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SUMMARY

An approximate expression of the eikonal equation and the polarization vector may
be obtained in weakly anisotropic media from first-order perturbation theory. The
advantage of this approximation for qP wave is that the squared phase velocity is linear
in the elastic parameters. For qS waves, the first-order approximation is more com-
plicated and can be expressed in terms of the square root of a quadratic function in the
elastic parameters. Higher order perturbations can be obtained by an iterative procedure
which improves the accuracy of the approximations. Explicit analytic formulae of the
approximate squared phase velocities and polarizations are given for orthorhombic
and transversely isotropic symmetries. Numerical comparisons between the exact and
the approximate phase velocities and polarization vectors obtained at different orders
illustrate the accuracy of the approximate formulae presented. For realistic anisotropy, the
second-order expressions of the squared phase velocities are accurate approximations
which do not cost much more with respect to the first-order computations. Third order
expressions of the squared phase velocities are very accurate and need only computation
of the first-order approximations. Second order expressions should be used to have
good approximations of polarization vectors outside the vicinity of singularities. Higher
order approximations of the qS-waves eigenvectors should be applied in neighbouring
directions of singularities.

Key words: phase velocity, seismic anisotropy, perturbation method, polarization vector.

1 I N T R O D U C T I O N

Three elastic waves (the qP and the two qS waves) can propagate

along any direction in an unbounded anisotropic medium. The

slowness surface represents the directional dependence of the

inverse phase velocity of the three waves. It consists of three

sheets; the inner sheet associated with the qP wave is convex,

but the other two sheets, associated with the qS-waves, can

display concave and saddle-shaped regions in addition to convex

regions. There are special directions (singularities) for which

the two quasi-shear waves sheets come into contact. The shape

of the slowness surface plays a central role in the interpretation

of a wide range of wave phenomena in anisotropic solids.

In an anisotropic material, not only the phase velocities

depend on the propagation direction but, in general, the polar-

ization directions are neither parallel nor perpendicular to the

propagation direction. The phase velocities and the polarization

directions correspond to the eigenvalues and eigenvectors of the

so-called Christoffel matrix. Analytic expressions of the eigen-

values and the eigenvectors can be found only for simple sym-

metries (isotropy and hexagonal symmetry); in most symmetries,

the eigenvalues and the eigenvectors have to be calculated by

numerical algorithms.

Based on the observation that most anisotropic media are

weakly anisotropic, several researchers have proposed approxi-

mations for wave speeds. Approximate equations for phase

velocities in weakly anisotropic media were first derived by

Backus (1965). Thomsen (1986) derived expressions of the phase

velocities in the case of transverse isotropy. Sayers (1994),

Mensch & Rasolofosaon (1997) and Pšenčı́k & Gajewski (1998)

obtained approximate relations for the phase velocity of the qP

wave in arbitrary symmetry. As shown by Backus (1965) the

approximate formulae for the phase velocity in weakly aniso-

tropic media follow simply from the first-order perturbation

theory for anisotropic media (see also Červený & Jech (1982)

and Jech & Pšenčı́k (1989)). The advantage of this approxi-

mation for qP waves is that it is linear in the elastic parameters.

For qS waves, the first-order approximation is more complicated

and can be expressed in terms of the square root of a quadratic

function in the elastic parameters. Second order expressions have

been obtained by Farra (1999) in the case of transverse isotropy

in order to improve the accuracy of traveltime computation.
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The approximate formulae obtained for the qP wave have

found important applications in the approximate evaluation of

kinematic and dynamic quantities such as rays, traveltimes,

polarization vectors and amplitudes which are used in the com-

putation of the qP-wave Green’s function by the ray method

in inhomogeneous weakly anisotropic media (Červený & Jech

1982; Farra 1989; Nowack & Pšenčı́k 1991; Pšenčı́k & Gajewski

1998; Mensch & Farra 1999). Higher order expressions may be

useful to improve the accuracy of such computations (Druzhinin

1996; Farra 1999).

Shear-wave modelling is complicated by the presence of the

shear-wave singularities. Shear-wave singularities cause anomalies

in the polarization of the wavefield and in the geometry of wave

surfaces (Crampin & Yedlin 1981; Helbig 1994; Rümpker &

Thomson 1994; Vavryčuk 1999). They can cause breakdown

of modelling algorithms connected to numerical instabilities

that arise whenever the velocity sheets of two waves are close

to each other. Analytic approximative formulae of the phase

velocities may be useful to provide explicit solutions to various

problems of wave propagation in weakly anisotropic media or

in the neighbourhood of singularities.

In this paper, an iterative procedure is used to obtain

explicit analytic formulae of the Christoffel matrix eigenvalues

and eigenvectors corresponding to higher and higher orders

of perturbation. The eigenvalues and the eigenvectors of the

Christoffel matrix give the squared phase velocities and the

polarization vectors of the waves propagating in the corres-

ponding homogeneous anisotropic medium. For a realistic

anisotropy, numerical comparisons between the exact and

the approximate quantities (phase velocities and polarization

vectors) obtained at different orders illustrate the accuracy of

the approximate formulae.

2 C H R I S T O F F E L E Q U A T I O N

Let us introduce the Christoffel matrix C(p), whose elements

are dependent of a vector p and given by:

ˆjk~piplaijkl , (1)

with implicit summation on repeated indices. The parameters

aijkl=cijkl /r are the density normalized elastic parameters and

pi are the components of the vector p. The matrix C(p) is a

symmetric matrix with three positive eigenvalues Gm(p). The

corresponding eigenvectors gm(p) (defined as unit vectors) are

mutually orthogonal and satisfy the Christoffel equations:

ðˆ{GmIÞgm~0 , (2)

where I is the 3r3 identity matrix.

Three waves (the quasi-P wave and two quasi-S waves

denoted by qP, qS1 and qS2, respectively) can propagate in the

anisotropic solid defined by the elastic parameters aijkl. Each

wave is associated with one of the eigenvalues Gm denoted by

GP, GS1
and GS2

, respectively, and defined by ascending order

GS2
(p)jGS1

(p)<GP(p) for every p. The corresponding eikonal

equation may be written in the following form (Červený 1972):

GmðpmÞ~1, m~P, S1, S2 , (3)

where the vector pm=n /Vm(n) is the slowness vector of the

considered wave for the phase propagation direction defined by

the unit vector n. The phase velocity squared Vm
2 is given by

V2
mðnÞ~GmðnÞ : (4)

The polarization vector of the wave is parallel to the

corresponding eigenvector gm.

In an isotropic medium, the eigenvalues of the two shear-

waves are equal and the polarization vector of the shear wave

may take an arbitrary orientation in the plane orthogonal to

the P-wave polarization vector gP.

3 F I R S T - O R D E R P E R T U R B A T I O N S F O R
T H E q P A N D q S W A V E S

Analytic expressions of the Christoffel matrix eigenvalues can

be found only for simple symmetries (isotropy or hexagonal

symmetry). Fortunately, geological media are often weakly aniso-

tropic which makes perturbation techniques relevant. In this

section, first-order perturbation theory is used to solve approxi-

mately the Christoffel equation. Eigenvalues and eigenvectors

are expanded into perturbation series due to the perturbation

of the elastic parameters with respect to a reference isotropic

medium. The procedure is well-known in many domains of

physics, such as quantum mechanics (see for example Morse &

Feshbach 1953; Landau & Lifshitz 1966). For the seismological

applications of first-order perturbation approaches, Backus

(1965) Červený (1982) and Hanyga (1982) suggested linear

formulae for the determination of phase velocities of the body

waves propagating in anisotropic media. For a reference iso-

tropic medium, these formulae can be used for qP waves only.

To obtain formulae applicable to qS waves as well, degenerate

perturbation theory must be used (see Landau & Lifshitz 1966;

Jech & Pšenčı́k 1989).

Let us assume that we have a reference medium characterized

by elastic parameters a(0)
ijkl. We denote C(0)(p) the reference

Christoffel matrix, Gm
(0)(p) and gm

(0)(p) the reference eigenvalues

and corresponding eigenvectors. Let us consider a perturbation

of the model, such that the elastic parameters are changed

from a(0)
ijkl to aijkl=a(0)

ijkl+Daijkl. In the perturbed model, the

Christoffel matrix C(p) is given by C=C(0)+DC, where the

elements of DC(p) are given by DCjk=piplDaijkl. The expansion

of the Christoffel equation (2) to first-order gives:

ð*ˆ{*GmIÞgð0Þm zðˆð0Þ{Gð0Þm IÞ*gm~0, m~P, S1, S2 , (5)

where DGm(p) is the perturbation of the considered eigenvalue

and Dgm(p) is the perturbation of the associated eigenvector.

Moreover, from the requirement that gm is a unit vector,

gm
. gm=1, one gets to first order:

gð0Þm
. *gm~0 : (6)

Let us assume that the reference medium is isotropic. Let

us introduce the reference vector system (gP
(0), g1

(0), g2
(0)), where

gP
(0)(p) is the eigenvector corresponding to the P-wave eigen-

value GP
(0)(p) in the isotropic reference medium, g1

(0)(p) and

g2
(0)(p) are two mutually perpendicular unit vectors situated

in the plane orthogonal to gP
(0). The freedom in the choice

of vectors g1
(0) and g2

(0) is a consequence of the coincidence of

the eigenvalues of the two quasi-shear waves in the reference

isotropic medium.
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In the isotropic reference medium, we can write the

eigenvalues of the Christoffel matrix as:

G
ð0Þ
P ðpÞ~gð0ÞP

t
ˆð0Þgð0ÞP ~A

ð0Þ
33 p

2 (7)

G
ð0Þ
S ðpÞ~G

ð0Þ
S1
ðpÞ~G

ð0Þ
S2
ðpÞ~gð0Þ1

t
ˆð0Þgð0Þ1 ~gð0Þ2

t
ˆð0Þgð0Þ2 ~A

ð0Þ
44 p

2

(8)

where we use the classical Voigt notation of contracted indices

for the components of the fourth-rank tensor a(0)
ijkl (Auld 1973)

and the superscript t to denote the transposed vector. A33
(0) and

A44
(0) correspond to the P and S-waves velocities squared of the

isotropic medium.

The eigenvector gP
(0)(p) corresponding to the eigenvalue

GP
(0)(p) is:

gð0ÞP ~
1

p

px

py

pz

26664
37775 , (9)

where px, py and pz are the components of the vector p and

p~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

x
zp2

y
zp2

z

q
.

The unit vectors g1
(0) and g2

(0) may be chosen as

gð0Þ1 ~
1

ppr

{pxpz

{pypz

p2
xzp2

y

26664
37775, gð0Þ2 ~

1

pr

{py

px

0

26664
37775 , (10)

with pr~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

x
zp2

y

q
.

Moreover, let us note the following properties:

gð0Þ1

t
ˆð0Þgð0ÞP ~gð0Þ2

t
ˆð0Þgð0ÞP ~gð0Þ1

t
ˆð0Þgð0Þ2 ~0 : (11)

Let us specify the expression (5) for the quasi-P wave. The

scalar product of eq. (5) written for m=P, with gP
(0) gives:

*GP~gð0ÞP
t
*ˆgð0ÞP : (12)

The perturbation vector DgP can be obtained from the scalar

products of eq. (5), written for m=P, with gn
(0), n=1, 2, taking

into account eq. (6):

*gP~
X

n~1,2

gð0Þn
t
*ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

gð0Þn : (13)

The first-order expression of the eigenvalue GP=GP
(0)+DGP,

denoted by GP
(1), can be expressed as, see eqs (7) and (12):

G
ð1Þ
P ~gð0ÞP

t
ˆgð0ÞP (14)

and the first-order expression of the eigenvector gP=gP
(0)+DgP

is given by:

gð1ÞP ~gð0ÞP z
X

n~1,2

gð0Þn
t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

gð0Þn , (15)

where we use the property (11), gP
(0)t C(0)gn

(0)=0, n=1, 2.

Let us specify the expression (5) for the quasi-shear waves.

The qS1 and qS2 zero-order eigenvectors gSk

(0), k=1, 2, are

situated in the plane orthogonal to the zero-order P-wave

polarization vector gP
(0). Though the choice of the vectors g1

(0)

and g2
(0) is not unique, the eigenvectors gS1

(0) and gS2

(0) can not be

chosen arbitrarily because they are subject to the requirement

that the change in them, denoted by DgS1
and DgS2

, should be

small under the action of the perturbation Daijkl. One can write

the zero-order eigenvectors gSk

(0) as linear combinations of the

vectors g1
(0) and g2

(0):

gð0ÞSk
~
X

n~1,2

an
Sk
gð0Þn : (16)

The scalar products of (5), written for m=Sk, with gn
(0),

n=1, 2, give:

ðB11{*GSk
Þa1

Sk
zB12a2

Sk
~0

B12a1
Sk

zðB22{*GSk
Þa2

Sk
~0 (17)

where

Bij~gð0Þi

t
*ˆgð0Þj : (18)

The condition of solvability of system (17) gives (see Jech &

Pšenčı́k 1989)

*GSk
~

1

2
B11zB22+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB11{B22Þ2z4B2

12

q� �
: (19)

The first-order expression of the eigenvalue GSk
=GSk

(0)+DGSk
,

denoted by GSk

(1), can be expressed as, see (8), (11) and (19):

G
ð1Þ
Sk

~
1

2
M11zM22+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM11{M22Þ2z4M2

12

q� �
, (20)

where

Mij~gð0Þi

t
ˆgð0Þj : (21)

The eigenvalue of the qS1-wave is given by eq. (20) with a

positive sign in front of the square root. The components of the

corresponding vector gS1

(0) can be deduced from eq. (17) by

taking into account that gS1

(0) is a unit vector (Pšenčı́k 1998):

a1
S1

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1z

M11{M22ffiffiffiffi
*
p

� �s

a2
S1

~signðM12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1{

M11{M22ffiffiffiffi
*
p

� �s
, (22)

where we introduce the notation

*~ðM11{M22Þ2z4M2
12 : (23)

The eigenvalue of the qS2-wave is given by eq. (20) with a

negative sign in front of the square root. The corresponding

vector gS2

(0) has the following components:

a1
S2

~{signðM12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1{

M11{M22ffiffiffiffi
*
p

� �s

a2
S2

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1z

M11{M22ffiffiffiffi
*
p

�s
: (24)

Some instabilities may appear in the computation of the vectors

gS1

(0) and gS2

(0) in regions in which the two quasi-shear waves

propagate with nearly the same velocity.

Let us remark that the first-order expressions (14) and (20) of

the eigenvalues are independent of the choice of the reference

medium. Moreover, the zero order eigenvectors gS1

(0) and gS2

(0) are

specified uniquely by the Christoffel matrix C and satisfy the
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relations:

gð0ÞS1

t
ˆgð0ÞS2

~gð0ÞS1

t
*ˆgð0ÞS2

~0 , (25)

and

G
ð1Þ
Sk

~gð0ÞSk

t
ˆgð0ÞSk

, k~1, 2 : (26)

For the clarity of the following parts, let us remark that

the quantities gn
(0)tCgP

(0), gSn

(0)tCgP
(0) (n=1, 2) and g1

(0)tCg2
(0) are

first-order terms.

4 H I G H O R D E R P E R T U R B A T I O N S F O R
T H E q P W A V E

In order to obtain a general expression of the eigenvalue GP, it

is convenient to write eq. (2) in the base (gP
(0), gS1

(0), gS2

(0)). The

scalar products of (2), written for m=P, with gSn

(0), n=1, 2 give:

gð0ÞS1
. gP~

gð0ÞS1

t
ˆgð0ÞP

GP{G
ð1Þ
S1

gð0ÞP
. gP

gð0ÞS2
. gP~

gð0ÞS2

t
ˆgð0ÞP

GP{G
ð1Þ
S2

gð0ÞP
. gP (27)

where GS1

(1) and GS2

(1) are defined by eq. (26) and we use the

property (25).

By definition, gP is a unit vector, gP
. gP=1; therefore, using

(27), one obtains:

gð0ÞP
. gP~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

gð0ÞS1

t
ˆgð0ÞP

GP{G
ð1Þ
S1

0@ 1A2

z
gð0ÞS2

t
ˆgð0ÞP

GP{G
ð1Þ
S2

0@ 1A2
vuuut

: (28)

The scalar product of (2), written for m=P, with gP
(0) gives:

ðGP{G
ð1Þ
P Þg

ð0Þ
P

. gP~gð0ÞP
t
ˆgð0ÞS1

gð0ÞS1
. gPzgð0ÞP

t
ˆgð0ÞS2

gð0ÞS2
. gP , (29)

where GP
(1) is given by (14).

Inserting relations (27) into (29), one finds:

GP~G
ð1Þ
P z

ðgð0ÞS1

t
ˆgð0ÞP Þ

2

GP{G
ð1Þ
S1

z
ðgð0ÞS2

t
ˆgð0ÞP Þ

2

GP{G
ð1Þ
S2

: (30)

Let us remark that the eigenvalue GP appears on both sides of

the eq. (30). From eq. (30), one can obtain GP by an iterative

procedure or a perturbation approach at any order. In the

perturbation approach, GP and C are expanded into pertur-

bation series on both sides of equation (30). Taking into

account that gSn

(0)t CgP
(0), n=1, 2, are first-order terms, one gets

GP
(1) as the first-order expression of GP. From (30), we notice

that the first-order expression GP
(1) is always smaller than the

exact eigenvalue GP.

The second-order expression of GP, denoted by GP
(2), is

G
ð2Þ
P ~G

ð1Þ
P z

ðgð0ÞS1

t
ˆgð0ÞP Þ

2

G
ð0Þ
P {G

ð0Þ
S

z
ðgð0ÞS2

t
ˆgð0ÞP Þ

2

G
ð0Þ
P {G

ð0Þ
S

(31)

which can also be written using the vectors g1
(0) and g2

(0):

G
ð2Þ
P ~G

ð1Þ
P z

ðgð0Þ1

t
ˆgð0ÞP Þ

2

G
ð0Þ
P {G

ð0Þ
S

z
ðgð0Þ2

t
ˆgð0ÞP Þ

2

G
ð0Þ
P {G

ð0Þ
S

: (32)

The third-order expression of GP can be written as

G
ð3Þ
P ~G

ð1Þ
P z

ðgð0ÞS1

t
ˆgð0ÞP Þ

2

G
ð1Þ
P {G

ð1Þ
S1

z
ðgð0ÞS2

t
ˆgð0ÞP Þ

2

G
ð1Þ
P {G

ð1Þ
S2

: (33)

It should be emphasized that eq. (33) is not exactly an expan-

sion into perturbation series because the denominators contain

perturbed terms GP
(1)xGS1

(1) and GP
(1)xGS2

(1). The perturbation

series may be obtained by making approximate expansion of

the denominators. It is clear that this should give a more

complicated formula and less convenient calculation.

The expression of the qP-wave eigenvalue at order l, li3,

denoted by GP
(l), can be obtained via the following recursion

relation between the (lx2) approximation and the lth:

G
ðlÞ
P ~G

ð1Þ
P z

ðgð0ÞS1

t
ˆgð0ÞP Þ

2

G
ðl{2Þ
P {G

ð1Þ
S1

z
ðgð0ÞS2

t
ˆgð0ÞP Þ

2

G
ðl{2Þ
P {G

ð1Þ
S2

: (34)

In terms of iterative procedure, the expressions obtained

at uneven order (even order, respectively) correspond to the

sequence obtained by inserting the approximate trial solution

GP=GP
(1) (GP=GP

(0), respectively) in the right-hand side

of relation (30) and using the recursion relations (34). The

expressions obtained at uneven order are independent of

the choice of the reference medium. This is not the case for the

expressions obtained at even order.

Using the expression of GP obtained at order l in (27) and

(28), one obtains the vector gP at order l+1. For example, the

first-order expression of gP is:

gð1ÞP ~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z
gð0ÞS1

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

0@ 1A2

z
gð0ÞS2

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

0@ 1A2
vuuut

| gð0ÞP z
gð0ÞS1

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

gð0ÞS1
z

gð0ÞS2

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

gð0ÞS2

24 35 , (35)

which can also be written in the base (gP
(0), g1

(0), g2
(0)):

gð1ÞP ~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z
gð0Þ1

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

 !2

z
gð0Þ2

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

 !2
vuut
| gð0ÞP z

gð0Þ1

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

gð0Þ1 z
gð0Þ2

t
ˆgð0ÞP

G
ð0Þ
P {G

ð0Þ
S

gð0Þ2

" #
: (36)

The (l+1)th order expression of gP, li1, is given by:

gðlz1Þ
P ~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

gð0ÞS1

t
ˆgð0ÞP

G
ðlÞ
P {G

ð1Þ
S1

0@ 1A2

z
gð0ÞS2

t
ˆgð0ÞP

G
ðlÞ
P {G

ð1Þ
S2

0@ 1A2
vuuut

| gð0ÞP z
gð0ÞS1

t
ˆgð0ÞP

G
ðlÞ
P {G

ð1Þ
S1

gð0ÞS1
z

gð0ÞS2

t
ˆgð0ÞP

G
ðlÞ
P {G

ð1Þ
S2

gð0ÞS2

24 35 : (37)

The even order approximations of gP depend on the first-order

approximation of the eigenvalues via the recursion relation (34)

and are independent of the choice of the reference medium.
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5 H I G H O R D E R P E R T U R B A T I O N S F O R
T H E q S - W A V E S

In order to obtain a general expression of the qS-waves

eigenvalues GSk
, k=1, 2, one can write eqs (2) in the base

(gP
(0), g1

(0), g2
(0)). The scalar product of eq. (2), written for m=Sk,

with gP
(0) gives:

ðGSk
{G

ð1Þ
P Þg

ð0Þ
P

. gSk~gð0ÞP
t
ˆgð0Þ1 gð0Þ1

. gSkzgð0ÞP
t
ˆgð0Þ2 gð0Þ2

. gSk ,

(38)

where GP
(1) is given by eq. (14).

The scalar products of eq. (2), written for m=Sk, with gn
(0),

n=1, 2 give:

ðgð0Þ1

t
ˆgð0Þ1 {GSk

Þgð0Þ1
. gSkzgð0Þ1

t
ˆgð0Þ2 gð0Þ2

. gSk

zgð0Þ1

t
ˆgð0ÞP gð0ÞP

. gSk~0

gð0Þ2

t
ˆgð0Þ1 gð0Þ1

. gSkzðg
ð0Þ
2

t
ˆgð0Þ2 {GSk

Þgð0Þ2
. gSk

zgð0Þ2

t
ˆgð0ÞP gð0ÞP

. gSk~0 : (39)

Taking relation (38) into account, one obtains from (39) the

following system:

ðM11{GSk
Þgð0Þ1

. gSkzM12g
ð0Þ
2

. gSk~0

M12g
ð0Þ
1

. gSkzðM22{GSk
Þgð0Þ2

. gSk~0 (40)

where

Mij~gð0Þi

t
ˆgð0Þj z

gð0ÞP
t
ˆgð0Þi gð0ÞP

t
ˆgð0Þj

GSk
{G

ð1Þ
P

: (41)

The condition of solvability of system (40) yields:

GSk
~

1

2
M11zM22+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM11{M22Þ2z4M2

12

q� �
: (42)

The eigenvalue of the qS1-wave (respectively, of the qS2-wave)

is given by eq. (42) with a positive sign (respectively negative

sign) in front of the square root. Let us remark that the eigen-

value GSk
appears on both sides of eq. (42), because of the

definition of Mij.

From expression (42), one can obtain GSk
by using an

iterative procedure or a perturbation approach at any order.

In the perturbation approach, GSk
and C are expanded into

perturbation series in the expression of Mij given by (41).

The expression of GSk
at order l, denoted by GSk

(l), is given by

eq. (42) with the Mij replaced by their lth order expressions.

Therefore, the first-order expression GSk

(1) is given by eq. (42)

with

M
ð1Þ
ij ~gð0Þi

t
ˆgð0Þj , (43)

which is identical to expressions (20–21).

The second-order expression GSk

(2) is given by eq. (42) with

M
ð2Þ
ij ~gð0Þi

t
ˆgð0Þj z

gð0ÞP
t
ˆgð0Þi gð0ÞP

t
ˆgð0Þj

G
ð0Þ
S {G

ð0Þ
P

: (44)

The third-order expression GSk

(3) is given by eq. (42) with

M
ð3Þ
ij ~gð0Þi

t
ˆgð0Þj z

gð0ÞP
t
ˆgð0Þi gð0ÞP

t
ˆgð0Þj

G
ð1Þ
Sk

{G
ð1Þ
P

: (45)

The expression at order l, li3, of the qSk-wave eigenvalue,

denoted by GSk

(l), is given by eq. (42) with

M
ðlÞ
ij ~gð0Þi

t
ˆgð0Þj z

gð0ÞP
t
ˆgð0Þi gð0ÞP

t
ˆgð0Þj

G
ðl{2Þ
Sk

{G
ð1Þ
P

: (46)

It should be emphasized that eq. (46) is not exactly an

expansion into perturbation series because the denominator

contains the perturbed term GSk

(lx2)xGP
(1). However, expression

(46) is equivalent to the expansion into perturbation series at

order l and is much more convenient for calculation.

This is a recursion relation between the (lx2) approximation

and the lth. In terms of iterative procedure, the expressions

obtained at uneven order (even order, respectively) correspond

to the sequence obtained by inserting the approximate trial

solution GSk
=GSk

(1) (GSk
=GS

(0), respectively) in the right-hand

side of relation (42) and using the iteration process via the

recursion relations (42) and (46). The expressions obtained at

uneven order are independent of the choice of the reference

medium. This is not the case for the expressions obtained at

even order.

Let us now consider the expression of the eigenvector gSk
. By

definition, gSk
is a unit vector, therefore

ðgð0Þ1
. gSkÞ

2
zðgð0Þ2

. gSkÞ
2
zðgð0ÞP

. gSkÞ
2
~1 : (47)

The approximation of the eigenvector gSk
at order l, denoted

by gSk

(l), can be obtained by using the approximations of order

(l+1), GSk

(l+1) and Mij
(l+1), in relations (38) and (40), taking into

account relation (47). The expressions obtained at even order

are independent of the choice of the reference medium. Note

that the evaluation of the term gP
(0) . gSk

(l) requires only the

approximation GSk

(lx1). However, in practical applications, it is

more convenient for calculation to use approximations computed

at order (l+1), GSk

(l+1) and Mij
(l+1).

In order to get more insight into the leading perturbation

orders of the polarization approximations, let us assume that

the vectors g1
(0) and g2

(0) correspond to the vectors gS1

(0) and gS2

(0),

respectively. The components of gSk
in the base (g

P
(0), g

S1

(0), g
S2

(0))

satisfy similar equations to (38–40), where the coefficients Mij,

denoted in this case by MSi Sj
, are given by:

MSiSj
~gð0ÞSi

t
ˆgð0ÞS j

z
gð0ÞP

t
ˆgð0ÞSi

gð0ÞP
t
ˆgð0ÞS j

GSk
{G

ð1Þ
P

: (48)

Let us remark that in terms of leading perturbation order, the

MSi Si
, i=1, 2, have a first-order leading term and MS1S2

has a

second-order leading term because of relation (25). Therefore,

if MS1S1
and MS2S2

are not equal to first-order, GSk
is equal to

one of the MSi Si
at second order (This can be obtained from

relation (42) by expanding the square root into perturbation

series):

G
ð2Þ
S1

~max
i~1,2

M
ð2Þ
SiSi

(49)

G
ð2Þ
S2

~ min
i~1,2

M
ð2Þ
SiSi

(50)
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where the second-order expressions M(2)
Si Si

are given by:

M
ð2Þ
SiSi

~G
ð1Þ
Si

z
ðgð0ÞP

t
ˆgð0ÞSi

Þ2

G
ð0Þ
S {G

ð0Þ
P

: (51)

Let us introduce the indices k1, k2, such that k1lk2 and

GSk

(2)=MSk1Sk1

(2) at second order. From system (40), one can see

that gSk1

(0) . gSk
should have a zero order leading term and gSk2

(0) . gSk

should have a first-order leading term. From system (40), one

gets:

gð0ÞSk2

. gSk~
MS1S2

GSk
{MSk2

Sk2

gð0ÞSk1

. gSk (52)

Introducing eq. (52) into (38), one obtains:

gð0ÞP
. gSk~

gð0ÞP
t
ˆgð0ÞSk1

GSk
{G

ð1Þ
P

GSk
{G

ð1Þ
Sk2

GSk
{MSk2

Sk2

gð0ÞSk1

. gSk : (53)

From the requirement that gSk
is a unit vector, one gets

the component gSk1

(0) . gSk
by inserting eqs (52) and (53) into the

relation:

ðgð0ÞSk1

. gSkÞ
2
zðgð0ÞSk2

. gSkÞ
2
zðgð0ÞP

. gSkÞ
2
~1 : (54)

The component of gSk
along the vector gSk2

(0) is inversely pro-

portional to the factor GSk
xMSk2Sk2

which is close in absolute

value to GS1
xGS2

. High order effects should be observed in

regions in which the two quasi-shear waves propagate with

nearly the same phase velocity. In these regions, the accuracy

of the eigenvector approximation will be strongly dependent

on the perturbation order. It is important to remark that

the index k1 may not be equal to k in some region, so that the

eigenvector, say gS1
, can have a larger component along gS2

(0) than

along gS1

(0). In these regions, MSK2SK2

(2) is larger than MS1S1

(2) ,

though GS1

(1) is larger than GS2

(1). Such an effect can only be seen

at an order li2.

6 O R T H O R H O M B I C A N D
T R A N S V E R S E L Y I S O T R O P I C
S Y M M E T R I E S

6.1 Orthorhombic symmetry

We shall focus our analysis on the orthorhombic symmetry.

Orthorhombic media (Schoenberg & Helbig 1997) arise, for

example, from combinations of vertically aligned cracks and

TIV anisotropy (transverse isotropy with vertical symmetry

axis). An orthorhombic medium is defined by nine independent

density normalized elastic parameters AIJ and three mutually

perpendicular planes of symmetry. We shall use the coordinate

system (x, y, z) with coordinate planes coinciding with the sym-

metry planes of anisotropy. In such a coordinate system, called

the ‘crystal’ coordinate system, the elastic matrix is given by:

A~

A11 A12 A13 0 0 0

A12 A22 A23 0 0 0

A13 A23 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
(55)

and the elements of the Christoffel matrix C are given by:

ˆ11~A11p2
xzA66p2

yzA55p2
z ,

ˆ22~A66p2
xzA22p2

yzA44p2
z ,

ˆ33~A55p2
xzA44p2

yzA33p2
z ,

ˆ12~ðA12zA66Þpxpy ,

ˆ13~ðA13zA55Þpxpz ,

ˆ23~ðA23zA44Þpypz : (56)

Let us introduce the following parameters (Mensch & Farra

1999):

AŒ 12~A12{
A11zA22

2
z2A66,AŒ 13~A13{

A11zA33

2
z2A55 ,

AŒ 23~A23{
A22zA33

2
z2A44 : (57)

Using the expressions (9) and (10) of the vectors gP
(0), g1

(0) and

g2
(0), one can write:

gð0ÞP
t
ˆgð0ÞP ~A11p2

xzA22p2
yzA33p2

zz2AŒ 12

p2
xp2

y

p2

z2AŒ 13
p2

xp2
z

p2
z2AŒ 23

p2
yp2

z

p2
, (58)

gð0ÞP
t
ˆgð0Þ1 ~

{pz

p2pr

�
2AŒ 12p2

xp2
yzðAŒ 13p2

xzAŒ 23p2
yÞð p2

z{p2
r Þ

z
p2

2
ððA11{A33Þp2

xzðA22{A33Þp2
yÞ
�
, (59)

gð0ÞP
t
ˆgð0Þ2 ~

pxpy

2ppr
½2AŒ 12ð p2

x{p2
yÞz2ðAŒ 23{AŒ 13Þp2

z

zðA22{A11Þp2� , (60)

gð0Þ1

t
ˆgð0Þ1 ~ 2AŒ 12

p2
xp2

yp2
z

p2p2
r

{2ðAŒ 13p2
xzAŒ 23p2

yÞ
p2

z

p2

"

zðA55p2
xzA44p2

yÞ
p2

p2
r

�
, (61)

gð0Þ1

t
ˆgð0Þ2 ~

pxpypz

p2
r p
½ðAŒ 23{AŒ 13Þp2

r {AŒ 12ð p2
x{p2

yÞzðA55{A44Þp2� ,

(62)

gð0Þ2

t
ˆgð0Þ2 ~ A66ð p2

xzp2
yÞzðA44p2

xzA55p2
yÞ

p2
z

p2
r

{2AŒ 12

p2
xp2

y

p2
r

" #
:

(63)

Some of the perturbation expressions depend on the reference

eigenvalues GP
(0) and GS

(0). Among the isotropic reference media,

the so-called isotropic replacement medium (IRM) of the

orthorhombic medium (Fedorov 1968; Sayers 1994; Mensch &

Rasolofosaon 1997) can be used. Let us introduce the ‘intrinsic’

deviation from a reference medium kA{A0k
kAk (see definition in

Arts et al. (1991) and Mensch & Rasolofosaon (1997)), where

A and A0 are the elastic tensors of the orthorhombic medium

and the reference medium, respectively. d . d denotes the norm
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of the considered fourth-rank tensor (for example, dAd2=
AijklAijkl, with implicit summation on repeated indices). The

so-called isotropic replacement medium (IRM) of the ortho-

rhombic medium is a solution of the minimization of the norm

dAxAIRMd. In the IRM medium, the eigenvalues GP
(0) and GS

(0)

are given by eqs (7–8) with:

A
ð0Þ
33 ~ð3A11z3A22z3A33z2A12z2A13z2A23z4A44

z4A55z4A66Þ=15 ,

A
ð0Þ
44 ~ðA11zA22zA33{A12{A13{A23z3A44

z3A55z3A66Þ=15 , (64)

which can be also written:

A
ð0Þ
33 ~ðA11zA22zA33Þ=3z2ðAŒ 12zAŒ 13zAŒ 23Þ=15 ,

A
ð0Þ
44 ~ðA44zA55zA66Þ=3{ðAŒ 12zAŒ 13zAŒ 23Þ=15 : (65)

Using expressions (58–63) in relations (30) and (42), one

can calculate at any order the phase velocity squared Vm
2 (n)

of the three waves in the direction defined by the unit vector n

(see eq. 4). In a weakly orthorhombic medium, the qP-wave

phase slowness surface is controlled by the 6 parameters A11,

A22, A33, Â12, Â13, Â23 in its first-order expression (14) and

by seven parameters in its second-order expression (32). The

qS-waves phase slowness surfaces are controlled by the six

parameters A44, A55, A66, Â12, Â13, Â23 in their first-order

expressions (given by eqs 20 and 21) and by nine parameters in

their second-order expressions (given by eqs 42 and 44).

6.2 Transverse isotropy

In a transversely isotropic medium with symmetry axis along

the z-axis, one has Â12=0, Â13=Â23, A11=A22 and A44=A55.

Therefore, gP
(0)tCg2

(0)=g1
(0)tCg2

(0)=0. The eigenvalue correspond-

ing to one of the quasi-S-waves (the so-called qSH-wave) is

given by:

GSHðpÞ~A66pr2zA44p2
z , (66)

the corresponding eigenvector is g2
(0).

The first-order expressions of the qP wave and the other

qS-wave (the so-called qSV-wave) eigenvalues are given by:

G
ð1Þ
P ðpÞ~A11pr2zA33p2

zz2AŒ 13
pr2p2

z

p2
,

G
ð1Þ
SV ðpÞ~A44p2{2AŒ 13

pr2p2
z

p2
: (67)

The third-order expressions are given by:

G
ð3Þ
P ðpÞ~G

ð1Þ
P ðpÞz

p2
zpr

2

G
ð1Þ
P ðpÞ{G

ð1Þ
SV ðpÞ

| AŒ 13
p2

z{pr2

p2
z

1

2
ðA11{A33Þ

� �2

,

G
ð3Þ
SV ðpÞ~G

ð1Þ
SV ðpÞ{

p2
zpr

2

G
ð1Þ
P ðpÞ{G

ð1Þ
SV ðpÞ

| AŒ 13
p2

z{pr2

p2
z

1

2
ðA11{A33Þ

� �2

: (68)

The second-order expressions of the eigenvectors gP and gSV

are parallel to the vectors (see expressions 37 and 38)

gð0ÞP {
pzpr

G
ð1Þ
P ðpÞ{G

ð1Þ
SV ðpÞ

AŒ 13
p2

z{pr2

p2
z

1

2
ðA11{A33Þ

� �
gð0Þ1 (69)

and

gð0Þ1 z
pzpr

G
ð1Þ
P ðpÞ{G

ð1Þ
SV ðpÞ

AŒ 13
p2

z{pr2

p2
z

1

2
ðA11{A33Þ

� �
gð0ÞP , (70)

respectively.

The qP and qSV-waves velocities squared in the phase

normal direction defined by the unit vector n are given by

eq. (4). Denoting by h the angle between the phase propagation

direction and the z-axis, one gets from eq. (67) the first-order

expressions of the velocities squared:

V
2ð1Þ
P ðhÞ~A11 sin2 hzA33 cos2 hz2AŒ 13 sin2 h cos2 h ,

V
2ð1Þ
SV ðhÞ~A44{2AŒ 13 sin2 h cos2 h , (71)

and from eq. (68) the third order expressions of the velocities

squared:

V
2ð3Þ
P ðhÞ~V

2ð1Þ
P ðhÞz sin2 h cos2 h

V
2ð1Þ
P ðhÞ{V

2ð1Þ
SV ðhÞ

| AŒ 13ðcos2 h{ sin2 hÞz 1

2
ðA11{A33Þ

� �2

,

V
2ð3Þ
SV ðhÞ~V

2ð1Þ
SV ðhÞ{

sin2 h cos2 h

V
2ð1Þ
P ðhÞ{V

2ð1Þ
SV ðhÞ

AŒ 13ðcos2 h{ sin2 hÞz 1

2
ðA11{A33Þ

� �2

: (72)

7 N U M E R I C A L E X A M P L E

We consider the orthorhombic medium with matrix of density

normalized elastic parameters (in km2 sx2):

A~

10:8 2:2 1:9 0:0 0:0 0:0

2:2 11:3 1:7 0:0 0:0 0:0

1:9 1:7 8:5 0:0 0:0 0:0

0:0 0:0 0:0 3:6 0:0 0:0

0:0 0:0 0:0 0:0 3:9 0:0

0:0 0:0 0:0 0:0 0:0 4:3

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
: (73)

The corresponding IRM medium has elastic parameters

A33
(0)=10.04 km2/s2 and A44

(0)=4.01 km2/s2. We recall that the

IRM medium is the closest isotropic approximation of the aniso-

tropic model. The ‘intrinsic’ deviation of the orthorhombic

medium (73) with respect to the IRM medium is 10.6 per cent.

Let us illustrate the accuracy of the approximate formulae

(14) and (31–34) of the qP-wave phase velocity squared. The

phase velocity squared in the phase normal direction defined by

the unit vector n is given by eq. (4). The vector n is defined

by its polar angle h (h=0u for propagation along the z-axis)
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and azimuth w (w=0u for propagation in the Oxz plane).

Because the orthorhombic symmetry has three mutually per-

pendicular planes of symmetry, all the calculations were

made for 0ujhj90u and 0ujwj90u. Let us denote by VP

the true qP-wave phase velocity and VP
(l) the approximated

phase velocity at order l. Fig. 1 represents the true qP-wave

phase velocity as a function of the phase angles h and w. The

maximum variation with respect to the IRM model is 8 per

cent. Table 1 gives the maximum relative error

V
ðlÞ
P {VP

VP

(in per cent) for l=1, 2, 3, 4. The even order approximations

VP
(2) and VP

(4) were computed with the reference eigenvalues

GP
(0) and GS

(0) of the IRM medium. One can note the increasing

accuracy with the order l of the approximation.

Fig. 2 shows the angular deviation of the exact qP-wave

polarization vector from the phase propagation direction.

It reaches maximum values of about 8u. Table 2 gives the

maximum angular deviation cP
(l) in degrees between the exact

polarization vector and the approximated polarization vector

at order l=0, 1, 2. The first and second-order expressions

of the polarization vector are given by eqs (36) and (37),

respectively. The first-order approximation was computed with

the reference eigenvalues of the IRM medium. The second-order

approximation gives very accurate results.

Let us illustrate the accuracy of the computation of the two

qS-waves phase velocities obtained from expression (42) where

the coefficients Mij are computed with eqs (43–46), respectively.

Let us denote by VSk
(k=1, 2) the true qS-waves phase velocities

and VSk

(l) the approximated phase velocities at order l. Fig. 3

represents the true qS1 and qS2 phase velocities as functions of

the phase angle h. Each curve corresponds to a different azimuth

w. There is a point singularity, also called single point degeneracy

(Schoenberg & Helbig 1997) in the symmetry plane Oxz at

h=34.4u and w=0u, where the two quasi-shear waves velocity

sheets come into contact at VS1
=VS2

=1.955 km/s. The cross-

section of the quasi-shear waves velocity sheets by any plane

passing through the singular direction (h=34.4u, w=0u) gives

two curves with discontinuous tangents at the point singularity,

except for the plane tangent to the cone h=34.4u, in which the

curves are smooth at the point singularity. Fig. 4 represents

the map of the normalized difference (in per cent) of the two

exact qS-waves phase velocities. One can see that the two quasi-

shear waves propagate with nearly the same phase velocity for

Figure 1. Map of the exact qP-wave phase velocity (in km sx1) as a

function of the polar angle h and the azimuth angle w of the phase

propagation direction. The model is the orthorhombic medium with

elastic parameters given by (73).

Table 1. Maximum error (in per cent) of the qP-wave phase velocity as

a function of the perturbation order. The steps used in the calculations

were 1u in h and w, for 0ujhj90u and 0ujwj90u.

V
ð1Þ
P
ÿVP

VP
|100

V
ð2Þ
P
ÿVP

VP
|100

V
ð3Þ
P
ÿVP

VP
|100

V
ð4Þ
P
ÿVP

VP
|100

0.6 0.06 0.011 0.0009

Figure 2. Map of the angular deviation (in degrees) of the phase

normal and the exact polarization vector gP as a function of the polar

angle h and the azimuth angle w of the phase propagation direction. The

model is the orthorhombic medium with elastic parameters given by

eq. (73).

Table 2. Maximum deviation (in degrees) between the exact and the

approximated qP-wave eigenvector as a function of the perturbation

order. The steps used in the calculations were 1u in h and w, for

0ujhj90u and 0ujwj90u.

cP
(0) cP

(1) cP
(2)

8u 1u 0.15u
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32ujhj38u and 0ujwj25u. In this region, the two phase

velocity sheets approach each other in a pinch. Along the pinch,

the velocity sheets come into contact smoothly at the point

singularity. Table 3 gives the maximum relative errors

V
ðlÞ
Sk

{VSk

VSk

(in per cent) for l=1, 2, 3, 4. The even order approximations VSk

(2)

and VSk

(4) were computed with the reference eigenvalues GP
(0) and

GS
(0) of the IRM medium. The accuracy of the approximations

increases with the order l.

Fig. 5 shows the map of the angular deviation between

the exact polarization vector gS1
and the vector g1

(0) given by

expression (10). One can see a large rotation of the direction of

the polarization vector gS1
as the phase propagation direction

passes through the region where the two quasi-shear waves

propagate with nearly the same phase velocity (see Fig. 4).

As the direction of phase propagation passes through this

region, the polarizations of the two quasi-shear waves sheets

are exchanged. Such a phenomena is described by Crampin

(1981) for orthorhombic orthopyroxene. Fig. 6 shows the

Table 3. Maximum error (in per cent) of the qS1 and qS2-waves phase

velocities as a function of the perturbation order. The steps used in the

calculations were 1u in h and w, for 0ujhj90u and 0ujwj90u.

Sn

V
ð1Þ
Sn
ÿVSn

VSn
|100

V
ð2Þ
Sn
ÿVSn

VSn
|100

V
ð3Þ
Sn
ÿVSn

VSn
|100

V
ð4Þ
Sn
ÿVSn

VSn
|100

S1 0.7 0.08 0.007 0.0008

S2 1.4 0.15 0.027 0.002

Figure 3. qS1 and qS2 true phase velocities as functions of the polar

angle h of the phase propagation direction. Each curve corresponds to

a constant azimuth w, 0ujwj90u. The step between two azimuths is

10u. There is a point singularity in the symmetry plane Oxz at h=34.4u
and w=0u, where the two phase velocity sheets come into contact at

VS=1.955 km/s. The model is the orthorhombic medium with elastic

parameters given by (73).

Figure 4. Map of the normalized difference (in per cent) of the exact

qS1 and qS2 phase velocities as functions of the polar angle h and the

azimuth angle w of the phase propagation direction. The model is the

orthorhombic medium with elastic parameters given by (73).

Figure 5. Map of the angular deviation (in degrees) of the qS1-wave

exact polarization vector gS1
and the vector g1

(0) given by eq. (10) as a

function of the polar angle h and the azimuth angle w of the phase

propagation direction. The steps used in the calculations were 0.75u in h

and w.
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map of the angular deviation between the exact eigenvector

gS1
and the zero-order eigenvector gS1

(0). The deviation is large

for 25ujhj50u and is above 70 degrees in the region defined

by 34.4ujhj38.9u and 0ujwj25u. In this region, the exact

polarization vector gS1
has a larger component along the vector

gS2

(0) than along the vector gS1

(0). Fig. 7 shows the map of the

angular deviation between the zero-order eigenvector gS1

(0) and

the vector g1
(0). One can see that the region of rapid variation

of the direction of the vector gS1

(0) is different from the one in

Fig. 5. In this region, the first-order velocity sheets approach

each other in a pinch and come into contact in the symmetry

plane Oxz at h=38.9u and w=0u. In the area located between

these two regions (corresponding to the pinch of the exact

velocity sheets and the pinch of the first-order velocity sheets,

respectively), the quantity MS2S2

(2) is larger than MS1S1

(2) and there

is a large deviation between the exact eigenvectors and the

corresponding zero-order eigenvectors.

Fig. 8 shows the map of the angular deviation (in degrees)

between the first-order expression of the polarization vector

gS1

(1) and the exact polarization vector gS1
for 15ujhj55u

and 0ujwj90u. The components of the vector gS1

(1) in the

base (gP
(0), g1

(0), g2
(0)) were obtained by using the second-order

expressions GSk

(2) and Mij
(2), defined by eq. (44), in relations (38)

and (40). The first-order approximation gS1

(1) has less than

1 degree error outside two bounded regions. The second-order

velocity sheets come into contact at h=34.8u and w=0u.
In the area between the pinch of the exact velocity sheets and

the pinch of the approximated second-order velocity sheets,

34.4ujhj34.8u and 0ujwj7u, there is a large deviation

between the vectors gS1

(1) and gS1
.

The second-order expressions of the polarization vectors

were obtained by using the third order expressions GSk

(3) and

Mij
(3), defined by (45), in relations (38) and (40). The deviation

between the approximation gS1

(2) and gS1
is shown on Fig. 9 for

31ujhj36u and 0ujwj24u. The second-order approximation

has less than 1u error outside a region corresponding to the

pinch of the exact velocity sheets (see Fig. 4), with approxi-

mately 20u length and maximum width of 1u. The third order

Figure 6. Map of the angular deviation (in degrees) of the qS1-wave

exact polarization vector gS1
and the zero-order eigenvector gS1

(0) as a

function of the polar angle h and the azimuth angle w of the phase

propagation direction. The steps used in the calculations were 0.75u in h

and w.

Figure 7. Map of the angular deviation (in degrees) of the zero-order

eigenvector gS1

(0) and the vector g1
(0) given by eq. (10) as a function of

the polar angle h and the azimuth angle w of the phase propagation

direction. The steps used in the calculations were 0.75u in h and w.

Figure 8. Map of the angular deviation (in degrees) of the qS1-wave

exact polarization vector gS1
and the first-order eigenvector gS1

(1) in the

propagation directions 15ujhj55u and 0ujwj90u. The steps used in

the calculations were 0.1u in h and 1u in w. The reference medium is the

IRM medium.
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expressions of the polarization vectors has less than 1u error

outside a small region, with 6u length and maximum width

of 0.1u. High order expressions GSk

(l) and Mij
(l) should be used

to have good approximations of the qS-waves polarization

vectors in neighbouring directions of the singularity.

8 C O N C L U S I O N S

In this paper, an iterative procedure is used to obtain approxi-

mate analytic expressions of the Christoffel matrix eigen-

values corresponding to higher order perturbations. Very simple

recursion formulae are given between the eigenvalue approxi-

mations of order (lx2) and l. Approximate expressions of

the corresponding eigenvectors are obtained at a shifted order

(lx1) or (l+1). The eigenvalues approximations of uneven

order and the eigenvectors approximations of even order

are independent of the choice of the reference medium. The

eigenvalues and the eigenvectors of the Christoffel matrix are

associated to the squared phase velocities and the polarization

vectors of the three waves (qP, qS1, qS2) propagating in

an arbitrary direction of a homogeneous medium. Explicit

analytic formulae of the approximate squared phase velocities

and polarizations are given for orthorhombic and transversely

isotropic symmetries. Inspection of the derived formulae

makes it possible to study the sensitivity of phase velocities

and polarization vectors to elastic parameters.

The example presented in this paper shows the accuracy of

the perturbation formulae. For realistic anisotropy (10.6 per

cent), the second-order expressions of the squared phase

velocities are accurate approximations (errors less than 0.15 per

cent if the IRM medium is used as the reference medium) which

do not cost much with respect to the first-order computations.

Third order expressions of the squared phase velocities are very

accurate (errors less than 0.03 per cent) and need only com-

putation of the first-order approximations. The second-order

expression of the qP-wave polarization has error less than

0.15u. High order expressions of the qS-waves polarizations

vectors should be used to have good approximations in the

vicinity of singularities.

These analytic perturbation formulae could find important

applications in the approximate evaluation of kinematic and

dynamic quantities of seismic waves propagating in anisotropic

media.

A C K N O W L E D G M E N T S
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