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SUMMARY
A simple mechanical model and dimensional analysis are used to derive a scaling law for
the partitioning between slip rate on a strike-slip fault and distributed deformation in
the far-field. The depth of the fault, the distributions of stress, strain rate and slip rate
are solved for a given far-field force or displacement in a 2-D medium with a linear
temperature-dependent viscous rheology. At the shear zone axis, a mixed boundary
condition is used to account for the presence of both an active fault and a ductile
zone below. Over the vertical extent of the fault, the boundary condition is one of a
fixed shear stress distribution dictated by a friction law. In the ductile zone below, the
boundary condition is one of zero velocity. A deep fault or large vertical rheological
variations are required to localize deformation on the fault with small amounts of
regionally distributed deformation. In this model without thermal or strain softening,
strain localization occurs naturally beneath the fault. For large rheological variations,
the slip rate remains approximately constant over half the fault vertical extent and
progressively decreases to zero below. Thus, there is a thick transition zone between
block motion at the surface and distributed ductile deformation at depth. The near-
surface deformation field depends weakly on stress and strain in the lower ductile region
and the key controlling parameter is the vertical rheological variation over the depth of
the fault. A scaling law relates the far-field strain rate to the slip rate and depth of the
fault independently of frictional strength. For typical parameter values, the far-field
strain rate is found to be 10-15 s- or less, showing that strike-slip faults separate blocks
that can be considered rigid for all practical purposes. For the large vertical rheological
variations of relevance to geological examples, shear heating is mostly a result of friction
on the fault plane and is maximum at a small distance above the base of the fault.

Key words: fault models, shear heating, stress distribution, strike-slip.

,1 I „.,,NTRODUCTIO N far-field driving stresses and displacements. With few exceptions,
strike-slip shear zones have been studied using simplified repre-

In active geological regions, deformation occurs in both brittle sentations of the coupling between brittle and ductile layers. A
and ductile regimes. In many studies, it is assumed that litho- velocity discontinuity is usually imposed at the base of the fault,
sphere behaviour depends primarily on depth, such that the with the slip rate kept at a constant value over the fault plane
brittle-ductile transition is determined from regional estimates and dropping to zero just below it. This idealized representation
for the distributions of temperature and strain rate (Goetze & has been used in hazard assessment, such that stress changes
Evans 1979; Brace & Kohlstedt 1980). In the vicinity of a large following earthquakes are calculated in an elastic plate of con-
fault, however, this assumption may be misleading because of stant thickness overlying viscous material (e.g. King et al.
strain localization and shear heating. In active regions, this has 1988). It has also been used to discuss whether motions in the
made comparisons between model predictions and measured ductile lower crust drive, or are driven by, deformation in
displacement fields difficult. This is true for strike-slip shear the shallow faulted crust (e.g. Savage 1990; Thatcher & England
zones, which account for a large fraction of tectonic deformation 1998; Bourne et al. 1998; Savage et al. 1999). Such a simple
in many regions and are associated with devastating earth- representation may not be correct and one should determine
quakes. A thorough understanding of their deep structure and the vertical distribution of slip rate and the size of the transition
deformation characteristics is required to link their behaviour to zone where deformation has both slip and ductile components.
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The behaviour of a fault zone depends on several variables, 
including frictional strength, rheology of crustal rocks, thermal 
structure and far-field stresses. In practice, therefore, it is 
desirable to develop some understanding of the role of each 
variable and how each one affects the slip and ductile com- 
ponents of deformation in both the horizontal and vertical 
directions. Both types of deformation generate shear heating 
and it is important to specify their respective contributions when 
evaluating the implied thermal perturbations (e.g. Lachenbruch 
& Sass 1980, 1992; Scholz 1980; Turcotte et al. 1980; Ricard 
et al. 1983; Thatcher & England 1998; Leloup et al. 1999). For 
example, one might argue that frictional heat caused by slip 
on the fault surface may be evacuated locally through fluid 
circulation, as fault gouges may be permeable (Sleep & Blanpied 
1992; Scholz 2000; Townend & Zoback 2000). Shear heating 
is likely to reach a maximum near the base of the fault, where 
shear stresses are largest and where deformation is likely to 
have both slip and ductile components. 

In this paper, we develop a mechanical model of a shear zone 
in a ductile medium driven by far-field stresses or displace- 
ments. We determine the relationships between the depth of 
the fault, the vertical distribution of slip rate and the ductile 
deformation field, as functions of far-field boundary conditions, 
thermal structure and rheological parameters. For clarity, the 
study is restricted to steady-state conditions, but is intended to 
serve as the starting point for a fully time-dependent description 
of a shear zone. Our approach has several characteristics in 
common with recent studies. In Roy & Royden (2000), brittle 
faulting is represented by elastic dislocations in a linear visco- 
elastic medium with depth-dependent viscosity. The slip rate is 
kept at a uniform value over fault surfaces and the depth and 
spacing of faults are solved for. Chery et al. (2001) have studied 
the behaviour of a fault zone in a temperature-dependent linear 
ductile medium subject to a range of far-field conditions and 
rheological variations. They specify the width of the shear zone 
and do not study shear heating. In this paper, we consider a 
large parameter range and use dimensional analysis to shed 
light on the key control variables. This also allows extrapolations 
to other cases. We evaluate the various components of shear 
heating and demonstrate how they change as a function of the 
control variables. 

2 MODEL FORMULATION 

2.1 Deformation mechanisms in the continental crust 

Knowledge on the mechanical behaviour of the upper crust has 
improved considerably over the previous two decades thanks 
to material science studies and field observations (Sibson 1986; 
Kohlstedt et al. 1995) (Fig. 1). At shallow depths, heavily 
fractured and jointed rocks behave as unconsolidated granular 
material. Thus, deformation proceeds by frictional sliding on 
randomly oriented fractures, leading to a linear increase of 
deviatoric stress with depth known as Byerlee’s rule (Byerlee 
1978; Brace & Kohlstedt 1980). With increasing depth, the 
frictional strength increases and the macroscopic behaviour 
depends on whether rocks are intact or pervasively faulted. 
Stresses become sufficiently large for the activation of mech- 
anisms driving regionally distributed deformation. Depending 
on temperature, stress and the presence or absence of fluids, 
such mechanisms may include non-localized cataclastic ductile 
flow, semi-brittle flow involving both plastic and brittle processes, 

Figure 1. Schematic illustration of the mechanical behaviour of the 
continental lithosphere. A thin uppermost layer of about 3 km thick- 
ness is made of heavily jointed rocks and behaves as unconsolidated 
granular material (Scholz 1998). Below this layer, a major fault extends 
over thickness u’ and material deforms in a ductile regime. Brittle and 
ductile deformation mechanisms depend on the local values of stress 
and strain rate and cannot be imposed upriori. On the right is shown a 
schematic representation of the vertical stress profile. In the thin 
unconsolidated layer, stresses increase linearly with depth according to 
Byerlee’s rule. In the lower crust, plastic deformation is such that 
stresses decrease with increasing depth. In the intermediate region, 
deformation gets localized in the vicinity of the fault, implying lateral 
variations of stress and strain rate. 

power-law breakdown creep or grain boundary diffusion creep 
(Kohlstedt et al. 1995). With such mechanisms, strain rates in 
geological conditions are necessarily small, but the question of 
exactly how small they can be motivates the present analysis. 
At sufficiently large depths, temperatures are large enough for 
fully plastic flow processes to dominate. Specifying constitutive 
equations for the various regimes represents a formidable 
challenge for the heterogeneous continental crust made of water- 
bearing rocks with large variations of mineralogy and texture 
(Kohlstedt et al. 1995). 

In the simplest model, the transition from brittle to plastic 
flow is such that the frictional strength exceeds the plastic flow 
stress. This will be referred to as the brittleductile transition 
in order to follow common usage, although it is a rather gross 
approximation. The depth of this transition decreases with 
decreasing strain rate, and may vary between depths of 6 and 
25 km depending on rock type (Kohlstedt et al. 1995). Most 
calculations are made with the strain rate set at lo- l5 s-l, on 
the grounds that smaller values are not geologically significant, 
i.e. lead to displacements that are not relevant for tectonic 
studies. In reality, this assumption glosses over one of the key 
goals of tectonic studies, which is to assess whether continental 
deformation is achieved through faults separating rigid blocks 
or involves a significant component of regional strain. In a 
region where a major fault extends through a large part of the 
‘brittle’ crust, we are interested in how strain is partitioned 
between sliding on the fault and regionally distributed deform- 
ation. To solve this problem, one must determine slip rates on 
the fault and strain rates away from the fault in a self-consistent 
manner. This issue may be discussed using the San Andreas 
fault system as an example. There, recent high-resolution images 
of seismicity emphasize that earthquakes are concentrated in a 
few very thin shear zones down to depths that typically exceed 
10 km (Schaff et al. 2001). Furthermore, at distances greater 
than about 50 km from the San Andreas fault, strain rates fall 
below detection levels and, in fact, below the reference value of 
lo- I5 s- ’ (Thatcher 1990). These observations suggest that, at 
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depth and away from a major fault, stresses do not reach the 
local frictional strength and raise the important question of 
how such values of strain rate are achieved. 

Byerlee’s rule specifies the stress profile for brittle crust, but 
provides no constitutive equation between stress and strain 
rate. Thus, for a given far-field driving force, displacements 
in such material cannot be predicted by a mechanical model. 
This explains why most studies of continental deformation rely 
on kinematic boundary conditions and on assumptions for 
the coupling between brittle and ductile layers (e.g. Thatcher & 
England 1998). One important issue is whether stresses are only 
depth-dependent and remain equal to the frictional strength 
along the horizontal. There is little doubt that this is true at 
very shallow depths in what may be called the ‘unconsolidated’ 
region. This is a region of ‘frictional stability’, such that earth- 
quakes cannot be generated, which extends over 3 to 4 km 
(Mori & Abercrombie 1997; Scholz 1998). In such weak material, 
there is not much resistance to slip. Thus, there is no meaningful 
limitation on strain rates, and one may assume that displace- 
ments follow passively those of the substrate. Below this shallow 
region, the frictional strength becomes large and the vertical 
extent over which it may be overcome depends on two factors. 
One is the magnitude of the driving tectonic force, and the 
other is how this force is partitioned between brittle and ductile 
regions. This difficulty led Thatcher & England (1998) to define 
two end-member possibilities. In one of them, the ductile layer 
is strongest and drives deformation in the passive upper crust. 
This extends the unconsolidated region to the whole seismo- 
genie upper crust. In this case, the top of the ductile layer 
behaves as a traction-free surface and deformation is driven by 
basal shear. In the other end-member, the brittle region is the 
strongest part of the crust and drives deformation in the ductile 
lower crust. A fault is separated by rigid blocks and a stepwise 
change of velocity deduced from field studies is introduced as a 
boundary condition at the top of the ductile layer. One problem 
with these models is that, given that rather large horizontal 
stress variations are predicted in the ductile medium, there is no 
reason to believe that the brittle-ductile transition lies at a fixed 
depth. 

2.2 Governing equations 

In the present model, the uppermost unconsolidated crustal 
layer of thickness h is not taken into account. We assume that 
this layer is ‘passive’, such that displacements follow those of 
the substrate. Below this layer, distributed deformation occurs 
away from one major fault (Fig. 1). A large fraction of the far- 
field tectonic displacement is taken up by sliding on the fault 
and strain rates are small away from the fault. For such low 
strain rate deformation, we use a single temperature-dependent 
flow law. There are large uncertainties on crustal rheology and 
frictional strength, and hence our aim is to establish scaling 
laws that allow compact information independent of specific, 
and probably unreliable, choices of constitutive equations and 
parameter values. 

We do not consider the short-term earthquake cycle and 
focus on the long-term behaviour, i.e. the secular slip rate on 
the fault owing to the tectonic loading of the bounding blocks. 
As a first step, the study is restricted to steady-state thermal 
conditions with a temperature field that depends on depth 
only. In 2-D, motion occurs only in the horizontal direction 

parallel to the vertical shear zone, such that the velocity vector 
v  = (ox, 0, 0) and there are no along-strike variations (along the 
x axis) (Fig. 2). Conservation of momentum in the x-direction 
is written as follows: 

where oyX and crZu are the components of the stress tensor. 
Following Yuen et al. (1978), Thatcher & England (1998) 

and Chery et al. (2001), we use a temperature-dependent linear 
isotropic viscous rheology for crustal and mantle rocks. One 
reason for this approximation is that, with a suitable choice 
of parameters, such a simplified rheology allows good agree- 
ment with vertical stress profiles derived from laboratory studies 
(Chery et al. 2001). The relationship between deviatoric stress 
and strain rate is therefore 

CTij = 2/kij, (2) 

where p is the temperature-dependent viscosity and iii the strain 
rate. The momentum equation is rewritten as follows: 

This study is intended as a starting point for time-dependent 
calculations where the temperature field varies in both the 
horizontal and vertical directions owing to shear heating. Thus, 
viscosity must be considered to be temperature-dependent: 

T E 
P =G exp RT , 

( > 

where T is the temperature, B is a material constant, E is the 
activation energy and R is the universal gas constant. In the 
following, the temperature varies only with depth (T= To + fiz), 
and hence so does viscosity. Later on, we shall define a depth- 
scale for vertical viscosity variations as a function of both E 

and /?. 
In all calculations but one, the whole domain is characterized 

by a single flow law. In reality, crustal and mantle rocks have 
different rheologies but we shall show that the fault behaviour 
is not sensitive to the rheology of deep material. We have made 
calculations for a range of activation energies, implying different 
rheological stratifications for the ductile medium. For dis- 
location creep in continental crustal rocks, constitutive relation- 
ships between strain rate and stress are power laws with values 
of the activation energy and exponent varying between about 
100 and 300 kJ molt ’ and between about 2 and 3, respectively 
(Carter & Tsenn 1987; Kirby & Kronenberg 1987; Kohlstedt 

Figure 2. Geometry and boundary conditions of the mechanical 
model. Boundary conditions are in bold letters, and the variables to be 
solved for are in italics. 
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et al. 1995). For geological strain rates, depending on temper- the vertical distribution of the slip rate on the fault and the
ature, the same stress levels are achieved by a linear rheology deformation rates elsewhere are solved for. Geological systems
with values of the activation energy between about 70 and involve large vertical rheological variations and we have investi-
110 kJ mol (Chery et al. 2001). gated cases where the viscosity varies by as much as 3 x 1013

in order to generate the large range of conditions needed to
establish scaling laws. Calculations were carried out over a non-

2.3 Boundary conditions uniform grid with 900 x 900 elements, such that the smallest

The behaviour of the shear zone at the axis is determined by the elements in the vicinity of the fault plane are 31 m wide. For
vertical shear stress profile, and the slip rate on the fault is not typical parameter values (Table 1), results were obtained in a
prescribed because this is the variable we seek to determine. If half-space with 95 km depth and 200 km wide broad enough
stresses at the axis overcome the frictional resistance, the fault that it does not influence the local behaviour of the shear zone.
is activated and some fraction of the total displacement is taken These physical dimensions may be thought of as being repre-

up by sliding. On the contrary, if stresses are lower than the sentative of the continental lithosphere in an active region, but,
frictional strength, there is no slip on the fault. The base of as will be made clear later, do not influence the results in any
the fault does not correspond to a fixed material discontinuity, important way.
but lies at a depth that is dictated by the local stress field. Below The accuracy of the solutions was ascertained in two ways.
the fault, deformation occurs in the ductile regime and there is Calculations on a finer mesh-size do not differ significantly. A
no slip. second test is provided by verifying that the total applied force

Given the large uncertainties on the true values of shear is conserved. With our boundary conditions (Fig. 2), eq. (1)
stress on faults (e.g. Scholz 2000: Zoback 2000), we consider imposes that
two different constitutive equations for the fault. We use a .L_
simple Amonton friction law with constant friction coefficient a Yd F. (8)
and an alternative model in which the threshold shear stress for 
sliding is constant, corresponding to zero friction coefficient. where L_ is the depth of the domain. F is the total shear force
Assuming that the principal contribution to the normal stress is and does not depend on ', the distance from the shear zone.
lithostatic pressure, the friction law states that the shear stress For our numerical results, condition (8) is satisfied at all distances
on the active fault increases linearly with total depth 2*: (0) to better than +2 per cent.

%..X = ac +f /pg* , (5)

where a, denotes cohesion andfis a constant friction coefficient. 3 FAULT DEPTH AND DEFORMATION
The top of the computational domain (at :=0) lies at depth
h below an unconsolidated layer. Thickness h needs not be Results are given first for a specific set of parameter values that
specified and only affects stress levels on the fault. In our are not meant to be fully realistic (Table 1). Variables will be
coordinate system, the frictional law is rewritten as shown in dimensionless form and the scaling analysis will allow

a general understanding independent of the specific values
a., = ao +.fpg. (6) chosen. At the top of the model, the viscosity is fixed arbitrarily

where the 'effective' cohesion coefficient (T includes the at a value po(= 1026 Pa s. close to the values given by Thatcher

contribution of friction associated with the weight of the & England (1998). Other parameters are the friction coeffi-
overburden: cient f=0.6 (Byerlee 1978), density p=3 x 103 kg m -3 and

'effective' cohesion u0 =90 MPa, which corresponds to the
co = ac +fpgh. (7) frictional strength at a depth of 5 km. We also take a fixed

geotherm with gradient =. = 0.01 K m ' and To= 323 K. Stresses
In summary, for the mechanical model, the shear zone

are normalized using the maximum stress on the fault:
axis at the left-hand edge of the domain is defined by a mixed are normalized using the maximum stress on the fault:
boundary condition, a shear stress profile dictated by the friction 6d = ao +fpgd. (9)
law over the fault and a fixed velocity (t,=0) below. Far from
the fault plane, the medium has a block-like behaviour with no Slip and displacement rates are normalized using the far-field
vertical gradients of strain rate and displacement. Strike-slip velocity at the ght-hand boundary:
motion arises from a constant driving force that, in the steady Ur = t\(L, ) . (10)
state, corresponds to both a fixed displacement rate and a fixed
stress distribution. At the top of the domain, unconsolidated
material offers no resistance to slip, which corresponds to
stress-free boundary conditions. The base of the computational
domain at high temperatures is also taken to be traction free.
Fig. 2 illustrates schematically the mechanical model and its Viscosity at the upper boundary 1to 1026 Pa s
boundary conditions. Average density p 3 x 103 kg m 3

Cohesion U0 90 MPa
Friction coefficient f 0.6

2.4 Method and aims Geothermal gradient f/ 0.01 K m-
Upper boundary temperature To 323 KIn order to account for large variations of physical properties Upper boundary temperature 323 K
Width of computational domain L,. 200 km

and small-scale stress gradients, we have used a finite-element Thickness of computational domain 95 km
method. For given far-field conditions, the depth d of the fault, _____Tcsfmaldi_95
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Slip rate and ductile deformation in shear zones 183

With the linear rheology, these normalization procedures lead 0
to dimensionless variables that are independent of the viscosity
scale 0o.

In each calculation, the far-field driving force F is imposed. -
In the steady state, this is equivalent to specifying the far-field 
displacement at some value that depends on the rheology and
thermal structure. Five different cases with different para- /
meter values will be described in detail (Table 2). We shall also 4 40
present two sets of calculations in which a single parameter is 
changed. In the first set, the driving force F varies, implying 
different fault depths d. In the second set, we investigate how 60 
changes of rheological stratification affect the fault behaviour
and stresses. Changes of rheological structure are generated
by changes of activation energy, but each case is identified by
the total viscosity variation in the domain, /IO/Ub, where [b is the 80 
basal viscosity at z=L, L.

10' 11 10 -9 10 '7 10 '5 10-3 10-

Normalized viscosity gJ/Ro
3.1 The distributions of velocity, slip rate and shear3.1 The distributions of velocity, slip rate and shear Figure 3. Vertical distribution of viscosity normalized to the largest
stress viscosity at the top of the model, po, for models with fixed rheological

In model 1 (Table 2), we impose a relatively small far-field stratification, including models 1 and 2 (Table 2).
force F and take an activation energy of 95 kJ mol - , implying
a vertical viscosity variation of ca. 11 orders of magnitude activated, and this modifies the velocity pattern markedly
(Fig. 3). In this case, a shallow fault with d=5 km deep is (Fig. 8). Near the surface, the fault now accounts for most of
activated. Such a shallow fault barely modifies the velocity field the motion: at the upper boundary, the slip rate is 92 per cent
in the lithosphere (Fig. 4). of the far-field velocity. Thus, the upper part of the domain

The far-field velocity at the right-hand edge of the domain, at
y=L., is denoted by U1. At the top of the domain, sliding on
the fault accounts for only 15 per cent of U1. The deformation 0 fault plan

is distributed quite evenly over the whole width of the domain 0
and strain rates are almost uniform along the vertical. On the \ 
fault surface, the slip rate remains approximately constant over \ \ 
a small vertical distance and decreases progressively towards 4 40 
zero at z = 5 km (Fig. 5). There is no well-defined surface over 1 \5
which the slip rate is uniform, and there is instead a large 60
adjustment zone where the deformation proceeds by both slip \ 
and ductile flow. 

Shear stress follows the friction law down to the calculated 
fault depth d, by definition, and decreases sharply below in 9 2 40 6 s8 10 120 140 160 8o 20o
the region where all deformation occurs in the ductile regime Distance from the fault plane (km)
(Fig. 6). The stress field changes dramatically as one moves Figure 4. Velocity field for model 1 (Table 2). Velocity values have
away from the shear zone (Fig. 7). been normalized by the far-field velocity at the right-hand side of

Model 2 has the same rheological structure as model 1 and the domain, Uf=v,(L., :). Contours are shown for 0.1 increments. A
a larger driving force, which leads to a larger far-field velocity shallow fault 5 km deep is activated, which only affects the ductile
U2 (U2=32U 1). Consequently, a deeper fault, d=12 km, is deformation pattern in a small region.

Table 2. Parameter values for five cases.

Model Cohesion Friction Activation Total vertical Driving Fault Normalized
a, (MPa) coefficient energy viscosity variation force depth slip rate

f E (kJ mol - ) tO/O#b F(N m- ') d (km) USlUf

1 90 0.6 95 7.33 x 10'° 9.0 x 10" 5 0.15
2 90 0.6 95 7.33 x 1010 2.8 x 1012 12 0.92
3 90 0.6 105 1.18 x 012 2.2 x 1012 10 0.87
4 t 90 0.6 105 2.90 x 107 2.2 x 1012 10 0.87
5 1 180 0 105 1.18 x 1012 2.2 x 1012 10 0.87

t: Model with truncated viscosity profile (see text and Fig. 12).
1: Model with constant shear stress on the fault (see text).
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Figure 5. Vertical profile of slip rate on the fault plane for model 1,
normalized to the far-field value at the right-hand side boundary, Uf.

15
0 10

Distance from the fault plane (km)
has a quasi-rigid behaviour with negligible distributed ductile
deformation. The deformation is confined to the vicinity of the Figure 7. Shear stress field a,. for model 1. Shear stress values have been

normalized by the maximum stress on the active fault, ad= ao+fpgd.
fault and strain rates are very small away from the fault. At
depth, deformation is also concentrated in the vicinity of the
fault axis, even in the ductile region below the fault.

For a given rheological stratification, a higher driving force driving force, the fault roots deeper and near the surface,
or far-field velocity activates a deeper fault. If we focus on the deformation is mainly achieved by slip on the fault. At depth,
fault itself, however, and compare the vertical profiles of the slip strain is localized in a relatively narrow shear zone beneath the
rate on the fault for models I and 2, we can see that the fault. This is achieved without elevated temperatures near

differences are small (Fig. 9). For the deeper fault, block motion the fault.
is achieved over a slightly thicker region at the top and, corres-
pondingly, the transitional region with both slip and ductile
components is smaller. The stress fields for models 1 and 2 look 2 Fixed rheological stratification and variable fault
similar when allowance is made for the different fault depths. depth
However, the deformation fields differ markedly, because of In a first set of calculations (Table 3), we have kept the same
the different slip rate magnitudes. At the regional scale, the rheological structure (Fig. 3) and have considered a range
shallower fault does not modify the velocity field and does not of values for the driving force F. Increasing the driving force
take up a significant fraction of the deformation. With a larger acts to increase shear stress values at the axis, and hence to

deepen the fault. As the fault depth increases, sliding on the
fault accounts for an increasing fraction of the total defor-
mation. A measure of this is provided by the ratio of the slip

0 i rate to the far-field velocity, Us/Uf (Fig. 10). For the deepest
fault (d= 15 km), this ratio reaches a value of 0.98, i.e. distri-
buted deformation only accounts for 2 per cent of the far-field
displacement.

C~.~*g^~~~~~~~~~~~~ /'Table 3. Parameter values for calculations in which the driving force F
o( u

n~~~~~~~~~~~ / ~~~~is the only variable parameter. The activation energy for ductile flow is
10 _ kept constant, corresponding to a vertical rheological variation, Ao//Ib,

of 7.3 x 1010. All other parameters (Table 1) are kept constant.

Driving force Fault depth Normalized slip rate
F(N m- ') d (km) Us/Uf

15 i i
0 0.2 0.4 0.6 0.8 1 1.2 9.0 x 1o" 5 0.15

Normalized stress 1.4 x 1012 7 0.46
2.0 x 1012 10 0.80

Figure 6. Vertical distribution of shear stress ,.,(0, _) at the shear 2.8 x 1012 12 0.92
zone axis for model 1. Stresses correspond to the friction law down to 3.7 x 1012 15 0.98
the base of the fault at depth d= 5 km.
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fault plane
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90

0 20 40 60 80 100 120 140 160 180 200
Distance from the fault plane (km)

Figure 8. Velocity field for model 2. Velocity values have been normalized by the far-field velocity Uf. Solid contours are shown at steps of 0.1. The
vertical rheological variation is the same as in model 1, but a higher driving force is applied. With respect to model 1 in Fig. 4, far-field strain rates are
much smaller, showing that rigid behaviour is achieved. Horizontal velocity gradients are large in a deep ductile shear zone below the fault, showing
that strain localization occurs at depth without local thermal softening.

3.3 Variable rheological stratification and fixed fault Table 4. Parameter values for calculations with fixed fault depth
depth d= 10 km and variable activation energy for ductile flow. All other

parameters (Table 1) are kept constant.
In this second set of calculations, we have kept the fault depth
at a constant value d= 10 km and have varied the activation Activation energy Vertical viscosity variation Normalized slip rate
energy for ductile flow, implying changes of vertical rheological E (kJ mol- i) (o/b s/ Uf

variation (Table 4). For these calculations, the driving force F 
75 2.84 x 108 0.38

is almost constant. As the vertical viscosity variation is increased, 82 1.9 x 0.59- ., .. 82 1.99 x 109 0.59
the upper part of the domain becomes increasingly stiffer than 90 1.83 x 10' 0 77
the lower part, implying that deformation is increasingly taken 95 7.30 x 101 0.80
up by sliding on the fault. Thus, the ratio of the slip rate to the 105 1.18 x 1012 0.87
far-field velocity, U/ Uf, increases (Fig. 11). 110 4.73 x 10 2 0.90

117 3.32 x 1013 0.93

3.4 Local behaviour in the vicinity of the fault

.^~~ ~~= /=~~ lf~ ~We have seen that the deformation characteristics depend
P 0.5 - ' - on the vertical rheological variation between the top and the

- - , bottom. However, we have also seen that the largest stresses are
limited to the vicinity of the fault. This suggests that the lower

N part of the domain, where viscosity is lowest, does not affect the
1'3 , upper part. To verify this, we have considered two models with

1 _ different viscosity structures in the lower part of the domain,

z numbered 3 and 4 (Table 2). Both have faults extending to the
same depth d= 10 km. Model 3 has a large vertical rheological
variation of 12 orders of magnitude. In model 4, the vertical

1.5 i i l l l viscosity profile of model 3 is truncated at 27 km depth, which
0 0.2 0.4 0.6 0.8 1 1.2 generates a more viscous substratum (Fig. 12).

Normalized velocity The velocity fields for models 3 and 4 are almost identical in

Figure 9. Vertical profiles of slip rate for model 1 (dashed line) and the upper part of the domain, both near the fault and at a large
model 2 (plain line). To facilitate the comparison, depth and slip rate horizontal distance from it (Figs 13 and 14), but are markedly
have been normalized by fault depth d and by the maximum slip rate at different from one another in the lower part of the domain. This
the top of the fault, Usl- 0o. respectively. shows that the low-viscosity region at the base of the domain
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0

0.8 20_ -

. 0.6 E
_ 40 

0 0.4

*SN, ~ ~ ~ ~ ~ a / Q60
0.2

Z 0I I I I I 80
4 6 8 10 12 14 16

Depth of the fault (km) 10-13 10 0- 9 10-7 10-5 10-3 10

Figure 10. Normalized slip rate Us/Uf as a function of fault depth d Normalized viscosity JL/U
for models in which the activation energy is kept constant. The total
vertical viscosity variation across the domain, Po/pb, is 7.3 x 1010 for all Figure 12. Viscosity profiles normalized to the largest viscosity value
cases. at the top of the model, P0. The plain profile corresponds to model 3

and the dashed line shows how this profile has been truncated for
has little influence on fault behaviour and on how deformation model 4.
becomes localized at shallow levels. The deep viscosity structure
only influences the width of the basal shear zone. One should
not conclude from this that the upper and lower regions are o faultplane
mechanically decoupled, because the regional stress fields are o1
similar. 20

We have also considered a different friction law in order 30
to evaluate its impact on the results. Model 5 has the same 40 08 0.95
characteristics as model 3 (Table 2), save for the stress distri- g 50
bution on the fault. This was set to a constant value equal to the 0 \\\ \ 

p 60
average shear stress in model 3 (equal to ao +4fpgc). We found 70 
that the velocity pattern is not modified in any significant 80
manner and that the slip rate on the fault takes the same value 90
in both cases (Table 2). The only noticeable differences are in 20 40 60 80 100 120 140 160 180 200
the local stress field near the fault (Figs 15 and 16). We note, Distance from the fault plane (km)

Figure 13. Velocity values normalized to the far-field velocity Uf for
model 3. Solid contours are shown at steps of 0.1 as for models 1 and 2.
The depth of the fault is fixed at d= 10 km and the vertical viscosity

1 l l profile is shown in Fig. 12. As in model 2, most of the deformation is

s 0.9 accommodated by sliding on the fault.

* 0.8
5 - A 0. _ fault plane

. 0.7 oA

- 0.6 20

' 0.5 - 40 0.95

crjIn.~~~~~~ /·f~~~~~ ^50 \\\0.8

0.4 -60
0 ______70 0Z 0.3 8 109 10 1;1 12 13 14 80

10 10 10 10 10 10 10 90
Vertical rheological variation JJ/. 0 20 40 60 80 100 120 140 160 180 200

uO b Distance from the fault plane (km)

Figure 11. Normalized slip rate Us/Uf as a function of the total Figure 14. Velocity values normalized by the far-field velocity Uf for
vertical viscosity variation, P, /#b, for models in which the depth of the model 4 with the truncated viscosity profile of Fig. 12. Only the deep
fault is kept at a constant value of d= 10 km. Calculations are made for viscosity distribution has been changed with respect to model 3. In
different values of the activation energy for ductile flow, corresponding the upper part of the domain, above 20 km, there are no differences
to different values of PO0/Pb. between the two sets of results (Fig. 13).
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Slip rate and ductile deformation in shear zones 187

0 -·- ------------ increasing the vertical rheological variation between the top
- and the bottom also leads to strain focusing. In fact, both series

0.8o--___________ -2 - of calculations achieve the same effect: increasing the depth

0.6 of the fault acts to increase the vertical rheological variation
0.4 -over the active fault, with the same consequence. Furthermore,

we have found that the rheological structure at great depth
5 \ / does not affect the fault behaviour. These two results suggest

~^ ~ ~ ~~~ \_, l ~~~ / ~that the main controlling variable is the vertical variation of
§ S t /\ rheology over the depth of the fault.

0.6 02

p /C / / 4.1 Scaling analysis

10 / Calculations require a large number of input parameters, such
as the friction coefficient, the activation energy for ductile flow

' id and the total far-field force. Different variables are sensitive
to different input parameters, and it is useful to make these
various relationships explicit. In the previous sections, the
importance of ductile deformation was assessed using the ratio

15 _________________________________________ of the slip rate to the far-field velocity. Us/Uf. The problem
b~0 10~~io with this procedure is that, for a given strain rate, however
Distance from the fault plane (km) small it may be, the far-field velocity increases with the width of

Figure 15. Shear stress field (,, for model 3. Shear stress values the computational domain. It is more appropriate to seek an
have been normalized by the maximum stress on the active fault, intrinsic strain rate scale, which allows a measure of ductile
Cd = Co +fpgd. deformation independent of domain size. The far-field strain

rate G provides such a scale and, as shown by eq. (13), is a
however, that these differences disappear at a small horizontal simple function of the driving force and the vertical viscosity
distance (approximately equal to the fault depth d) from the function.
fault. At the right-hand side of the domain, far from the fault

plane, velocity does not vary with depth. Thus, one has

4 PHYSICAL ANALYSIS ,- (Ly, z)
=0, (11)

We have seen that, for a given vertical rheological variation, a
increasing the far-field force implies a deeper fault and stronger and hence, using the momentum eq. (3):
strain localization near the fault. For a fixed fault depth,

8v,(L?, z)V,(L =) G, (12)

02___ 4- where G is the far-field strain rate which does not depend on
0o--.8s^ O� - - _i - - _ depth. The total applied shear force is

/^ ~.---0.4--- ----------------------------- {L- L

o.o 2- F = J ay(Ly, z) dz = G fp() dz. (13)

Be ̂ ~~~~ 5~ / ; It s ~It is convenient to define a depth-scale for viscosity variations:

= y6zd- --- . (14)

lot)1~~~~ „0 \~ / / Changing variables in the viscosity integral leads to

(| ) d=- 1=E 2 | EOexp(l/0) dO, (15)
Jo () d 2B aR 2 JRTo/E

where Tb=T(L:) is the temperature at the base of the
domain. The integrand decreases rapidly and the integral is

15 ______ . .________ for all practical purposes independent of the upper bound. This
0 10 is written as follows:

Distance from the fault plane (km)
Figure 16. Shear stress field a,., for model 5. The friction law is (:) d 1-- I Oexp(l/O) dO = I l II(o)
replaced by a fixed shear stress on the fault equal to the average shear o 2B aR2 JRTo/E 2B aR
stress in model 3. Shear stress values have been normalized by the same
value (d. (16)
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188 F. Rolandone and C. Jaupart

where hi is a dimensionless function of dimensionless variable To summarize, for a given friction coefficient and cohesion,
0o=E/RTo. From this, one has the driving force determines the depth of the active fault and

the shear-stress scale. Knowledge of the rheology then allows
f E= h (lo) = -h 2(00) (17) the calculation of scales for the strain rate and the velocity.
R 0ooexp(1/0o) -R20 0

where EI/R has the dimensions of depth and the function 4.2 A scaling law for the slip rate on the fault
h2 is also dimensionless. 5 provides a depth-scale for viscosity
variations and depends on the temperature gradient and Using dimensionless variables, the governing equations and
rheological parameters. Far from the fault plane, the total force boundary conditions depend on six dimensionless numbers:
is therefore given by F [d] fi[d] E L, L:

___ and I(28)

F= Gstb. (18) odc ' dc ' To ' RTo [d] an[ ()

We now show that this large set can be reduced to only one
On the left-hand side of the domain, one may write significant number. The first two numbers, Fl/odc [dlldc provideR dL- c= rL a measure of the importance of cohesion in the stress balance.

JF = Jo ,.Yz + ad Y.dz. (19) dFor large F or small cohesion, both numbers are large and the
results can be taken in the limit of these two numbers being

The second term is very small (see Fig. 6) and hence infinite with small differences. This is to say that cohesion plays

r.j d dfn-g re~nidt dl1 a subordinate role in the behaviour of a deep fault. The last
F \ J oy. dzw J (ao +f pgz) dz = aod + 2 fpgd2 . (20) two dimensionless numbers depend on the dimensions of the

° 2° computational domain, L,, and L_. Both take large values and

This shows how the total applied force determines the length-scale hence once again do not influence the results significantly. In
of our problem. We define a depth-scale [d] such that other words, fault zone behaviour is entirely determined by the

local stress-field and is not sensitive to the size of the deform-
F = o[d] ±+- fpg[d]2 . (21) ing medium. Another illustration of this will be given below.

2 We conclude that only two dimensionless numbers are truly

This scale is close to the true fault depth d, as expected from important, B[d] ITo and EIRTo. The first provides a measure of
eq. (20) and as shown below. One may introduce another the temperature difference between the top and bottom of the
depth-scale, dc, such that fault, and the second is a theological parameter. Together with

the viscosity law, these two numbers yield a third one, the
fpgdc = 0o. (22) viscosity variation over the fault zone, polyj([d]).

One further simplification derives from the observation
For a large driving force or small cohesion, i.e. large values of fault one behaviour is not affecd b d ation

F °uod, eq. (21) simplifies: that fault zone behaviour is not affected by deformation in
Flodrc~, eq. (21) simplifies: ^the lower part of the domain. We therefore argue that the key

F X2F dimensionless parameter is the local vertical viscosity variation
for large , [d] 1-- (23) over the fault, p0/ol([]), which is a function of the two important

Wodc PVfpg dimensionless numbers listed above. If this analysis is correct,

This shows how the driving force imposes the vertical extent of all dimensionless variables in the problem must be functions
the active fault for given friction parameters. of this dimensionless number alone. To verify this, in Fig. 17

Using the same line of reasoning, the stress scale is given by we show the dimensionless slip rate, U,/[U], as a function of
the friction law:

[a] = ao +f pg[d] = + 2fpgF. (24) 10-

We have scales for the depth, [d], as well as for the strain rate, G, 
and hence a velocity scale: 102

[U] = [d]G. (25) 

This velocity value corresponds to the cumulative effect of) J o
ductile deformation away from the fault, and provides a scale ' 
for plastic flow which may be compared with the maximum slip
rate on the fault, Us. The ratio between these two velocity
values provides a convenient way to assess the importance of o1' 102 103 104 105
slip in the near-surface deformation field. For a large force Local vertical rheological variation on the fault plane
or negligible cohesion, equations for the velocity and stress 0 /t ([dl)
scales simplify to

,F __Figure 17. Dimensionless slip velocity Us/[U] as a function of vertical
for large , [a 2pgF (26) viscosity variation over the fault depth, ,,,. iI- i Black dots: calcu-

~~~a-~~~~~od~re~~c' lations for fixed rheological stratification and variable fault depth.
Xl--/2F~~~~~ F ~White dots: calculations for variable rheological stratification and fixed

[U] 1 -- f (27) fault depth. The full straight line has a slope of 2/3. corresponding to a
Vfpg or power-law relationship between the two variables.
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Slip rate and ductile deformation in shear zones 189

/olil([d]). Indeed, taken together, all our results define a single This follows the vertical viscosity profile, as in classical
relationship with little scatter and a plot close to a power law calculations of lithosphere strength (Goetze & Evans 1979;
with a 2/3 exponent. The values for model 5 (Table 2), which Brace & Kohlstedt 1980). When interpreting this result, several
has a different constitutive friction law for the fault, also fall on factors must be borne in mind. One is that the top of the
this relationship. The key controlling parameter is therefore the domain (at z = 0) does not correspond to the Earth's surface,
local viscosity variation over the fault. but lies below an unconsolidated layer about 3 km thick where

The dimensionless slip rate Us/[U] provides a measure of stresses conform to Byerlee's rule (Scholz 1998; Fig. 1). A
strain localization on the fault and, conversely, can be used second factor is that absolute values of stress depend on the
to assess the importance of distributed strain away from the magnitude of driving force F, which depends on the frictional
fault. Thus, the scaling law of Fig. 17 simply states that, with strength of the fault (eq. 20). Finally, these results only hold for
increasing vertical viscosity variation, slip on the fault accounts strike-slip deformation and have no validity for other tectonic
for an increasing fraction of the total deformation. This law is regimes.
valid for a range of activation energies implying a range of The maximum shear stress is achieved at the upper boundary:
vertical variations of viscosity, as measured by the depth-scale F
6 in eq. (17). It is also unaffected by changes of friction law. ,,,(Ly, 0) = F (30)
Thus, we expect that it is not sensitive to the detailed form of (z) dz
the constitutive equations used in the model. Perhaps the most Jo

important point is that it does not involve the frictional strength, where the rheological depth-scale 3 is defined by eq. (17).
the magnitude of which remains highly controversial. In practice, The maximum shear stress increases with increasing vertical
one may measure directly most of the variables in the scaling rheological variation and increasing driving force F. In an
law (fault depth, slip rate, far-field strain rate). This feature will active region, one may determine the active fault depth d and
be used below. derive estimates for F as a function of the frictional strength. In

As expected, the dimensionless fault depth, dl[d], is always close Figs 7 and 15, shear stress values have been scaled to the maxi-
to 1, and tends to 1 as the vertical viscosity variation increases. mum stress on the fault, ad, and obviously exceeds the frictional
For example, for Ito/l([d])=5 x 104, one has dl[d]=0.94. The strength of the fault near the upper boundary. Thus, other
limit of very large vertical viscosity variation is of course the faults in the area can remain idle only if they are strong enough,
relevant one for geological applications. In this limit, the depth- i.e. with large enough friction coefficients, which corresponds
scale [d] provides a very good estimate of the depth of an active to the 'weak fault in a strong crust' scenario (Zoback 2000).
fault. This shows that, for given far-field forcing, a weak fault Faults with the same frictional properties would be set in motion
(with a low friction coefficient) extends to larger depths than a and should be added to the model. However, this is not likely to
strong fault (with high friction coefficient). This simple result change the ductile stress field significantly. As shown by Fig. 15,
had already been noted by several authors (e.g. Chery et al. this stress field varies markedly over a horizontal distance
2001), but the scaling analysis goes further and shows how a approximately equal to d and settles to the far-field distribution
change of frictional strength affects the slip rate on the fault at larger distances. Thus, for the near-fault stress field to be
through its effect on fault depth. modified significantly, active faults must be distant by less than

2d from one another, which is seldom achieved in practice.

5 GEOLOGICAL IMPLICATIONS The relatively large stresses predicted by the model are
achieved over a small vertical extent that is typically less than

The results obtained in this paper rely on several assumptions 2 km. For the Earth, adding the unconsolidated uppermost
and hence must be used with caution to assess any specific shear crustal layer, this corresponds to a depth interval of between
zone. Strain localization below the fault should be enhanced about 3 and 5 km. At such shallow depths, the confining pressure
with a non-linear strain-softening rheology. A single rheological may be small enough for the fracture strength to be larger than
equation was taken for the whole lithosphere. In reality, one the frictional strength (Kohlstedt et al. 1995). In this case, only
should account for at least crust and mantle layers, but this existing faults may be set in motion. If the fracture strength is
would not affect the fault zone behaviour because it is not exceeded, however, new faults must be generated implying that
sensitive to the rheology of deep layers. Finally, the temperature the mechanical model is not appropriate. Such a phenomenon
field was taken as being horizontally uniform. Rheological laws requires a time-dependent calculation in which fault spacing
for crustal rocks are strongly temperature dependent. Shear is determined in a self-consistent manner, as in Roy & Royden
heating acts to increase temperatures in the vicinity of the (2000).
fault, and hence the bulk effect is to increase the local vertical
theological variation and to localize the deformation further.
However, this effect depends critically on the poorly con-
strained frictional strength of faults. This uncertainty does not 5.2 Distributed deformation away from strike-slip faults
affect our scaling law for the slip rate (Fig. 17). We have derived a simple scaling law that states how the

various variables depend on one another (Fig. 17). This result

5.1 The far-field shear stress distribution holds for a range of activation energies and characteristic depth-
scale for rheological variations, and is expected to remain valid

The vertical shear stress profile far from the fault zone is for other rheological laws. This scaling law may be rewritten as

,,Yzz~~(Z)\ ~follows:
ayx(Ly, z) = Gp(z) = F . (29)

It z)dz G = C 3, (31)
o 2002 RAS, GJ 148, 179-192l
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190 F. Rolandone and C. Jaupart

where C is a constant of proportionality that depends on the 0
vertical rheological variation over the fault. This rheological
variation depends on the local geothermal gradient and on the
activation energy for ductile flow, and is likely to be larger than
10

4 in most cases, especially in active zones with elevated
geothermal gradients. Thus, from Fig. 17, the constant C is 5 
expected to be smaller than 10-2. In practice, both the fault
depth and the secular slip rate are known from seismic and a=
deformation studies. Furthermore, with high-precision geo- : 
detic measurements, far-field strain rates may be determined, 10
which allows an estimate of the constant C, which in turn yields
constraints on crustal rheology and temperatures.

The key advantage of the scaling law is that there is no
need to know the frictional properties of the fault, which only
affect the absolute stress values. Thus, eq. (31) can be used to 100 20 30 40 50 
estimate the far-field strain rate regardless of how strong the D0 100 200 300 400 500 60
fault really is. As an illustrative calculation, we use typical values me less tnal eatg
for the San Andreas system: Us= 3 cm yr -1 and [d]=l10 km. Figure 18. Dimensionless frictional shear heating for model 3, for
For C< 10 2, we find that G< 10-15 s-'. This upper bound which the base of the fault lies at 10 km depth.
is precisely the strain rate value that is commonly adopted
for estimates of lithosphere strength (Kohlstedt et al. 1995).for estimates of lithosphere strength (Kohlstedt e a 1995). Both are largest slightly above the base of the fault, which is
More importantly, this is also the threshold value below f onal shear heating (Fig. 18). Thus, temper-also true for frictional shear heating (Fig. 18). Thus, temper-
which distributed deformation can be considered negligible for 
tectonic studies. This demonstrates that the properties of theant consequences for
continental upper crust do indeed lead to rigid-body motion lociztiotheology and for strain localization.
away from strike-slip faults. From a more general perspective, hett t t g at 

The total amount of heat generated by viscous dissipation is
the condition for rigid behaviour is that faulting extends to
sufficiently large depths so that the local vertical rheological d f dd = (3
variation is large enough (Fig. 17). This may be achieved by J 
small friction coefficients or locally enhanced temperature This integral includes a large contribution caused by the large
gradients. stresses and strain rates in the vicinity of the fault, and a much

smaller contribution involving stresses at large horizontal
distances away from the fault. This second contribution is an

5.3 Shear heating increasing function of the width of the computational domain,

The mechanical work done locally near an active fault L,., and hence is not relevant to a local analysis. We there-
includes both frictional and viscous components. The frictional fore consider only the first contribution, which we estimate
component is given by

rf = aYx(0, z) Us(z), (32) 5 5

with 0<z<d. Dimensional analysis gives a frictional heat ( 
scale: yx 

[4f]= - (33)

The total amount of frictional heat is '

Wf = f dz. (34) 0

Ductile shear heating is given by two terms, corresponding to
shear along vertical planes (qy,) and horizontal planes (w£):

(Pd = (Pvx + (PrX = Pv + (PH, (35)

with yc , = *~ .- .;y and (£px = c..: .':. The viscous heat scale
is given by

[<7]2 '15- , 15 -5

[(Pd] = (36) Distance from the fault plane (km)

Figure 19. Dimensionless viscous shear heating for model 3 (Table 2),
The various components of shear heating for model 3 are shown for which the base of the fault lies at 10 km depth. y,,, and p.,,
in Figs 18 and 19. Ductile shear heating rates along horizontal are the contributions from shear on vertical and horizontal planes,
and vertical planes have the same order of magnitude (Fig. 19). respectively.
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Slip rate and ductile deformation in shear zones 191

Table 5. Mechanical work arising from friction on the fault (Wf) and
viscous dissipation arising from ductile deformation (Wd). Wv denotes 5.4 Vertical variations of the slip rate on a fault
dissipation caused by shear stresses on vertical planes parallel to the The vertical distribution of seismic slip on a fault, together with
fault. the length of the fault zone which is set in motion during an

po/ I([d]) W. Wd* WV/Wd* earthquake, determines the short-term stress field following
an earthquake. The present model predicts that distributed

102 0.64 0.76 deformation extends over a large fraction of the fault depth
5.6x 102 1.12 0.61 (Fig. 9). This result pertains to the secular slip rate on the
3.2 x 103 1.78 0.52 fault, and hence should be compared with the cumulative slip
7.9 x 103 2.06 0.52 t over a whole seismic cycle. Unfortunately, such data are not
2.3 x l04 2.33 0.51 available yet, but it does seem that, save for creeping fault

segments, coseismic displacements contribute the largest part*: dimensionless 
t: model 3 of the slip budget of a fault. Precise measurements of coseismic

and post-seismic displacements are available for two recent
earthquakes, at Landers, California, in 1992 (Hernandez et al.

over a fixed (and arbitrary) horizontal distance of 15 km. 1999; Pollitz et al. 2000) and Izmit, Turkey, in 1999 (Reilingerover a fixed (and arbitrary) horizontal distance of 15 km.
et al. 2000). Post-seismic displacements are caused by viscousChanging this distance by a few kilometres does not affect the et a 2000). Post-sesmc displacements are caused by viscous

Chquangini r i ay s icat The r e relaxation in the lower crust and only account for 10 per centquantitative result in any significant manner. The respective
* . re.- *~ . , ,,. .~~ *of the coseismic displacements (Pollitz et al. 2000; Reilingerimportance of frictional and ductile shear heating varies depend- t .ae. r . 'e 

et al. 2000). At Landers, the interseismic velocity field over 3.5ing on the vertical rheological variation over the fault. For fixed . , 
years is dwarfed by the post-seismic velocity field (Pollitz et al.far-field force F (Table 5), increasing the rheological variation years is dwarfed by the post-seismic velocity field (Pollitz et a

er te ft p e a t inrein l iz d rmio 2000). On both faults, therefore, coseismic slip values probablyover the fault plane acts to increasingly localize deformation '
in the v y of te f . C, frictiol hting allow reasonable estimates for the vertical profile of secular slipin the vicinity of the fault. Consequently, frictional heating , v , 

becomes increasingly important (Fig. 20), rate. These data demonstrate that, on average, slip is largest atbecomes increasingly important (Fig. 20).
The scales fr te f l ad d e cs of the surface and progressively decreases with depth (HernandezThe scales for the fnrictional and ductile components of

shea heating, Wf and Wd, ae i l ad e l to [ / et al. 1999; Reilinger et a. 2000), much in the manner illustratedshear heating, Wf and Wd, are identical and equal to [ojf][d] 2 /o. 0 .
Substituting for the stress and depth scales, in the limit of no
cohesion, one finds that this scale does not depend on f, the
friction coefficient. Thus, the total amount of heat generated 5.5 Discussion
does not depend onf, which reflects the global energy balance

The present model emphasizes that, in regions with major faults,
in the system. For a given force F, changing the friction p p g

n te s m. Fo a g n fe , .c n t stresses vary horizontally over small distances at relatively
coefficient acts to change shear stresses on the fault, but it also

acts to change tea hee o the s ft rt ri. shallow depths in the crust. Another point is that the secular
acts to change the fault depth, and hence the size of the region

over which heat is dissipated. For example, decreasing the slip rate on the fault progressively decreases to zero in aover which heat is dissipated. For example, decreasing theover whc ht is d a. r e , d aing te thick transition zone where deformation also involves ductile
friction coefficient acts to deepen the fault and to generate heat t 

temperate r. flow. Previous models rely on simplified representations of
over a larger volume, implying a smaller temperature rise.

With shear heating, the local thermal structure at the vicinity the coupling between brittle and ductile regions. For example,With shear heating, the local thermal structure at the vicinity brittle behaviour is usuall confined to an uer laer of con-
brittle behaviour is usually confined to an upper layer of con-of the fault differs from the regional structure and may vary 
stant thickness in which velocities and slip rates do not varywith time. It is premature to speculate how shear heating affects s t i w v a s r d 
with depth (e.g. Thatcher & England 1998; Leloup et al. 1999).

fault behaviour, however, it obviously acts to increase the local .. 
That this really happens in nature cannot be demonstratedrheological variation over the fault and hence is likely to Ta s ray hapen nature annot e emon

enhance slip over ductile deformation near the surface. by available data, and hence represents a strong assumptionenhance slip over ductile deformation near the surface.
on fault behaviour. This assumption affects the distributions
of stress and strain rate in the ductile region, as well as the
magnitude of shear heating. One consequence is that shear

2.5 ....,, .......| , .... heating is largest at the base of the fault, contrary to our results
(Figs 18 and 19). Another consequence is that the horizontal

2 - component of ductile shear heating, WH, is much smaller than
the vertical component, Wv (Leloup et al. 1999), whereas both

' 1.5 - have similar magnitudes in our model (Table 5).

l?~ i- /~ 6 CONCLUSION

0.5 The simple mechanical model of this study emphasizes that
it is not possible to impose independently the far-field driving

„~~~~~~~~~~~0 2____ _^~~~~~ ̂  ,,velocity or force, the depth of a fault and the vertical profile of
101 102 10' 104 105 slip rate on the fault. For a given friction law, the driving force

Local vertical rheological variation on the fault plane imposes the depth of the fault that becomes activated. For
II /II ([d]) weak vertical rheological variations and shallow faults, near-

surface deformation is distributed over a wide region and only
Figure 20. Ratio between frictional and viscous shear heating as a a small fraction is accommodated by sliding on the fault. For
function of vertical viscosity variation over the fault depth. large vertical rheological variations and deep faults, most of the
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deformation is accommodated by sliding on the fault. To localize Leloup, P.H., Ricard, Y., Battaglia, J. & Lacassin, R., 1999. Shear

deformation, large rheological variations or deeply rooted faults heating in continental strike-slip shear zones: model and field

are required. These two characteristics are equivalent and a single examples, Geophys. JInt., 136, 19-40.
parameter is sufficient to describe fault behaviour: the vertical Mori, J. & Abercrombie, R.E., 1997. Depth dependence of earthquake
rheological variation over the depth of the fault. A scaling law frequency-magnitude distributions in California: implications forrheological variation over the depth of the fault. A scaling law
independent of fault strength relates the slip rate and the rupture initiation, J geophys Res, 102, 15 081-15 090Pollitz, F.F., Peltzer, G. & Bfirgmann, R.. 2000. Mobility of continental
far-field strain rate. mantle: evidence from postseismic geodetic observations following

Owing to the complex stress distribution in the vicinity of the the 1992 Landers earthquake. J. geophys. Res., 105, 8035-8054.
fault zone, strain localization may occur at depth without local Reilinger, R.E., Ergintav, S., Btirgmann, R., McClusky, S., Lenk, O.,
strain or thermal softening. In geological conditions, such that Barka, A., Gurkan, O., Hearn, L., Feigl, K.L., Cakmak, R.,
vertical rheological variations are large, quasi-rigid behaviour Aktug, B., Ozener, H. & Tbksoz, M.N., 2000. Coseismic and

is predicted for the near-surface environment. However, at depth, postseismic fault slip for the 17 August 1999, M= 7.5, Izmit. Turkey

the slip rate varies significantly over a large fraction of the fault earthquake, Science, 289, 1519-1524.
vertical extent in a large adjustment zone with both slip and Ricard, Y., Froidevaux, C. & Hermance, J.F., 1983. Model heat flow
ductile deformation. and magnetotellurics for the San Andreas and oceanic transform

faults, Annales Geophysicae, 1, 47-52.
Roy, M. & Royden, L.H., 2000. Crustal rheology and faulting at strike-

AC K N OWLED GMEN T S slip plate boundaries, 2, Effects of lower crustal flow, J. geophys.
Res., 105, 5599-5613.
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criticisms of Jean Chery and Peter Molnar. space and lithosphere-asthenosphere Earth models, J. geophys. Res.,

95, 4873-4879.
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