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S U M M A R Y
The extent and seismic properties of magma bodies beneath the subsurface are normally ascer-
tained via seismic methods. The seismic properties of such bodies depend on the composition
and microstructure of both melt and crystals. Using effective medium theory, we assess the
effect of microstructure, geometry and orientation of melt and crystals on the seismic prop-
erties, namely P- and S-wave velocities and anisotropy. We find that S-wave velocity and
anisotropy are key observables in determining the composition and microstructure of magma
bodies.

Key words: composition, effective medium, inclusions, magma bodies, microstructure, seis-
mic properties.

1 I N T R O D U C T I O N

Understanding the microstructure and composition of magma bod-
ies such as magma chambers beneath volcanoes and beneath mid-
ocean ridges is important for exploring how melt is being delivered
from the mantle and the propensity for the magma to erupt (e.g.
Zollo et al. 1996; Singh et al. 1998). Seismic inversion techniques
provide us with information concerning the wave velocity, attenua-
tion and anisotropy through a medium. Interpreting this information
in terms of the underlying stratigraphy requires knowledge of the
physical properties, such as the bulk and shear moduli, and the mi-
crostructure of media through which the waves travel. Although
magma chambers are complex, one important structural feature
affecting seismic wave propagation is the proportion of the body
that is fully molten and the interconnected and complex nature of
the fluid and any solid components. Here we do not attempt to model
the individual contribution of each of the phases. Instead, we start
with separate fluid and solid phases with known physical proper-
ties, and use effective medium theory to explore how varying the
concentration and physical microstructure of the combination of the
phases affects the elastic stiffness and hence the wave velocity and
the anisotropy of the resulting effective media.

2 E F F E C T I V E M E D I U M T H E O R Y

The principal tool in our analysis here is that of effective medium
theory, to represent the overall behaviour of a body as a propagating
seismic wave ‘sees’ it, and thus to avoid having to specifically model
the details of small-scale microstructure for which we have very few
constraints. There have been quite a number of attempts to make
quantitative estimates of how composite material properties vary
with composition, which broadly fall into two groups. There are

those that take an essentially statistical approach and give upper and
lower limits on the values, such as Hashin–Shtrikman and Voigt–
Reuss bounds (Hashin & Shtrikman 1963; Reuss 1929), but these
are of little use for making quantitative estimates in practice as the
bounds are so far apart. The other general approach is to make a
simplifying assumption concerning some aspect of the geometry
or microstructure, such as a specific type of inclusion geometry,
which is what we do here. There are two principal existing theories
on ways to implement this to encompass the entire range of phase
concentrations, both of which start from the analytic solution for the
elastic deformation arising from the addition of a single inclusion
in an infinite medium (Eshelby 1957).

The first theory is the self-consistent approximation (SCA). This
method, pioneered by Budiansky (1965), Hill (1965) and Wu (1966),
uses the solution for a single inclusion and approximates the inter-
action of many inclusions by replacing the background medium
with that of the yet-to-be-determined effective medium. For any
proportion of two different phases it gives explicit expressions for
the resulting elastic moduli, which are coupled and must be solved
by simultaneous iteration (see the Appendix). This method has the
advantage of being simple to compute, but one drawback lies in the
interpretation of the microstructure. That is for two phases, e.g. a
fluid phase added to a solid background matrix, the fluid inclusions
are isolated below 40 per cent fluid content, and the solid and fluid
phases can only be considered to be mutually fully interconnected
between 40–60 per cent. For our application to magma bodies we
would expect such interconnection at much lower melt fractions.

The second is differential effective medium (DEM) theory. This
models a two-phase composite by incrementally adding inclusions
of one phase to a background matrix of the other and then recom-
puting the new effective background material at each increment
(Boucher 1976; McLaughlin 1977; Cleary et al. 1980; Norris 1985,
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see Appendix). The incremental approach allows the calculations at
any composition irrespective of starting concentrations of original
phases. This method is also implemented numerically and addresses
the drawback of the SCA in that either phase can be fully intercon-
nected at any concentration. However, the very aspect of the method
that permits this brings with it the disadvantage that the starting mi-
crostructure essentially pre-determines the final matrix-inclusion
structure.

A far more detailed account of these two methods and their dif-
ferences is given in Mainprice (1997) and Jakobsen et al. (2000),
the latter also containing a derivation of the explicit expressions for
their implementation. We attempt to take advantages of both of these
methods and minimize their shortcomings by using a combined
effective medium method (Sheng 1990; Hornby 1994; Jakobsen
et al. 2000), a combination of the SCA and DEM theory. Specifi-
cally, we use the formulation originally written by Hornby (1994)
for examining shales, and subsequently developed by Jakobsen
et al. (2000) for gas hydrates. Used on its own, the DEM theory
can be used to calculate the stiffness matrix for a composite whose
microstructure comprises a background ‘host’ phase containing in-
clusions of the second (fluid or solid) at any composition. At first, the
SCA can be used to calculate the stiffness matrix for a bi-connected
two-phase material at a given concentration of fluid (in the 40–
60 per cent range) and then the DEM procedure can be used to in-
crementally calculate the desired final composition that may be at
any concentration.

The inclusions are introduced in the form of oblate spheroids
with semi-axes a and c (for Cartesian coordinates x1, x2 and x3,
x2

1/a2 + x2
2/a2 + x2

3/c2 = 1; x1, x2 ≤ a, x3 ≤ c, Fig. 1). The exis-
tence of an analytic solution for a spheroidal inclusion (Eshelby
1957) and the fact that the shape of the spheroid can be defined by
a single parameter, the ratio of its semi-axes a/c, make this choice
of geometry advantageous. The inclusions can be introduced in an
aligned manner (where they all lie parallel, with their c-axis parallel
to the vertical, 3 direction), in which case the material is transversely
anisotropic with the 1 and 2 directions being equivalent (Fig. 1). Al-
ternatively, they can be introduced in a randomly oriented, averaged
fashion in which case the resulting material is isotropic. The moti-
vation behind examining the case of aligned inclusions is to gain an
insight into some of the affects that might arise from rocks with a
strong crystal preferred orientation (e.g. Boudier & Nicolas 1995)
and melt films that form in foliation or veins within the rock texture,
exhibiting a preferred orientation. A prevailing overall direction for

Figure 1. Schematic diagram illustrating the oblate spheroidal shape of the
inclusions considered here. Note that it has a circular cross-section in the
1–2 plane, and a is greater than or equal to c for the inclusions considered
here.

the background stress field can also result in an anisotropic material,
even if the inclusions are randomly aligned, through opening and clo-
sure of inclusions not aligned with the direction of principal stress.
The isotropic case is examined in order to gain some understanding
of composites that are predominantly melt-based and therefore have
no anisotropy, or where compositional- or temperature-driven con-
vection in the melt means that even if the melt tends to crystallize
with a preferred direction, the result is isotropic. It also provides a
good reference model for the anisotropic case.

In order to produce models of composites appropriate to the
magma bodies we are interested in investigating, we take the elastic
parameters for our starting molten and solid phases from the ob-
served velocity and density for melt and surrounding rock from the
magma chamber along part of the East Pacific Rise (Singh et al.
1998). The P- and S-wave velocities and density of the melt are 3.3
and 0 km s−1 and 2600 kg m−3, respectively, and for the surround-
ing rock are 6.0 and 3.2 km s−1 and 2700 kg m−3 respectively. The
choice of starting materials can be easily tailored to the specific rhe-
ology of the region being examined. We present here results for three
distinct microstructures; isolated solid crystal inclusions suspended
in melt, isolated melt inclusions in a solid background matrix, and
a fully bi-connected melt and solid composite, where both phases
are fully interconnected throughout. In addition, we demonstrate the
effect of a range of aspect ratios of the inclusions of either melt or
solid, and of introducing the inclusions in an aligned or randomly
oriented fashion.

3 R E S U L T S

3.1 Microstructure

Fig. 2 illustrates the effect of the geometry of the microstructure of
a two-phase melt and solid matrix composite on the P- (Fig. 2A)
and S-wave (Fig. 2B) velocities for the entire range of composi-
tions. In order to highlight just the effect of the microstructure, both
the starting phases are isotropic and the inclusions are introduced
as spheres. The resulting composite is thus also isotropic, irrespec-
tive of the microstructure. The short-dashed lines show the P- and
S-wave velocities calculated using DEM theory resulting from start-
ing with 100 per cent melt and progressively replacing it with iso-
lated inclusions of solid, crystalline material. In this case the melt
is connected but the solid inclusions are isolated. Such a condi-
tion may arise when magma is cooled very slowly in a convective
environment. The most dramatic feature of these curves is that both
the P- and S-wave velocities remain much lower than for other mi-
crostructures considered until the melt fraction is reduced to almost
zero, whereupon the velocity increases rapidly to match that of the
pure solid. The bold, solid lines show the velocities resulting from
the opposite process of starting with a solid background matrix and
adding melt inclusions. In this case the solid matrix is connected and
the melt inclusions are not connected. Such a situation may arise at
the initial phase of melting of rocks. Here the velocities decrease
monotonically from that of the solid matrix to that of the melt, and
for any given melt fraction this microstructure results in the highest
velocity. The third set of lines shows the effect of using the SCA
to calculate the stiffnesses (and hence velocities) for composites
of 45, 50 and 55 per cent melt (medium-dashed, narrow-solid and
long-dashed lines, respectively) and then, using these as starting
points, using DEM theory to add or subtract material to explore
the behaviour for the full range of compositions from pure solid to
pure melt. In this case, both solid and melt phases are connected.
In a magma reservoir at ocean spreading centres, where a magma
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Composition and microstructure of magma bodies 17

Figure 2. Variation of (A) P- and (B) S-wave velocities with melt fraction
for spherical inclusions and different microstructures: isolated solid crystals
suspended in melt (short-dashed line), solid matrix with isolated inclusions of
melt (bold-solid line) and a fully bi-connected melt–solid composite starting
from initial compositions of 45, 50 and 55 per cent melt (medium-dashed,
narrow-solid and long-dashed lines, respectively).

chamber may be in a steady state, both phases might be connected at
a large range of melt fractions. Predictably, both the P- and S-wave
starting velocities decrease as the starting melt fraction increases,
i.e. the initial velocities are progressively lower for 45, 50 and 55 per
cent melt. The microstructure resulting from these starting points
then dictates that for any given melt fraction, the velocities for the
resulting composite are lower for the higher initial melt fractions.

3.2 Aspect ratio

Fig. 3 shows the effect of introducing inclusions of melt into a solid
background matrix with aspect ratios other than 1 (spheres) on the
P- (Fig. 3A) and S-wave (Fig. 3B) velocities. The inclusions are
introduced aligned with their c-axis parallel to the 3 direction, so
although the starting materials are isotropic, the resulting compo-
site is transversely isotropic with stiffnesses (and hence velocities)
varying out of the 1–2 plane. The P-wave velocity in the 1–2 plane
(‘horizontal’, bold-dashed lines) is greater than that in the 3 direc-
tion (‘vertical’, narrow-solid and narrow-dashed lines) for any given
melt fraction, and this discrepancy increases with increasing aspect
ratio, i.e. the difference between horizontal and vertical velocities
is greater for a/c = 100 than for a/c = 10, which is greater than for
a/c = 1 (where it is zero). Small departures from spherical inclu-
sions have the most marked effect and beyond a/c ∼ 10, very little
change in the velocity, in either direction, is induced by further in-

creasing the aspect ratio. The effect on the S-wave velocity is similar
in that, for a given melt fraction, the in-plane horizontal S-wave ve-
locity is greater than the vertical S-wave velocity. However, whereas
increasing the aspect ratio beyond ∼100 produces very little change
in the horizontal velocity, the vertical velocity continues to drop off
more dramatically at low melt fractions with increasing aspect ratio.
For a/c = 100, a melt fraction of only 20 per cent is sufficient to
reduce the vertical S-wave velocity to ∼15 per cent of the value for
the solid matrix.

3.3 Orientation of inclusions

Introducing spherical inclusions is not the only way to maintain
an isotropic composite. The other aspect of the geometry of the
microstructure we consider is that of an isotropic composite with
randomly oriented spheroidal inclusions. We compare this with one
where the inclusions are aligned along a particular direction, as
might result from a preferential direction of growth or prevailing
overall stress state. Fig. 4 illustrates how the P- and S-wave veloci-
ties compare for the isotropic composite (solid lines) with randomly
oriented inclusions against the individual horizontal (short-dashed
lines) and vertical (long-dashed lines) velocities in the transversely
isotropic material with aligned inclusions. In the case shown here
the aspect ratio of the inclusions is 10, and inclusions of melt are
added to a solid background matrix. Calculations of the effect of
solid crystals in melt or a bi-connected composite produce lower
velocities than plotted here for any given melt fraction, as shown
in Fig. 2. As expected, the P- and S-wave velocities through the
isotropic composite lie between the extremes of the horizontal and
vertical velocities resulting from the aligned inclusions. However,
it is not a simple arithmetic average, and it is particularly noticeable
around 50 per cent melt fraction that the P-wave velocity for the
isotropic material is closer to the P-wave velocity in the vertical
direction for the transversely isotopic case. Conversely, the S-wave
velocity in the isotropic material is closer to the S-wave velocity in
the horizontal direction than the vertical direction in the anisotropic
material.

3.4 Anisotropy

Calculation of the directional dependence of velocity in the com-
posites also allows us to examine the anisotropy exhibited. Here
we define the anisotropy as the difference between the vertical and
horizontal velocities, normalized by the velocity of the pure solid
matrix. Fig. 5 shows the P- and S-wave anisotropy for a range of as-
pect ratios and microstructures. The bold lines show the anisotropy
resulting from adding melt inclusions of aspect ratios 10 (solid) and
100 (dashed) to the solid background. The narrow lines show the
anisotropy resulting from starting with a fully bi-connected solid–
fluid composite and adding or subtracting melt inclusions of aspect
ratios 10 and 100. The anisotropy from starting from a pure melt
and adding crystal inclusions is not plotted as it is zero for all but
the tiniest melt fractions as the velocity in both the horizontal and
vertical directions remains almost that of a pure melt (Fig. 2). The
anisotropy is zero at both 0 and 100 per cent melt as the individual
solid and melt phases are isotropic.

When starting from the solid background, the magnitude of the
P-wave anisotropy is greatest at ∼30–35 per cent of the melt frac-
tion, whereas when starting with the bi-connected composite at
50 per cent melt the P-wave anisotropy is most pronounced around
20 per cent (Fig. 5A) of melt. For low melt fractions there appears to
be little difference in the P-wave anisotropy induced either by the
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18 M. A. J. Taylor and S. C. Singh

Figure 3. Variation of (A) P- and (B) S-wave velocities with melt fraction for inclusions of aspect ratios a/c = 1 (spheres), 10 and 100 (thin discs) aligned
with their c-axis in the 3 direction. The microstructure is that of melt added to a background solid matrix. Numbers along curves indicate aspect ratios.
For anisotropic materials (a/c = 10 and 100), ‘horizontal’ (bold-dashed lines) and ‘vertical’ (narrow-solid and narrow-dashed lines) velocities are plotted.
The sense of P- and S-wave directions and polarization, and the alignment of inclusions are indicated by the schematic diagram in the bottom left-hand
corner.

Figure 4. P- and S-wave velocity variations with melt fraction for inclu-
sions of aspect ratio a/c = 10 both aligned with their c-axis in the 3 direction
(anisotropic, vertical and horizontal velocities plotted) and randomly ori-
ented (isotropic). The microstructure is that of a melt added to a background
solid matrix.

Figure 5. Variation of (A) P-wave anisotropy ([VPvert − VPhoriz ]/VP0 )
and (B) S-wave anisotropy with melt fraction for different aspect ratios
(a/c = 10, solid lines, and 100, dashed lines), and for isolated melt with
different microstructures inclusions in a solid matrix (bold lines) and a fully
bi-connected melt–solid composite (narrow lines).
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Composition and microstructure of magma bodies 19

geometry of the microstructure or the aspect ratio. However, above
about 15 per cent melt fraction, the composite formed by adding melt
inclusions to the solid background results in significantly greater
P-wave anisotropy than the bi-connected material.

For S-wave anisotropy, the aspect ratio of the inclusions has a
much more marked effect than for P-wave anisotropy for the equiv-
alent melt fraction and microstructure. When starting from a solid
background, the S-wave anisotropy is greatest at ∼30 and 10 per
cent of melt fractions and for a bi-connected composite at ∼10 and
2 per cent, for a/c = 10 and 100, respectively (Fig. 5B). In further
contrast to the trends in variation of P-wave anisotropy, the S-wave
anisotropy is greater for higher aspect ratios for almost all melt
fractions, irrespective of the microstructure.

4 D I S C U S S I O N A N D C O N C L U S I O N S

4.1 Microstructure

The assumed underlying connectivity of the microstructure has a
fundamental effect on the resulting velocities (Fig. 2). The physical
interpretation of the change in microstructure resulting from the
DEM calculations is that the original connectivity and geometry is
maintained even though the proportions of the constituent phases
may change. This is illustrated most dramatically by the very low
P- and S-wave velocities for the composites starting from pure
melt (short-dashed lines, Fig. 2). As more and more solid crystal
inclusions are added, although they form a greater volume fraction
of the composite they remain isolated in the surrounding melt and so
contribute almost nothing to the shear strength and very little to the
bulk modulus, hence the near zero S-wave velocity and the very low
P-wave velocity. In direct contrast, the opposite process of starting
with a solid background and introducing inclusions of melt (bold-
solid lines, Fig. 2) maintains a rigid and connected matrix within
which the melt is isolated, so it retains some shear strength (and
hence finite S-wave velocity) right up until it becomes pure melt.
Similarly, the bulk modulus (and hence P-wave velocity) is much
higher than for the alternative considered microstructures. Using
the SCA to give a bi-connected starting composite thus forms the
intermediate case where the solid phase forms a rigid structure to
support both shear and compressional stresses at all melt fractions
and the corresponding P- and S-wave velocities are higher than for
the melt starting case. However, the melt also forms interconnected
pathways between the matrix and so weakens the structure compared
with that of a matrix with isolated inclusions. The three starting
compositions for the bi-connected structures shown here of 45, 50
and 55 per cent melt (medium-dashed, narrow-solid and long-dashed
lines) have progressively less interconnected matrix and more fluid,
which is seen in the trend of lower starting P- and S-wave velocities
with increasing melt fraction for these cases.

Another diagnostic of the effect of the microstructure is observed
in the second derivative of the S-wave velocity with respect to melt
fraction (Fig. 2B), i.e. the change of the slope of the velocity curve
with melt. For both the pure melt and pure matrix starting points, the
rate of change is almost zero with the gradient remaining roughly
constant and only increasing and decreasing rapidly at very low and
high melt fractions, respectively, as the other added phase finally
dominates. This is due, again, to the fact that the DEM calcula-
tions inherently preserve the original microstructure and so it is the
background phase, be it melt or solid, that dominates the physical
properties of the composite even when there is a greater volume
fraction of the second phase. However, when the starting composite
comprises bi-connected melt and solid, adding or removing either

melt or solid immediately affects the physical properties because
whichever is being added or removed is always part of the connected
microstructure of pathways through the material that transfer stress
through the structure.

It is noteworthy that because the density of the assumed solid
and melt phases are so similar (difference < 4 per cent) most of the
observed variation in velocity is derived purely from the change
in the corresponding components of the stiffness matrix. The fact
that there is a significant departure from the initial P- and S-wave
velocities after the addition/removal of only a few per cent of melt for
all the microstructures shown here again demonstrates the important
effect that compositional variation has on seismic observables.

4.2 Aspect ratio

When the inclusions introduced are oblate (a/c > 1) they naturally
introduce anisotropy into the composite, as shown for inclusions of
melt of aspect ratios 10 and 100 in Fig. 3. Intuitively, the spheroids
offer more resistance to compression in the 1 and 2 directions than
in the 3 direction (see schematic figure, bottom left Fig. 3A) and
hence, for a given melt fraction, the P-wave velocity is greater in
the horizontal direction than in the vertical one. The stiffness, and
hence velocity for spherical inclusions lies between these bounds.
Above aspect ratios of ∼10, the change in elastic properties induced
by increasing the aspect ratio is minimal. This is useful for mini-
mizing the range of melt fractions that are consistent with a given
velocity, but has the disadvantage of making it hard to tie down the
exact geometry of any inclusion-type microstructure. The number
of variables is reduced by the fact that there are only two distinct
velocities when considering propagation along the 3 direction or in
the 1–2 plane. The velocities of both the horizontally and vertically
polarized waves in the 3 direction and the shear wave travelling in
the 1–2 plane with a component in the 3 direction are identical.
The remaining distinct velocity is that of the shear wave travelling
and polarized in the 1–2 plane. The S-wave directional dependence
is much greater than that of the P waves, as the fluid inclusions
offer much less resistance to shear in the out-of-isotropic 1–3 or
2–3 planes (i.e. for vertically propagating waves of any polariza-
tion, see the schematic in Fig. 3B) than in the isotropic 1–2 plane
(i.e. for horizontally propagating waves polarized in the 1–2 plane).

Hence not only is the difference in velocity relative to spher-
ical inclusions much greater in the vertical direction than in the
horizontal one, but the effect of aspect ratio continues to be very
pronounced even for very high aspect ratios (a/c >100, equivalent
to long thin discs). This illustrates one example of where using more
than one observable can provide tighter constraints on the model.
For instance, if both P- and S-wave velocities have been obtained
in a region where one suspects that a melt exists in isolated pockets
that have a preferred orientation or alignment, the P-wave veloc-
ity, which is insensitive to the aspect ratio, can be used to tie down
the melt fraction from reading off the corresponding value from
Fig. 3(A). The plot for S-wave velocity (Fig. 3B), which is sensitive
to the aspect ratio but not the melt fraction can then be used to con-
strain the aspect ratio, which is consistent with the observed S-wave
velocity and the melt fraction implied from the P-wave velocity.

4.3 Orientation of inclusions

The way in which the aspect ratio of the inclusions affects the mi-
crostructure is shown in Fig. 4, where the resulting P- and S-wave
velocities are compared for aligned and randomly oriented inclu-
sions with a/c = 10. The curves for the individual horizontal and
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20 M. A. J. Taylor and S. C. Singh

vertical P- and S-wave velocities are the same as those for a/c = 10
in Figs 3(A) and (B), respectively. Although the randomly oriented
inclusions constitute an isotropic composite, the inclusions are, on
average, weaker or less stiff than spheres as is illustrated by a com-
parison with the velocities for spherical inclusions from Fig. 3. Thus,
even when modelling a region or composite that is isotropic, one
still has to consider details of the microstructure such as the as-
pect ratio as there are differences on the small scale that are ca-
pable of producing globally isotropic media with different seismic
velocities.

Although a certain amount of information regarding the
anisotropy introduced by considering a preferential direction of
alignment of melt inclusions can be gleaned from Figs 3 and 4, Fig. 5
illustrates more explicitly the variation of P- and S-wave anisotropy
with melt fraction for both a solid background matrix and a fully in-
terconnected fluid–solid composite, for aspect ratios of 10 and 100.
For P-wave anisotropy, at low melt fractions the microstructure of
both the solid background matrix and the bi-connected composite
is dominated by the connectivity of the solid phase and whether
the fluid exists as isolated inclusions or with some connectivity be-
tween them makes very little difference. However, above around
10 per cent melt, the solid background matrix exhibits a greater
magnitude of anisotropy than for the bi-connected composite. This
is because where the melt inclusions are isolated, there is a much
greater contrast in rigidity between the 1 or 2 and the 3 direction and
there is no space for the trapped fluid to go to release the induced
pressure gradient from the P wave. Where the inclusions form a
connected phase, melt can re-distribute itself within the composite
to alleviate some of the applied stress and so the contrast in stiff-
ness between the directions for the fluid-filled oblate spheroids is
reduced. As seen from Fig. 3(A), the effect of increasing the aspect
ratio from 10 to 100 on P-wave velocity through the solid matrix
with melt inclusions is fairly small. The same is seen to be true here
for the bi-connected composite, and the anisotropy is comparable
for aspect ratios of 10 and 100 at all melt fractions. However, the
S-wave anisotropy is dramatically affected by increasing the aspect
ratio (Figs 3A and 5B). The inability of fluid to support shear stress
results in the directional dependence of the S-wave velocity being
very sensitive to both the aspect ratio and the microstructure. This
provides another useful means of delineating between competing
parameters in models for a given velocity structure.

4.4 Application to magma bodies

The main purpose of this approach, and the plots presented here, is
to provide a diagnostic tool in making quantitative statements con-
cerning the composition and detailed structure of magma chambers
underlying volcanoes or along mid-ocean ridges. The starting point
is the result of a seismic survey, or other geophysical data, that can
be inverted for the velocity structure of the region. Then, by making
some simplifying assumptions regarding the properties of the con-
stituent phases that might be present, such as liquid magma, the P-
and S-wave velocities and any directional dependence data can be
used in conjunction with the plots to narrow down the likely struc-
ture and composition. This will aid a fuller understanding of the
dynamics of any evolution of the magma body, which is important
in assessing the likelihood of eruption. Mainprice (1997) notes that
only a few per cent of a second phase introduced in inclusions is
sufficient to overwrite any anisotropy of the starting phase. This is
important as it means that the results are not very sensitive to the
assumed individual starting materials, which adds confidence to the
robustness of this method.

As an example of how to proceed, consider the results of the in-
version from a hypothetical 3-D seismic survey that show a clear
low-velocity zone about 1–2 km below the surface of a volcano. If
the S-wave velocity is zero, or very close to it, then we can conclude
(from Fig. 2B) that the chamber is predominantly melt, although
some fraction of it may exist in a crystalline phase. From Fig. 2(A)
we can project the known P-wave velocity to obtain an estimate
of the melt fraction. Any error or uncertainty in the P-wave ve-
locity can also be mapped directly into an uncertainty in the melt
fraction simply from this plot, although unfortunately owing to the
shallow slope of the curve at high melt fractions, small errors in
velocity translate into relatively large errors in the composition. If
the S-wave velocity is non-zero then there are a greater range of
possibilities. Again, the S-wave velocity is a useful starting point as
it is much higher for melt inclusions in a background solid matrix
than for a bi-connected composite for any given melt fraction, and
so combined with the P-wave velocity should at least give a range
of possible melt fractions and microstructures that are consistent
with both. Then, by examining any P-wave anisotropy (Fig. 5A),
one can differentiate between strongly anisotropic microstructures
(e.g. aligned inclusions) and isotropic ones (e.g. spherical inclusions
or randomly aligned oblate spheroids). For a region that exhibits
anisotropy, Fig. 5(B) is particularly useful as it illustrates the strong
S-wave velocity dependence on the aspect ratio. For the case of
melt inclusions in a solid background matrix, we have extended the
effective medium theory method to calculate the attenuation ow-
ing to melt being driven through the composite in response to the
seismically induced pressure gradients (Singh et al. 2000). For this
case, the addition of measurements of attenuation would provide a
further constraint on the composition and microstructure.

The procedures and results presented here provide a relatively
straightforward way of translating velocity models of regions con-
taining magmatic bodies into quantitative maps of the composi-
tion and microstructure and fabric of the underlying rheology. This
should greatly improve our ability to interpret the state and evolution
of the magma chambers and, in particular, provide a way to further
quantify the risk of future eruption.
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A P P E N D I X

Self-consistent effective medium (SCA) theory

In this approach the elastic field for each inclusion is determined
approximately using a single inclusion placed in a host having the
elastic properties of the effective medium. The approximation will
give estimates for isotropic composites which lie within the Hashin–
Shtrikman bounds at all concentrations. If νn is the fractional volume
of the nth constituent such that

∑N
n=1 νn = 1, then the stiffness tensor

can be written as

cSCA =
N∑

n=1

νncn K n

{
N∑

p=1

νp K p

}−1

, (A1)

where K is a tensor and depends on the solution for cSCA. This
expression can be solved iteratively, by setting an initial value for
cSCA, computing K , and then re-evaluating cSCA. This tensor can be
computed analytically for a spheroidal inclusion in a host matrix,
resulting in

cSCA =
N∑

n=1

νncn[I + Gn(cn − cSCA)]−1

×
{

N∑
p=1

νp[I + Gp(cp − cSCA)]−1

}−1

, (A2)

where Gn is the Green’s tensor for the nth element.

Differential effective medium (DEM) theory

Suppose we know the elastic properties of the overall material at a
certain value of νn of the concentration of one of the constituents
and we wish to predict the effective properties at higher concentra-
tions. The effective properties are computed at other values of νn

by successive operations of removing an infinitesimal subvolume of
the nth component. At each successive increment of component n,
the composite at the previous step is taken as the host material. It
is important to note that, in order to increase the concentration of
the nth component νn by �νn , a concentration �νn/(1 − νn) of the
composite material must be replaced. If the concentration of mate-
rial with stiffness cn is νn in a composite of effective property of
material s(νn) and �νn is added to the composite by replacing the
same amount, then the effective property of the final media can be
computed using

s(νn + �νn) = s(νn) − �νn

(1 − νn)

[
s(νn)cn − I

]
K n(νn + �νn),

(A3)

where K n is computed for the included material cn in the effective
material with elastic stiffness c(νn + �νn). By inserting the value
of the K tensor, we can obtain the DEM equation for anisotropic
composite

d

dνn

[
cDEM(νn)

] = 1

(1 − νn)

[
cn − cDEM(νn)

]
×{

I + G
[
cn − cDEM(νn)

]}−1
. (A4)

These expressions can be solved using numerical integration tech-
niques, such as the Runge–Kutta method. Note that the DEM for-
mulae are not symmetrical in the constituents. For a two-component
solid a different material is created if the roles of host and included
materials are interchanged. If the solid material is the host mate-
rial, then the DEM provides a composite material where the solid is
connected and the other material, which could be a fluid, is not con-
nected, and the reverse is true if fluid is the host and the solid is the
inclusion. If the composite of interest contains more than two con-
stituents (as is likely to be the case for most rocks), one can extend
the DEM to include such materials (see Jakobsen et al. 2000). The
essential difference between the SCA and DEM is that the result for
the DEM depends on the path taken, i.e. the order in which the con-
stituents are added to the composite. In other words, if a constituent
is not connected before invoking the DEM, then that constituent will
never become connected at any concentration of included material.
However, if the constituent is already connected before invoking the
DEM, then that constituent will remain connected with subsequent
changes in the concentration of that constituent. For two components
to be connected, it is important to start the DEM procedure with a
composite material where both constituents are connected, and this
is the approach used here. We use the SCA to obtain a biconnected
material, and then use the DEM.
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