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S U M M A R Y
Various techniques have been proposed for palaeopole position estimation based on magnetic
field measurements. Such estimates can offer insights into the rotational dynamics and the
dynamo history of moons and terrestrial planets carrying a crustal magnetic field. Motivated by
discrepancies in the estimated palaeopole positions among various studies regarding the Moon
and Mars, we examine the limitations of magnetic field measurements as source of information
for palaeopole position studies. It is already known that magnetic field measurements cannot
constrain the null space of the magnetization nor its full spectral content. However, the extent
to which these limitations affect palaeopole estimates has not been previously investigated
in a systematic way. In this study, by means of the vector Spherical Harmonics formalism,
we show that inferring palaeopole positions from magnetic field measurements necessarily
introduces, explicitly or implicitly, assumptions about both the null space and the full spectral
content of the magnetization. Moreover, we demonstrate through synthetic tests that if these
assumptions are inaccurate, then the resulting palaeopole position estimates are wrong. Based
on this finding, we make suggestions that can allow future palaeopole studies to be conducted
in a more constructive way.

Key words: Geomagnetic excursions; Magnetic anomalies: modelling and interpretation;
Palaeomagnetism; Reversals: process, time scale, magnetostratigraphy; Satellite magnetics.

1 I N T RO D U C T I O N

A magnetization distribution that has been induced by a centred
dipole carries the information of the location of the poles of the
inducing dipole, which is usually known as the palaeopole position.
This fact is frequently used in terrestrial palaeomagnetic studies,
where the direction of a rock sample’s magnetization is estimated
through laboratory measurements. The same idea has also been
applied to estimate palaeopole positions for seamounts on Earth as
well as palaeopole positions on Moon and Mars. In these cases, only
a limited number of studies deal directly with rock samples (see, e.g.
Cournède et al. 2012), while most studies estimate magnetization
directions from magnetic field measurements. For this purpose, a
variety of techniques have been suggested and used. The most com-
mon technique consists in selecting isolated magnetic field anoma-
lies and then fitting signals generated by sources of simple form
(see, e.g. Hood & Zakharian 2001; Arkani-Hamed 2001; Frawley
& Taylor 2004; Boutin & Arkani-Hamed 2006; Hood et al. 2007;
Quesnel et al. 2007; Berguig et al. 2008; Takahashi et al. 2014;
Plattner & Simons 2015; Tsunakawa et al. 2015). A different tech-
nique consists in fitting the crustal magnetic field to a grid of equiv-
alent dipolar sources (see, e.g. Langlais et al. 2004; Langlais &
Purucker 2007; Milbury et al. 2012). Another method followed by

Sprenke & Baker (2000) and Milbury & Schubert (2010) considers
a crust which has been magnetized by one single, centred inducing
dipole. Alternative approaches include the method of Parker (1991)
(see also Oliveira & Wieczorek 2017; Thomas et al. 2017), which
is based on the assumption that the magnetization is of uniform
direction, the statistical method of Sprenke (2005), and the method
of Ditty & Ravat (2014, 2015), who determine palaeopoles from
edge effect magnetic field anomalies.

The various studies have led to a large variety of palaeopole esti-
mations, both for the Moon and Mars, and no consensus concerning
the results has been reached [for Mars see, e.g., table A1 of Milbury
et al. (2012), and for the Moon compare, e.g., fig. 6 of Arkani-
Hamed & Boutin (2014) to fig. 3 of Takahashi et al. (2014) and fig.
6 of Oliveira & Wieczorek (2017)]. These discrepancies have been
explained in terms of significant polar wander, but also in terms
of noisy data, lack of high-resolution measurements (e.g. Quesnel
et al. 2007), and differences in data processing and modeling tech-
niques (e.g. Boutin & Arkani-Hamed 2006). Additionally, a good fit
to the magnetic field data is not sufficient to ensure the accuracy of
the obtained palaeopole locations because inverting magnetic field
measurements for a magnetization distribution suffers from inher-
ent non-uniqueness (e.g. Runcorn 1975; Maus & Haak 2003). The
studies of Biswas & Ravat (2005a,b) address this problem. They
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show that different sources, resulting in different palaeopole loca-
tions, can explain equally well a given magnetic field pattern. In
order to tackle the problem of non-uniqueness, additional assump-
tions about the sources are needed (see, e.g. Milbury et al. 2012,
who use gravity data to constrain the location of the magnetized
sources). Overall, many studies point out that the accuracy of the in-
ferred palaeopoles strongly depends on the assumptions made about
the underlying sources (e.g. Parker 1991; Sprenke & Baker 2000;
Arkani-Hamed 2001; Sprenke 2005; Boutin & Arkani-Hamed 2006;
Hood et al. 2007; Milbury et al. 2012; Tsunakawa et al. 2015), but
the effect of these assumptions on palaeopole estimates has not been
systematically investigated in the current literature.

In this study, we are interested in clarifying in which way and
to what extent the assumptions made about the sources affect the
inferred palaeopoles. We do so by conducting two synthetic tests.
In the first test, we demonstrate what is the effect of introducing
wrong assumptions about the null space of the magnetization. In the
second test, we demonstrate what is the effect of introducing wrong
assumptions about the spatial wavelengths of the magnetization
that are not constrained by magnetic field measurements. The paper
is divided into four parts: the first part presents the methodology
employed to produce synthetic magnetic field data from a given
magnetization distribution and then to infer palaeopole locations
from these synthetic data. The second part presents the results of
the two synthetic tests. A discussion about their implications on
palaeopole studies based on real magnetic field data is presented in
the third part of the paper. The conclusions of our study together
with suggestions for future directions are presented in the fourth
part of the paper. The expression of the vector Spherical Harmonics
(SH) and the derivation of the key mathematical formula of the
methodology section are given in Appendix.

2 M E T H O D O L O G Y

The basic principle of the two synthetic tests is the comparison of
the true palaeopole location with the palaeopole locations recov-
ered through an analysis of the induced magnetic field. In both syn-
thetic tests, we generate a magnetization distribution, M, hereinafter
termed the input or the induced magnetization. The induced mag-
netic field, B, observed at point r outside of the sources, is then cal-
culated by means of the following formula (see, e.g. Blakely 1996,
eq. 5.3)

B (r) = −∇
[

μ0

4π

∫
�′

M
(
r′) ∇′

(
1

|r − r′|
)

d�′
]

, (1)

with r = (r, θ, φ) the position vector of the observation point and
r, θ and φ the radius, colatitude and longitude, respectively, in the
sphere’s reference system, r′ = (r ′, θ ′, φ′) the position vector of the
magnetized point, d�′ = (r′)2 sin θ ′dθ ′dφ′dr′ and μ0 the magnetic
permeability of vacuum. We simulate the retrieval of palaeopole
locations from the observed induced magnetic field by using B to
infer the synthetic palaeopole locations.

2.1 First synthetic test: the effect of assumptions on
magnetization’s null space

2.1.1 Generating the induced magnetic field

In the first synthetic test, the input magnetization, M, is induced
by a centred dipole that magnetizes a susceptibility distribution, χ ,

and is, therefore, given by (see, e.g. eqs 1.15–1.17 of Langel &
Hinze 1998)

M
(
r′) ≈ χ (r′)

μ0
Binducing

(
r′) , (2)

where Binducing is given by (see, e.g. Blakely 1996, eq. 4.14)

Binducing(r′) = μ0

4π

m

r ′3 [3(m̂ · r̂′)r̂′ − m̂], r ′ �= 0, (3)

with m = m·m̂ the magnetic dipole moment. Eq. (2) is an approxi-
mation in that it takes only the inducing field and not the true ambient
field into account, but their difference is negligible. The susceptibil-
ity distribution, χ , is considered to be confined to a spherical shell
of infinitesimal thickness, on the surface of which it varies laterally
according to:

χ
(
r′) = χ0e

−
( |r′−rc |

σ

)2

, (4)

where |r′ − rc| denotes the arc length between r′ and rc, with rc

being the position vector of the maximum susceptibility, χ0 and
σ is a measure of the spread. This distribution has been chosen
because it allows us to regulate the spectral content of M and B,
since larger σ result in smoother susceptibility distributions.

Having generated M, we calculate B by means of eq. (1) on a
Gauss–Legendre grid and obtain its SH coefficients up to a suffi-
ciently large lmax, so that its full spectral content is represented. In
the following, we present our methodology for obtaining palaeopole
locations by means of the SH coefficients of B.

2.1.2 Estimating palaeopole locations

In order to study the retrieval of palaeopole locations from measure-
ments of the induced magnetic field B, we need to properly constrain
what part of the magnetization can be recovered from such mea-
surements. Thanks to the decomposition of the magnetization in
vector SH, we can split M into its null space and into its part that
gives rise to the observed magnetic field. This decomposition reads
(see eq. 28 by Gubbins et al. 2011)

M = I + E + T , (5)

with

I =
∑
m,l

gm
I,lY

m,c
l,l−1 + hm

I,lY
m,s
l,l−1, (6)

E =
∑
m,l

gm
E,lY

m,c
l,l+1 + hm

E,lY
m,s
l,l+1, (7)

T =
∑
m,l

gm
T ,lY

m,c
l,l + hm

T ,lY
m,s
l,l , (8)

where {gm
I,l , hm

I,l}, {gm
E,l , hm

E,l} and {gm
T ,l , hm

T ,l} are the vector SH co-
efficients of order m and degree l of I, E and T , respectively,
and {Ym,c

l,l−1, Ym,s
l,l−1}, {Ym,c

l,l+1, Ym,s
l,l+1} and {Ym,c

l,l , Ym,s
l,l } are the three

types of real vector SH (their expressions are given in Appendix A,
eqs A1–A3).

Vector SH have been used to distinguish between magnetic fields
of internal and external origin (see, e.g. Backus 1996; Mayer &
Maier 2006; Gerhards 2011). The study by Gubbins et al. (2011)
introduces this formalism in the study of magnetization. By con-
struction, I is the only part of M that generates an observable
magnetic field outside of the magnetized layer, E describes the part
of M that generates a magnetic field that is confined inside or be-
low the magnetized layer and T is the toroidal part of M, which
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is zero in the electrically insulating regions outside the magnetized
layer (see Gubbins et al. 2011). Since I is the only part of M that
gives rise to the magnetic field outside of the magnetized layer, it is
hereinafter termed the visible magnetization. The sum E + T spans
the null space of the magnetization and is therefore not recoverable
through magnetic field measurements without further assumptions
(see, e.g. Gerhards 2015, for such a study).

In order to simulate the situation of imposing arbitrary constraints
on the null space of the magnetization, we set E + T = 0 and calcu-
late the palaeopoles based only on I. For the geometry of the source
chosen here, that is, infinitesimally thin spherical shell with laterally
varying magnetization of finite spectral content, it can be shown that
the vector SH coefficients of I are given by (see Appendix B for the
derivation and eqs 32 and 33 by Gubbins et al. 2011, for a similar
expression){

gm
I,l

hm
I,l

}
= R

μ0

√
2l + 1

l

(
R

r ′′

)l+1 {
gm

l

hm
l

}
, (9)

where {gm
l , hm

l } are the SH coefficients of the induced magnetic
field in units of nT, R is their reference radius, r′′ is the radius of
the magnetized spherical shell and {gm

I,l , hm
I,l} are the vector SH

coefficients of I in units of nA. By using these coefficients, we
calculate I on a given grid and obtain a palaeopole location for
each point of this grid by means of the standard formulae used in
palaeomagnetism (see, e.g. Butler 1992, chap. 7). We note here that
we report the south pole of the inducing dipole as the palaeopole.

For the numerical implementation of this test case, we arbitrar-
ily set, without loss of generality, the inducing, centred dipole to
point to the North Pole and to have a magnetic moment m equal to
7.94 × 1022 Am2 (close to the current dipole moment of the Earth,
see Constable (2007). We set the radius of the spherical shell equal to
Mars’ mean radius, that is, R = 3393.5 km and take r′′ = R − 30 km.
We take the maximum of the susceptibility distribution, χ0, to be
equal to 1 and to be located at (θ c, φc) = (50◦, 150◦) (see Fig. 1a),
and we set σ equal to 1000 km. Finally, we choose the SH truncation
degree lmax = 30, which is found to be compatible with the choice
of σ = 1000 km. This again is without loss of generality. What is
of importance here is that lmax is large enough to represent fully the
spectral content of the magnetic signal generated by the magneti-
zation distribution. Had we opted for a less smooth susceptibility
distribution, we would have to increase lmax. The results from this
synthetic test are shown in the third section, together with the results
from the second synthetic test.

2.2 Second synthetic test: the effect of measurements’
limited spatial resolution

2.2.1 Generating the induced magnetic field

For our second synthetic test, we consider a dipolar magnetization
source:

M(r′) = δr ′r ′′δθ ′θ ′′δφ′φ′′ , (10)

where r′′ = (r ′′, θ ′′, φ′′) is the position vector of the dipole, and δ

is Kronecker’s delta. We opt for this source because it gives rise to
a magnetic field of very high spectral content and it has zero null
space, since according to eq. (3) there exists no other magnetization
m′ �= m that yields the same magnetic field as m. Similarly to the
previous synthetic test, we introduce M into eq. (1), calculate B
on a Gauss–Legendre grid and obtain its SH coefficients up to a
certain lmax.

2.2.2 Estimating palaeopole locations

This time, the part of the magnetization that can be recovered from
measurements of the induced magnetic field, B, is the part whose
spectral content is constrained by the measurements. Splitting the
magnetization into the constrained and unconstrained parts, gives

M = I + I ′, (11)

where

I =
lmax∑
l=1

∑
m

gm
I,lY

m,c
l,l−1 + hm

I,lY
m,s
l,l−1, (12)

and

I ′ =
∞∑

l=lmax+1

∑
m

gm
I,lY

m,c
l,l−1 + hm

I,lY
m,s
l,l−1. (13)

In order to examine the effect of making arbitrary assumptions about
the part of the spectral content that is not constrained by magnetic
field measurements, we infer palaeopoles based only on a truncated
version of the magnetization source. We do so by neglecting I ′,
and we infer palaeopoles based only on I. As previously, we obtain
the vector SH coefficients of I by means of eq. (9), we calculate
I on a given grid, and we obtain palaeopoles for each point of this
grid.

For the numerical implementation of this test case, we ar-
bitrarily set, again without loss of generality, lmax = 110,
md = (

1012, 1012, 1012
)

Am2 and r′′ = (R − d, 125◦, 295◦), with
R = 3393.5 km and d = 30 km.

3 R E S U LT S

The susceptibility distribution used in the first synthetic test is shown
in Fig. 1(a). Stereographic projections of the North Pole (latitude
between degrees 60◦ and 90◦) and South Pole (latitude between de-
grees −60◦ and −90◦) are shown, to the left and right, respectively,
along with a Robinson projection of all latitudes in the centre of
Fig. 1(a). Note that latitude is shown here, while coordinates in
the text refer to colatitude. The corresponding induced magnetiza-
tion, as calculated from eq. (2), is shown in Fig. 1(b). As expected,
its East component is zero. For illustration purposes, we show in
Fig. 1(c) the induced magnetic field at R + 300 km. As already
mentioned, we base our analysis on the SH coefficients of this in-
duced magnetic field, which are independent of the observational
altitude, since we deal with noise-free and perfectly distributed syn-
thetic data. The visible magnetization, obtained through eqs (6) and
(9), is shown in Fig. 1(d). Its vector components differ significantly
from those of the input magnetization, both in terms of intensity
and geometry. Still, the visible magnetization exactly reproduces
the observed magnetic field (shown in Fig. 1c). Finally, the real and
the estimated palaeopoles are shown in Fig. 1(e). Again, stereo-
graphic projections of the North Pole (latitude between degrees 60◦

and 90◦, and isolines every 10◦) and South Pole (latitude between
degrees −60◦ and −90◦, and isolines every 10◦) are shown, in the
left- and right-hand panels, respectively, along with a Robinson
projection of all latitudes in the centre of the figure. The red circle
corresponds to the palaeopoles estimated from all the gridpoints
of the input magnetization. As expected, they all lie at the South
Pole, which is the location of the true palaeopole. The green trian-
gle corresponds to the palaeopole derived from the gridpoint of the
visible magnetization that lies at the susceptibility maximum. We
observe that it does not coincide with the real palaeopole location.
Moreover, we plot the palaeopoles derived from the gridpoints of

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/211/3/1669/4222794 by guest on 04 M

arch 2022



1672 F. Vervelidou et al.

Figure 1. The results of the first synthetic test. (a) The susceptibility distribution. (b)–(d) The magnetization induced by a centred dipole that points to the
geographic North Pole, the induced magnetic field at 300 km altitude, and the corresponding visible magnetization. (e) The spatial distribution of palaeopoles
derived from the input magnetization (red circle), from the point of the visible magnetization that lies at the maximum of the susceptibility (green triangle),
and from the points of the visible magnetization that lie within a circle of 1000 km around the maximum of the susceptibility (blue crosses). Stars are the
palaeopoles recovered by means of the method by Parker, 1991 (see Section 5 for details). See the text for details on the projections.

the visible magnetization that lie within a radius of 1000 km around
the susceptibility maximum (blue crosses). We observe that they
are all different from the correct palaeopole position and that they
show a large dispersion. This demonstrates that the estimated mag-

netization distribution, under the assumption of zero null space,
does not correspond any more to a magnetization that has been
induced by a single inducing dipole, as it is the case for the input
magnetization.
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On the accuracy of palaeopole estimations 1673

Figure 2. (a)–(c) The magnetic moment of a single dipole, the magnetic field induced by this dipole truncated at lmax = 110 and evaluated at 300 km altitude,
and the corresponding visible magnetization. (d) The palaeopole location derived from this dipole (red circle), from the point of the visible magnetization that
lies at the location of the dipole (green triangle), and from the palaeopole locations derived from the points of the visible magnetization that lie within a circle
of 200 km around the location of the dipole (blue crosses). See the text for details on the projections.
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The input magnetization of the second synthetic test is shown in
Fig. 2(a) in Mercator projection (same projection is used for Figs 2b
and c). Fig. 2(b) shows the induced magnetic field at R + 300 km,
truncated at lmax = 110, and the corresponding visible magnetization
is shown in Fig. 2(c). The effect of the truncation to lmax = 110 is seen
both in the magnetic field and the visible magnetization signatures
in the form of oscillations. Fig. 2(d) shows the real (red circle) and
the estimated palaeopoles (blue crosses). Stereographic projections
of the North Pole (latitude between degrees 60◦ and 90◦) and South
Pole (latitude between degrees −60◦ and −90◦) are shown, in the
left- and right-hand panels, respectively, along with a Robinson
projection of all latitudes in the centre of the figure. As the location
of the source is often unknown, the shown estimated palaeopoles
were derived from the points of I which lie within a circle of 200 km
radius around r′′. We observe that the estimated palaeopoles even
from such a small region around the true location of the source are
dispersed over the sphere and that none of them coincides with the
real palaeopole location. The palaeopole estimated by I(r′′), that is,
exactly at the location of the source, is also shown (green triangle).
Although it lies close to the real one, it is still not exactly the same.

4 D I S C U S S I O N

The above test cases were designed so that they reflect the limitations
of magnetic field observations in the recovery of the magnetization
direction and therefore in the recovery of the palaeopole locations.
As already mentioned, contrary to laboratory magnetization mea-
surements based on physical samples, magnetic field observations
constrain neither the null space of the magnetization nor its com-
plete spectral content. We simulate this information gap by ignoring
the null space of the magnetization in the first synthetic test and by
ignoring its small wavelengths in the second synthetic test. In both
cases, the recovery of the palaeopole locations was unsuccessful. In
both cases, only the accurate reconstruction of the input magneti-
zation yields the correct palaeopole.

In applications with real magnetic field data, the assumptions
concerning these two aspects of the magnetization are usually im-
plicit. As far as the null space of the magnetization is concerned,
choosing a specific magnetization distribution, for example, a rect-
angular block or a circular disc, merely based on the goodness of the
fit between its induced magnetic field and the observed magnetic
field, is equivalent to guessing the shape of a 3D object based on its
projection on a plane. It is only the projection on all three vector
SH basis functions that can accurately reconstruct the underlying
magnetization (see Fig. 3 for a schematic illustration).

In applications with real magnetic field data, stringent implicit
assumptions are also imposed on the small wavelengths part of the
magnetization, which is not reflected on the magnetic field mea-
surements due to their limited spectral content (owing to decreasing
signal-to-noise ratio for decreasing spatial wavelengths). We illus-
trate this by means of an example based on a magnetic field model
of Mars. We consider the magnetic field anomaly of Mars centred
at θ = 7◦ and φ = 32◦. This anomaly has been modeled by Hood &
Zakharian (2001) as being generated by a dipole at 150 ± 40 km
depth with I = 70◦ ± 20◦ and D = −10◦ ± 20◦. Here, we con-
sider the mean values of the above parameters and plot in Fig. 4
(top row) the magnetic field generated by this dipole, at Mars mean
radius. Fig. 4 (third row, blue curve) shows the respective SH power
spectrum over the first 300 SH degrees, at the same radius. The sec-
ond row of Fig. 4 shows the magnetic field of Mars over the same
region, as predicted by the model of Morschhauser et al. (2014),

Figure 3. A magnetization distribution can be seen as a 3D object for which
magnetic field measurements constrain only its projection on one plane, the
one spanned by the visible magnetization basis functions. An infinite variety
of different 3D objects have the same projection on this plane. The full
reconstruction of the magnetization requires the knowledge of its projection
on all three vector SH basis functions (see the text for details).

whose maximum SH degree is lmax = 110. The respective regional
power spectrum is also shown (third row, red curve). To calculate
this spectrum, we convert the SH coefficients of the Morschhauser
et al. (2014) model to the respective revised spherical cap har-
monic analysis (R-SCHA) coefficients of the region of interest by
means of eq. (28) of Thébault et al. (2006) and make use of the
R-SCHA regional power spectrum (see eqs 10 and 13 of Vervelidou
& Thébault 2015).

Looking at Fig. 4, we observe that the power spectrum of the
magnetic field at the top of the crust generated by a dipole buried
in the crust, has energy at spatial wavelengths that go beyond the
spatial resolution of the magnetic field model of Morschhauser et al.
(2014). Therefore, suggesting a dipole as the source of a magnetic
anomaly is equivalent to imposing stringent constraints over a large
frequency band that goes beyond the limits of the available magnetic
field models.

5 C O N C LU S I O N S A N D F U T U R E
D I R E C T I O N S

In this study, we demonstrated that the parts of the magnetization
that are not constrained by magnetic field measurements, namely its
null space and its full spectral content, are crucial for an accurate
reconstruction of the palaeopole locations. Therefore, palaeopole
location estimates can be accurate only if these magnetization parts
are correctly recovered by means of assumptions justified by inde-
pendent geophysical information. In this respect, fitting, for exam-
ple, a grid of equivalent dipoles to a given magnetic field signature
risks generating a magnetization model that has no geophysical jus-
tification. Similarly, fitting dipolar or other simple-shaped sources
to an isolated anomaly implicitly introduces strong assumptions
about the sources that are not necessarily supported by geophysical
considerations.

Our study demonstrates that the problem of palaeopole loca-
tion estimation has more significant unknowns than what is be-
ing traditionally solved for. Ensuring a good fit to the magnetic
field measurements does not constrain sufficiently the magnetiza-
tion direction. We invite future studies to focus on how we can
best retrieve all the necessary information, that is, also the null
space of the magnetization and a sufficient part of its spectral con-
tent, by respecting reasonable geophysical constraints. Interesting
progress towards this direction has been done for planar geometries
by Baratchart et al. (2012) and for spherical geometry by Gerhards
(2015). These studies point out cases for which the magnetization
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On the accuracy of palaeopole estimations 1675

Figure 4. (a) The magnetic field at Mars mean radius generated by a dipole located at (θ = 7◦ and φ = 32◦) and at 150 km depth with I = 70◦, D = −10◦
and m = 5 × 1014 Am2, over a spherical cap with θ0 = 18◦ centred at the North Pole. (b) The lithospheric magnetic field of Mars at the same location as
predicted by the model of Morschhauser et al. (2014). For both (a) and (b), projection is Stereographic (latitude between degrees 60◦ and 90◦). (c) The SH
power spectrum of the first 300 degrees of the magnetic field shown in the first row (blue curve, where the bracket shows its part that is not yet constrained by
the available magnetic field models), and the R-SCHA power spectrum of the lithospheric magnetic field shown in the second row (red curve).

can be uniquely recovered. We suggest that a fruitful avenue would
be to focus on finding such cases that are at the same time relevant
to the problem of palaeopoles estimation and on applying them on
real magnetic field measurements (see Gerhards 2016) for a study
in this direction using synthetic data). Eqs (5)–(8) provide a frame-
work to search for conditions under which I can be inverted for
M. However, we expect any geophysically plausible assumptions
relevant to palaeopole studies to hold only over local and regional
spatial scales. For this reason, eqs (5)–(8) should be addressed in a
localized reference system. Such calculations go beyond the scope
of this paper but are direct perspectives of this study.

A method based on a geophysically plausible assumption relevant
to palaeopole studies, the assumption of unidirectional magnetiza-
tion over local spatial scales, has been introduced by Parker (1991)

and has been recently applied by Thomas et al. (2017) on Mars and
Oliveira & Wieczorek (2017) on Moon. We test their method within
the framework of our first synthetic test, described in Section 2.1,
since we expect that the assumption of unidirectional magnetization
is valid there if we focus on a sufficiently small area over the sphere.
For this purpose, we invert all three components of the induced mag-
netic field estimated at 300 km altitude, for a grid of 931 dipoles
covering a circular area of 4◦, 2◦, 1◦ and 0.5◦ radius, centred on the
maximum of the susceptibility distribution [for more details on this
method see Parker (1991); Thomas et al. (2017); Oliveira & Wiec-
zorek (2017)]. Fig. 1(e) shows the estimated best-fit palaeopoles
for all four cases, each estimated palaeopole is shown by one star.
According to this figure, for an area of 0.5◦ radius, the palaeopole
is recovered correctly (see green star with black outline, almost
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overlapping with the red circle). This is because on such a small area
the magnetization direction is indeed almost uniform. However, as
the area gets larger, the estimated palaeopoles move away from the
correct palaeopole location (see yellow, black and red stars, all with
black outlines, for the areas of 1◦, 2◦ and 4◦ radius, respectively).
This demonstrates the main conclusion of our study: palaeopole
location estimation is correct if and only if the assumptions about
the sources, whether implicit or explicit, are accurate.
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A P P E N D I X A : R E A L V E C T O R S P H E R I C A L H A R M O N I C S

The expressions of the real vector Spherical Harmonics (SH) employed in this study are (see eqs 16–27 of Gubbins et al. 2011, for the
respective expressions in terms of complex vector SH)

Ym(c,s)
l,l−1 = 1

r l−1
√

l(2l + 1)
∇

[
r lY m(c,s)

l (θ, φ)
]
. (A1)

Ym(c,s)
l,l+1 = r l+2√

(l + 1)(2l + 1)
∇

[
1

r l+1
Y m(c,s)

l (θ, φ)

]
(A2)

and

Ym(c,s)
l,l = − 1√

l(l + 1)
r × ∇Y m(c,s)

l (θ, φ), (A3)

with

Y m,c
l = Pm

l (cos θ ) cos(mφ), (A4)

and

Y m,s
l = Pm

l (cos θ ) sin(mφ) (A5)

being the Schmidt semi-normalized real SH of degree l and order m, whose norm is given by∮
Y m(c,s)

l Y m′(c,s)
l ′ d� = 4π

2l + 1
δll ′δmm′ . (A6)

A P P E N D I X B : C O N V E R S I O N F O R M U L A

In this section, we derive a formula that converts any set of magnetic field SH coefficients to a set of visible magnetization SH coefficients,
under the assumption that the magnetization is confined to a spherical layer of infinitesimal thickness (see Gubbins et al. 2011, for an
alternative derivation that leads to a similar formula).

We denote the layer’s radius by r′′ = R − d, where R is the reference radius of the magnetic field SH coefficients. Then, M reads:

M(r′) = δr ′r ′′ g(θ ′, φ′), (B1)

where δ is Kronecker’s delta and g represents the laterally varying part of M. We have (e.g. Blakely 1996, eq. 5.2)

V (r) = μ0

4π

∫
�′

M(r′)∇′
(

1

|r − r′|
)

d�′, (B2)

with V the magnetic potential at point r due to the magnetization distribution M that lies in the magnetized volume �′. Introducing eq. (B1)
into eq. (B2), we obtain

V (r) = μ0

4π

∫
ϑ�r ′′

g(θ ′, φ′)∇′
(

1

|r − r′|
)∣∣∣∣

r ′=r ′′
ds, (B3)

with ds = (r′′)2sin θ ′dθ ′dφ′, and ϑ�r ′′ the surface of volume � for which r = r′′. According to eq. (5), g can be split into its I, E and T parts.
This gives

V (r) = μ0

4π

∫
ϑ�r ′′

I(θ ′, φ′)∇′
(

1

|r − r′|
)∣∣∣∣

r ′=r ′′
ds (B4)

+ μ0

4π

∫
ϑ�r ′′

E(θ ′, φ′)∇′
(

1

|r − r′|
)∣∣∣∣

r ′=r ′′
ds (B5)

+ μ0

4π

∫
ϑ�r ′′

T (θ ′, φ′)∇′
(

1

|r − r′|
)∣∣∣∣

r ′=r ′′
ds. (B6)

Using eqs (6)–(8) and (A1)–(A3), and replacing the term ∇′ ( 1
|r−r′ | )

∣∣∣
r ′=r ′′

by its SH expansion, we find that the terms (B5) and (B6) are zero,

as expected. For the remaining term, (B4), we obtain:

V (r) = μ0

4π

∫
ϑ�r ′′

I(θ ′, φ′)∇′
(

1

|r − r′|
)∣∣∣∣

r ′=r ′′
ds

= μ0

4π

∫ π

0

∫ 2π

0

∑
l ′

∑
m′

[
gm′
I,l ′ Y

m′,c
l ′ (θ ′, φ′) + hm′

I,l ′ Y
m′,s
l ′ (θ ′, φ′)

](√
l ′

2l ′ + 1

)
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· 1

r 2

∑
l

∑
m

l

(
r ′′

r

)l−1 [
Y m,c

l (θ, φ)Y m,c
l (θ ′, φ′) + Y m,s

l (θ, φ)Y m,s
l (θ ′, φ′)

]
ds

+ μ0

4π

∫ π

0

∫ 2π

0

∑
l ′

∑
m′

[
gm′
I,l ′

∂Y m′,c
l ′ (θ ′, φ′)

∂θ ′ + hm′
I,l ′

∂Y m′,s
l ′ (θ ′, φ′)

∂θ ′

] (√
1

l ′(2l ′ + 1)
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· 1
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l

∑
m
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r ′′

r
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Y m,c

l (θ, φ)
∂Y m,c

l (θ ′, φ′)
∂θ ′ + Y m,s

l (θ, φ)
∂Y m,s

l (θ ′, φ′)
∂θ ′
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ds
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4π

∫ π

0
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∑
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∂Y m′,c
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1
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· 1
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l

∑
m

(
r ′′

r

)l [
Y m,c

l (θ, φ)
∂Y m,c

l (θ ′, φ′)
∂φ′ + Y m,s

l (θ, φ)
∂Y m,s

l (θ ′, φ′)
∂φ′

]
ds.

Further on, integrating over θ ′ and φ′, while accounting for well-known properties of the SH, we obtain:

V (r) = μ0

∑
l

∑
m

(√
l

2l + 1

)(
r ′′

r

)l+1 (
gm
I,lY

m,c
l + hm

I,lY
m,s
l

)
. (B7)

The magnetic potential V (r) can also be expanded in SH:

V (r) = R
∑

l

∑
m

(
R

r

)l+1 (
gm

l Y m,c
l + hm

l Y m,s
l

)
. (B8)

Combining eqs (B7) and (B8), we can establish a relationship between the coefficients {gm
l , hm

l } of V and the coefficients {gm
I,l , hm

I,l} of I:

μ0

∑
l

∑
m

√
l

2l + 1

(
r ′′

r

)l+1 (
gm
I,lY

m,c
l + hm

I,lY
m,s
l

) = R
∑

l

∑
m

(
R

r

)l+1 (
gm

l Y m,c
l + hm

l Y m,s
l

)
. (B9)

Multiplying both sides of eq. (B9) with the real SH, integrating over the surface of a sphere and accounting for the orthogonality properties
of the SH functions, we obtain the following relationship:{

gm
I,l

hm
I,l

}
= R

μ0

√
2l + 1

l

(
R

r ′′

)l+1
{

gm
l

hm
l

}
, (B10)

where R is given in metres, {gm
l , hm

l } in units of nT and {gm
I,l , hm

I,l} in units of nA, being the coefficients of a vertically integrated magnetization.
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