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S U M M A R Y
We study theoretically and numerically the process of fault interactions within a quasi-static
faulting model at long, tectonic timescale. The model handles birth, growth and sliding of
multiple straight but non-coplanar interacting faults, regardless of any coseismic dynamic
slip events. The study is restricted to the 2-D elastic antiplane case, an idealization of the
normal faulting process. The model handles a general slip-dependent friction law for faults, to
take into account a possible long-term fault weakening process. At fault tips, finite stress and
progressive weakening lead to fault tip cohesive zones and ensure stability. We introduce a
new numerical method based on a series development of slip profiles using a Chebyshev basis,
which provides an accurate computation of large stress gradients at fault tips. Here simulations
are limited to two parallel faults, which is enough to investigate many important features such
as slip partitioning between faults, variable fault tip velocities and the state of stress in fault
relay zones, responsible for the fault linking process. We study both a quasi-static problem
and the associated spectral problem and show the link between them. We compare our quasi-
static simulations with experimental results concerning the acceleration/deceleration of fault
tips submitted to stress interaction and concerning the geometrical parameters that favour the
linking of two normal faults. We find that the linking (coalescence) process should most likely
occur during the deceleration phase of the faults tips subject to stress shadowing in the fault
relay. Furthermore, for large ratios of fault lengths to separation, the linking process should
begin for fault overlaps comparable to the values observed by Soliva & Benedicto in small
natural fault relays (typically 2.9 times the fault separation).

Key words: Numerical solutions; Instability analysis; Dynamics and mechanics of faulting;
Rheology and friction of fault zones.

1 I N T RO D U C T I O N

The faults are zones of highly localized deformation that builds
up over a large, tectonic timescale. As localization increases, pre-
sumably through damaging and fracture coalescence, faults can be
viewed as discontinuities in the crust, where large measurable slip
takes place. The occurrence of earthquakes, at the timescale of sec-
onds, is the sign that local and maybe larger slip instabilities can take
place on faults, due to their effective weakening rheology. Another
fundamental fact is that faults are organized in complex networks
of segments of different importance. Fault birth, propagation, coa-
lescence and activity have been studied with very different models
and techniques. For example, if one focuses on the crust mechanics
rather than the details of faulting, Ben-Zion et al. (1999) or Narteau
(2007) have modelled fault propagation and coalescence by assim-
ilating faults to the highly damaged zones of their models. These
global models reveal statistical properties of fracture networks but
they do not really model neither faults nor slip profiles. In a model
that creates faulting more explicitly, Spyropoulos et al. (2002) used

a discrete system of springs and separable blocks (the separation of
the blocks giving the local slip) to model crust damage and fault for-
mation: they show how fault interaction influences the development
of faults and slip growth.

Although faults are heterogeneous objects resulting from com-
plex mechanical and physical processes, they are not completely
disordered objects and therefore they can be characterized by large-
scale measurements of their geometry and cumulative slip. In that
sense, it seems reasonable to study some aspects of faulting in the
context of fracture growth as Lin & Parmentier (1988) or Baud &
Reuschlé (1997) did for a single fault, or Kame et al. (2008) for
a single fault in elastic layered media. However, concurrent frac-
tures influence each other through the stress variations that they
generate and this leads to numerous still open questions about the
possible shapes of their slip profiles, the velocities of the fault tips,
the state of stress at their tips, the state of stress in relay zones, and
finally how much faults overlap before they link and coalesce to
form larger faults (see Peacock 2002, for a review of these ques-
tions). Some of these questions have been investigated theoretically
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by Segall & Pollard (1980) with a numerical model of 2-D strike
slip (in-plane) interacting cracks subject to Coulomb friction, in an
elastic body. The same numerical problem has been considered in
full 3-D models by Willemse (1997) and Crider & Pollard (1998)
to compute stress fields in en-echelon normal fault networks. These
models produce a single snapshot of the mechanical equilibrium and
do not model fault propagation itself. Past studies have shown that
the modelling of the mechanical state of a fault requires to include
several physical ingredients. A post-failure criterion is necessary to
avoid the classical elastic square-root type singularity at fault tips
and be consistent with finite material strength and finite stress in the
faulting model. Cowie & Scholz (1992) used the Dugdale model
(see Barrenblatt 1962) to fit accumulated fault slip observations.
Post-failure criterion also induces a cohesive zone that produces
smoother slip gradients at fault tips. Martel (1997) pointed out the
importance of the cohesive zone on the stress distribution around
fault tips and inside fault relays. Indeed, since a cohesive zone
cancels the stress singularity, then, compared to the singular crack
model, it can produce a very different stress field around fault tips.
Peacock & Sanderson (1991) were the first to observe the effect
of stress interaction on observed fault displacements and, using the
Dugdale model, Gupta & Scholz (2000) quantified the intensity of
the interaction of two non-coplanar parallel faults with respects to
the geometry (fault length, separation and offset); but their model
of fault growth remained conceptual.

With a 2-D elastic antiplane fault model with slip dependent fric-
tion, similar to the Palmer & Rice (1973) post-failure criterion, Wolf
et al. (2006) modelled slip profiles (and the corresponding states
of stress) through an unusual eigenmode analysis, first developed
in Ionescu & Wolf 2005). In their model, fault tips are not sup-
posed to move and therefore square-root singularities are a priori
expected. However their parametric study on the geometry of two
identical parallel non-coplanar faults shows that, when the over-
lap exceeds some critical value, the slip partitioning between both
faults naturally looses its symmetry (one of the faults dominates
the other). This bifurcation occurs when the frictional condition on
faults is an active constraint of the problem, which therefore be-
comes non-linear (see Ionescu & Wolf 2005; Wolf et al. 2006, for
more technical details). More precisely, in their eigenmode analysis,
as one fault overlaps the other, it can create a stress shadow such
that the neighbouring tip of the other fault is forced to remain stuck
to respect the frictional threshold. Although their model is not built
to cancel stress singularities at fault edges, the existence of a stuck
zone on one of the faults clearly indicates that a non-singular stress
field naturally takes place at the shadowed tip of the dominated
fault. They extrapolated their results and conjectured that, in true
quasi-static models and maybe in field observations, the stress shad-
owing could simply stop the progression of the shadowed fault tip.
In addition, stress interaction was proved to have a strong influence
on the existence of linear slip profiles inside shadow zones. Also,
only using the geometry of some natural fault network in Afar, they
were able to reproduce the large scale properties of the observed
slip profiles, provided that they use variable fault weakening coef-
ficients along the faults. These findings are however submitted to
a very restrictive hypothesis: the fault system is globally critical,
that is, close to a global loss of static equilibrium. Fault seismic
activity is the signature that the system sometimes looses its static
equilibrium but it is often very locally, at a nucleation point or in
a collection of small seismic event. Because of this particularity of
the model of Wolf et al. (2006), we will reexamine these questions
with the present new quasi-static model of fault growth. As in Wolf
et al. (2006), the present model is a 2-D elastic antiplane fault model

with slip dependent friction. Although general problems with many
faults can be studied by the method presented in this paper, we will
only show results for a system of two parallel non-coplanar faults.

After Section 2 (physical assumptions of the model) and Sec-
tion 3 (general definitions and notations), we present the quasi-static
problem and several numerical experiments in Section 4. In Sec-
tion 5, we reconsider the bifurcation of the spectral problem of Wolf
et al. (2006) to interpret some particular features encountered in the
quasi-static simulations, especially the effect of shadowing on stress
intensity and the possible loss of global stability. In Section 6, we
discuss the geometry and the stress field of relay zones, we show
the effect of the interaction on fault tip velocities and on cohesive
zones, and we discuss the relevance of our mechanical assumptions.
Finally, some conclusions are drawn in Section 7. For clarity, most of
the technical details concerning analytical and numerical methods
are developed in appendices.

2 P H Y S I C A L A S S U M P T I O N S O F T H E
Q UA S I - S TAT I C FAU LT I N G M O D E L

The rheological assumptions of the model are exposed here and
will be discussed further in Section 6.3 in the light of our numerical
results. The goal of this study is to model and quantify the effect
of stress interaction in long-term quasi-static faulting process (fault
growth and slip).

To begin with, the crust is considered elastic, and thus inelastic
behaviour is only concentrated on faults. Fault growth is directly
related to the increase of remote tectonic loading, hence we do not
consider the possibility of sub-critical growth, at constant remote
loading.

Regarding the failure criterion, there are several possible models
based on either singular (asymptotic) stress or finite stress. Based on
toughness or localized fracture energy, failure criteria with singular
stress have the disadvantage that the mechanical behaviour of the
intact crust (locally unlimited strength) is totally different from that
of the faults (limited strength). Yamashita & Knopoff (1992) have
used such kind of criterion in an earthquake clustering model, in
which they model the growth and acceleration of parallel concurrent
cracks. The large difference of mechanical behaviour between crust
and fault is less justified at the tectonic timescale. In addition, stress
singularities may strongly affect the state of stress in fault relays. For
these reasons, we use a finite stress, slip-dependent, frictional be-
haviour. This failure criterion ensures both finite stress everywhere
in the model and a progressive breakdown (that is, cohesive zones)
at fault tips. Also, this failure criterion ensures quasi-static stability
as long as the rate of mechanical work done by fault traction can
balance the rate of released elastic potential energy. Usually, this
condition is broken as the fracture length overcomes some criti-
cal value. However, stable fault growth rates can be achieved in
different manners (like introducing stress relaxation, viscous re-
laxation or damage in the crust). Our model does not encompass
such complexity, because it would introduce time dependence and
new, poorly controlled, parameters. Rather, we impose an inhomo-
geneous strength excess, that depends on space and time. Strength
excess is defined as the difference between the local shearing re-
sistance (at zero slip) and the local shear loading. This quantity,
which is mostly responsible for the growth of the faulting domain,
can be defined arbitrarily in our model. Since the goal of the pa-
per is to study the perturbative effects of fault interaction, we have
to study also a reference model of isolated growing fault, as sim-
ple as possible. For example, as we will see further, to obtain a
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Figure 1. In the 2-D antiplane configuration, assuming an origin O and two
Cartesian coordinates x and y, the geometry of two parallel straight but non
planar faults is defined by the following parameters at each time t: variable
fault lengths 2a(t) and 2b(t), fixed separation 2d , variable offset 2e(t) and
variable center c(t). K −

a (t), K +
a (t), K −

b (t) and K +
b (t) are the stress intensity

factors at the fault tips. �a(t) and �b(t) denote the slipping domains of faults.
‘Fault lines’ are the geometrical axes along which the faults are allowed to
grow.

constant growth rate, it is enough to state that strength excess in-
creases linearly in space starting from the nucleation point, and
decreases linearly in time. In this way, in any fault network, the
acceleration or deceleration of fault tips can be directly interpreted
in terms of fault interaction.

3 G E N E R A L N O TAT I O N S

Let us define the main parameters used in the paper. The geometry of
the two-fault system is drawn in Fig. 1. Variable t denotes the time.
O is the origin of the axes and by x and y we denote the coordinates
parallel and perpendicular to the fault direction. Parameters a(t) and
b(t) are the variable fault half-lengths, d is the fixed half-separation
between faults (along y), e(t) is the variable half-offset between the
fault centres (along x) and c(t) is the moving centre of the system
(along x). We call ‘fault lines’ the geometrical axes along which the
faults are allowed to grow. The slipping domains on each fault line
are denoted �a(t) and �b(t). With these notations, we write the sets
of points belonging to each slipping domain as

�a(t) = {(x, y); |x − c(t) + e(t)| < a(t), y = −d} , (1)

�b(t) = {(x, y); |x − c(t) − e(t)| < b(t), y = +d} . (2)

We will also use the following notations and equations for the
different physical fields: displacement field (3), antiplane stresses
(4), static equilibrium (5), slips on fault lines (6), slip velocities on
fault lines (7) and elastic shear stress on fault lines (8)

w(t, x, y), (3)

{
σ (t, x, y) = μ∂xw(t, x, y),

τ (t, x, y) = μ∂yw(t, x, y),
(4)

∂xσ (t, x, y) + ∂yτ (t, x, y) = 0, (5)

{
δwa(t, x) = w(t, x, −d+) − w(t, x, −d−),

δwb(t, x) = w(t, x, +d+) − w(t, x,+d−),
(6)

{
δẇa(t, x) = ∂tδwa(t, x),

δẇb(t, x) = ∂tδwb(t, x),
(7)

{
τa(t, x) = τ (t, x,−d),

τb(t, x) = τ (t, x, +d),
(8)

where μ is the shear elastic modulus.

As we will see hereafter, only the loading term is time dependent.
Therefore, time variable t is dropped in the appendices to simplify
the equations. For the time-independent spectral problem in Sec-
tion 5, time is dropped as well and c will be set to zero without any
loss of generality.

In Fig. 1, we have indicated the stress intensity factors at the fault
tips, whose definitions are

K −
a (t) = lim

x→−a−
τa(t, x)√−2π (x + a)

,

K +
a (t) = lim

x→+a+
τa(t, x)√
2π (x − a)

K −
b (t) = lim

x→−b−
τb(t, x)√−2π (x + b)

,

K +
b (t) = lim

x→+b+
τb(t, x)√
2π (x − b)

.

4 T H E Q UA S I - S TAT I C P RO B L E M
O F T W O I N T E R A C T I N G PA R A L L E L
N O N - C O P L A NA R F R I C T I O NA L FAU LT S

4.1 Problem statement and numerical method

We consider the quasi-static non-linear problem of two interact-
ing parallel frictional faults of fixed separation 2d, that are al-
lowed to slip and grow straightly along two fault lines, at y = −d
for the first fault and at y = +d for the second one. In addition
to the definitions and eqs (3)–(8), we denote by τ l

a(t , x) and τ l
b(t , x)

the external tectonic loading acting on the fault lines at each time
t. The resulting shear stress on both fault lines is the sum of the
external tectonic loading and of the elastic shear stress created by
the fault slips. The resistance along each fault line is given by a
non-linear weakening frictional model that imposes the following
conditions for all t > 0 and x ∈ R:

δẇa(t, x) = 0 ⇒∣∣τa(t, x) + τ l
a(t, x)

∣∣ < τ f
a [x, δwa(t, x)], (9)

δẇa(t, x) �= 0 ⇒
τa(t, x) + τ l

a(t, x) = sign[δẇa(t, x)]τ f
a [x, δwa(t, x)], (10)

δẇb(t, x) = 0 ⇒∣∣τb(t, x) + τ l
b(t, x)

∣∣ < τ
f

b [x, δwb(t, x)], (11)

δẇb(t, x) �= 0 ⇒
τb(t, x) + τ l

b(t, x) = sign[δẇb(t, x)]τ f
b [x, δwb(t, x)], (12)

where functions τ f
a[x , δwa(t , x)] and τ

f
b[x , δwb(t , x)] are the local

slip dependent frictions on each fault. The quasi-static problem is
the problem defined by (3–8, 9–12).

Note that there is no intrinsic timescale in problem (3–8, 9–12)
because of the elastic rheology and the removal of inertia. Time
is only present in the external tectonic loading. The problem is
purely quasi-static and therefore, to define a sliding velocity, one
must obtain a smooth evolution of the system. This can be obtained
by slowly and continuously increasing the time-dependent external
tectonic loading. If the system admits a unique position of equi-
librium after each increment of the external tectonic loading, the
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736 P. Favreau and S. Wolf

evolution of the system should also be smooth enough. However, it
is important to note that it is theoretically possible to find a position
of equilibrium in one large time step, if the system admits a unique
solution (which is verified if it has not lost its global convexity). We
will not proceed with large time steps because it is much harder to
find the solution from a ‘bad’ initial guess and also we could miss
the first instants of the fault birth and growth, which we precisely
want to study.

In the quasi-static problem, frictional conditions (9)–(12) con-
strain the slipping domain on both fault lines. The mathematical
problem has already been solved for an isolated fault by Bonafede
et al. (1985) and by Chen & Knopoff (1986). They studied this
problem to find a static equilibrium after a rupture (the solution
combines a prescribed stress drop in the fault and a finite strength
at the edges of the rupture). In the context of earthquake nucleation
studies, Uenishi & Rice (2003) solved this problem for a single
isolated nucleation domain by modifying the frictional formulation
into a stress intensity formulation. Let us shortly recall their method
since we use it here. At any time t, slipping domains on both faults
�a(t) and �b(t) are defined by (1) and (2). Each simulation starts
with no existing fault, that is, (9) and (11) are verified everywhere
and a(0) = b(0) = 0. As loading increases, the frictional threshold
is reached at some places on both fault lines at time t. Consequently
a slipping domain appears on both fault lines and we obtain two in-
cipient faults of half-lengths a(t) and b(t), placed along x according
to parameters c(t) and e(t). On �a(t) and �b(t), (10) and (12) hold
because slip occurs, whereas on the rest of the fault lines, where slip
has not occurred, (9) and (11) must hold. However, since slip occurs
on �a(t) and �b(t), shear stress accumulates at tips following the
classical inverse square-root singularity. However stress cannot be
singular at fault tips to satisfy (9) and (11), hence stress intensity
factors at fault tips must be cancelled. We also consider that fault
sliding velocities remain positive and therefore we can replace fric-
tional conditions (9)–(12) by the following equations. For all time
t > 0

On �a(t): τa(t, x) + τ l
a(t, x) = τ f

a [x, δwa(t, x)], (13)

On �b(t): τb(t, x) + τ l
b(t, x) = τ

f
b [x, δwb(t, x)], (14)

K +
a (t) = K −

a (t) = K +
b (t) = K −

b (t) = 0. (15)

Since the geometry of the faults [defined by the four variables
a(t), b(t), c(t) and e(t)] is unknown, the location of fault tips is
constrained by the four eqs (15).

We emphasize that problems (3–8, 9–12) and (3–8, 13–15) are
absolutely not equivalent in general. They become equivalent only
‘in the cases where slip and fault lengths increase monotonically’.
Thus, problem (3–8, 13–15) is a partly linearized version of problem
(3–8, 9–12).

The technical aspects of the method are detailed in Appendices A,
B and C. Roughly, we use truncated Chebyshev series to formulate
the slipping functions on faults, following Dascalu et al. (2000):

On �a(t): δwa(t, x)

= 2
N∑

k=1

Wak(t) sin

{
k arccos

[
x − c(t) + e(t)

a(t)

]}
, (16)

On �b(t): δwb(t, x)

= 2
N∑

k=1

Wbk(t) sin

{
k arccos

[
x − c(t) − e(t)

b(t)

]}
. (17)

This introduces 2N time-dependent scalars W ak(t) and W bk(t), that
represent the series expansions of the fault slips at each time t.
To formulate the frictional conditions on the faults, we need to
know the elementary elastic solution in the 2-D elastic body for a
single isolated fault and for a slipping function of index k. These
elementary solutions are presented in Appendix A. The complete
formulation of the series expansion is written in Appendix B. Then,
following Uenishi & Rice (2003), eqs (13)–(15) are expressed in
this series representation and for each time t we find the 2N + 4
scalars W ak(t), W bk(t), a(t), b(t), e(t) and c(t) by Newton’s method
(see Appendix C).

Let us now detail the loading and the frictional model. We assume
that the crust, along each fault line, obeys to the following form of
friction law, for all x ∈ R

τ f
a (x, δwa) = τ f

a (x, 0) − αa
δwa

2
+ τ r

a (δwa), (18)

τ
f

b (x, δwb) = τ
f

b (x, 0) − αb
δwb

2
+ τ r

b (δwb), (19)

where τ f
a(x , 0), τ

f
b(x , 0) are crust resistances along fault lines,

αa, αb their initial weakening rates and τ r
a[δwa(t , x)], τ r

b[δwb(t ,
x)] the non-linear part of the slip dependence of the friction. This
decomposition leads to reformulate (13) and (14) as follows, for all
t > 0

On �a(t): τa(t, x)

= τ e
a (t, x) − αa

δwa(t, x)

2
+ τ r

a [δwa(t, x)], (20)

On �b(t): τb(t, x)

= τ e
b (t, x) − αb

δwb(t, x)

2
+ τ r

b [δwb(t, x)], (21)

where τ e
a(t , x) = τ f

a(x , 0) − τ l
a(t , x) and τ e

b(t , x) = τ
f
b(x , 0) − τ l

b(t ,
x) are the strength excesses of the crust along the fault lines. We
will use the following particular idealized forms, for all t > 0 and
for all x ∈ R:

τ e
a (t, x) = −γat + δa

[√
ε2

a + (x + ξa)2

l2
a

− εa

]
, (22)

τ e
b (t, x) = −γbt + δb

[√
ε2

b + (x − ξb)2

l2
b

− εb

]
. (23)

As mentioned in Section 2, these ad hoc strength excesses variations
with triangular shape have been chosen to produce a very simple
(almost self-similar) faulting process for an isolated fault, with con-
stant fault tip velocities. Furthermore, if fault weakening saturates
early enough, this shape of strength excess ensures the existence of
a long period of stable quasi-static regime. The functions defined by
(22) and (23) are hyperbolic branches such that we obtain a global
triangular shape, smoothed at the top by parameters εa and εb. The
smoothing is introduced only for numerical convenience, that is to
avoid spurious spatial slip oscillations. Note that the opposite of
the strength excess distributions can be directly observed, at time
t = 0, in Fig. 3 (at right-hand side) and Fig. 4. The spatial slopes
are controlled by δa/la and δb/lb and the uniform rates of variation
are controlled by γ a and γ b. We remark that τ e

a(0, −ξ a) = 0 and
τ e

b(0, ξ b) = 0, which means that at t = 0, the first fault arises at
(x = −ξ a, y = −d) and the second one arises at (x = ξ b, y = d).
Consequently, c(0) = (ξ b − ξ a)/2 and e(0) = (ξ a + ξ b)/2.
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To finish with the definitions, the non-linear part of the slip depen-
dence of the friction will be either set to zero in some experiments
or defined by

τ r
a (δwa) = αa

δwa

2
+ �τa

⎡
⎣ 1

1 + αa Da
2�τa

(
e

δwa
Da − 1

) − 1

⎤
⎦, (24)

τ r
b (δwb) = αb

δwb

2
+ �τb

⎡
⎢⎢⎣ 1

1 + αb Db
2�τb

(
e

δwb
Db − 1

) − 1

⎤
⎥⎥⎦, (25)

in more realistic numerical experiments. In definitions (24) and (25),
parameters �τ a and �τ b are the fault stress drops and Da and Db

are characteristic slip weakening distances. Remark that τ r
a(δwa)

and τ r
b(δwb) are the second order terms of the friction laws τ f

a(x ,

δwa) and τ
f
b(x , δwb) as slips δwa and δwb go towards zero. Note also

that for Da = �τ a = ∞ and Db = �τ b = ∞ we have τ r
a(δwa) =

0 and τ r
b(δwb) = 0. In addition, when αa = 2�τa

Da
and αb = 2�τb

Db
,

the non-linear terms τ r
a and τ r

b have an initial weakening rate that
corresponds to the global characteristic weakening rate induced by
the ratio of the stress drop to the critical slip weakening distance.

4.2 Numerical experiments for two faults with symmetric
mechanical parameters

We conducted several sets of numerical experiments. First, let us
present twelve characteristic symmetric simulations (here ‘symmet-
ric’ means that both fault lines have the same frictional parameters
and are subject to the same loading, which produces two equiva-
lent faults). In these twelve experiments, we used four values of
the half-separation d combined to three different cases that differ
qualitatively by their frictional parameters.

Case 1: αa = αb = 0 and τ r
a = τ r

b = 0, that is, fault slip is built
at constant stress.

Case 2: τ r
a = τ r

b = 0, that is, faults are subject to constant weak-
ening with αa > 0 and αb > 0.

Case 3: we use the complete frictional models defined in (18) and
(19) with (24) and (25), therefore initial weakenings (controlled by
αa and αb) saturate asymptotically to finite stress drops �τ a and
�τ b, as slips go beyond the characteristic slips Da and Db.

In all these experiments, we define the characteristic quantities of
length, time, displacement and stress l̄, t̄, w̄ and τ̄ . Any combination
of scales l̄, t̄, w̄ and τ̄ is possible as soon as it respects the equalities
τ̄ = μw̄

l̄
= γa+γb

2 t̄ . In the twelve simulations, we start with the same
e(0), which is the initial half-distance along x between the fault
arising points. Therefore, e(0) = (ξ a + ξ b)/2 can be considered as
the characteristic length scale l̄. In Table 1, we give the value of all
simulation parameters.

Before we compare these 12 simulations, let us examine in more
detail three typical ones (4, 5 and 6) that share the same half-
separation d/l̄ = 0.1. In Fig. 2, we show the slip processes on both
faults for the simulation 4 (case 1). Here, no stress drop occurs and
therefore the system remains indefinitely stable. At the beginning
of the process, all fault tips have a constant speed of propagation
and moreover their positions at time t correspond roughly to the
abscissa x such that τ e

a(t , x) = 0 for fault �a(t) and τ e
b(t , x) = 0

for fault �b(t) (see definitions 22 and 23). As faults grow, stress
interaction influences essentially the inner tips: first they accelerate
and then they decelerate as the overlap grows, down to a stable slow
speed of propagation.

Table 1. Parameters of the symmetric simulations.

Simul. Simul.

(Case)
d

l̄
αl̄

D

w̄
(Case)

d

l̄
αl̄

D

w̄

1(1) 0.02 0 +∞ 7(1) 0.5 0 +∞
2(2) 0.02 0.1 +∞ 8(2) 0.5 0.1 +∞
3(3) 0.02 0.1 10.0 9(3) 0.5 0.1 10.0

4(1) 0.1 0 +∞ 10(1) 2.5 0 +∞
5(2) 0.1 0.1 +∞ 11(2) 2.5 0.1 +∞
6(3) 0.1 0.1 10.0 12(3) 2.5 0.1 10.0

μ γ
δ

τ̄
ε (no dim.)

ξ

l̄

l

l̄
N

T

t̄
P

1. 0.025 1. 0.2 1. 1. 80 200. 200

Notes: All parameters are identical on both faults therefore subscripts a
and b are omitted. When the critical slip weakening distance is set to
infinity, faults have a constant weakening rate. Integer N is the number of
Chebyshev functions used, T is the duration and P is the number of steps to
reach time T .
For all cases we choose

�τ = αD

2
.
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Figure 2. Quasi-static slip process for the symmetric simulation 4 (see
Table 1). In this simulation, faults are subject to a constant strength, without
weakening. We can see the strong deceleration of the inner tips propagation
when faults overlap.

In Fig. 3, we represent the stress evolution for the same simu-
lation 4 (case 1) in two manners: the elastic stress along faults lines
due to fault slips and the ‘relative stress’ along faults lines. By
‘relative stress’, we mean either the difference between the elastic
stress and the local fault line strength excess before slip occurs,
or equivalently the difference between the total stress (loading +
elastic stress) and the local fault line strength before slip occurs.
This corresponds to the quantities τ a(t , x) − τ e

a(t , x) = τ a(t , x) +
τ l

a(t , x) − τ f
a(x , 0) and τ b(t , x) − τ e

b(t , x) = τ b(t , x) + τ l
b(t , x) −

τ
f
b(x , 0). Since the model is only sensitive to the difference between

the total stress and the fault line strength, absolute level of stress
as well as absolute levels of friction are not relevant in this study.
Therefore, this definition of ‘relative stress’ is needed to emphasize
the difference between the different cases as defined earlier.

In Fig. 4, we represent the evolution of the relative stress for
simulations 5 (case 2) and 6 (case 3). In simulation 5, a constant
weakening is prescribed. At the beginning, fault tip propagation is
similar as in simulation 4, only slightly faster. At the end of sim-
ulation 5, faults have reached a critical size that puts the system
in a globally unstable configuration (equilibrium is lost), which is
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738 P. Favreau and S. Wolf

Figure 3. Quasi-static stress evolution for the symmetric simulation 4 (see Table 1). In this simulation, faults are subject to a constant strength, without
weakening. We represent the stress evolution on the fault line of the second fault, that is, on �b. More precisely: on the left-hand panel, we represent the elastic
stress (due to the slip on both faults), and on the right-hand panel, we represent the ‘relative stress’, that is, the elastic stress minus the fault line strength excess,
or equivalently the total stress (loading + elastic stress) minus the local fault line strength before slip occurs.

Figure 4. Quasi-static stress evolution for the symmetric simulations 5 and 6 (see Table 1). On both figures, we represent the same quantity as on Fig. 3
(right-hand panel), that is, the ‘relative stress’. On the left-hand panel (simulation 5), weakening is strong and constant and we clearly see the continual stress
decrease. On the right-hand panel (simulation 6), weakening ceases as the slip reaches 10w̄ and therefore we see the constant stress level inside the fault
delimited by two cohesive zones.

theoretically predicted (Uenishi & Rice 2003). Before the instabil-
ity occurs, outer tips accelerated strongly up to an infinite speed.
For this reason, the computation was stopped at time t = 179t̄ . This
global instability is not realistic and there are many features that
can stabilize fault growth in nature; this is an important point that
we will discuss further in Section 5.3. In simulation 6 (case 3), by
introducing a critical weakening distance, the strong initial weaken-
ing is saturated far before the instability occurs. The relative stress
exhibits cohesive zones at the fault tips and faults are maintained
stable much longer. Fault tips seem to propagate very similarly as
in simulation 4.

Finally, in Fig. 5, we summarize the results of the twelve sym-
metric simulations by plotting the fault tip locations, that is, their
abscissa along x, as functions of time. We can observe the strong
influence of a small initial separation d/e(0) on the variation of the
propagation speed of the inner (left-hand side) fault tip. Although
the inner tip is never strictly stopped in all these symmetric simula-
tions, its progression can be strongly affected as in simulations 1, 2
and 3.

4.3 Numerical convergence

Since we solve each time step independently, the number of time
steps has no effect on the accuracy of the numerical solution.
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Figure 5. Evolution of fault tip locations for the twelve symmetric simula-
tions (see Table 1). Only the tips of fault �b(t) are represented.
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Figure 6. Convergence test for simulation 1. In this simulation, as faults
overlap, the separation d is small compared to fault sizes, therefore they
interact strongly. On both figures we represent the relative stress at time
t = 200t̄ . The number of modes used per fault is N = 80 at the top and N =
160 at the bottom. The shapes of the solutions are similar and the differences
(spurious oscillations for N = 80) appear essentially on both faults in front
of the overlapping tip, where stress admits strong variations.

Large time steps only increase the number of iterations of Newton’s
method since the first guess, based on the previous time step, is
less good. The stopping criterion of Newton’s method can reach
the computer precision with little cost. The main source of error
comes from the number N of Chebyshev functions per fault, which
can not be too large for computational reasons. However, this basis
of functions is not only very accurate to estimate stress intensities
but also very efficient to handle strong field variations at fault tips.
Therefore, we performed the various simulations with only N =
80. However, we encountered situations where the results exhibit
spurious oscillations. This occurs when strong field variations are
induced inside the faults, that is, if τ e

a(t , x) or τ e
b(t , x) are not smooth

enough, or if the cohesive zones are too small, or if faults are in
strong interaction, which is what we illustrate in Fig. 6: in this case
of small initial separation, N = 160 is patently more appropriate
than N = 80.

4.4 Numerical experiments for two faults with
non-symmetric mechanical parameters

In this section, we add a slight perturbation of the mechanical
parameters to break the symmetry of the model. Indeed, perfect
symmetry is never observed on natural fault systems. Besides, in
the previous sections, we showed that most of the results could
be explained through the strength excess distributions τ e

a(t , x) and
τ e

b(t , x). Hence, we chose to use heterogeneous tectonic loading
rates to introduce spatial dissymmetry. We define another set of
twelve non-symmetric quasi-static simulations denoted 1′ to 12′. In
these new simulations, the loading rate is slightly larger on fault
line �b, indeed

γa = 0.025 = 9

10
γb.

Note that the dissymmetry is rather small. The other parameters
follow Table 1.

In Fig. 7, we illustrate the slip process for simulation 6′, that
includes broken symmetry, non-linear slip weakening, and strength
saturation. The global behaviour is very similar to simulation 4,

0

50

100

150

-10 -5 0 5 10

0

20

40

60

Time
t

t̄

Slip
δw

w̄

Distance
x

l̄

Figure 7. Quasi-static slip process for the non-symmetric simulation 6′
(see Table 1). In this simulation, faults are subject to a variable strength, that
decreases non-linearly with slip and saturates at a dimensionless value of 5.
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Figure 8. Evolution of fault tip locations for the twelve non-symmetric
simulations. Parameters follow Table 1, with the only difference that the
loading rate is slightly larger on the fault line �b(t), indeed γa = 0.025 =
9
10 γb . Black lines correspond to the tips of the ‘dominant’ fault �b(t) and
grey lines correspond to the tips of the dominated fault �a(t).

except that faults show differences of both maximal slips and tip
locations (due to slightly different loading rates). Because of slip
weakening, this dissymmetry amplifies progressively and is partic-
ularly remarkable at the end of the simulation.

In Fig. 8, we represent the fault tip trajectories. The first remark
that can be done is that, in all the simulations, as overlap appears,
the inner tip of the slowest fault �a(t) is much more decelerated
than the one of �b(t). Therefore, the lack of symmetry is amplified
in time. The influence of the initial separation d/e(0) is roughly the
same as in symmetric simulations: a small initial separation d/e(0)
induces a strong deceleration of inner fault tips.

The second remark concerns simulations of case 2 (2′, 5′, 8′ and
11′). Here, weakening is strong and constant and a global instability
occurs rapidly. Before the instability (equilibrium loss) is reached,
the inner tip of the slowest fault propagates back, that is, the slip-
ping zone is shrinking. For simulations 8′ and 11′, the large initial
separation d/e(0) induces a global shadow effect of the dominant
fault �b(t) on the other one, such that the fault �b(t) accelerates bi-
laterally and totally inhibits fault �a(t). Both tips of the dominated
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740 P. Favreau and S. Wolf

fault �a(t) propagate back and the fault literally disappears. Of
course, if the absolute level of stress is high, the back-propagation
of fault tips, as well as negative slip velocities, are prohibited in
the quasi-static problem (3–8, 9–12). However, as we explained
in Section 4.1, we solve problem (3–8, 13–15) instead, so that we
can sometimes face this non-physical situation. Indeed, problem
(3–8, 13–15) is ‘less’ non-linear than problem (3–8, 9–12) and they
are only equivalent if the evolution of the system remains mono-
tonic. This set of simulations illustrates that a lasting weakening
process can lead to a total inhibition of an inner tip in a fault net-
work. This will be explained in Section 5 through a spectral analysis.
To conclude about the plausibility of simulations of case 2, we must
recall the assumptions of the model: first, faults do not branch, that
is, the relay zone is said ‘open’; second, the stability of the fault
network is close to critical, that is, the global equilibrium will be
lost soon, for a modest load increment.

5 S P E C T R A L A NA LY S I S O F T W O
I N T E R A C T I N G F R I C T I O NA L FAU LT S :
E F F E C T O F S T R E S S S H A D OW I N G
O N T I P S T R E S S I N T E N S I T I E S

In the previous section, we have illustrated the effect of stress in-
teraction in the quasi-static faulting model. The effect is greater
when the weakening process is important and critical. We have
pointed out that one could observe the stopping (and reversing) of
the straight propagation of the inner tip belonging to the dominated
fault when the pair of faults is not symmetrically loaded. All these
features can be explained by a spectral analysis. In this section,
the equations are time-independent, therefore variable t is dropped
implicitly when using the definitions of Section 3. Let us recall that
the modes found in the spectral analysis have in general no direct
physical interpretation and only a summation of them can lead to
a complete solution, such as the quasi-static solutions. However, in
general, the first mode is dominant and thus sufficient to discuss
real physical model.

5.1 Linear spectral analysis

For a given fault network geometry with fixed parameter a, b, c, d
and e, the linear spectral problem consists in finding solutions of
(3)–(8) for which the elastic stress is proportional to the slip, that
is,

On �a : τa(x) = −α
δwa(x)

2
(26)

On �b: τb(x) = −α
δwb(x)

2
, (27)

where α is the eigenvalue, which can be interpreted as a weakening
parameter.

This linear spectral problem (3–8, 26, 27) is solved using the
same fault slip Chebyshev series expansions as in Section 4 and the
technical details are presented in Appendix D. The problem that we
solve here is invariant by translation, thus we set c = 0. Further-
more, it can be rescaled by any length describing the fault network
geometry, thus we set a = 1. We considered problem (3–8, 26, 27)
for any triplet (e, d, b) ∈]0, 0.9] ×]0, 3] × [0.05, 1[. To explore this
parameter space, we computed 65 540 solutions with a refinement
of the exploration domain for small values of separation 2d. The last
important technical issue concerns the number of Chebyshev slip
functions used for each of the 65 540 linear eigenvalue problems.
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Figure 9. Seven examples of modes obtained by the linear spectral analysis.
Here a = 1, b = 0.95 and d = 0.03. From left- to right-hand side the
fault separation e ranges progressively from a large value e = 1.2 (without
overlap), to a smaller values e = 0.6 with significant overlap. In each column
we plot the first eight eigenfunctions with their corresponding dimensionless
eigenvalue β. Modes are normalized to amplitude 1. Slip on the largest fault
�a (on the left-hand side) is drawn in black and slip on the smallest fault
�b (on the right-hand side) is drawn is grey. The different values of e have
been chosen to show different situations due to the stress interaction.

For large values of the separation 2d, the distance between fault tips
is large, such that the interaction does not induce strong slip varia-
tions; consequently we used less than 50 Chebyshev slip functions
per fault. In return, for small values of the separation 2d , we used up
to 200 Chebyshev slip functions per fault to handle the strong local
variations. Finally, we introduce a natural dimensionless eigenvalue
β = α

μ

√
ab (see Appendix D).

In Fig. 9, we plot the results of the spectral analysis for seven
geometries of different separations e, the other parameters being
fixed to a = 1, b = 0.95 and d = 0.03. In the first column (e = 1.2),
faults do not overlap and results are simple to interpret: the first mode
gives slips of same sign and the second one shows opposite signs;
for high order modes, the interaction of the faults decreases and
the slip profiles tend to reproduce the simple Chebyshev functions
alternatively on the faults. As fault begin to overlap (second column,
e = 0.8), we see that the interaction increases for the higher order
modes. On the first mode, quasi-linear segments of slip profile are
present in the region of overlap. For e = 0.681, we encounter a
critical point: the stress intensity of the first mode vanishes at the
inner tip of the smallest fault �b, that is K −

b ≈ 0. For e = 0.665, on
the first mode, a small portion of negative slip arises on the left-hand
side of the smallest fault �b. For e = 0.660, the zone of negative
slip on the first mode spreads and we have a second critical point in
the sense that the eigenvalues of the two first modes β1 and β2 are
very close (but not identical since there is no degeneration because
the fault have different size). For e = 0.656, fault �b reaches the
third critical point where the slip of the first mode becomes negative
everywhere on �b; furthermore the second mode has positive slip
almost everywhere on both faults. Finally, for e = 0.6 we observe the
stressing of the situation described for e = 0.656. To summarize, we
see that the first mode provides a basic picture of fault interaction. As
the fault overlap increases, in most cases, we observe the increasing
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Stress analysis at edges of interacting faults 741

effect of the shadowing on the smallest fault (the weak fault), passing
through three critical points such that ‘on the first mode’ we have

(1) Before the first critical point: δwa(x) > 0 and δwb(x) > 0.
(2) At the first critical point: K −

b = 0.
(3) after the first critical point: K −

b < 0 and δwb(x) is not positive
everywhere on �b.

(4) At the second critical point: |β1 − β2| is minimal.
(5) At the third critical point: δwb(x) ≤ 0.
(6) After the third critical point: δwb(x) < 0.

For the case a = b, we observed that the three critical points merge
in a unique one, with an abrupt transition: the sign of the slip on
one of the faults changes globally and we have β1 = β2 (degenerate
system).

In the general case, it turns out that the first linear mode is not
always suitable to describe a real physical problem. Indeed if the
geometry has passed the first critical point (K −

b < 0), the first
mode bifurcates and does not respect the condition of slip positivity
everywhere on the faults, which is a mandatory condition to respect
a Coulomb-based frictional condition. This bifurcation depends on
the geometry and assuming a = 1, it should link the geometrical
parameters e, d and b.

5.2 Bifurcation of the linear spectral problem: link with
the Wolf et al. (2006) non linear spectral analysis

In this section, we determine the location of the bifurcation of the
first slipping mode obtained by the linear spectral analysis and we
compare our results with the non-linear spectral analysis of Wolf
et al. (2006). We keep a = 1 without any loss of generality. In
Section 5.1, we solved the linear spectral problem (3–8, 26, 27)
for any triplet (e, d , b) ∈]0, 0.9] ×]0, 3] × [0.05, 1[. We found
that the first mode could not respect slip positivity on the smallest
fault, as soon as the stress intensity factor at its inner fault tip is
negative. We define K = K +

a K −
a K +

b K −
b the product of all the stress

intensity factors, and thus the bifurcation that we want to determine
is located at K = 0. By SK=0, we define the 2-D surface of the
bifurcation in the 3-D parameter space (e, d , b). Technically, since
we have chosen b < a and e > 0, condition K = 0 reduces to
K −

b = 0; we have already remarked that for fixed value of b and d,
K −

b decreases continuously as e decreases, reaches zero and finally
becomes negative; thus we simply tracked this change of sign to
extract the solutions for which K −

b = 0 holds. The uncertainty of the
results depends on the refinement of the exploration of the domain
(e, d, b) ∈]0, 0.9] ×]0, 3] × [0.05, 1[. The surface of bifurcation
SK=0 is drawn in gray in Fig. 10.

Ionescu & Wolf (2005) and Wolf et al. (2006) developed a finite
element based technique to compute, on any arbitrary antiplane fault
system, an eigenmode that respects the positivity of slip everywhere.
We will not rewrite the problem statement but we will only recall
the main assumptions. First, the slipping domain is partly unknown
and only a ‘potential’ slipping domain is defined along geometrical
segments. This makes possible to find an suitable faulting domain
for which the positivity of slip and the stress finiteness is possible.
Second, the problem is non-linear and it is not possible to reduce
the spectral problem to a simple matrix eigenvalue search. Instead,
only one fundamental mode is searched iteratively to minimize the
eigenvalue (and to maximize the true slipping domain as they could
observe). Depending on the geometrical parameters, they observe
that the true slipping domain is either equal to or smaller than the
potential slipping domain. When it is equal, the stress field is singu-

Figure 10. The grey surface represents the location of SK=0. The white balls
represent the location of 29 solutions of the non-linear spectral problem as
defined by Ionescu & Wolf (2005), that exhibit an inhibited fault segment.
Geometrical parameters a, b, d and e are defined on Fig. 1; b denotes the
active length of the inhibited fault (that is, g in the paper of Wolf et al. (2006)).
The first (mainly horizontal) family of curves represents the iso − β curves
with β = α

μ

√
ab. As b/a increases, the curves sample the iso-values 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1. The second family of curves (quasi vertical
curves) represents the iso-curves of the ratio of the maximum of slip on
the smallest fault to the one on the largest one. As d/

√
ab increases, these

curves sample the iso-values 10−0.1, 10−0.5, 10−1, 10−1.5, 10−2, 10−2.5,
10−3, 10−3.5, 10−4, 10−4.5, 10−5.

lar at fault tips and the non-linear mode turns into a classical linear
mode. When it is smaller, which occurs as fault overlap enough, the
smallest fault exhibits a locked zone (an inhibited section) in the
shadow of the other fault. Therefore, the end of the true slipping do-
main is governed by friction and not by a barrier, and thus the stress
field is not singular at the end of the true slipping domain. Con-
sequently the non-linear fundamental modes of Wolf et al. (2006)
must lie on the surface SK=0. To verify this, we used the finite el-
ement code of Ionescu & Wolf (2005) and computed 29 solutions
of these non-linear spectral problems for two parallel non-coplanar
faults. For each simulation we ensured that the problem was really
non-linear and we measured the true slipping domain on the faults
in order to extract parameters a, b and e. In Fig. 10, we reported
these points (white balls) and we verified successfully that they all
lie on the surface SK=0 for a very wide range of configurations.
In this way, we show that for two parallel non-coplanar antiplane
faults, the surface SK=0 can be seen as the bifurcation of the linear
spectral problem into a non-linear one.

In addition, we have drawn in Fig. 10 two families of curves
that characterize the bifurcation. The first family of curves (quasi
horizontal curves), corresponds to the iso − β curves, where β

varies linearly from 0.3 for the lowest curve (small b/a) to 1.1
for the highest one (large b/a). The second family of curves (quasi
vertical curves) represent the iso-values of the ratio of the maximum
slip on the smallest fault to the one on the largest one. This ratio
varies exponentially from 0.794 for small values of separation 2d to
10−5 for large values. This second family of curves illustrates a key
effect in the bifurcation of the non-linear spectral problem: when
faults are quasi coplanar (that is, for small values of 2d) and as the
offset 2e decreases, stress shadowing occurs strongly at inner fault
tips, and therefore the signature of the bifurcation occurs ‘locally’
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742 P. Favreau and S. Wolf

at one fault tip by the cancellation of the stress intensity factor. By
contrast, when faults are distant (that is, for large values of 2d) and
as the offset 2e decreases, stress shadowing occurs ‘globally’ and the
slip on the smallest fault vanishes at the bifurcation. This situation
must be commented since there exists distant parallel active faults
with comparable importance: in this case stress shadowing is very
weak and, very likely, tectonic loading and strength distribution (see
the quasi-static model in Section 4) play a more important role in
faulting processes than stress interaction.

5.3 Link between the loss of equilibrium of the
quasi-static problem and the spectral analysis

In general, quasi-static fracture models based on a stress weakening
process may be unstable for some loading conditions. For our par-
ticular quasi-static simulations with constant weakening (case 2),
we observe the instability and we can explain it simply on the basis
of the spectral analysis. This has already been studied in the con-
text of dynamic slip nucleation. Following Dascalu et al. (2000) for
an isolated fault, the static linear spectral computation determines
the critical weakening that discriminates whether a small elasto-
dynamic slip perturbation will induce an instability or not. More
precisely, the instability occurs for a weakening larger than the crit-
ical weakening (the first eigenvalue). By investigating non co-planar
fault dynamics, Ionescu & Wolf (2005) showed that for two non-
coplanar parallel fault segments that overlap, the non-linear spectral
computation is needed to handle correctly the frictional problem un-
der stress shadowing interaction. Finally, following Uenishi & Rice
(2003), for an isolated quasi-static slip process regularized at edges
(like our model, theirs shows no stress singularity), the spectral
analysis determines the critical length of a nucleation patch for a
given weakening rate, for any shape of loading. All these studies,
although conducted in a different context (rupture nucleation), can
be used here to analyse the stability of our quasi-static problem.

The question we try to answer here is: what is the dominant sliding
mode of the quasi-static system as it looses its equilibrium? We
investigated this question numerically in the following manner: we
compared the ‘slip velocity’ profiles of the quasi-static solution, ‘at
the global instability onset’, with linear and non-linear eigenmodes
computed with the final geometry of the fault system (at instability
onset). Technically, the ‘slip velocity’ of the quasi-static simulation
is deduced from the difference between the last two iterations (we
had to refine the time step for this) and thus we inject the final
geometry (i.e. the values of a, b, d and e) in the computation of
the linear and non-linear first modes. As it is shown in Fig. 11, for
a quasi-symmetric loading situation, the first linear eigenfunction
fits the sliding velocity of the quasi-static solution and the first
linear eigenvalue corresponds to the uniform weakening used in
the quasi-static computation, that is, 0.1/l̄. Furthermore, in this
case, the first non-linear mode computed with the finite element
code of Ionescu & Wolf (2005) is identical, that is, it does not
contain any locked zone (the non-linear mode is equivalent to the
linear one). By contrast, for a strongly non-symmetric loading, only
the first linear mode seems to correspond to the sliding velocity
and we clearly observe the back-slip on the dominated fault. Note
that the back-slip is associated with the large slip velocity near
the inner tip of the dominant fault. As expected, the non-linear
eigenmode exhibits a locked zone in this strongly non-symmetric
configuration. To conclude, at the onset of the loss of equilibrium,
the slipping velocity of our partly linearized quasi-static problem
(3–8, 13–15), which allows back-slip, is governed by the first linear
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Figure 11. Comparison of quasi-static ‘slip velocity’ profiles at the global
instability onset with eigenmodes. From top to bottom, solid lines represent
quasi-static slip velocity profiles of one quasi-symmetric simulation 5′′ and
one strongly non-symmetric simulation 5′ ′ ′. Simulations 5′′ and 5′ ′ ′ are sim-
ilar to simulation 5′ and differ only in their asymmetry of loading rate, that
is, γ b/γ a = 10/9.75 and 10/8.6, respectively. At the onset of instability,
the geometry of the network is used to compute the linear eigenmodes with
our Chebyshev method (dashed lines) and the non-linear eigenmodes with
the finite element method of Ionescu & Wolf (2005) (dash–dotted lines).
To facilitate the comparison, all profiles have been normalized around unity
to minimize their differences of amplitude. Linear eigenvalues are, respec-
tively, 0.1011/l̄ (for 5′′) and 0.1016/l̄ (for 5′ ′ ′). Non-linear eigenvalues are,
respectively, 0.1012/l̄ (for 5′′) and 0.1226/l̄ (for 5′ ′ ′). For simulation 5′′, all
curves are identical and all eigenvalues are equal to the quasi-static weak-
ening (0.1) at 1 per cent confidence. For simulation 5′ ′ ′, only the non-linear
eigenmode differs, and this is due to the back-slip process occurring in the
partly linearized quasi-static problem (3–8), (13)–(15).

mode (not the non-linear one). By analogy, we conjecture that the
loss of equilibrium for the fully non-linear quasi-static problem
(3–8, 9–12), which does not allow back-slip by definition, could be
analyzed with the non-linear eigenmode analysis.

6 D I S C U S S I O N

Here, we discuss several implications of our models to interpret
some natural observations. First, we compare our results with the
study of normal fault relays of metric size, done by Soliva &
Benedicto (2004). Then we point out shortly the influence of fault
interaction on fault tip velocities and on cohesive zones. To finish,
we discuss the mechanical assumptions of the model.

6.1 Geometry and stress field of open relay zones

Many relays of normal faults of different sizes have been studied
and classified by Soliva & Benedicto (2004). Especially, they studied
slip distributions and geometrical characteristics of normal fault re-
lays at different stages: ‘open’, ‘linked’ and ‘fully breached’. ‘Open
relays’ have no or few secondary faulting in the relay zone. ‘Linked
relays’ have new faults that link the major faults (the process of
coalescence has started). In ‘fully breached’ relays the faults are
completely merged in one unique continuous fault and only a resid-
ual geometrical irregularity on the fault recalls the past existence of
two independent faults. In this section, we try to interpret their re-
sults for open relays by means of both our spectral analysis and our
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Stress analysis at edges of interacting faults 743

quasi-static numerical simulations. For linked and fully breached
relays, a deeper comparison can not be conducted yet, since our
quasi-static model needs improvements to account for fault linking
processes by ‘connecting’ faults of different orientations. One of the
key observations of Soliva & Benedicto (2004) is the mean ratio of
fault separation to fault offset observed for each kind of relay (open,
linked and fully breached). Experimentally, the geometry obeys the
‘pre-linkage’ rule r � 2.9d for open relays, the ‘in-linkage’ rule
2.9d � r � 4.5d for linked relays and the ‘post-linkage’ rule
4.5d � r � 6d for fully breached relays, where r = (b + a)/
2 − e is the half-overlap of faults. To simplify the analysis, we
will simply call r � 2.9d the ‘linkage’ rule. Note that these
observed geometrical rules do not take into account the fault
lengths 2a and 2b: they are supposed to be valid for fault sys-
tems with small ratios of separation and overlap compared to fault
lengths.

Let us begin with the spectral problem of two faults studied in
Section 5. Because the modes take into account stress interaction
and because the first mode should be dominant in slipping processes,
it may reproduce partly the slip profiles encountered in real fault
systems, especially in the relay zone, as Wolf et al. (2006) showed
on a real fault system in Afar. The main result of the spectral analysis
is the set SK=0 of critical geometries for which the stress intensity
vanishes at one of the inner fault tips. The set SK=0 is a surface that
links the parameters b/a, d and e together. Let us now argue, as
Wolf et al. (2006), that on SK=0, a system of two faults subject to
weakening has an inner fault tip that would not propagate straight
because the stress intensity factor is zero; thus the linkage through
secondary faulting should be preferred to the straight propagation
of one fault in the shadow of the other. To check if this purely
geometrical ‘SK=0 criterion’ can be used to discriminate whether
a relay is in the linkage process, we plot in Fig. 12 the points
belonging to SK=0 and the boundary of the experimental linkage
criterion (black thick line). First, let us remark that many points of
SK=0 correspond to negative overlap and are out of the range of
the data, but still, SK=0 (white circles) lies on a much larger area
than the linkage region r � 2.9d . Let us now restrict the points of
SK=0, with an additional constraint of aspect ratio b > 7.5d (black
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Figure 12. Locations of the points defining SK=0 compared to experimental
data. The overlap 2r = (b + a) − 2e is plotted against the separation 2d, both
renormalized by the largest fault length 2a. Following Soliva & Benedicto
(2004), the thick solid line represents the best-fitting linear trend for open
relays (r � 2.9d). The other two solid lines represent the best-fitting linear
trends of ‘linked’ and ‘fully breached’ relays. Each circle represents a point
belonging to SK=0. The subset of SK=0 corresponding to the aspect ratio
constraint b > 7.5d is highlighted by means of black circles.
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Figure 13. Paths of the quasi-static simulations 4′, 5′, 6′, 7′, 8′ and 9′
in the frame r (t)/a(t) (normalized overlap) versus d(t)/a(t) (normalized
fault separation). The different symbols (squares, star, circles, diamonds
and triangles) correspond to particular times where all simulations share
a common characteristic. They are reported in time on Fig. 14. Circles,
diamonds and triangles correspond to the intersection with experimental
geometrical linkage criteria r = 2.9d , r = 4.5d and r = 6d from Soliva &
Benedicto (2004), but only the first three simulations can really be compared
to their results.

circles), to account for the criterion of small ratio d/min(a, b)
that Soliva & Benedicto (2004) considered in their experimental
study. With this additional constraint, we find a clear correlation
between the experimental linkage criterion r � 2.9d and our ‘SK=0

criterion’. Note that this correlation disappears for very small values
of separation.

Now, we will comment the different stages of two sets of quasi-
static numerical simulations. The first set of simulations 4′, 5′ and
6′ with a small initial separation d/e(0) = 0.1 and a strong fault
interaction will be interpreted in the light of the experimental obser-
vations of Soliva & Benedicto (2004). The second set of simulations
7′, 8′ and 9′ has a large initial separation d/e(0) = 0.5, thus few
fault interaction. Because of this large initial separation, it cannot be
compared to their observations. However, the results for the second
set are interesting as well, and for simplicity the results for both
sets are presented on the same figures in order to ease comparisons.
Because of the asymmetry, the bottom fault �a(t) will be called the
dominated fault and the top fault �b(t) will be called the dominant
one. In Fig. 13, we represent the paths followed by the quasi-static
simulations in the frame of Fig. 12, that is, overlap 2r (t) against
separation 2d (both normalized by the largest fault length 2a(t)).
Meanwhile, in Fig. 14 we represent, as functions of time, the fault
tip velocities corresponding to the same quasi-static simulations.
Furthermore we point with different symbols five particular times;
the first two correspond to some particular moments in the simula-
tions, and the last three correspond to the geometrical criterions of
Soliva & Benedicto (2004) about linkage:

�: propagation speed of inner fault tips is maximal (excluding
the fault birth),

� (only for simulations 7′, 8′ and 9′): faults begin to overlap,
©: the fault system enters the experimental linkage zone (r �

2.9d),
♦: the fault system enters the experimental post-linkage zone

(r � 4.5d),
: the fault system passes r � 6d, where only fully breached

relays are observed.
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Figure 14. Fault tip velocities (normalized by l̄/t̄) as functions of the nor-
malized time t/t̄ for the quasi-static simulations 4′, 5′ and 6′ (top panel)
and simulations 7′, 8′ and 9′ (bottom panel). Dotted lines correspond to
simulations 5′ and 8′ with constant fault weakening. The different symbols
(squares, star, circles, diamonds and triangles) correspond to particular times
where all simulations share a common characteristic. The fault birth episode
can be observed for t/t̄ ≤ 5 in each simulation; note that it comes with large
initial fault tip velocities.

In addition, at these particular times, we plot in Figs 15 and 16
the corresponding snapshots of the state of elastic shear stress for
both sets of simulations (except simulations 4′ and 7′ that have
no frictional weakening). More precisely, each picture represents an
unsigned vector field which takes the orientation of the most sheared
plane and the amplitude of the corresponding shear. This field is
plotted only at places where the stress field would theoretically
favour secondary faulting (that is, where the shear along x is posi-
tive). Since we do not know the regional state of stress (pre-stress),
we cannot compute the total stress; consequently, the conclusion
that we can draw from these elastic shear stress pictures must be
considered carefully regarding secondary faulting prediction.

Let us now describe the first set of simulations (4′, 5′ and 6′),
which can be compared with the observations of Soliva & Benedicto

(2004) through Figs 13, 14 and 15. At the instant pointed by squares,
the overlap of faults is close to zero and fault tip velocities are
maximal; also, at any point in the neighbourhood of the inner fault
tips or inside the starting relay ramp, the most sheared plane is
approximately oriented along tilted vector (1, −1) . At this moment,
it is reasonable to argue that faults are about to propagate in a
new direction out of the relay (faults repulse each other). This is
commonly observed on real fault relays. Here, it seems that the
dominated fault is more concerned by this repulsion. In addition,
secondary faulting may appear along this tilted direction. At the
instant pointed by circles, faults overlap significantly and fault tip
velocities are strongly reduced, but the state of stress looks similar
(slightly more vertical inside the relay ramp). It is interesting to
note that this time corresponds to the end of the strong deceleration
of the inner fault tips (see Fig. 14). Afterwards, at times pointed
by diamonds and triangles, the state of stress favouring secondary
fractures shrinks to small regions in the vicinity of the fault tips.
We can suppose that the active linking process is completed at
the diamond. At the time pointed by triangles, the use of different
friction laws does not really make a difference between simulations
5′ and 6′, indeed, these simulations are strongly controlled by the
distribution of strength excess along fault lines.

Now we comment shortly the results for simulations 8′ and 9′

(see Figs 13, 14 and 16), compared to simulations 5′ and 6′ that we
have just analyzed. At the times pointed by squares, the situations
are qualitatively similar. The snapshots corresponding to stars for
simulations 8′ and 9′ (Fig. 16) are comparable to those pointed by
circles for 5′ and 6′ (Fig. 15). Preferred secondary fracturing is
more vertical. At larger times (circles and diamonds), the state of
stress favouring secondary fractures shrinks to small regions in the
vicinity of the fault tips. Finally, in the last snapshots (triangles), the
inner fault tip of the dominated fault is completely in the shadow
and it even propagates back in simulation 8′. The inner fault tip of
the dominant fault interacts with the outer tip of the dominated one
(interaction is stronger in simulation 8′ because constant weakening
amplifies the asymmetry of slip partition between the faults). In
the last snapshot (triangle), simulation 8′ is close to the loss of
equilibrium and this explains the difference with 9′ (this difference

Figure 15. Combined representation of the orientation and amplitude of the most sheared plane (plotted only if shear along x is positive) in the relay formed
by the non-symmetric simulations 5′ (left-hand panels) and 6′ (right-hand panels). See Table 1 for the parameters. From top to bottom, snapshots correspond to
the particular times pointed by squares, circles, diamonds and triangles. These times are defined in Section 6.1 and are reported on Figs 13 and 14 (top panel).

C© 2009 The Authors, GJI, 179, 733–750

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/179/2/733/664135 by guest on 04 M

arch 2022



Stress analysis at edges of interacting faults 745

Figure 16. Combined representation of the orientation and amplitude of the most sheared plane (plotted only if shear along x is positive) in the relay formed
by the non-symmetric simulation 8′ (left-hand panels) and 9′ (right-hand panels). See Table 1 for the parameters. From top to bottom, snapshots correspond
to the particular times pointed by squares, stars, circles, diamonds and triangles. These times are defined in Section 6.1 and are reported on Figs 13 and 14
(bottom panel).

also exists between simulations 5′ and 6′ but it involves a very large,
unrealistic, relay aspect ratio r (t)/d). To finish with, in simulations
7′, 8′ and 9′, the phase of acceleration of inner fault tips vanishes
and the deceleration of fault tips, as fault overlap, takes much more
time, which indicates little interaction. As expected for this second
set of simulations, the experimental criterion for linkage (at the
circle) does not correspond to any particular mechanical state in the
simulations.

6.2 Effect of stress interaction on fault tip velocities
and cohesive zones

The kinematics of natural fault systems has been observed by several
authors. In Afar, Manighetti et al. (2001) studied numerous faults
and proposed many scenarios of fault propagation, however their
measurements could not directly retrieve the slipping history and
especially the variations of their behaviour in time. Recently Taylor
et al. (2004) performed high resolution imaging of fault systems
in the Whakatane Graben (New Zealand) at different times through
stratigraphic studies. On the Rangitaiki fault (now fully breached),
they could image the changes of slipping rates as fault interact and
link. In particular, they could observe the stopping of the propaga-
tion of several segments, to the benefit of the development of new
linking segments. However it is still very difficult to obtain contin-
uous informations on both slip rates and fault tip propagation. Our
quasi-static model predicts that fault tip velocities can be strongly
influenced by stress interaction. For example in simulations 4′, 5′

and 6′, we observe that fault tip velocities undergo large variations:
from 35 per cent larger values as fault tips approach each other,
down to 70 per cent smaller values as fault overlap. These varia-
tions strongly depend on the initial fault separation d/e(0). Further
investigations are necessary to compare with natural fault systems.

In the model of Cowie & Scholz (1992), the length of the cohesive
zone is controlled by the variation of the rock strength around
fault tips. In our simulations based on the complete slip-dependent
friction (including critical slip-weakening distance and finite stress
drop), we find that the length of the cohesive zone can also be
strongly dependent on the interaction process. In simulations 1 and
1′, where separation is very small (d/e(0) = 0.02), stress interaction
is strong and we observe that the length of the cohesive zone at
the inner tips is approximately four times smaller than that of the
free outer tips. Consequently, the stress field in the relay can be
influenced by higher order effects like the possible evolution of the
cohesive zone due to stress interaction.

6.3 Discussion of mechanical assumptions

Beyond the fact that our model is only bi-dimensional, one of the
main objections that can be raised against our model (and against
many models used to understand faulting at long timescale) is the
use of the linear elastic rheology for the crust. Indeed the use of uni-
form rates of loading implies that, ahead of the fault tips, the intact
crust has either a very low stress or a very large strength to stabilize
fault tip propagation. To work with an elastic model, at least one
has to keep in mind that damage and multiple relaxations processes
will strongly affect the effective stiffness at the tectonic timescale
(several orders softer). This can modify both the remote loading
process and the interaction between faults, that we have implicitely
decoupled. We can make the same remark on the weakening rates
that we used to model frictional properties: this weakening must be
several orders lower than the seismic weakening used in earthquake
modelling, otherwise shear stress would be zero on major faults that
have accumulated kilometric slip. When addressing the question of

C© 2009 The Authors, GJI, 179, 733–750

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/179/2/733/664135 by guest on 04 M

arch 2022



746 P. Favreau and S. Wolf

observed constant fault slip gradients, Bürgmann et al. (1994) pro-
posed the introduction of elastic heterogeneities and anelasticity
to properly model fault cumulated slips, and Barr & Houseman
(1996) proposed a non-linear viscous rheology. Finally, to explain
constant fault slip gradients, Cowie & Shipton (1998) proposed a
model based on discrete slipping-healing patches to mimic the ac-
cumulation of slip by rupture events. All models were satisfactory
to model slip gradients and this tends to show that it is still difficult
to discriminate the kind of crustal rheology that must be used in
faulting models at tectonic timescale.

The second restrictive assumption of our model is the smooth
evolution of slip processes and tip propagation, which is due to the
use of very regular shapes of strength excess. Although it is possible
to introduce heterogeneities, it was out of the scope of this study,
and we have assumed that the succession of ruptures (stick-slip)
can self-average to produce smooth enough slip profiles. This ques-
tion has been investigated on real faults by Manighetti et al. (2005).
However, the dynamic effects of seismic rupture propagation may be
crucial for faulting on tectonic timescale. On the seismic timescale,
Voisin et al. (2002) showed that the use of frictional strengthening
is mandatory to stabilize the arrest of dynamic rupture at the tips of
a single fault, which makes a significant difference with our purely
weakening model. Furthermore, always on seismic timescale, nu-
merous experiments of dynamic rupturing on multiple, en echelon
or bend, fault segments have been performed in 2-D and 3-D. On
prescribed fault geometries, Harris & Day (1999), Oglesby et al.
(2003), Aochi & Madariaga (2003) and many other authors stud-
ied the behaviour of dynamic rupture, that is, how it jumps, selects
fault branches and radiates seismic waves. On tectonic timescale,
mechanical energy transfers through earthquakes is small but the
shape of fault networks may be strongly determined by the effects of
seismic waves. In other words, although faults are not built during
the dynamic events only, Kame & Yamashita (1999) showed that
dynamic effect on crack growth in intact material strongly deter-
mines the crack path and this can have important consequences on
the formation of damage and secondary linking faults.

7 C O N C LU S I O N

We have built a new simple method to model the 2-D antiplane
growth of competing non-coplanar faults in elastic medium, that
handles strong stress interaction and slip-dependent friction. The
method, based on a Chebyshev representation of fault slip, handles
complex slip-dependent frictional behaviours and solves, quasi an-
alytically and without space discretization, the straight propagation
of faults. The technique is however partly linearized, since based on
the cancelation of stress singularity at fault tips, and it cannot avoid
back-slip and back-propagation. We showed that strong interaction
impacts the propagation of inner fault tips: it favours acceleration
before faults overlap and deceleration afterwards. We found that
fault systems subject to constant weakening become unstable and
the use of non-linear weakening, through the introduction of a crit-
ical weakening distance and a finite stress drop, keeps the system
stable much longer, as expected.

To interpret these results, we have re-investigated the spectral
analysis that was previously used to interpret the shape of slip
profiles in real fault networks by Wolf et al. (2006). The spectral
analysis takes into account fault interaction. The first mode found
by this analysis can be used to interpret the properties of the quasi-
static solution. In particular, we found that, for two faults of any
lengths 2a and 2b, separation 2d and offset 2e, there is a subset of

parameters that links a, b, d and e such that the first linear mode
has a vanishing stress intensity factor at the inner tip of the smallest
fault. This phenomenon is related to the strong deceleration and
arrest of the fault tip in the quasi-static experiments.

Also, we examined the state of stress at different stages of the
quasi-static evolution and compared our results with the experimen-
tal data of Soliva & Benedicto (2004). In particular, we investigated
the possible influence of the relay aspect ratio (overlap/separation)
to interpret several geometrical aspects of the linking process. For
small fault separations, we remarked that stress interaction has a
very important impact on the deceleration of the inner fault tips,
and that the experimental geometrical criterion for linkage (overlap
�2.9 × separation) seems to correspond to the end of this decelera-
tion. Also at that moment, the stress orientation suggests a change of
orientation of the faults outwards the relay zone (which is observed
on real faults) and a very favouring stress field regarding secondary
fracturing (also typically observed in relay ramps).
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A P P E N D I X A : E L E M E N TA RY
D I S P L A C E M E N T S A N D S T R E S S E S
F U N C T I O N S

In this section, we give simple expressions of displacement, stresses
and stress derivatives around a fault segment subject to a particular
basis of slip functions.

Let us define z = x + iy, with {x , y} ∈] − ∞, ∞[2 and i2 =
−1. The complex function

√
z with the branch point z = 0 is cut

along the branch z ∈] − ∞, 0[. Let us define by U k the kth order
Chebyshev polynomials of second kind. Then we have, for a single

antiplane fault of length 2, located at {y = 0, |x | < 1} in an infinite
elastic medium of shear modulus 1, and subject to a slip profile
δwk(x) = 2 sin[k arccos(x)] = 2

√
1 − x2Uk−1(x), k integer and

strictly positive

wk(x, y) = Im[Fk(x + iy)] (A1)

τk(x, y) + iσk(x, y) = F ′
k(x + iy) (A2)

∂

∂x
[τk(x, y) + iσk(x, y)] = F ′′

k (z) (A3)

∂

∂y
[τk(x, y) + iσk(x, y)] = i F ′′

k (z) (A4)

with

Fk(z) = −
(

z + √
z + 1

√
z − 1

)−k
(A5)

F ′
k(z) = − k Fk(z)√

z + 1
√

z − 1
(A6)

F ′′
k (z) = k√

z + 1
√

z − 1

[
zFk(z)

z2 − 1
− F ′

k(z)

]
, (A7)

where wk(x , y), σ k(x , y) and τ k(x , y) are displacements and stresses
in the whole body.

The asymptotic fields around the fault tips are deduced from the
following series, ∀ε > 0, ∀φ ∈ [−π , π ]:

Fk(±1 ± εeiφ) = (±1)k
(
−1 + k

√
2εei φ

2

)
+ o(ε) (A8)

F ′
k(±1 ± εeiφ) = (±1)k−1k

(
e−i φ

2√
2ε

− k

)
+ o(ε) (A9)

which gives finally ∀ε > 0, ∀φ ∈ [−π , π ]

wk[±1 ± ε cos(φ),±ε sin(φ)]

= (±1)kk
√

2ε sin

(
φ

2

)
+ o(ε) (A10)

σk[±1 ± ε cos(φ),±ε sin(φ)]

= (±1)k−1 −k sin
(

φ

2

)
√

2ε
+ o(ε) (A11)

τk[±1 ± ε cos(φ),±ε sin(φ)]

= (±1)k−1k

[
cos

(
φ

2

)
√

2ε
− k

]
+ o(ε). (A12)

Stress intensity corresponds to the amplitude (multiplied by
√

2π)
of the first term of the upper asymptotic development of stresses (i.e.
the inverse square root term), regardless of the angular dependence.
It follows that the associated stress intensity factors are K +

k = k
√

π

for the right tip and K −
k = (−1)k−1k

√
π for the left one.

A P P E N D I X B : S E R I E S E X PA N S I O N
F O R T W O FAU LT S

Let us consider two faults �a and �b parallel to x and non-coplanar.
Fault �a has length 2a and is located at {y = −d, |x + e| < a}.
Fault �b has length 2b and is located at {y = d, |x − e| < b} . μ
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748 P. Favreau and S. Wolf

denotes the shear modulus. On both faults, we introduce the change
of abscissa {x = −e + a cos(θ), θ ∈ [0, π ]} on �a and {x = e +
bcos(θ), θ ∈ [0, π ]} on �b. Following this, we write for any function
f a on �a and f b on �b: fa(x) = f̃a(θ ) and fb(x) = f̃b(θ ). Finally,
the unknown slip functions are defined by

δw̃a(θ ) =
N∑

k=1

Wakδwk(cos θ ) = 2
N∑

k=1

Wak sin(kθ ) (B1)

δw̃b(θ ) =
N∑

k=1

Wbkδwk(cos θ ) = 2
N∑

k=1

Wbk sin(kθ ), (B2)

where W ak and W bk are 2N real coefficients. This definition assumes
an expansion of both fault slips on the basis of functions δwk defined
previously. Here the expansion is finite, for numerical purposes, but
the true solution is obtained when N → ∞.

Displacement and stresses are deduced by summation. Remark-
ing that τ k(cos θ , 0) = −k sin(kθ )/sin(θ ), the shear stress field
acting on each fault is

τ̃a(θ ) = −μ

a

N∑
k=1

Wak
k sin(kθ )

sin(θ )

+ μ

b

N∑
k=1

Wbkτk

(−2e + a cos θ

b
,
−2d

b

)
(B3)

τ̃b(θ ) = −μ

b

N∑
k=1

Wbk
k sin(kθ )

sin(θ )

+ μ

a

N∑
k=1

Wakτk

(+2e + b cos θ

a
,
+2d

a

)
. (B4)

For both faults, the shear stress caused by the other slipping fault
is not singular and only their own slip can be singular at the tips.
The stress intensity factors of the four fault tips are

K ±
a = μ

√
π

a

N∑
k=1

Wak(±1)k−1k (B5)

K ±
b = μ

√
π

b

N∑
k=1

Wbk(±1)k−1k. (B6)

K +
a = 0, K −

a = 0, K +
b = 0 and K −

b = 0, respectively, are the
conditions to have a finite shear stress at right/left �a tips and
right/left �b tips, respectively.

A P P E N D I X C : Q UA S I - S TAT I C P RO B L E M
F O R T W O W E A K E N I N G FAU LT S

Following Section 4, we have to solve (13), (14) and (15), that we
rewrite ∀ θ ∈ [0, π ]:

τ̃a(θ ) = τ e
a [c − e + a cos(θ)] − αa

δw̃a(θ )

2
+ τ r

a [δw̃a(θ )] (C1)

K +
a = 0 (C2)

K −
a = 0 (C3)

τ̃b(θ ) = τ e
b [c + e + b cos(θ)] − αb

δw̃b(θ )

2
+ τ r

b [δw̃b(θ )] (C4)

K +
b = 0 (C5)

K −
b = 0, (C6)

where the tilding of functions denotes the change of variable x to θ ,
such that x = c − e + a cos(θ) on �a and x = c + e + b cos(θ ) on
�b.

Using the series expansion as defined in Appendix B (see eqs B1,
B2, B3 and B4), we can reformulate (C1) and (C4) as series. After,
we multiply these series by 2

πμ
sinq (θ ) sin(mθ ) and integrate for

θ isin; [0, π ]. We have chosen q = 0 as in (Uenishi & Rice 2003).
By using (B5) and (B6), we also reformulate (C2), (C3), (C5) and
(C6) and we obtain ∀ m ∈ 1, . . . , N

Sam =
N∑

k=1

(
Mk

m

a
Wak − Rk

m

b
Wbk

)

+ Tam − αa

μ
Wam + Xam = 0 (C7)

K +
a =

N∑
k=1

Wakk = 0 (C8)

K −
a =

N∑
k=1

Wak(−1)k−1k = 0 (C9)

Sbm =
N∑

k=1

(
Mk

m

b
Wbk − Lk

m

a
Wak

)

+ Tbm − αb

μ
Wbm + Xbm = 0 (C10)

K +
b =

N∑
k=1

Wbkk = 0 (C11)

K −
b =

N∑
k=1

Wbk(−1)k−1k = 0 (C12)

with

Tam = 2

πμ

∫ π

0
τ e

a [c − e + a cos(θ )] sin(mθ )dθ

Xam = 2

πμ

∫ π

0
τ r

a

[
2

N∑
k=1

Wak sin(kθ )

]
sin(mθ )dθ

Tbm = 2

πμ

∫ π

0
τ e

b [c + e + b cos(θ)] sin(mθ )dθ

Xbm = 2

πμ

∫ π

0
τ r

b

[
2

N∑
k=1

Wbk sin(kθ )

]
sin(mθ )dθ

and with

Mk
m = 2k

π

∫ π

0

sin(kθ ) sin(mθ )

sin θ
dθ

= k

π
[1 + (−1)k+m]

k+m−1∑
p=1+|k−m|

1 − (−1)p

p
(C13)

Rk
m = 2

π

∫ π

0
τk

(−2e + a cos θ

b
,
−2d

b

)
sin(mθ )dθ (C14)

Lk
m = 2

π

∫ π

0
τk

(+2e + b cos θ

a
,
+2d

a

)
sin(mθ )dθ. (C15)
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Eqs (C7)–(C12) form a 2N + 4 non linear system of equations.
Terms Mk

m which represent the self-influence of the faults (the sin-
gular part of the problem) are determined analytically by (C13).
Terms Rk

m and Lk
m represent the cross-influence of the faults and

they remain as integrals (see C14 and C15) since they contain to
much parameters to hope a simple analytical expression. However,
their integrand is regular at all order, therefore Rk

m and Lk
m scalars

can be computed by a high-order numerical integration method.
If the functions τ r

a and τ r
b are sufficiently smooth functions of the

displacement, each equation of this system depends smoothly of the
2N + 4 unknowns, that is, the N Wak numbers, the N Wbk numbers,
a, b, c and e. This property combined with the assumption that the
system remains non singular allows us to use the classical iterative
Newton method to solve it. This needs to compute the Jacobian
of the system. Fortunately, after a few algebra, it can be computed
accurately with the following formulae:

∂Sam

∂Waj
= M j

m

a
− αa

μ
δmj + 2X j

a,m

∂Sam

∂Wbj
= − R j

m

b

∂Sam

∂a
= −

N∑
k=1

(
Mk

m

a2
Wak + Rk

1,m

b2
Wbk

)
+ Ta,1,m

∂Sam

∂b
= 1

b2

N∑
k=1

(
Rk

m − 2d Rk
2,m

b
− 2eRk

0,m

b
+ a Rk

1,m

b

)
Wbk

∂Sam

∂c
= Ta,0,m

∂Sam

∂e
=

N∑
k=1

2Rk
0,m

b2
Wbk − Ta,0,m

∂K +
a

∂Waj
= j,

∂K −
a

∂Waj
= (−1) j−1 j

∂K ±
a

∂Wbj
= ∂K ±

a

∂a
= ∂K ±

a

∂b
= ∂K ±

a

∂c
= ∂K ±

a

∂e
= 0

∂Sbm

∂Waj
= − L j

m

a

∂Sbm

∂Wbj
= M j

m

b
− αb

μ
δmj + 2X j

b,m

∂Sbm

∂a
= 1

a2

N∑
k=1

(
Lk

m + 2d Lk
2,m

a
+ 2eLk

0,m

a
+ bLk

1,m

a

)
Wak

∂Sbm

∂b
= −

N∑
k=1

(
Mk

m

b2
Wbk + Lk

1,m

a2
Wak

)
+ Tb,1,m

∂Sbm

∂c
= Tb,0,m

∂Sbm

∂e
= −

N∑
k=1

2Lk
0,m

a2
Wak + Tb,0,m

∂K +
b

∂Wbj
= j,

∂K −
b

∂Wbj
= (−1) j−1 j

∂K ±
b

∂Waj
= ∂K ±

b

∂a
= ∂K ±

b

∂b
= ∂K ±

b

∂c
= ∂K ±

b

∂e
= 0

with

Ta,0,m = 2

πμ

∫ π

0
τ e′

a (c − e + a cos(θ )) sin(mθ )dθ

Ta,1,m = 2

πμ

∫ π

0
cos(θ )τ e′

a (c − e + a cos(θ)) sin(mθ )dθ

Tb,0,m = 2

πμ

∫ π

0
τ e′

b (c + e + b cos(θ)) sin(mθ )dθ

Tb,1,m = 2

πμ

∫ π

0
cos(θ)τ e′

b (c + e + b cos(θ)) sin(mθ )dθ

Xk
a,m = 2

πμ

∫ π

0
τ r ′

a

(
2

N∑
l=1

Wal sin(lθ )

)
sin(kθ ) sin(mθ )dθ

Xk
b,m = 2

πμ

∫ π

0
τ r ′

b

(
2

N∑
l=1

Wbl sin(lθ )

)
sin(kθ ) sin(mθ )dθ

Rk
0,m = 2

π

∫ π

0

∂τk

∂x

(−2e + a cos θ

b
,
−2d

b

)
sin(mθ )dθ

Rk
1,m = 2

π

∫ π

0
cos(θ)

∂τk

∂x

(−2e + a cos θ

b
,
−2d

b

)
sin(mθ )dθ

Rk
2,m = 2

π

∫ π

0

∂τk

∂y

(−2e + a cos θ

b
,
−2d

b

)
sin(mθ )dθ

Lk
0,m = 2

π

∫ π

0

∂τk

∂x

(
2e + b cos θ

a
,

2d

a

)
sin(mθ )dθ

Lk
1,m = 2

π

∫ π

0
cos(θ )

∂τk

∂x

(
2e + b cos θ

a
,

2d

a

)
sin(mθ )dθ

Lk
2,m = 2

π

∫ π

0

∂τk

∂y

(
2e + b cos θ

a
,

2d

a

)
sin(mθ )dθ.

It is also noticeable that, when the friction laws are linear (i.e τ r
a and

τ r
b are set to zero), then the computation is much faster because not

only the costly terms Xam, Xbm, Xk
a,m and Xk

b,m vanish but also the
system becomes linearly dependent of the 2N scalars Wak and Wbk ,
which accelerates the convergence.

A P P E N D I X D : L I N E A R S P E C T R A L
P RO B L E M F O R T W O W E A K E N I N G
FAU LT S

Following Section 5, we have to solve (26) and (27, that we rewrite
∀θ ∈ [0, π ]:

τ̃a(θ ) = −αδw̃a(θ )/2 (D1)
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750 P. Favreau and S. Wolf

τ̃b(θ ) = −αδw̃b(θ )/2, (D2)

where the tilding of functions denotes the change of variable x to θ ,
such that x = c − e + a cos(θ) on �a and x = c + e + b cos(θ) on
�b.

Using the series expansion as defined in Appendix B (see eqs B1,
B2, B3 and B4), we can reformulate (D1) and (D2) as series. After,
we multiply these series by 2

πμ

√
ab sinq (θ ) sin(mθ ) and integrate

for θ ∈ [0, π ]. We have chosen q = 0 as in (Uenishi & Rice 2003).
We obtain ∀ m ∈ 1, . . . , N :

N∑
k=1

√
b

a
Mk

m Wak −
√

a

b
Rk

m Wbk = βWam (D3)

N∑
k=1

√
a

b
Mk

m Wbk −
√

b

a
Lk

m Wak = βWbm, (D4)

where β = α

μ

√
ab is dimensionless and where Mk

m, Rk
m, Lk

m are
defined in Appendix C by eqs (C13), (C14) and (C15).

Consider the vector W = [W a1, . . . , W aN , W b1, . . . , W bN ]. (D3)
and (D4) can be assembled into a four-blocks matrix A to form the
2N × 2N eigenvalue problem AW = βW with

A =

⎡
⎢⎢⎢⎢⎢⎣

[√
b

a
Mk

m

]
m≤N
k≤N

[
−

√
a

b
Rk

m

]
m≤N
k≤N[

−
√

b

a
Lk

m

]
m≤N
k≤N

[√
a

b
Mk

m

]
m≤N
k≤N

⎤
⎥⎥⎥⎥⎥⎦. (D5)

It must be noticed that Matrix A is not symmetric. Both diagonal
blocks represent the self-influence of the faults (the singular part of
the problem). The non-diagonal blocks represent the cross-influence
of the faults.

C© 2009 The Authors, GJI, 179, 733–750

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/179/2/733/664135 by guest on 04 M

arch 2022


