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Abstract. A continuous wavelet technique has been recently introduced to analyze 
potential fields data. First, we summarize the theory, which primarily consists of 
interpreting potential fields via the properties of the upward continued derivative 
field. Using complex wavelets to analyze magnetic data gives an inverse scheme 
to find the depth and homogeneity degree of local homogeneous sources and the 
inclination of their magnetization vector. This is analytically applied on several 
local and extended synthetic magnetic sources. The application to other potential 
fields is also discussed. Then, profiles crossing dikes and faults are extracted from 
the recent high-resolution aeromagnetic survey of French Guiana and analyzed 
using complex one dimensional wavelets. Maps of estimated depth to sources and 
their magnetization inclination and homogeneity degree are proposed for a region 
between Cayenne and Kourou. 

1. Introduction 

The high resolution of recent magnetic (and grav- 
ity) surveys [Gunn, 1997; Biegert and Millegan, 1998; 
Grauch and Millegan, 1998] stimulates the development 
of specific interpretation techniques which emphasize 
the information of interest to the geologist and to the 
geophysicist: Modern magnetometers measure the mag- 
netic field to .-• 0.01 nT (the Earth's dipole magnetic 
field is .-•30,000-60,000 nT worldwide, with an ampli- 
tude of the anomaly due to the upper crust of hundreds 
of nanoteslas); Global Positioning Systems (GPS) can 
give the position from a few meters (in aeromagnetic 
surveys) to a few centimeters (in ground surveys). 

We have explored the use of wavelet transforms, as 
initially introduced in the analysis of potential fields by 
Moteau [1995]. She has described the technique for lo- 
cal and extended sources, with the emphasis on gravity 
applications, followed by preliminary results for mag- 
netic cases. The principle of this method is to inter- 
pret potential fields data via the properties of the up- 
ward continued derivative field. Moteau et al. [1997] 
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have demonstrated the general n-dimensional theory 
for local homogeneous sources. Moteau et al. [1999] 
have analyzed the effects of noise and extent of sources 
on the properties of the wavelet coefficients. We now 
present specific properties of the one-dimensional (l- 
D) complex wavelet coefficients of the total field mag- 
netic anomaly: Apparent inclination of magnetization, 
in addition to depth, vertical extent, and dip angle of 
sources can be estimated. This wavelet technique ap- 
plied to magnetic studies is not only a filtering as used 
in recent advances in aeromagnetic processing [Fedi and 
Quarta, 1998; Ridsdill-Smith and Dentith, 1999] but ac- 
tually gives the derivatives (and analytic signal) of the 
upward continued anomaly field. This is more like the 
continuous wavelet analysis developed for the location 
of singular features of the source distribution [Hornby 
et al., 1999], which is improved when scaling relations of 
the wavelet coefficients are analyzed and when vertical 
derivatives are used in addition to the horizontal deriva- 

tives. This complementary development to existing up- 
ward continuation techniques [Paul et al., 1966] and 
to recent advances in the interpretation of the gradi- 
ents of potential fields [Pedersen and Rasmussen, 1990; 
Pilkington, 1997; Hsu et al., 1998], provides a theoreti- 
cal framework to enlighten properties of the sources via 
their scaling character. 
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First, we have applied this technique to several lo- 
cal and extended synthetic magnetic sources: Local ele- 
mentary magnetization (dipole), local multipole magne- 
tization, vertical and inclined steps, strips, and prisms 
of magnetization. Wavelet coefficients have been calcu- 
lated for the total magnetic anomaly field at any normal 
apparent inclination. 

Then, we have applied the technique to data profiles 
from French Guiana. A set of 27 profiles each of 80 
km long with flightline direction N30øE has been trans- 
formed by wavelets; for the purpose of this study we 
have analyzed three isolated features in the Cayenne- 
Kourou area: two dikes and one fault. 

2. Method 

2.1. Wavelet Transform of Potential Fields 

First, we briefly recall the basic theory [Moveau et 
al., 1997, 1999], which we apply to the case of a two- 
dimensional physical space. This involves parameters 
that are listed in the notation section. We define the 

continuous wavelet transform of a function d0(x C I•) 
as a convolution product, 

1•¾•1½0(b, a)- f• d__•_x ½(b- x) &0(x) a a 

: (va½ ß 

where ½(x C I•) is the analyzing wavelet., a • I• + is 
a dilation parameter, and the dilation operator Pa is 
defined by 

1½(•) (2) . 
The source is modeled as a homogeneous function 

or(x, z). This means, for instance, when the source is 
homogeneous at x : 0 and z - 0 with homogeneity 
degree a, that for any positive number A it follows that 

By applying a Fourier multiplier homogeneous of de- 
gree 7 (equivalent to a derivative of order 7) and a di- 
lation to the Poisson semigroup kernel [Moteau et al., 

1997, 1999], we obtain a class of wavelets ;)v (Figure 
1) for which the wavelet coefficients of a potential field 
due to local homogeneous sources exhibit simple prop- 
erties. For the potential field d(x, z = 0) measured at 
level z: 0 which is due to a local homogeneous source 
located at x = 0 and depth z = z0, the wavelet coeffi- 
cients in the upper half plane of positions and dilations 
(a =-z > 0) obey a double scaling law with two expo- 
nent parameters: 

W½•lo(.,z=o)(x,a ) - 

(a)v (a • +zo')-•142•lc)(.z:o)(xa • +zo •7 a+z0/ ' a+z0 a'). 
(a) 

In (3), x and a are the position and the dilation, re- 
spectively, for the left-hand side wavelet coefficient; 
x(a•+ zo)/(a + zo) and a • are the position and the di- 
lation, respectively, for the right-hand side wavelet co- 
efficient: This defines a set of lines (x, a) which satisfy 
x/(zo + a) = const. For various constants we obtain a 
family of lines that intersect at the point (0,-z0) inside 
the lower half plane; therefore the wavelet transform ex- 
hibits a cone-like structure where the top of the cone is 
shifted to the location of the source: Using the modulus 
maxima lines (on which the signal to noise ratio is the 
best), this constitutes a geometrical procedure to obtain 
the location of a homogeneous local source with no a pri- 
ori idea of its homogeneity degree (see Figure 2). The 
first exponent 7 is the order of the wavelet ;)v which has 
been used, the second exponent fi is associated with the 
homogeneity degree of the source a (• = a- 7 for the 
total geomagnetic field anomaly). Once the depth z0 of 
the anomaly field has been obtained, the exponent • is 
simply obtained with the wavelet coefficients W• along 
modulus maxima lines as the slope of log(IWal/aV ) ver- 
sus log(a + z0) (Figure 2). 

The kernel of the Poisson semigroup which is used 
t.o build these special wavelets defines the well-known 
upward continuation filter Pa(X) which transforms the 
harmonic field d(., z) from measured level z to the level 
z + a [Le Mou•'l, 1970; Bhattachavyya, 1972; Galdeano, 
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Figure 1. Typical wavelets belonging to the Poisson semigroup class: •(x) - (1/7r)[-2x/(x 2 + 
1) 2 ] and •}(x) -(1/7r)[(x 2- 1)/(x 2 + 1)2]. 
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Figure 2. (bottom left) Magnetic total field T due to a vertical dipole at x0 - 0 and z0 - 1 
analyzed with vertical wavelet •}' (top left) Modulus maxima lines converge at the location of 
the source, at x: x0 and a = -z0 (with downward continuation in dotted lines); (right) the 
modulus along the line at x = x0 follows a scaling relation with exponent/• = -3 associated with 
the homogeneity degree of the local line source c•: -2. 

10 

1974; Barahoy, 1975; Gibert and Galdeano, 1985]; x 
being a 1-D variable (abscissa along the profile), this is 

1 a 

Pa(x) - •r a 2 + x •' (4) 
Two typical real wavelets can then be considered, 

the "horizontal" ½x, and the "vertical" '½z made by 
one horizontal or one vertical (upward) derivative of 
P• respectively; they are said to be of order 1. Fol- 
lowing with 3'- 1 derivatives over x gives wavelets 
of order 7: ½•(x) = O•Pl(x) (or in Fourier domain: 
½J(u) - (i2•'u)•e-2'•l"[); ½7(•)- aj-•aaP•(x)l•=• (or 
in Fourier domain' • (u) - (i2•-u)•-• (-2•-]u[)e-2,•l"l). 
Then dilating these wavelets with the dilation a trans- 
forms •fi•(z) into •(x/a)/a, which is also the 7th 
derivative of P•(z) multiplied by the scaling factor a •. 
Thus the convolution of the harmonic field q•(., z) (mea- 
sured at level z) with these dilated real wavelets gives 
the wavelet coefficients at scale a which are also the 

derivatives of the upward continued field (at level z + a) 
whose dimension is that of the initial field (in nT for 
the geomagnetic total field anomaly): 

where qS•(., z) and qS•(.,z) are the horizontal and up- 

ward vertical derivatives, respectively, 
potential field q•(., z) at level z. 

of the harmonic 

2.2. Complex Wavele•s 

Any of the two real wavelets • and • can be used 
to determine the depth and the homogeneity degree c• of 
a local dipole source (Figure 2), but the determination 
of the inclination of this dipole needs the introduction 
of complex wavelets • in order for this to be done in 
a simple way. Using the Hilbert transform 74, which 
changes • into • - -7/[•], we define the complex 
wavelets •,• - ½J + i7/[½J] as combinations of the hori- 
zontal and vertical wavelets ½• and ½• [Moreau, 1995]' 
•,• - ½J- i½•. These are actually defined not only 
for '7 C N* but for '7 C 5•_ (with the help of frac- 
tional derivatives). They are progressive wavelets pro- 
portional to the Cauchy wavelets [Holschneider, 1995], 
and their general expression is 

e i'•(v+•) iF(7 + 1) 
½• (x)- •- (x + i)v+• ' (6) 

where F is the Gamma function. Thus the complex 
wavelet coe•cients of the potential field q•(., z) are 

142,:l,(o,z)(X , a) -- 142•jl,(.,z)(X , a) - iYV•7l,(.,z)(X , a). 
(7) 

where F is the Gamma function. 
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Figure 3. Magnetic potential U and total field T due to a dipole with inclination I- •r/6 at 
x0 - 0 and z0 - i analyzed with complex wavelet •b•' Phase isovalues (shown in white, every 
•r/6) converge to the source (dotted lines); the phase isovalue (I>(x - 0) (for x - x0 - 0) gives 
the' " •:--- lIICllIli:t, tlOll I. 

For a local dipole of normal inclination I analyzed 
with a complex wavelet of order 1, the argument of the 
wavelet coefficients is constant along the vertical to the 
source, equal to-I for the magnetic potential and to 
-21- •r/2 for the magnetic total field anomaly (Figure 
3). Equation (3) shows that the isovalues of the phase 
of the complex wavelet coefficients also draw a cone-like 
structure pointing to the source (Figure 3). 

2.3. Comparison With Classical Techniques 

The complex wavelet coefficients W•+•i, • (x,a) -, ) are associated with the upward continued analytic sig- 
nal as early introduced to the inteipretation of geophys- 
ical potential fields [Nabighian, 1972, 1974]: 

O-r 2 0 • 2 
+./) + +./) ß 

In the classical use of the analytic signal, one consid- 
ers •he modulus of the analytic signal bu• the inter- 
pretation of i•s phase is missing. Recen• improvements 
are due •o the interpretation of the phase [Smith at al., 
1998]. Within the theory of continuous wavele• trans- 
forms [Holschnaidar, 1995] •he use of both the modulus 
and phase (and bo•h the real and imaginary par•s) of 
the upward continued analytic signal a• differen• levels 
(complex wavele• coefficients for different dilations) is 
natural and allows interesting properties regarding the 
geometry of •he singularities •o be taken into account. 

Besides, the exponent/3 defined in (3) depends on •he 
derivative order 7 and the homogeneiW degree of the 

source c•. Thus it relates to the structural index N used 

in Euler deconvolution which is also based upon an ho- 
mogeneity property, that of the field [Thompson, 1982; 
Raid at al., 1990; Huang, 1996]. Using Euler deconvolu- 
tion, the structural index N must be assumed a priori, 
except when applied in conjunction with other proce- 
dures [Huang, 1996; Rayat and Taylor, 1998; Barbosa 
at al., 1999]. Using wavelets, the homogeneity degree 
of the source c• can be determined from the scaling ex- 
ponent fi without a priori value. Hereafter, we give the 
exponent fi of the 1-D wavelet coefficients as a function 
of c•. We also give the homogeneity degree of the as- 
sociated magnetic potential -N in different situations, 
depending on the type of anomaly field or potential q5 
which is analyzed: 

V (gravity potential, or Green's function), 

fly - -7 +- + 2- -(7+ N- ]); 

g - V'V (gravity field) or U - -V'V.M (magnetic po- 
tential due to the dipole M), 

/3• - flu - -7 + o• + 1 - -(7 + N); 

T- -VU (magnetic field)or O•g (vertical derivative 
of the gravity field/, 

/3• -- -7 + o• -- -(7 + N + 1). 

Classically, one defines N from the potential field but 
this gives a value which depends on the analyzed data, 
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and this involves a shift of 1 between the gravity and 
magnetic cases. Instead, we consider its definition given 
by Huang [1996]; this is more reliable as it gives a value 
which depends only on the geometry of the source: N is 
the opposite to the homogeneity degree of the magnetic 
potential and is also that of the corresponding gravity 
field. 

3. Synthetic Examples 

3.1. Total Magnetic Field Anomaly in Profiles 

We consider the magnetic total field anomaly pro- 
duced by a set of elementary •nagnetization vectors with 
declination D and inclination I within a normal field of 

declination D'* and inclination I'*. To clarify the ana- 
lytic expressions in the case of profiles, we use two sim- 
plifications. First, when profiles are striking geographic 
north with an angle • and perpendicular to the sources 
(Figure 4), one can introduce an apparent inclination I' 
and an apparent normal field inclination I• correspond- 
ing to a geomagnetic south-north profile [de Gery and 
Naudy, 1957]: 

tan/ tan/,, 

tan I' = cos(D + p)' tan I' : . + (9) 
Second, one can consider magnetization vectors with 
declination D and inclination I equal to those of the 
normal field D'* and I'*, respectively, as if there were 
only induced magnetization. In this case, apparent in- 
clinations are equal (I' = I•). 

Hence the total magnetic field anomaly 5T at (x,z) 
is given by two conjugated symmetrical and antisym- 
metrical functions 5Tt and 5T2 associated with second- 
order derivatives of the Green's function V (see detailed 
expressions in Appendix A): 

ST_ (sinI)2 f sin/' (-5•/• cos2F + 5T2 sin2F); (10) 
5T• is equal to the anomaly field reduced to the pole 
(I' = 90ø), and 5T2 is equal to the anomaly field reduced 
to the inclination I' = 45 ø. Analytic expressions for the 
total field anomaly due to a given body are equivalent to 
those of south-north profiles by replacing inclinations I 
with apparent inclinations I' (for a collection of analytic 
expressions, see Telford et al. [19901). 

In this paper, calculations of the wavelet coefficients 
will be done by taking derivatives (from equations (5), 
and (7)). It can be shown that the modulus of the 
real and imaginary parts exhibit extrema controlled by 
the derivative order 7 and the mean apparent inclina- 
tion 9: (F+ I•)/2, while the modulus of the complex 
coefficients exhibit extrema whose geometry is indepen- 
dent of the mean apparent, inclinations (Appendix B). A 
special formulation for extended sources and the corre- 
sponding complex wavelet coefficients is possible using 
the complex variables method; it is introduced in Ap- 
pendix C for its potential applications in the numerical 
approach to the direct and inverse problems. We have 
calculated analytical expressions for some typical simple 
2-D bodies below. For local sources at depth z0, exact 
power laws of (a + z0) are shown (a is the dilation, or 
continuation altitude); for extended sources, Taylor ex- 
pansions are calculated to analyze the perturbation due 
to a finite extent. 

3.2. Local Elementary Magnetization 

As a first synthetic case, let us consider the mag- 
netic total field anomaly produced at level z (positive 
downward) by a local elementary magnetization vector 
located at (x0, z0). For this elementary magnetization, 

Horizontal Plane 

Geomagnetic Geographic 
North North 

ISøOho . 

Meridian 

Vertical Plane of the Magnetic Meridian 

Magnetic 
Meridian 

Geomagnetic 
North Horizontal 

x' 

h Inclination 

downward 

Vertical Plane of the Profile 

z' 

I': Apparent Inclination 

downward 

z 

Figure 4. Apparent inclination I' versus inclination I: The unit vector f (respective f'*) defining 
the direction of the magnetization M (respective of the magnetic field F) gives the apparent 
inclination I' (respective I'•) when projected onto the vertical plane of the profile. 
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Figure 5. Local elementary magnetizations at depth z0 - 1 (and a - -z0 - -1) with apparent 
inclinations I • = 90 ø at x = -10 and I •: 29.16 ø at x: +5: (bottom) Total magnetic field, 
and (left) modulus of real wavelet coefficients or (right) complex wavelet coefficients. Isovalues 
are shown in white with regular intervals. Modulus maxima lines are shown in black with their 
downward continuation to the source. 

which is concentrated on an infinite horizontal line, the 
Green's function is V(x, z) - ln[(x- x0) 2+ (z0 - z)2; 
so (10) holds with 

5• (•, •) _ _• (•- •0) • -(•0 - •)• 
[(•- •0) • + (•0 - •)•]•' 

5T2(x, z) - -4 (x - xo) (zo - z) (11) 
[(x- x0) • + (•0 - •)•]•' 

Thus using variables X - x- x0 and Z - z0- z - 
z0 + a and prefactor K - 4(sin I/sin F) 2, one gets the 
following wavelet coefficients: 

'],'V•ZlST(.,z:0) (;g , a) -- --]-'•a ½ -i2It (X -J- iZ) -3 (12) 
We have computed these wavelet coefficients for two 

orientations of magnetization: in a south-north profile 
at the pole (F-90 ø) where the anomaly is symmetri- 
cal and in the SSW-NNE profiles of the Guiana survey 
(F - 29.16ø). Figure 5 shows these wavelet coefficients. 
Extrema lines of the real wavelet coefficients intersect 

'at the point (xo, a - -zo) inside the lower half plane. 
There is only one modulus maxima line of the complex 
wavelet coefficients (with equation x- x0). 

Wavelet coefficients for any derivative order 7 E 
read for x- x0' 

W•JiST(.,z=o)(xo,a ) -- 

2(, 7 + 1) l (sin/ 2 a'•ei(-2z'+(v+2)• ) ß \sin I / ) (Z0 -• •)-• (13) 

When the depth z0 is known, modulus IWI and phase 
ß along a modulus maxima line simply give the values 
of the homogeneity degree • = -2 and the apparent 
inclination I'= -•/2 + (7 + 2)(•r/4) (modulo •r). 

When the depth z0 is unknown, adjusting a straight 
line to the plots of log [)/VV/aV I versus log(z0 + a) for a 
set of a priori depths z0 and looking for the best least 
squares fit provides both z0 and • (Figure 6). 

3.3. Local Multipole Magnetization 

As a second synthetic case, let us consider a multi- 
pole magnetization vector located at (xo,zo) which is 
formally an oblique derivative of the local elementary 
magnetization vector previously analyzed. Asymptotic 
expansions of the far field due to extended sources im- 
ply the sums of multipoles. For instance, an elementary 
pole plus a dipole mass can be used as a model for an 
inclined gravimetric border [Moreau, 1995]. Let us call 
/•1 the direction of the oblique derivative corresponding 
to the dipole magnetization vector. Then 0• is the di- 
rection of the second oblique derivative corresponding 
to the quadrupole magnetization vector, and 0• is the 
direction of the nth oblique derivative corresponding 
to the nth-multipole magnetization vector. We assume 
that the structure of this multipole source is still infinite 
in the horizontal direction perpendicular to the profile, 
so that • angles have to be considered in the vertical 
plane of the profile (apparent angles 0 • are equal to 0). 
Then for this nth-multipole magnetization, n additional 
oblique derivatives (in directions Oj for 1 _• j _• n) have 
to be performed in (10), (12), and (13). 
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Figure 6. From the wavelet coefficients of Figure 5, (right) computation of the best slope /3 
and depth z0 is accomplished by least squares linear regressions of •og(IrV•l/a•) versus log(a + 
z0). (left) A set of a priori depths [0.1, 5] has been tested; this gives good estimates for both 
homogeneity degree c• =/• + 3': -1.985 and depth z0 = 0.988. 

Thus using variables X - :c- x0 and Z - z0 - z - 
z0 + a, prefactor Ix' - 12(sin I/sin I') •, and angle • = 
-2I'-0•, one gets the following wavelet coefficients for 
the dipole magnetization source in direction 0•' 

(•4) 

We have also calculated the wavelet coefficients for 

any derivative order 7 C N * and any multipole degree 
n C N, which reads for .r - x0, 

]4?•OjlaT,,(.,z=O) (xo, a) -- 

2(•n t-r/n t- 1) I ( sin/ 2 a7½ i(-2I'-©'•+(7+n+2)•) ß s¾h-77) + ' 
where O• - Ey:•0 i characterizes the combination of 
directions in this multipole magnetization. 

Again, there is only one modulus maximum line of the 
complex wavelet coefficients (with equation 
The modulus IwI and phase • along this maximum 
line simply give the values of the homogeneity degree 
a - -(n + 2) and either the apparent inclination I' = 
-(* + O,,)/2 + (7 - a)•/4 (modulo •), or the sum of 
directions O,- -•- 2I' + (7- a)=/2 (modulo 2=). 

3.4. Magnetization Step 

As a first example of a nonlocal source, let us consider 
the total field anomaly generated by a vertical step lo- 
cated at x0 and depths [z•, z=] (with height h- z=- z•) 
of elementary magnetization with normal apparent in- 
clination I' (source on the north, for x >_ x0). Equation 
(10) holds with 

, -- - tan 1 
3• -- 3• o 3• -- 3• o 

+ 
+ 

Thus, using variables X - x- xo, Zz = zz- z = 
z• + a, and Z• : z•- z : z• + a and prefactor 
t•; = 2(sin//sin 1')•, one gets the following wavelet co- 
efficients for the vertical step: 

¾V½•l•T(.,z=O)(X a) - h•ae-i'" [ • c ' Z2--iX Zi-iX ' 

Figure 7 shows these wavelet coefficients. The shape 
of modulus maxima lines for real wavelets is not as sim- 

ple as for a local source (in section 3.2). For small dila- 
tions a, these are not straight but converge at about. the 
top of the step source; for dilations a which are large 
enough (typically (z0 + a) >> h/2), these are straight 
lines and converge at about the mean depth of the step 
z0 - (z= + z•)/2, as if the source was local. 

The argument and modulus are 

(I>½•l•T(.,•-0)(x , a) -- -21' + zr + t. an -• x -• x • + tan 

Equations (18) show that there is only one modulus 
maximum line (for which O•IYV½2 (x, a)l is zero), defined 
by X = 0 (vertical to the step source, at •' = x0). 
Thus, when we consider modulus from neither the real 

nor imaginary part (IW<l nor Irvm I) rather from 
the complex itself (]W½} I), there is one single 
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Figure 7. Vertical and dipping steps of magnetization (at mean depth z0 - 1, with apparent 
inclination I t: 29.16ø): (bottom left) Total magnetic field, and (top left) corresponding modulus 
of real or complex wavelet coefficients (zoomed at right). Isovalues are shown shaded with regular 
intervals. Modulus maxima lines are shown in black; their continuation to the source is shown in 
the lower half-space (analytically, above the top of the source). 

modulus maximum line which is straight and vertical (a 
well-known property for the maximum of the analytic 
signal). The phase along this maximum line equals ½r- 
2I t. 

W½:l•(., =o)(zo, a) - 2 ( •i•½ • z si--• ) 
ah e 

(• + •)(• + •)' 
(19) 

Asymptotic behavior is obtained with a Taylor expan- 
sion for z0 + a > > hi2 (large dilations or large average 

ß 

depth) 

(20) 
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The first-order term is that of a local source located at 

depth z0; its homogeneity degree, given by the scal- 
ing exponent /? = -2, is c• = -1 (that of a step 
source whose structural index is known to be N = 

-(c• + 1) = 0). The second-order term is a pertur- 
bation (of 100 x [(h/2)/(zo + a)] 2 %), this is another 
local source located at depth z0 but with homogeneity 
degree c• = -3 (dipole of magnetization). 

Thus (17) to (20) do not only provide the mean depth 
z0 (at the convergence of modulus extrema lines of real 
wavelet coefficients), the apparent inclination I / (from 
the phase of the complex wavelet coefficients) and the 
characteristic homogeneity degree c• = -1 using the 
slope /• in the plot of log(l¾•al/a) versus log(a q-z0) 
(along modulus extrema lines), but they also provide a 
way to estimate the height h of the step from residuals 
in the determination of/•. 

Indeed, moduli of (20) may be first approximated in 
a form valid for very large dilations: 

in a)l "'" k q- ln(zo q- a). (21) 

Fitting a straight line to this approximation provides 
the slope /• = c•- 1 and the log factor k = ln(I•h) 
(where I5; is the prefactor used in (17) which includes 
information on I, I' and the intensity of magnetization). 
These then can be used to plot the following function 
H(a) which converges rapidly to a limit which is the 
height h of the step (see Figure 8): 

. In Iwcgl*T( .... ø)(xø'a)l -- k --/•ln(z0 q- a) (22) 
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Figure 8. Scaling relations for vertical and dipping (0 = -40 ø) steps of magnetization (with 
apparent inclination I' = 29.16ø). (left to right) Modulus of complex wavelet coefficients along 
x = x0, first-order scaling (equation (25)), residual due to the second-order term (equation (31)), 
and function H(a) estimating the height of the step (equation (32)). Correspond to (top) anomaly 
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Let us now consider an inclined step with dip angle 
•r/2- 0: with a limit between the two points (x•,z•) 
and (x2, z2) and middle point at xo = (x• + x2)/2 and 
zo = (z• + z2)/2. Similar algebraic manipulations as 
those used for the vertical step allow us to calculate the 
total field anomaly and its derivatives. 

Using variables X• = x- x•, X2 = x- x2, Z• = 
z•-z: z• +a, and Z2 = z2-z = zu+a; prefac- 
tor K = 2(sinI/sinI')2; and angle • = -21'+ 0, one 
gets the wavelet coefficients for the inclined step (to be 
compared with (17)): 

]42•p}lST(.,z=O) (x, a ) -- 

[ • • ]. (23) Ka cos O½ i• Z2-iX2 zxZixx 

The argument and modulus can be written, general- 
izing equations (18), respectively, as follows' 

(I)•)•lST(.,z=0)(x a) -- --2F + rr + tan -• x_• + tan-• x__z • Zx Z2 • 

Kah (24) 

Solving for cqIW½} (x, a)l/Ox - 0 implies that modu- 
lus maxima are defined by solutions of a second-order 
polynomial in Z - z- z0 (and fourth-order in X = 
x- x0)' with v- X/(h/2) • 0 (and 0 =/= 0). Solutions 
are 

-_z0 + ½1+ 
(25) 

Equation (25) tells us that for different dip angles rr/2- 
0, the modulus maximum line is not a straight line and 
its slope depends on the dilation a and more precisely on 
(a + zo)/(h/2), •, and 0. It is possible to make a Taylor 
expansion of this equation near to the vertical of the 
source (for v << 1); this gives two types of asymptotic 
behavior. For large dilations a (for a + z0 >> hi2) 
the maximum line is a branch of a hyperbola whose 
asymptote is x - x0. For small dilations the maximum 
line is a branch of a polynomial in x - x0 whose first 
order corresponds to a stra.ight line with slope cot(20)' 

Ifa+z0 >>h/2 

2(h/2)2tanO 
a + zo • + O(z -•r0); 

3•-- Z 0 

Otherwise 

/2 2 2 2 ] a + zo - 0)cot(20) + + 0(. 4) . 

This quantifies a classical property of potential field 
anomalies over a dipping homogeneous source: At low 
altitude the main contribution is due to the upper part 
of the source; while at increasing altitude the relative 
contribution of deeper parts progressively increases and 
the location of the maximum effect moves to the vertical 

passing through the "center of gravity" of the source. 

Writing wavelet coefficients along modulus maxima 
similarly to (19) for a vertical step, then Taylor expand- 
ing for z0 + a >> hi2 (large dilations or large average 
depth) gives 

2( sin/ [sinI tl ah (zo+•)2 + (1 - tan 2 (•o+•)4 . 
(27) 

Thus, scaling parameters at large dilations are those 
of the vertical step (equation (20)) except for the rela- 
tive amplitudes between terms of the Taylor expansion 
which depend on the dip angle rr/2- 0. 

Fitting a straight line as in (21) provides the slope 
fi = a-1 and the log factor k = ln(Kh). These can 
then be used, along the extrema lines, to plot a function 
H(a) similar to that defined by (22), which converges 
for 0 • +•r/4 to a limit which is the height h of the step 
(see Figure 8): 

2(zo + a) 
l1 - tan 2 

ß In IW½11'•"( .... ø)(xø'a)l - k-/31n(zo q- a) a 

1__ 

(28) 

The phase is rr- 2F for large dilations and could be 
used to determine an unknown inclination I'. 

Note that the search for the height from (22) or (28) 
assumes that one has first determined the dip angle 
•r/2- 0: This could be done via the direction of the 
modulus maxima lines (see equation (25)). When the 
angle remains unknown, an estimation from equation 
(22) instead of (28) would be useful anyway as it gives 
the correct height within a factor of 2 for any 0 value 
except for values of about 45øor 900 Other possible 
errors are due to the uncerta,inty in x location and 
modulus maximum determination, which a, re involved 
in the Taylor expansion along the modulus maximum 
line. Qua, ntification of this remark is given by manipu- 
lations showing tha.t the next term in the expansion of 
(20) is -(z- x0)2/(z0 + a)4; so that H(a) may give an 
average value of v/h 2 -4(x -x0) 2 instead of the height 
h itself (noise in positioning or continuation also leads 
to errors in the wavelet coefficients). 

3.5. Magnetization Strip 

Let us now consider the total field anomaly gener- 
ated by an inclined strip with dip angle •r/2- 0: with 
a limit between the two points (x•, z•) and (x2, z2) and 
middle point at x0 = (x• + x2)/2 and z0 = (z• + z2)/2. 
This strip is formally the horizontal derivative of a right 
step source. So, as shown by Moteau et al. [1999], its 
wavelet coefficients can be obtained by a simple hor- 
izontal derivative of (23): The wavelet coefficients of 
order 7 for the strip are those of order 7 + 1 for the 
right step divided by a dilation factor a. Note that a 
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calculation based upon (10) as done in sections 3.1-3.4 
would imply the same results. 

Thus using variables X1 = x- 
Z1 : zl-z = zl + a, and Z2 : z2- z = z2 + a; 
prefactor K: 4(sin I/sin I')2; angle • = -21'+ 0; and 
the height h = z2 - zl, the wavelet coefficients read 

}/VO•lST(.,z=o) (X, a ) = 

Ka cos 0½ i• (Z2_•X2)2 i ] (29) - (Z•-•X•)• ' 

The shape of modulus maximum lines of these wavelet 
coefficients (not shown) is similar to that of the step 
source (Figure 7). With real wavelets they converge 
either to the top of the strip or to its mean depth z0. 

While analytical formulation of modulus maxima of 
complex wavelet coefficients for the inclined step are so- 
lutions of a second order polynomial in Z = z-z0 (equa- 
tions (25) and (26)), the strip case implies a fifth-order 
polynomial which does not simplify easily. Neverthe- 
less, graphical solutions for modulus maxima (plotted 
as zeros of x derivatives of complex wavelet moduli) are 
accessible, showing asymptotic behavior similar to that 
obtained for the step source (Figure 7). 

In the case of a vertical strip, analytical formulations 
are possible: Complex wavelet coefficients on modulus 
maxima lines (for x = x0) obey 

}/V•[ST(.,z=o) (Xo, a) : 
•2 •2• ,•i(-2I'+3•) 2 ( sin/•2 a(•, 2 -- •'1] '-' " 

Calling h the height of the strip and z0 its mean 
depth, we obtain the following Taylor expansion for 
z0 + a >> hi2 (large dilations or large average depth): 

W,•lar(.,,=0) (•0, a) = 

4(sin, 2 ?(--21'+35) [ 1 (h/2)2 ] (al) siW) ah (•o+a)• + 2 (•o+a)* J ' 
This is similar to (20) except for a hctor 2 and for the 

powers of (z0 + a). The same estimation technique as 
that shown for the vertical step applies: Equations (21) 
and (22) now apply with •: •-7 = -3. Here, the 
first-order term is that of an elementary local magne- 
tization (of homogeneity •: -2), which characterizes 
how the strip transforms into a horizontal line for h 
small. 

Similarities between the vertical step and strip cases 
also apply for both inclined cases in Taylor expansions 
along modulus maxima lines, so that a function H(a) 
similar to that defined in (22)and (28), which converges 
(for almost all dipping angles 0) to a limit which is the 
height h, exists: 

H(a) • 2(z0 + a)f(O) 

Iln Iw½•ar( .... ø)(•ø'•)1 - k- •ln(z0 + a) = a , (32) 

where k - ln(Kh) and f(O) - (211 - tan 2 el)-« Along 
modulus maximum lines, phases for large dilation a con- 
verge to -21' + 3zr/2, which is the value for an elemen- 
tary local magnetization (again, this characterizes how 
the strip transforms into a horizontal line for h small). 

3.6. Magnetization Prism 

As a final synthetic case, let us consider the total 
field anomaly generated by an inclined prism whose 
limits are the four points (xx,zl), (x2,z2), (xa, za), 
and (x4, z4) (clockwise, with zx = z4, z2 : za, and 
xl - x4 = x2 - xa). The dip angle is rr/2- 0, the height 
is h = z2 - zx, and the horizontal length is 1: xx - x4. 
As (xl,zl), (x2,z2) define the right edge and (xa, za), 
(x4, z4) define the left edge (Figure 9), analytic expres- 
sions for the wavelet coefficients are given by the differ- 
ence between wavelet coefficients of two step sources. 

Using variables X01 = x-x1 +1/2, X02: x-x2+l/2, 
Z1: zx-z: zx+a, and Z2: z2-z = z2+a; prefactor 
K = 2(sin I/sin i,)2; and angle • = -2I' + 0, one gets 
the wavelet coefficients for the inclined prism (to be 
compared with equation (23)): 

1 

W•iaT(.,•=0) (x, a) -- Ka cos Oe i• [ z=-i(•o=+Z/2) 
i i 1 

--Z•-i(Xo•+I/2)- Z,-i(Xo,-I/2) + Z•-i(Xo•-I/2)]' 
(33) 

For small length 1 (for I << h) this corresponds to 
the horizontal derivative of the inclined step, so that 
we recover the strip. Thus one expects the same kind 
of results as those obtained for the strip. As shown on 
Figure 9, properties of the wavelet coefficients such as 
the homogeneity degree are the same as for the strip. 
These are properties corresponding to the asymptotic 
expansions for large dilations a. Nevertheless, for small 
dilations (for z0 + a •//2), modulus extrema lines and 
isoarguments exhibit branching; they point toward two 
top edges (step sources) instead of one single edge ob- 
tained from the strip source. 

For clarity, exact analytical expressions of complex 
wavelet coefficients on modulus maximum lines are given 
only for the vertical prism (at x: x0): 

W½•IST(.,z 0)(x0, a) -- 2 ( sin I 2 • - si•) alh 

(Zl + z2 + 2a) ei(-2I'+3• ) 
[(Z1 + a)2 + (•) [(z2 + + 

(34) 
Calling z0 the mean depth, we obtain the following 

Taylor expansion for z0 + a >> hi2 , zo + a >> 1/2 
(large dilations or large average depth) and 
h½l - tan 2 0[ • l: 

WW•lar(.,•=0)(x0 , a) • 4 ( sin I 2 si•) al h 

' [ I (hi2) 22 sec 0cos20-(l/2) 2 . ei(-2F+35 ) (zo+a) a + 2 (zo+a) • . 
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This is similar to (31) except for prefactor 1 and addi- 
tional term in lU: The first is linked to the change in the 
source density (per volume instead of per surface) which 
is hidden for the calculations; the second is due to the 
change in source geometry. It is difficult to interpret the 
prefactors except in cases of well-known a priori source 
density where conventional techniques apply. Never- 
theless, it is worth using a multiscale technique based 
upon the multipole expansion to obtain estimates for 
depth and source extensions. There exists a function 

H(a) similar to that defined in (32), which converges 
(for almost all dip angles •r/2- O) to a limit which is 
the height h of the prism: 

,(a) "0 2(z0 + a)f(O, -•) 
2 

In IW*•11*•"( .... ø)(•ø'•)1 - k -/31n(z0 + a) (36) 

where k - log(2Klh), •- -3, and f(O,1/h.) - (21- 
0- (t/h)21) -ø-s is a factor which depends on the 
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Figure 10. Multiplicative correction factor f(O,!/h) for strip and prism to be applied to the 
height estimator defined in equation (26) (undefined in the dashed curve neighborhood). 

ratio between / and h and equals 1/v/• for 0: 0 and 
1 << h (see Figure 10). 

Along modulus maxima line, phases for large dilation 
a converge to -2I' + 3•r,/2, as for the strip. Note that f 
reaches infinity for 0 = 0 with bodies having ahnost the 
same horizontal and vertical extents for which higher- 
order Taylor expansion is necessary. For d 2 = h "•- 
12 << (h 4 + 14)/(zo + a) • this implies the fourth power 
of h and l: 

147½} I•T(.,z:0 ) (Wo, a) 

4(sinlh 2 2I'+3•r) [ 1 (hl2)4+(112) 4 ] sin I' / alhei(- ¾ (zo+a) 3 + 3 (zo+a)7 ' 
(37) 

3.7. Summary and Discussion 

Analysis of magnetic potential fields anomalies using 
the continuous wavelet transform can be done without 

the need to reduce the data to the pole or to the equa- 
tor. As shown by the above results summarized below, 
the interpretation is made via wavelet coe•cients of the 
anomaly field itself. 

Geometrical analysis of modulus maximum lines of 
either the real or imaginary parts of complex wavelet 

coefficients gives a convergence point at the location of 
a local source (horizontal line). When sources are ex- 
tended (step, strip, and prism) and have uniform mag- 
netization, there is convergence at the center of the ob- 
ject for modulus maxima lines at large dilations while 
the convergence is near the upper borders of the object 
at smaller dilations (when the source is not too deep). 
For extended sources this also depends on the choice of 
the derivative order [Moreau et al., 1999]. 

The modulus maximum line of complex wavelet co- 
efficients is a vertical through the location of a local 
source (such as a horizontal line), and the modulus 
along this maximum line allows one to find the depth 
and homogeneity degree by linear regression of bilog- 
arithmic plots (classical least squares can be used). 
When sources are extended (step, strip, and prism) and 
have uniform magnetization, the modulus maxima at 
large dilations form a vertical line pointing to the cen- 
ter of the source; at small dilations the modulus maxima 
do not form vertical lines, except for a vertical step or 
strip (and possibly at vertical borders of a prism) but 
rather curves pointing near to the upper borders of the 
object with an angle linked to the dip angle. 

For these extended sources with finite height h a 
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generic law extracted from a multipole expansion gives 
an estimate of the extent of the source. The first-order 

expansion is associated with linear fits in the bi]ogarith- 
mic plot corresponding to an equivalent local source; 
this depends on three parameters, the depth z0, the 
slope • (linked to the homogeneity degree), and a third 
term k (linked to the intensity). The second-order term 
implies a transformation of residuals from the previous 
linear fits in bilogarithmic plots and provides an alter- 
native means of regression which is deterministic (equa- 
tion (28)). This gives a function H(a; zo,•,k) which 
should become a constant. for large a for the best a pri- 
ori model (z0, •, k). A correction factor must be applied 
to obtain the height of the source (equations (32) and 
(36) and Figure 10). This can also be used as a measure 
of the uncertainty in the estimated location of sources. 

The phase along modulus maxima lines at large dila- 
tions tends to a limiting value which is not dependent 
on a possible dip angle of these extended sources with 
finite height: 

•r (modulo 2•r), (38) •'½'•I•T -- --2F + k• • 
where k• corresponds to the nature of the source and 
the order '7 of the wavelet; k• = '7 + 2 for a line, a 
strip or a prism, and k• - 3' + 1 for a right step (and 
k• = 7-1 for a left step). More precisely, k• is linked to 
the homogeneity degree. In some cases this is equal to 
-/• = 3'- c•, and this corresponds to a multipole mag- 
netization whose sum of angles of successive derivatives 
is a multiple of 27r (or ©• = 0 modulo 2•r in equation 
(•5)). 

For other extended sources having a very large ex- 
tent (h --> oc), Taylor expanding for z0 + a >> h is not 
possible. It is nevertheless possible to expand wavelet 
coefficients for z• +a > > zl; this shows that the "depth" 
as previously estimated is the top depth z• instead of 
the average z0, and both the homogeneity degree and 
limit phase do not obey the above laws. Let us con- 
sider the infinite strip which is a typical model used in 
the classical analytic signal method. The expression for 
its wavelet coefficients is given by (29) whose first term 
(with z2 --> oc) equals 0; it is governed by the second- 
order term (with z•) for any dilation a. This implies 
that the homogeneity degree c• is increased by I (-1 in- 
stead of-2 for a finite strip), and the phase is decreased 
by the dip angle (-2F + 0 + 7r instead of-21 t + 37r/2). 

We have shown analytical results for the total mag- 
netic field anomaly, as due to a 2-D body of homoge- 
neous magnetization with normal apparent inclination 
F. These can also be used on other kinds of poten- 
tial field data. To put them into analytical results that 
would be obtained for a magnetic potential anomaly 
5U, a vertical gravity field anomaly 5gz, or a gravity 
potential anomaly 5V, one can use duality equations 
between wavelet coefficients as shown in Appendix A: 

) - (sini 2 , (39) si_h__77 ) 

so that (7 + 2)-order wavelet coefficients of 5V have the 
same properties as */-order wavelet coefficients of 5T for 
inclination F = 7r/2. Similarly, 

W½7+,l•,(.,z ) (x, a) - a 
]42•Jl•T(.,z) (X, a) 
sin I 2 ,r • si-h--F ) ei(-2I'+3¾) 

(40) 

so that (*/+ 1)-order wavelet coefficients of 5g• have the 
same properties as */-order wavelet coefficients of 5T for 
inclination F: -•r/4. Also 

)&'½Tlsgz( ,•)(x a) - 14?½215u("z)(X' a) ' ' sin/ i(-I'+•) sin I • ½ 
(41) 

so that */-order wavelet coefficients of 5g• have the same 
properties as */-order wavelet coefficients of 5U for in- 
clination F = 7r/2. 

4. Aeromagnetic Data 

4.1. Survey of French Guiana and Geological 
Setting 

The region of interest for the application of the wavelet 
transibrm technique is located between Cayenne and 
Kourou, in French Guiana (Figure 11). To introduce 
the geological setting, let us first recall that this forms 
part of the Guiana Shield, which is made up of an 
Arcbean complex and a widely developed Paleoprotero- 
zoic succession including metamorphosed sedimentary 
and volcanic formations and granitic and medium- to 
high-grade metamorphic terrains and Mezoproterozoic 
formations at its northern and southern edges [Mil•si 
et al., 1995; Vanderhaeghe et al., 1998]. The opening 
of the North Guiana Trough began with the formation, 
in a sinistral strike-slip setting, of pull-apart basins in 
which the Upper Detrital Formation was deposited (af- 
ter 2120 Ma). Associated with more recent activity due 
to the extensive tectonics of the early opening of the 
Atlantic Ocean (200 Ma), Pertoo-Triassic magmatism 
has emplaced clusters of dolerite dikes striking NNW 
and NNE [Deckart, 1995; Deckart et al., 1997]. This ge- 
ological setting is similar to that found in West Africa, 
with large ore deposits. As Guiana has been greatly un- 
derexplored in comparison, recent exploration interest 
led to a new survey. 

An airborne survey including radiometric and aero- 
magnetic data (total field intensity) has been carried 
out by CGG-Gdoterrex (Compagnie Gdndrale de G•o- 
physique)for BRGM(Bureau des Recherches Gdologiques 
et MiniSres) in 1996 [D½lor et al., 1997]. A total dis- 
tance of 135,000 km has been flown at a low speed (•250 
kin/h) and a low flight level (•120 m clearance). The 
interline distance was 0.25, 0.5, or 1 km (500 m in the 
area of interest to us). Using differential GPS, the res- 
olution of data after processing is better than 10 m; 
sampling interval is •7 m along profiles (constant time 
sampling interval of 0.1 s). In French Guiana the main 
magnetic field had inclination I = 210 and declination 
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Figure 11. Simplified geological map. (The boxed area between Cayenne and Kourou defines 
the area of interest to us, shown in more detail on the right side.) 

D = -16.5 ø, and the lines were flown in a N30øE di- 
rection which means an apparent inclination of • 300 
when striking anomaly structures of induced magnetiza- 
tion perpendicularly. The reference station for diurnal 
corrections was located in the Cayenne area. The con- 
fidence in the final magnetic data is better than +3.8 
nT (standard deviation of misfit between crosslines and 
lines over the whole survey before leveling). 

4.2. Profiles and Anomalies of Interest 

A set of 27 profiles each of 80 km length has been 
transformed using wavelets (see central profile in Figure 
12). We have analyzed the extrema lines for three sin- 
gular features: two dikes from the Pertoo-Triassic and 
a sinistral strike-slip fault of the Upper Detrital Forma- 
tion. The geology is revealed magnetically because of 
the high magnetization of gabbro and diorite of dikes 
contrasting with the low magnetization of "Caraibe" 
and "Guyanais" acid plunonic rocks. The origin of the 
magnetic anomaly of the fault is in the high magnetiza- 
tion of the Paramaca volcano-sedimentary series (Fig- 
ure 11). 

4.3. Depth: From the Real Part 

We first computed the real wavelet coefficients of each 
profiles (using ½•). Figure 12 shows typical features 
of the region, obtained on the central profile. Above 
the dikes and the fault sources, the wavelet coefficients 
plotted as a function of altitude exhibit tracks forming 

cone-like structures. In wavelet theory these are typical 
cones for local singularities located at their top: The 
dikes and the fault are local singularities characterized 
in the wavelet domain by these cone-like structures. 

Interpretation by geometrical continuation of the ex- 
trema lines down to their intersections allows one to 

model the sources. Figure 13 shows the depth of ho- 
mogeneous sources that have been estimated by pick- 
ing the two dikes and the fault on all profiles; these 
values have been corrected for flight altitude and are 
almost all positive (a very few have very small values 
of < 50 m corresponding to hills having strongly vari- 
able ground level). The fault (right side on Figure 13) 
has a deeper magnetic response (200 m down to 1 kin) 
than the two dikes (< 400 m); in the central profile, 
one gets the following depths z0 (from the SSW to the 
NNE): 370 m (SSW dike), 250 m (middle dike), and 
930 m (the fault). Note that horizontal positions follow 
what would have been obtained by classical methods 
based on the locations of the extrema of the analytic 
signal or the gradient of the field reduced to the pole. 
This method gives realistic depth estimates with regard 
to the geological nature of the sources. Other computa- 
tions using the Euler deconvolution method (not shown) 
have given lower depth estimates, with negative values 
when corrected for flight altitude [Sailhac et al., 1997]. 
This traduces the problem of noise effect in Euler de- 
convolution which is automatically solved by upward 
continuation in the wavelet method. 



19,470 SAILHAC ET AL- WAVELET TRANSFORMS OF MAGNETIC PROFILES 

420 

o 

350 -• 

- 

.__o 

' ;. 140 

70 .•- 

-100 • 

½•o6d ...... 6•o6d ...... &dobd ...... •o66 ...... •8obd ...... •o66 ' ' ' 
Position from Sea coast (in m) 

•i•ure t2. Typical SSW-•E profile of the survey: Total m•netic field &nom&ly &nd its 
w&velet tr&nsform coe•cJents (m•xJm• •re Jn dark •nd mJnJm• in clear shadins). 

30000 

2500O 

2O00O 

15000 

10000 

5000 

0 
100000 12OOOO 

nT 
95 
65 
45 
3O 
15 

0 
-20 
-40 
-65 

0 

-2oo 

-4oo 

-600 

-800 

- 1000 

-1200 

I 

.A A 

! 

100000 

! 

12oooo 

m 
lOOO 

5oo 
45o 
4oo 
35o 
3oo 
25o 
2oo 
15o 
lOO 

75 
5o 
25 

o 

Position (in m) 

Figure 13. Imaging sources from the use of 1-D real wavelets' Each profile anomaly provides 
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4.4. Homogeneity Degree: From the Modulus 

Using depth estimated from the geometrical proce- 
dure on modulus maxima lines of the real wavelet coeffi- 

cients (section 4.3), we have estimated the homogeneity 
degrees from the modulus maxima lines of the complex 
coefficients calculated on the central profile of Figure 
12. 

As shown on Figure 14, modulus maxima lines are 
both vertical for the two dikes and display an angle 
0 •_ 50 ø for the fault, this gives a rough estimate 
of its angle (dipping NNE). Using the depths z0 es- 
timated from real wavelets, the linear regression of 
log([W• (a)I/a) versus log(a + z0) implies a homogeneity 
degree of a = -1.9 (the slope is/3 = -2.9 and the struc- 
tural index is N = 0.9) for the SSW dike and the fault 
and of a = -0.9 (the slope is/3: -1.9 and the struc- 

rural index is N =-0.1) for the middle dike. The SSW 
dike and the fault have an homogeneity degree which is 
in the range of that of a prism or a strip [Moreau, 1995], 
near to that of a horizontal pipe (a = -2.0). This corre- 
sponds with magnetization anomalies as expected (sec- 
tion 4.2): a gabbro-dioritic dike of high magnetization 
and a fault whose magnetic signature is the Paramaca 
volcano-sedimentary series. "fault": this can also be 
the signature of an edge of a sill-like source created by 
the Paramaca volcano-sedimentary abatting against the 
coastal sedimentary rocks. 

The middle dike is seen with a surprising homogene- 
ity degree which is near to that of a step (a = -1.0) 
rather than a prism. A first interpretation of this value 
is that there is also, associated with this dike, a con- 
trast in the magnetization of the background. Indeed, 
a contact with the Cayenne Series (composed of amphi- 
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bolites, leptynites and migmatites) has been recognized 
(see Figure 11); they constitute a surface of migrated 
ferromagnetic elements. This remark agrees with the 
shape of the observed anomaly (see Figure 12) as com- 
pared to the synthetic one (appearing on Figure 7). A 
second interpretation is that this is a strip-like source as 
expected but with an infinite height extent (such that 
the first term in equation (34) tends to zero and the 
second term implies the observed exponent /3 = -2). 
In this case, the significance of estimated depths is not 
the middle of the object but for the top of the dike (as 
in the classical analytic signal interpretation method). 

4.5. Inclination: From the Phase 

The plots of the phase of the complex coefficients ver- 
sus scale exhibit a different behavior for the dikes and 

the "fault" (see Figure 14). A constant phase of •--120 ø 
is observed for the two vertical dikes. A moving value 
from 150 ø to -120 ø is observed for the inclined "fault" 

These differences are due to the dependence of the phase 
on the dip angle of the source that is significant for small 
scales and disappears for large scales when the source 
has a finite extent. In this case, the limit for large scales 
can be used to obtain the inclination (equation (43)). 

The value of-120 ø gives an apparent inclination of 
about 15 ø (modulo 180 ø ) for the vertical dike and the 
fault whose homogeneity degree is ct = -2.0. This im- 
plies that values of inclination I and declination D of 
the source are similar to the inclination I,• and decli- 
nation D,• of the normal field (for which I'=30 ø in the 
case that the profile is perpendicular to the source). 

For the vertical dike whose homogeneity degree is 
c• = -1.0, one obtains the same value for the apparent 
inclination by assuming this is a dike of infinite extent 
while one obtains a value of ,-,-30 ø (modulo 180 ø) for a 
finite step. However it is unlikely that the Cayenne Se- 
ries has a reversed remanent magnetization. Therefore 
this vertical dike is probably of large extent with a top 
at ,-,250 m depth and a magnetization with apparent 
inclination of ,-,15 ø (modulo 180ø). 

5. Conclusion and Perspectives 

The wavelet technique is aimed at analyzing both 
the geometry and locations of the sources of potential 
fields via relations of derivatives of the upward contin- 
ued field. This can be applied to any potential fields 
and components. A geometrical interpretation of the 
scaling over the cone-like structure of the real wavelet 
coefficients induced by the source can be used for mod- 
eling. An automatic depth to source determination is 
based upon adjustments of a scaling law for the mod- 
ulus of complex wavelet coefficients (of vers•,s 
a + z0). This can be applied for some nonlocal sources 
such as prismatic bodies where residuals of a simple 
power scaling law form an estimate of the extent of 
the source; this has been recently succesfully applied 

to the interpretation of a gravity profile crossing the 
Himalayas [Martelet et al., 2000]. 

The application to high-resolution aeromagnetic pro- 
files of French Guiana has shown the utility of the 
technique for the interpretation of magnetic structures. 
There is no need to reduce to the pole, and the phase 
of complex wavelet coefficients indicates the inclination 
of the magnetization. This is helpful, especially in ar- 
eas where geophysical prospecting is the only access to 
information on depths of structures, as we have shown 
for dikes and a fault in Guiana. 

Further possibilities with other wavelets of this kind 
could be explored for reduction to the pole in the first 
instance. This wavelet technique combines different di- 
rections of derivative of the field. Also note that this 

could be used for interpretation of surveys where differ- 
ent components of the field have been simultaneously 
recorded: The wavelet analysis of the magnetic poten- 
tial U is equivalent to the analysis of the horizontal and 
vertical components H and Z that are upward contin- 
ued to different levels. 

This article is the second of a series; forthcoming ones 
will relate to statistics of the sources, automation of the 
technique, considerations of large-scale asymptotic be- 
havior, and application of 2-D wavelets to aeromagnetic 
maps. 

Appendix A: Wavelet Coefficients 
Versus Green Function 

Here we show usetiff relations between wavelet coeffi- 

cients of a potential field due to a 2-D body of constant 
source density and the Green's function V (which corre- 
sponds to its gravity potential). Factors corresponding 
to the nature of the field (mass or magnetization in- 
tensity) have been omitted for the relations to be gen- 
eral (these are given by Telford et al. [1990] or Blakely 
[1996]). From equations (5), and (7), complex wavelet 
coefficients of 1/ are given by 

WcZlv(.,z)(Z,a) = 

' 
(A1) 

Now let us introduce a complex gravity field anomaly 
5go = 5gx +iSgz, whose real part is given by the horizon- 
tal gravity field anomaly 5gx: OV/Ox and whose imag- 
inary part is given by the vertical gravity field anomaly 
5gz = OV/Oz (where the z axis is downward oriented). 
With this definition, 5go is actually a complex function 
of the complex variable ( : x + ia, which is defined 
from 5g, with the Hilbert transform: 5gc = (1+ i7-l)Sg•. 
Hence complex wavelet coefficients of V are 

5g•(x, z + a). (A2) 
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Similary, the complex wavelet coefficients of 5#z are 

_ 5a(,z + 
(^3) 

Then we consider the magnetic potential anomaly 
produced by a set of elementary magnetization vectors 
with declination D and inclination I within a normal 

field of declination D• and inclination I•. Along pro- 
files perpendicular to the sources and making an 
gle • with geographic north (Figure 4), a simplifica- 
tion follows by introducing an apparent inclination 
corresponding to a geomagnetic south-north profile [do 
Gory and Naudy, 1957]. Thus the magnetic potential 
anomaly 5U is given by an oblique derivative of V in 
direction F' 

W½•l•U(.,z)(X a)_a • sinI -iI' ( O ) • ' sin I' e • 5g•(x, z +a). 

Eventually, we consider the magnetic total field 
anomaly. Similar to the apparent inclination (magneti- 
zation direction), one can introduce an apparent normal 
inclination I• (normal field direction). Thus the total 
magnetic field anomaly 5T at (x, z) is given by two con- 
jugated symmetrical and antisymmetrical functions 5T• 
and 5T2. Let us introduce the mean apparent inclina- 
tion • - (F + I•)/2 (such that in the special case of 
normal apparent inclination, one gets • - I • - I•); 
this now reads 

sin I sin I• 
5T - [-ST• cos 2• + 5T2 sin 2•], (A5) 

sin I • sin I• 

where 5T• and 5T2 are defined by second-order deriva- 
tives of the Green's function V' 

z)- z)- , • , -••(•, z), 

z) - z). 

Complex wavelet coefficients of 5T are 

W•Zl,r(.,•)(x,a) - 

a•SinlsinI•-i2•(O) •+1 - sin I • sin I• • ' ' 

Appendix B' Modulus Maxima Lines 
of Real Wavelet Coefficients 

We look for the geometry of modulus maxima lines 
from real wavelet coefficients and its relation to the 

mean apparent inclination • (equation (A5)). Let us 
consider the following characteristic ratio function: 

O•+•ST•(x'-a)/ ' (B1) / R '• (x, a) - Ox•+ • Ox•+ • 
Now, if we look for the modulus maxima of W½•isT(.,z ) 
(maxima of a profile while dilation is kept constant), 
the question is reduced to searching for the zero-set 

of W½•+•lsT(.,z ). Algebraic manipulations lead to the 
equation R •(x, a): tan(2•) (respectively R •(x, a): 
-cot(2•)) for the definition of the modulus maxima 
lines (x, a)of W½•l,T(.,z) (respectively W•715T(.,z) ). 

Thus their geometry is controlled by the derivative 
order •/ and the mean apparent inclination •: (F + 
I•)/2. Nevertheless, when considering the modulus of 
the complex wavelets coefficients, it is obvious (from 
equation (A7)) that the derivative order •/, but not •, 
controls the geometry of modulus maxima lines. 

Appendix C' Complex Variables 
Method and Numerical Applications 

A general formulation for the direct calculation of 
the complex wavelet coefficient due to a 2-D body of 
any shape can be obtained with the help of complex 
variables w = X + iZ, where X = x-x0 and Z = z0 +a 
are the horizontal and vertical coordinates, respectively, 
from the source at coordinates x0 and z0 (as used in 
section 3). This method has been previously applied 
to the calculation of derivatives of any order from the 
vertical gravity component [Kwok, 1989]. 

This allows us to write the coefficients at (x,a) of 
the complex wavelets ½} for the total magnetic field 
anomaly due to the 2-D body of contour (x0, z0) C S: 

¾•2•p } l S T ( . , z : o ) ( x , a ) -- 

4 ( sin I sini•] a ((x-•o)+i(zo+a)) (el) 

For ½• and any derivative order •/C IR. + this becomes 

¾•2•p:lST(.,z=o) (X, a ) = 

si• ((•-- •-o)+i(zo +•))•+• ß 

(C•) 
As shown by t•wok [1989], because the integrand is 

analytic, the double integral above can be simplified 
using the complex variable w: (X-xo)+i(zo +a). The 
complex form of Green's theorem gives integrations over 
the closed contour C in the complex plane (x0,-iz0): 

2 Re ((•-•o)+i(•o+•)) •+• - w•+•' 

2Ira 1• • • - Re /c • dw (C3) ((•-•o)+i(•o+•))•+• - - w•+2' 

Hence, equation (C2) reads 

¾•2•pJlST(.,z:o) (x, a ) -- 

F(, -I- 2) (sin/]2aq ½i(-2I'+3•)/c • dw (C4) si-h-/r Y w• + 2 ß 

Also, the real and imaginary parts give the real wavelet 
coefficients, W• (x, a) and -W•7 (x , a), respectively. 

For numerical applications on closed n-sided polyg- 
onal 2-D bodies, one may consider the case of integer 
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derivative order '7 C I•l*. To the coordinates (Zj, Zj) 
of each vertex j C {1, ..., n}, one associates the series 
of complex numbers wj = (x - xj) + i(zj + a) (and 
w•+•: w•). This is used to transform equation (C4) 
into 
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-('7 + 1)a'• 
W, Zi,T(.,z=0)(x a) -- (3' -- 1)(3' -- 2) ( si,•z )2 ,• ' SinI' ½i(-2I'+3•) References 

[ ] ' Z e-2i•(w3+•-w3) e-i('-2)•(w3+•) -- 
Iw+l ' 

(c5) 
where (I)(w) - Arg(w) is the argument of w. 

Notation 

f(x) 

.x) 

i 

½J(x) 

]/V•pVl½o (x, a) 

W½•l•(.,•) (x, a) 

•½•l•(.,•)(x, a) 

r(x) 

In, Dn 

function of a real variable x. 

Fourier transform of f(z), equal to 

f_+• dx f(x)e -i•',•' 
Hilbert transform 

dilation operator 
(Pal(x): (1/a)f(x/a)). 
Poisson kernel (upward continuation 

+1), to 
dilated Poisson kernel (upward con- 
tinuation filter, at level +a), equal 
to PaP(X). 
square root of -1. 
partial differential operator with 
spect to x. 

real wavelet (of order •) whose first 
deriwtive is in x. 

real wavelet (of order •) whose first 
deriwtive is in z. 

complex wavelet (of order if). 
wavelet (of order •) dilated by dila- 
tion a. 

wavelet coe•cient of •0 (by convolu- 
tion of •0(x) with • (x), for x • •). 

on- 
volution of •(x,) with •(x), for 
xe•). 
argument (or phase) of the wavelet 
coe•cient WZ•,(.,•)(x, a). 
Gamma function of the real wriable 

x 
conjugate of the complex wriable w. 
inclination and declination of the 

magnetization vector. 
inclination and declination of the 

normal field. 

apparent inclination of the magneti- 
zation vector. 

apparent inclination of the normal 
field. 

mean apparent inclination, equal to 
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