1982). Afterwards, we present a numerical method to calculate the
directional conductivity of granular media.

2 E L E C T R I C A L C O N D U C T I V I T Y O F
G R A N U L A R P O RO U S M E D I A

The electrical conductivity of a saturated granular porous medium
has two contributions: (1) the ionic conduction through the intercon-
nected pore space and (2) the surface conduction occurring along
the mineral–fluid interface (see Fig. 1, e.g. Van Olphen & Waxman
1958). In this section, we introduce the conduction mechanisms in
isotropic and anisotropic porous media saturated with a pore water
solution containing a dissociated salt such as NaCl.

2.1 Conductivity in absence of surface conductivity

We first consider the case of a saturated granular material with-
out surface conduction (for instance at very high salinity for which
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Figure 1. Sketch of the electrical double layer at the mineral–fluid interface coating a spherical grain of sand (modified from Revil & Florsch 2010). The
mineral surface is usually charges due to protonation/deprotonation of the hydroxyl surface groups. The resulting fixed charge on the mineral surface (>X-sites)
attracts the cations (counterions) and repels the anions (coions) in the vicinity of the mineral surface. The double layer comprises the Stern layer of sorbed
counterions (forming inner or outer sphere complexes with the mineral surface) and a diffuse layer in which the concentrations of the counterions and coions
obey Poisson–Botzmann distributions. The Stern and diffuse layers are characterized by anomalous conductivity with respect to the bulk pore water conductivity
σw. These anomalous conductivities are characterized by the specific surface conductances �S and �d for the Stern and diffuse layers, respectively.

surface conductivity σss may be negligible). In this case, the forma-
tion factor is defined by,

lim
σss=0

σ = 1

F
σw. (1)

where σ and σ w denote the electrical conductivity of the porous
material and pore fluid, respectively, and F is called the (resistivity)
formation factor. In the absence of surface conductivity, the conduc-
tivity problem is therefore defined by the following boundary-value
problem involving the resolution of the Laplace equation for the
electrical potential ψ defined through the pore space:

∇2ψ = 0 in Vp (2)

n̂ · ∇ψ = 0 on S (3)

ψ(z) =
{
ψ1, z = 0
ψ1 + �ψ, z = L

, (4)

where n̂ is the unit vector normal to the pore water/grain interface
S, Vp denotes the interconnected pore volume and �ψ/L denotes
a macroscopic electrical field applied for instance through cube of
length L in the z-direction In absence of surface conductivity (σss

= 0), the formation factor F is obtained by summing up the Joule

dissipation of energy (e.g. Johnson & Sen 1988; Revil & Cathles
1999), that is,

σ

(
��

L

)2

= 1

V

∫
Vp

σw|∇ψ |2dVp, (5)

σ

(
��

L

)2

= σw

V

∫
Vp

|∇ψ |2dVp, (6)

where the term dVp denotes the integration is taken over the pore
space. Therefore, the formation factor is given by Johnson & Sen
(1988),

1

F
= σ

σw

, (7)

1

F
=

(
��

L

)−2 1

V

∫
Vp

|∇ψ |2dVp. (8)

It appears that 1/F is exactly an effective porosity in which more
weight is given to the constrictions in which the local normalized
electrical field −∇ψ(��/L)−1 is high (Revil & Cathles 1999).
Note that F can be related to the connected porosity by Archie’s law
(Archie 1942),

F = φ−m, (9)
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Figure 2. Formation factor porosity relationships for Monterey sand sam-
ples compacted with a variety of methods (pluviated, tapped and vibrated).
The samples are transverse isotropic. Data from Arulanandan & Kutter
(1978). The vertical and horizontal formations factors of the tensor F are
fitted with Archie’s law providing the values of the vertical and horizontal
porosity exponents (mV and mH, respectively). The fits are materialized by
the plain lines and the value of the correlation coefficients are provided.

where m is called the porosity exponent (also called cementation
exponent in a number of publications). Sometimes, the data show the
existence of a percolation threshold for granular media and Archie’s
law is replaced by F = (φ − φp)−m where φp denotes a percolation
porosity (see, for instance Sen et al. 1981; Revil et al. 2014, for the
Fontainebleau sandstone). For granular media, this exponent can be
connected to the grain shape or grain shape distribution through the
differential effective medium theory (Mendelson & Cohen 1982).
For spherical grains in a random arrangement, the theory predicts
that m is close to 1.5 in agreement with what is usually observed
for granular media like well-rounded sands (Fig. 2).

2.2 Electrical double layer

Since the surface conductivity is often neglected in applied geo-
physics, it is worth recalling where this contribution comes from.
The electrical double layer plays an important role for the contri-
bution. As shown in Fig. 1, when a porous medium is immersed in
an electrolyte, the mineral surface gets usually negatively charged
at near-neutral pH values. The adjacent electrical double layer is
formed of two layers namely the Stern and the diffuse layers. The
Stern layer is located between the o-plane (mineral surface) and the
d-plane (inner plane of the diffuse layer). The diffuse layer extends
from the d-plane into the pore space. In Fig. 1, the element M+

stands for cations (e.g. sodium Na+), while A− stands for anions
(e.g. chloride Cl−). For the counterions M+ in the diffuse layer, their
mobility is very close to the ions in the bulk water. In the Stern layer,
the counterions are sorbed on the surface of aluminosilicates and
silicates (van Olphen & Waxman 1958; Carroll et al. 2002). The
local conductivity σ (x) (in S·m−1) in the Electrical Double Layer
depends on the local distance x from the mineral surface. The Stern
layer contributes to the excess surface conductivity �s

s (in Siemens,
S) while the diffuse layer contributes to the excess surface conduc-
tivity �s

d (in S, Revil & Florsch 2010, and Fig. 1). Because both

Figure 3. Conductivity versus pore water conductivity for the Fontainebleau
sandstone (99.8 per cent pure silica). We use samples F3 (porosity 0.068, data
from Börner 1992) and sample Z14Y (porosity 0.070, data from Revil et al.
2014). The electrical conductivity data for these two samples characterized
by the same porosity and formation factor are consistent. The estimated
surface conductivity and formation factor are 126 ± 8 and (8 ± 1) × 10−5

S m−1, respectively.

these terms have units of conductance, in this study we will term
them specific surface conductances. Note also that while surface
conductivity is very important in the presence of clay minerals, it is
not negligible in clean sands and sandstones either as discussed re-
cently by Revil et al. (2014). For instance, if the surface conduction
cannot be neglected, the formation factor of Fontainebleau sand-
stones can be significantly smaller than their intrinsic formation
factor (see their fig. 21).

2.3 Surface conductivity

We now consider the case when surface conduction exists. An ex-
ample of surface conduction in a clay-free granular porous material
(the Fontainebleau sandstone) is shown in Fig. 3. If conduction in the
bulk pore space dominates, the surface conduction can be treated
as a weak perturbation to the conduction in the bulk pore space
(Johnson & Sen 1988) letting the electrical field distribution nearly
unchanged. In this case, the effective conductivity of the porous
medium σ is given by (see, for instance Bernabé & Revil 1995)

σ = 1

F
σw + σS, (10)

where σ s is the surface conductivity. An experimental data set such
as shown in Fig. 3 is usually used to determine the formation factor
and the surface conductivity. Two things need to be appreciated: (1)
eq. (10) describes a high salinity asymptotic behaviour and for very
low salinity, it is better to use a differential effective medium theory
to capture the non-linearity between σ and σw (see discussions in
Bernabé & Revil 1995; Niu et al. 2016 and references therein). (2)
In this high salinity asymptotic behaviour, the formation factor F
is not defined anymore as the ratio between the pore water conduc-
tivity and the rock sample conductivity (this ratio can be defined
eventually as an apparent formation factor, but its usefulness is
questionable since it depends on salinity, e.g. Revil et al. 2014).

The surface conductivity σ s (at the macroscopic scale) should not
be confused with the specific surface conductivity σ ss (at the grain
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Figure 4. Sketch of the unit vectors defined for the grain-to-grain contacts
and voids. The ellipse is the void cell ellipse connecting the centres of the
grains. The unit vectors n and l are defined at the grain-to-grain contact and
along the void ellipse, respectively.

scale), which is the equivalent electrical conductivity of the solid
phase associated with the specific surface conductance �s (Fig. 1).
Revil & Glover (1997) extended the use of the Joule dissipation the-
orem to the case of bulk and surface conduction. The macroscopic
Joule dissipation of energy is the sum of all the Joule dissipation
contributions occurring at the microscopic scale in both the bulk
pore water and in the electrical double layer. This yields,

σ

(
��

L

)2

= 1

V

∫
Vp

σw|∇ψ |2dVp + 1

V

∫
S
�S|∇ψ |2d S, (11)

σ

(
��

L

)2

= σw

V

∫
Vp

|∇ψ |2dVp + �S

V

∫
S

|∇ψ |2d S, (12)

where �S describes the specific surface conductivity of the electrical
diffuse layer (in S; see Fig. 4). At high salinity (the Dukhin number
defined by Du = Fσ s/ σ w�1, Shilov et al. 2001), the distribution
of the electrical field is nearly the same as in absence of surface
conductivity and we can write,

σ = σw

F
+

(
��

L

)−2
�S

V

∫
S

|∇ψ |2d S, (13)

which is similar to eq. (10). This provides an expression for the
surface conductivity,

σS = 2

�F
�S, (14)

where

2

�
=

∫
S |∇ψ |2d S∫

Vp
|∇ψ |2dVp

, (15)

denotes the characteristic pore size introduced by Johnson & Sen
(1988). We can also write the total energy that is dissipated as,

σ

(
��

L

)2

= 1

V

∫
Vp

σw|∇ψ |2dVp + 1

V

∫
Vp

σss|∇ψ |2dVs, (16)

σ

(
��

L

)2

≈ σw

V

∫
Vp

|∇ψ |2dVp + σss

V

∫
Vp

|∇ψ |2dVs, (17)

and therefore the surface conductivity can also be written as,

σS ≈ σss

G
. (18)

In the terminology used by Niu et al. (2016), this reciprocal
formation factor G is defined by

1

G
= 1

V

(
��

L

)−2 ∫
Vs

|∇ψ |2dVs . (19)

The parameter G is the formation factor of the porous medium
if the associated solid and liquid phases are interchanged, and it
can be defined in the way similar to the definition of F. In Revil &
Cathles (1999), it is approximately given by (1 − 1/F) ≈ 1. Taking
now the two expressions of the surface conductivity, we have,

σss

∫
Vs

|∇ψ |2dVs ≈ �S

∫
S

|∇ψ |2d S, (20)

σss ≈ �S

∫
S |∇ψ |2d S∫

Vs
|∇ψ |2dVs

. (21)

It follows that the conductivity of the grains can be written as

σss ≈ �S
2

	
, (22)

where the quantity 	 is defined by

2

	
≈

∫
S |∇ψ |2d S∫

Vs
|∇ψ |2dVs

, (23)

and denotes a characteristic grain size. For spherical grains, the
characteristic grain size 	 is equal to the radius of the sphere (Niu
et al. 2016).

The specific surface conductance is contributed by the electri-
cal double layer. At the high-frequency limit, both the Stern and
the diffuse layers contribute, that is, �s = �s + �d. At the low-
frequency limit, the conduction is only from the diffuse layer, that
is, �s = �d (e.g. see Leroy et al. 2008). In this study, we consider
the direct current (DC) electrical conductivity of granular materials,
that is, at the low-frequency limit, and therefore the specific surface
conductance is solely from the diffuse layer. Thus, the specific sur-
face conductivity is given by σss = (2/	)�d . The specific surface
conductance presents the influence of the interfacial electrochem-
istry of the electrical diffuse layer (O’Konski 1960; Revil & Florsch
2010). It is related to the pore fluid chemistry (such as ion mobility,
ionic strength, pH and pore fluid composition) and the surface min-
eralogy, for example, by the Stern layer polarization model (Leroy
& Revil 2009; Revil 2012, 2013b),

�d = Qs · β(+) · (1 − f ) , (24)

where Qs (C m−2) is the charge density on the mineral surface,
β (+) (m2s−1V−1) is the counterions mobility in the diffuse layer
and the partition coefficient f (dimensionless) defines the relative
fraction of ions in the Stern layer. Note that f is controlled by the
fluid chemistry and the mineralogy of the porous medium (Leroy &
Revil 2009; Revil 2012). Combining eqs (14), (18) and (22) yields
the following expression for the surface conductivity,

σs = 1

H
�d (25)

where H is a textural quantity that averages the specific surface con-
ductance over the synthetic sample scale. The following relationship
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follows 1/H = 2/(G	) = 2/(�F). In the case of G is close to 1,
we have 	 ≈ �F , which is equivalent to eq. (11) in Revil & Cathles
(1999).

2.4 Extension to anisotropic conditions

The previous model can be extended to anisotropic (transversely
isotropic) conditions (e.g. Arulanandan & Kutter 1978; Revil et al.
2013). The bulk conductivity tensor associated with contribution
from the pore water conductivity is

σ = [Fi j σw + Hi j�
d ]xi ⊗ x j , (26)

F = Fi j xi ⊗ x j , (27)

H = Hi j xi ⊗ x j , (28)

where xi (i = 1, 2, 3) denotes the basis vector of the Cartesian
frame of reference, ⊗ represents the tensorial or dyadic product
of two vectors and Fij denotes the components of the (symmetric
second-rank) formation factor tensor F for the bulk conductivity.
The components of this tensor have the following form,

Fi j = ∫ |∇ψi |2dVp(
�� j/L

)2
V

(29)

where �� j is the applied (macroscopic) potential difference in the
j-direction and−∇ψi is the local electric field in the i-direction
(in absence of surface conduction). Similarly, Hij denotes the com-
ponents of the (symmetric second-rank) geometrical factor tensor
which upscales the specific surface conduction to the sample scale,
and has the following form,

Hi j = ∫ |∇ψi |2d S(
�� j/L

)2
V

, (30)

where ∇ψi denotes the i component of the vector ∇ψ with respect
to the Cartesian coordinate xi. Note that adding the surface and
bulk pore water conductivities (e.g. eq. 26) is only a high salinity
approximation as discussed for instance in Bernabé & Revil (1995).
At low salinities, the relationship between the conductivity of the
material and the conductivity of the pore water becomes non-linear
(see for instance for soils Shainberg et al. 1980).

3 A N I S O T RO P Y T E N S O R S

In this section, we first briefly introduce the definition of the fabric
anisotropy. Then, we define the electrical anisotropy tensor based
on the same criteria used for the definition of the fabric anisotropy.
We also analyse, based on their definitions, the possible relation
between fabric and electrical anisotropy tensors.

3.1 Fabric tensor

Different forms of fabric tensors have been developed to quantify
the fabric of granular materials, and most of them are defined based
on the intergrain contact normal directions (Oda 1982), grain orien-
tations (Oda 1972; Anandarajah et al.1996; Fu & Dafalias 2015) or
void (pore) orientations (Li & Li 2009; Ghedia & O’Sullivan 2012).
Among these fabric tensors, the contact normal-based definition is
usually used in geomechanics of granular media. Indeed, a contact

force having a direction deviating from the grain-to-grain contact
normal direction is more likely to cause intergrain sliding or rolling
(Fu & Dafalias 2015), and thus lead to a strain change in the core
sample. The void-based definition of the fabric tensor is used usually
to characterize transport properties in the pore network such as the
anisotropic permeability (Berkowitz & Ewing 1998). Finally, the
grain orientation-based definition of the fabric tensor is more use-
ful for soil deformation with elongated grains (Anandarajah 1994).
These three definitions are strongly interrelated and numerical stud-
ies have confirmed a definite and linear correlation among them in
granular materials with different densities and intergrain friction
(Theocharis et al. 2014; Fu & Dafalias 2015). Such a correlation is
also intuitive since the evolution of void spaces in granular materi-
als results from the evolution of the solid phase and the evolution
of the geometry of the grain-to-grain contacts.

The fabric tensor is based on the normal to fabric anisotropy ten-
sor the contacts points or surfaces between the grains of the medium.
As a frequently-used tensor to quantify the fabric of granular media,
this second-order contact fabric tensor Tc (Oda 1976) is written as,

Tc =
∫

�

E(n) n ⊗ nd�. (31)

where n is the unit vector representing the direction normal to the
grain-to-grain contacts (Fig. 4), E(n) is a scalar function corre-
sponding to the probability density function of n and � denotes the
solid angle of the entire domain (4π steradians in 3-D and 2π rad in
2-D). Note that for spherical grains, n denotes also the unit vector
from the centre of a grain to the centre of the next grain in contact
with the former (things are different for ellipsoidal grains). We can
also write the components of the contact fabric tensor as,

T c
i j =

∫
�

E(n) ni n j d�. (32)

In order to allow comparison with the electrical formation factor
tensor, the void-based fabric tensor is also introduced here. Consid-
ering that a void cell is quantified by a void vector v·l (where v is the
void vector length and l is the unit vector along the void orientation,
see Fig. 4), void cells can be tensorially studied. The void-based
fabric tensor Tv defined by Li & Li (2009) is given as follows,

Tv = E0

∮
�

ν̄ (l) l ⊗ ld�, (33)

where v̄(l) is the mean length of the void vectors along the given
direction l; E0 is a normalization factor equals to 2π in 2-D space
and 4π in 3-D space. The fabric tensor Tv is a statistical measure
of the void spaces. Based on the directional distribution of the void
vector length, Tv is believed to be a direct reflection of the void
shape and its spatial arrangement.

For a fabric tensor T∗ in 3-D space, the corresponding fabric
anisotropy tensor D∗ is defined as the deviatoric part of T∗. We
decompose now the fabric tensor into its isotropic and deviatoric
parts D∗

i j ,

T ∗
i j = 1

3
T ∗

kkδi j + D∗
i j , (34)

D∗
i j = T ∗

i j − 1

3
T ∗

kkδi j (35)

where the superscript ∗ stands for c orv (see above). The deviatoric
part is different from zero in the anisotropic case and contains in-
formation regarding the departure of textural isotropy. For complex
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Electrical conductivity anisotropy versus fabric anisotropy 7

symmetries, a fourth-order contact tensor is required (Cowin 1985).
Normalizing the fabric anisotropy tensor yields

D = T∗
1
3 Tr(T∗)

− I. (36)

and I denotes the unit tensor. Note that the term Tr(Tv) (Tr denotes
the trace of the matrix) is a measure of the average void size that
is closely correlated to the void ratio e (volume of void/volume of
solid) or specific volume v = 1 + e (Li & Dafalias 2015). The void
ratio, related to the porosity φ by e = φ/(1−φ), is often considered
as a state variable to study the mechanical behaviour of soils. The
fabric anisotropy tensor D is a unity-trace symmetrical second-rank
tensor and it can be uniquely determined by scalar values such as the
difference between the two principal components αf = D1 – D3. The
parameter αf is termed the anisotropy intensity factor. This factor
quantifies the intensity of the anisotropy of the fabric of granular
media (Oda 1982).

3.2 Electrical anisotropy tensor

The definition of the fabric anisotropy tensor D actually follows
two criteria: (1) the definition is based only on the geometry of the
pore space (and/or the solid phase) and the physical properties of
the material are not involved; and (2) the definition is dimensionless
and independent of the pore size. For instance, information on the
‘average void size’, Tr(T∗), is used to normalize the fabric tensor
(eq. 36). In Section 2, we define three conductivity-related tensors:
σi j , Fi j , and Hi j , and we analyse below which is more appropriate
to provide the electrical anisotropy tensor according to the criteria
mentioned above. We can exclude σi j because it is related to the
physical properties of the materials, that is, the fluid conductivity or
specific surface conductance. In addition, the geometrical factor Hij

is also inappropriate for representing the electrical anisotropy tensor
because it is defined on the internal surface of the sample rather than
the pore space. The (conductivity) formation factor tensor F also
cannot be regarded as the electrical anisotropy tensor either because
it is still related to the porosity. However, we can define a new tensor
that does not contain the ‘average void size’ information.

When considering Archie’s equation (3), the formation factor
F can be decomposed into an ‘average void size’ part φ and an
‘average void shape’ part m (e.g. see Norris et al. 1985),

F = φm = exp (m ln φ ) . (37)

where F is the conductivity formation factor tensor and m denotes
the second-order symmetrical porosity exponent tensor. Note that
the exponential of a matrix A (exp A) is a well-defined quantity
given by,

exp (A ) =
∞∑

i=0

1

i!
Ai . (38)

Eq. (37) corresponds to a generalized form of Archie’s law, which
can actually be obtained through the differential effective medium
taken as upscaling approach for anisotropic granular porous media
(see Mendelson & Cohen 1982, for details). It is also in agreement
with experimental data. For instance in Fig. 2, we show the horizon-
tal and vertical formation factors of compacted sands, which behave
as a transversely isotropic material. Both the vertical horizontal
and vertical formation factors can be connected to the connected
porosity via Archie’s law defining horizontal and vertical porosity
exponents (mH and mV, respectively). According to eq. (37), we can

define a second-order symmetric tensor m that only contains the
‘average void shape’ part of F by

m = mi j xi ⊗ x j , (39)

mi j = ln Fi j

ln φ
= logφ Fi j . (40)

which is the base φ logarithm of Fij (note that Fij denotes the com-
ponent of the formation conductivity tensor F and are therefore the
reciprocal of the traditional formation factors).

We suggest that m is the suitable electrical anisotropy tensor be-
cause this tensor is fundamentally related to the texture of the porous
material (Mendelson & Cohen 1982) in a way that is similar to the
fabric anisotropy tensor D. Like for D, we can define the intensity
of the anisotropy of the material from an electrical viewpoint using
the difference between the two principal components of the tensor
m, that is αe = m1 – m3, where m1 and m3 denote the first and third
eigenvalues of the tensors m, respectively. As discussed above, nu-
merical simulations could be a useful tool to identify and confirm
the relation between D and m (or the anisotropy intensity factors αe

and αf). This is done in the next two sections.

4 E L E C T R I C A L C O N D U C T I V I T Y O F
S Y N T H E T I C S A M P L E S

4.1 Deformation of the synthetic core sample

The DEM software, ‘Grain Flow Code in Three Dimensions’
(PFC3D version 4.0, Itasca Company, USA) is used in this study to
deform synthetic samples made of a collection of spherical grains.
Spherical grains with different radii are used in the simulations
(Fig. 5), and the grain radius follows a lognormal distribution with
a mean value of 35.5 µm and a standard deviation of 0.1 (see Ta-
ble 1 and Fig. 5b). The Hertz–Mindlin model is used to model the
contact normal (using Hertz’s theory) and tangential force (using
Mindlin’s no-slip model) displacement relations between the grains
(e.g. Mindlin & Deresiewicz 1953). For DEM, the implementation
of this model can be found in Di Renzo & Di Maio (2004) and Di
Maio & Di Renzo (2005). The related parameters are summarized in
Table 1. In order to account for the resultant effects of the interlock-
ing occurring between real grains, the rolling resistance, that is, a
pair of moments generated at the grain-to-grain contacts (Iwashita
& Oda 1998), was used in our calculations. The two associated
parameters are the rolling stiffness coefficient and the maximum
rolling resistance coefficient, and their values are also shown in
Table 1. Note that the values of some parameters in Table 1 are
typical values calibrated for granular soils (see details in Kang et al.
2012; Wang et al. 2014; Zhang & Wang 2015). The loose synthetic
sample used in the DEM simulation is shown in Fig. 5(a) with the
grain size distribution shown in Fig. 5(b). Cubic synthetic samples
(0.4 mm × 0.4 mm × 0.4 mm) can be extracted from the cylindrical
synthetic samples at any stage of the deformation. There are used to
compute the electrical conductivity tensor as discussed in the next
section. These volumes contain approximately 150 grains and they
correspond to a representative elementary volume (Fig. 4c).

4.2 Formulation of the problem

In this section, we present a numerical method that can calculate
the directional conductivity of granular media so that it can be
coupled with the DEM simulation for studying the fabric–electrical
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8 Q. Niu et al.

Figure 5. Sketch showing the loose synthetic sample used in this study (22 187 grains). (a) Loose sample used for the DEM simulation of a (drained) triaxial
compression test and characterized by a starting porosity of 0.45. (b) Grain size distribution of the two synthetic samples (mean 35 µm). All the computations
(for both the deformation and electrical conductivity) are conducted in 3-D. We start the deformation with samples that are perfectly isotropic. (c) Determination
of the representative elementary volume (REV). Computations of the porosity and formation factor are made with cubes of different sizes extracted from the
cylindrical core sample. The REV corresponds to cubes of 0.43 mm3 with ∼150 grains.

anisotropy relation. We consider a cubic synthetic sample taken
from an assembly of a granular synthetic sample at any shear stage
in a DEM simulation. In the sample, we define the conductivity at
position r as σ (r). The current flow can be described by Laplace
equation as

∇ · j (r) = 0 (41)

or

−∇ · [σ (r) · ∇ψ (r)] = 0 (42)

where j = −σ (r) · ∇ψ(r) (Ohm’s law) denotes the local current
density (position dependent) and ψ is the local electrical potential.
The effective electrical conductivity of the synthetic sample can
be determined by applying a uniform electrical field across the
sample, which is fully saturated with a NaCl solution of conductivity
σ w. Therefore, the value of σ (r) in eq. (42) is assigned as the
fluid conductivity σ w at positions within the pores of the synthetic
sample. For positions occupied by solid grains, the conductivity σ (r)
is replaced by the specific surface conductivity σ ss. For spherical
grains, the specific surface conductivity has the following explicit

form, σss = (2/a)[e�d
(+) · β(+) · (1 − f )], where a is the radius of

the grain, �d
(+) is the surface site density of the adsorbed counterions

in the diffuse layer and e is the elementary charge (1.6 × 10−19 C).
Therefore, grains with different radii have different specific surface
conductivities, small grains are more conductive than large grains.

To numerically solve eq. (42), the cubic synthetic sample is dis-
cretized in 3-D using a stacked-grid scheme and the grid in all
three directions has the same interval d. The finite-difference rep-
resentation of the Laplace equation is then solved in the synthetic
sample domain. In this study, we modified for that purpose an indus-
try standard finite-difference code (DC3D.F) developed at the Na-
tional Institute of Standards and Technology (DC3D.F is available
at http://ciks.cbt.nist.gov/garbocz/manual/node52.html) to realize
the electrical conductivity calculations. For more details regard-
ing this code, the interested readers can consult Garboczi (1998).
The input to DC3D.F is a 3-D digital image. This 3-D image is con-
verted into a real conductor network. The conjugate gradient method
is used to solve this finite-difference representation of Laplace’s
equation (42) for the current density distribution. The calculated
volume-averaged current density can then be used to determine
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Electrical conductivity anisotropy versus fabric anisotropy 9

Table 1. Summary of the parameters used in the DEM simulation of drained
triaxial compression tests and associated electrical conductivity calculations.

Properties Values

Synthetic sample properties
Mean grain radius 35 µm
Grain density 2650 kg m−3

Initial porosity 0.38 (dense)
0.45 (loose)

Grain number 24 992 (dense)
22 187 (loose)

Contact model parameters
Shear modulus 0.30 GPa
Poisson’s ratio 0.20
Intergrain friction coefficient 1.50
Rolling stiffness coefficient 0.25 (dense)
Maximum rolling resistance coefficient 0.10 (dense)
Electrical parameters
Pore water conductivity 0.005 S m−1

Site density in diffuse layer 4.4 × 1015 m−2

Mobility of ions in diffuse layer 11 × 10−8 m2V−1s−1

the directional effective conductivity of the sample by considering
Ohm’s law.

In order to test the conductivity model, we perform electrical
conductivity modeling with the same uncompacted synthetic sample
(porosity 0.45) saturated at different pore water conductivities. The
results are shown in Fig. 6. We see both the high salinity asymptotic
behaviour for which the bulk conductivity dominates and the low
salinity behaviour for which surface conductivity dominates the
overall conductivity response. However, a closer inspection of the
results indicates that the surface conductivity defined by eq. (10)
is only a high salinity approximation (e.g. see Bussian 1983). Note
that the surface conductivity at σ w =5 × 10−3 S m−1 (pore water
conductivity at which the deformation experiments are numerically
carried out) is about 8 × 10−5 S m−1.

4.3 Conductivity change associated with isotropic
consolidation

The first simulation we perform is to test the behaviour of the
cementation exponent during isotropic consolidation of a granular
media starting with a loose grain distribution and a porosity of 0.45.
Fig. 7 shows a cross-section for the cubes used for the electrical
conductivity simulations. We see clearly the densification of the
granular material. Fig. 8 shows the consolidation curve for the
porosity versus the isostatic confining stress. The core sample is
more compressible initially, as expected, and strengthens further
and further. In Figs 9 and 10, we plot the consolidation curve for
the formation factor versus porosity and we compare the result
with both experimental data (using sands and sandstones) and the
differential effective medium theory with a cementation exponent
of 1.5 (see Sen et al. 1981 for details of the derivation) and a
percolation porosity of 0.005 (Fig. 9) and 0.014 (Fig. 10). The good
agreement between the model and the synthetic and numerical data
is very encouraging.

5 D R A I N E D T R I A X I A L C O M P R E S S I V E
T E S T

In this section, the proposed method is combined with DEM to
simulate the mechanical and electrical conductivity responses of two
granular media under a triaxial compression of a loose and dense
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Figure 6. Electrical conductivity of the porous materials versus the pore
water conductivity. The simulations are done with a cubic synthetic sample
(porosity 0.45, dimensions 0.4 mm × 0.4 mm × 0.4 mm) saturated by
electrolytes at different pore water conductivities. The upper figure shows
the high and low salinity behaviours. The high salinity behaviour is used
to determine the formation factor. However, if we determine the surface
conductivity by subtracting the bulk conductivity σw/F from the synthetic
sample conductivity, we see that the resulting surface conductivity is salinity
dependent. This is due to the change of tortuosity associated with salinity.
This behaviour is related to the changes in the current flow paths between
high- and low-salinity behaviours as described for instance by Bernabé
& Revil (1995). The dotted line corresponds to the differential effective
medium theory (see discussion in Niu et al. 2016).

core synthetic samples. The loose material is characterized by a
reference porosity of 0.45, while the dense material is characterized
by a reference porosity of 0.38. Note that 0.38 is close to the porosity
of a maximally random jammed sample (∼0.36 for monospheres;
see Torquato et al. 2000), while therefore 0.45 corresponds to a loose
distribution of grains. Details of the simulations are presented below
together with the numerical results. The relationship between the
electrical and the fabric anisotropies of these two synthetic samples
will be discussed at the end of this section.

5.1 Details of the simulations

The dense and loose synthetic samples are randomly generated
for different stress–strain and volumetric responses. The triaxial
compression tests will be assumed to be drained during shear since
we do not compute the fluid pressure during the tests. The axial
loading is applied under constant rate of strain. The stress σ 1 =
σ a (axial stress) is applied in the vertical direction, while σ 2 = σ 3

= σ r (radial stress) are applied in the radial direction. These two
synthetic samples are sheared with a confining pressure P = 50 kPa.
We apply variable deviatoric stresses σ 1–σ 3 until the axial strain εa
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10 Q. Niu et al.

Figure 7. 2-D cross-plots of the 3-D cubes showing the evolution of the porosity and packing under the effect of the isostatic confining stress P. The mineral
grains are in black and the pore space in white. Note that the computations of the electrical conductivity are done in 3-D.
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Figure 8. Porosity evolution during a consolidated-drained triaxial test. This
isotropic consolidation curve is shown for the loose synthetic sample under
the effect of the isostatic confining stress P. The quantity τ denotes the shear
stress.

reaches 30 per cent and we monitor the changes in the volumetric
strain, εV, the axial strain, εa, and the porosity, φ.

For these experiments, cubic synthetic samples (0.4 mm ×
0.4 mm × 0.4 mm) are extracted from the cylindrical samples
at distinct values of the axial strains with the increment �εa = 1
per cent. We have demonstrated above (see Fig. 5c) that these cubic
samples correspond to a good representative elementary volume of
the whole material. Figs 11 and 12 show cross-sections of the cubic
synthetic sample used for the electrical conductivity computations
and the evolution of the aggregates during shearing. The directional
electrical conductivity of the cubic samples is then calculated to
monitor the evolution of the electrical conductivity of the material
σ during shearing. The parameters related to the electrical calcu-
lations are also shown in Table 1. Note that the values of �d

(+) and
β(+) are chosen to be very close to the values determined from
experiments for silicates (Leroy et al. 2008; Revil 2012). We use
2003cells (i.e. d = 0.2 µm) to discretize the synthetic sample for all
the calculations (approximately 8 million of cells).

5.2 Stress–strain and volumetric responses

The stress–strain and volumetric responses of the dense and loose
synthetic samples are shown in Figs 13(a) and (b), respectively.
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theory for spherical grains including a percolation threshold that is, F =
(φ − φp)−3/2 with φp = 0.005. The data (filled circles) correspond to the
Monterey sand compacted with a variety of methods (see details in Arulanan-
dan & Kutter 1978). The numerical simulation (filled triangles) corresponds
to the DEM model described in the main text.

0

5

10

15

20

Fo
rm

at
io

n 
fa

ct
or

 F
 (-

)

Porosity, φ (-)

Numerical simulations (DEM)

Monterey sands
Fontainebleau sandstones

Model
3/2

2

( )

0.014, 0.977
p

p

F

R

φ φ

φ

−= −

= =

Figure 10. Evolution of the formation factor F with porosity during
isotropic compaction (filled circles). Comparison with an extensive data
set including the Fontainebleau sandstones (data from Revil et al. 2014,
and sands (data from Arulanandan & Kutter 1978). The theory (plain line)
corresponds to the differential effective medium theory for spherical grains
including a percolation threshold, that is F = (φ − φp)−3/2 with a perco-
lation porosity φp = 0.014. The value of R2 indicates that the modified
Archie’s law works well for a broad range of porosity.

For both experiments, a uniform straining throughout the core sam-
ples (called the critical state) has been reached (Schofield & Wroth
1968). The stress–strain and volumetric responses are qualitatively
representative of typical granular materials showing either a peak
followed by a plateau or just a plateau in the deviatoric stress ver-
sus axial strain curve. The dense synthetic sample experiences a
hardening–softening process. Correspondingly, the volumetric re-
sponse first contracts and then dilates. In contrast, the synthetic
loose sample continuously hardens and contracts until reaching the

critical state. Note that both samples have reached the critical state at
the end of the numerical experiments (steady-state shearing condi-
tions shown by the plateau) when εa> ∼25 per cent. The behaviours
are exactly those shown in the literature for dense and loose sands
(Kolymbas & Wu 1990; Schanz & Vermeer 1996; Pietruszczak
2010).

5.3 Electrical conductivity evolutions

The directional bulk conductivity of the synthetic sample (x-, y-
and z-directions) at different axial strains is shown in Figs 14(a)
and (b) for the loose and dense synthetic samples, respectively.
Note that the deviatoric stress is applied along the z-direction and
the (x, y)-plane is perpendicular to the z-direction. As shown in
Fig. 14, the bulk conductivity σ b of these two synthetic samples
shows similar trends with the volumetric strain. This is under-
standable because σ b is controlled by the formation factor, and
thus, by the porosity φ of the sample. When εa> ∼25 per cent, it
seems that the bulk conductivity in all directions stays unchanged.
It is also found that the σ b responses in the x(y)- and z-directions
start to deviate from each other after the deviatoric stress is ap-
plied, although their initial values are the same. It is noted that σ b

in the z-direction is slightly larger than that in the x(y)-direction
during shearing, indicating the occurrence of shear-induced elec-
trical anisotropy. Considering that the porosity is the same in all
directions, it appears that the shear-induced electrical anisotropy is
mainly from the anisotropy in the cementation factor m, as discussed
in Section 3.2.

The directional surface conductivity σ s is shown in Figs 15(a)
and (b) for the loose and dense synthetic samples, respectively.
Note that the value is consistent with what is shown in Fig. 6 at
the salinity of the pore water used for the simulation of the me-
chanical test. For both samples, it seems σ s maintains unchanged
during the entire shearing process, indicating that there is no in-
fluence from the shearing. This can be explained by the constant
specific surface conductivity of the synthetic sample during shear-
ing, which controls the surface conductivity of the synthetic sam-
ple. Differing from the bulk conductivity, no anisotropy is found
in the surface conductivity σ s for both samples. This shows that
the geometric factor Hij is almost the same for all directions, im-
plying that the tensor Hij is not a good indicator for the electrical
anisotropy (this is consistent with our theoretical analysis shown
above). According to eq. (30), it means that the local electrical
field near the mineral–fluid interface is not significantly affected
by shearing.

5.4 Relation between fabric and electrical anisotropy
factors

We calculated the electrical anisotropy intensity factors αe at differ-
ent axial strains from the directional conductivity, fluid conductivity
and porosity of the samples, and the results are shown in Fig. 16.
It is clear that the shear strain induces a clear anisotropy in the
electrical conductivity of both loose and dense granular media. For
the loose synthetic sample, it is shown that αe increases gradually
as εa increases and, after reaching the critical state, αe maintains
unchanged. The response of the dense sample is distinct from the
loose synthetic sample. At a small axial strain (∼5 per cent), αe

reaches its maximum value. After the peak, αe starts to decrease as
the shearing proceeds to the critical state.
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12 Q. Niu et al.

Figure 11. 2-D cross-plots of the 3-D cubes (computations are done in 3-D) showing the evolution of the packing of the dense synthetic sample when the
material is submitted to shearing. The mineral grains are in black and the pore space is represented in white. The plots are shown for different values of the
axial strains εa. Note the evolution of the porosity of the material. This sample experiences a hardening–softening process during the triaxial compression test.

We now explore the correlation between fabric and electrical
anisotropies based on the numerical results. Among the three kinds
of the aforementioned fabric tensors, it is straightforward to calcu-
late the void-based fabric tensor Tv which is defined on the void
space, as is similar to the electrical fabric tensor F. However, to
calculate Tv, few mature methods for 3-D void cell partition are
currently available. Also, since the contact normal-based fabric ten-
sor Tc is positively correlated to Tv (Theocharis et al. 2014; Fu
& Dafalias 2015), for the sake of convenience, here Tc is used in-
stead to characterize the fabric for the two synthetic samples. For
the specified cases considered, the contact normal-based fabric is
transformed from the continuous form to the discretized form as
(Oda 1982)

Tc = 1

Nc

Nc∑
c = 1

nc ⊗ nc (43)

where Nc is the total number of contact normal vectors nc in
the domain, and the superscript c denotes the cth contact in the
domain. Note that the fabric anisotropy tensor D is calculated
following eq. (36). The calculated fabric anisotropy intensity fac-

tor αf is plotted in Fig. 16 for comparison. The fabric and elec-
trical anisotropies have similar trends during shearing for both
dense and loose synthetic samples. The practical implication of
this finding is important, and it proves that the electrical measure-
ment can be used to determine the fabric anisotropy of granu-
lar media. Conversely, this correlation provides a physical picture
to the evolution of the cementation exponent during shearing of
granular media.

Fig. 16 confirms the correlation between the fabric and the elec-
trical anisotropy factors for both dense and loose samples. In order
to test whether these two correlations are the same, in Fig. 17,
we cross-plot the electrical anisotropy factor αe and the fabric
anisotropy factor αf at different axial strains for both samples. We
note that the αe–αf correlation is slightly different for the dense
and loose samples, but in general, both synthetic samples fol-
low the same linear trend with R2 = 0.92. This implies that the
electrical–fabric anisotropy relation for a granular material might
be unique and is independent of the stress and strain states of the
material. Further studies are still needed to test whether this linear
correlation holds for core samples with different porosities, inter-
grain frictions and grain shape and sizes. The slight difference in
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Figure 12. 2-D cross-plots of the 3-D cubes (computations are done in 3-D) showing the evolution of the packing of the loose synthetic sample when this
material is submitted to shearing. The mineral grains are in black and the pore space is represented in white. The plots are shown for different values of the
axial strains εa. Note the densification of the material. This sample continuously hardens during shearing and therefore contracts until reaching the critical state
for an axial strain> 24 per cent.

αe–αf correlation between loose and dense samples might be due
to the fact that the deformation in triaxial tests is localized (Higo
et al. 2013), and therefore, the calculated αf is influenced by the
sample location.

Finally, since the fabric tensor can be used to characterize the
linear poroelastic behaviour of Earth materials (e.g. Cowin 2004),
the present relationship between electrical and fabric anisotropies
opens a path in a unified framework between electrical conductivity
and seismic velocity in isotropic an anisotropic granular media. This
will be developed in a future work.

6 C O N C LU S I O N S

We have defined an electrical anisotropy tensor that is analogous to
the fabric anisotropy tensor used in rock mechanics. This electrical
anisotropy tensor is based only on the geometry of the pore space
and thus on physical properties of the material are involved in the
definition. Similar to the fabric anisotropy, the electrical anisotropy
tensor is dimensionless and independent of the pore size. The elec-
trical anisotropy tensor can be used to quantify the anisotropy in

granular media like soils from an electrical viewpoint. We have
shown that we are still not able to obtain a theoretical relation
between the electrical and fabric anisotropies, although the corre-
lation between them seems apparent. To identify and confirm the
relationship, we have presented a finite-difference-based numer-
ical method for the calculation of the electrical conductivity of
granular media. The method is easily coupled with the DEM to
study the electrical and mechanical properties and the anisotropy of
granular media.

The proposed method has been used to simulate the directional
electrical conductivity evolution of dense and loose synthetic sam-
ples subjected to triaxial compression. The results show that the
shear strain has a significant effect on the electrical conductivity
of granular media. The bulk conductivity exhibits similar trends
to the volumetric stain for both loose and dense samples. Signifi-
cant anisotropy in the bulk conductivity is found in directions par-
allel and perpendicular to the deviatoric stress. This anisotropy
increases gradually with axial strain for the loose synthetic sam-
ple; for the dense synthetic sample, it peaks at a low axial strain
and then decreases continuously until reaching a steady value.
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Figure 13. The stress–strain responses of the two synthetic samples under
triaxial compression as a function of the axial strain. (a) Deviatoric and
volumetric strain as a function of the axial strain for the loose synthetic
sample. For this numerical experiment, the deviatoric stress reaches a plateau
with no reduction in strength with continued straining. (b) Deviatoric and
volumetric strain as a function of the axial strain for the dense synthetic
sample for which we see a pronounced peak in the deviatoric stress versus
axial strain at failure with a clear drop in strength under continued straining.
The quantity τ denotes the shear stress.

However, shear-induced variations and anisotropy was not found
in the surface conductivity of both samples. This is mainly because
the surface conduction is controlled by the specific surface conduc-
tance, and thus, the fluid–mineral interface, which does not change
during shearing.

The comparison between the calculated fabric and electrical
anisotropies shows that the intensity of these two anisotropies has
similar trends during shearing for both the dense and loose synthetic
samples. It also shows that a linear relationship exists between the
fabric and electrical anisotropies, and it seems the relationship is
independent of the shear strain and the initial density of the samples.
The practical implication of this finding is important, and it shows
the potential of electrical conductivity measurement as a powerful
tool for the determination of the fabric anisotropy in granular me-
dia. Further studies are suggested to study the influence of other
properties of porous media (such as porosity, intergrain friction and
grain shapes and sizes) on the linear correlation between the fabric
and electrical anisotropies.
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A total of 68 synthetic numerical experiments are used here displaying a
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Andò, E., Hall, S.A., Viggiani, G., Desrues, J. & Bésuelle, P., 2012. Exper-
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