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Two-phase flow through fractured porous media
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Two-phase flow in fractured porous media is investigated by means of a direct and complete numerical
solution of the generalized Darcy equations in a three-dimensional discrete fracture description. The numerical
model applies to arbitrary fracture network geometry, and to arbitrary distributions of permeabilities in the
porous matrix and in the fractures. It is used here in order to obtain the steady-state macroscopic relative
permeabilities of random fractured media. Results are presented as functions of the mean saturation and are
discussed in comparison with simple models.
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I. INTRODUCTION

The description of two-phase flows in fractured poro
media is a challenging problem, because of the multi
scales that are involved and of the nonlinearity of the g
erning equations. Yortsos@1# discusses the various regime
that may take place in different situations.

Immiscible binary flows in homogeneous porous me
are commonly described by generalized Darcy’s equatio
which are based on the concept of relative permeab
~Marle @2#; Bear and Bachmat@3#; Dullien @4#!. A two-
dimensional~2D! equivalent of this formulation can be ap
plied to two-phase flows through fractures~e.g., Wang and
Narasimhan@5#!. This description results from the upscalin
of the Stokes equations that govern the fluid motion at
pore level, and it applies on a local scale, large compare
the microscopic pore scale, but small compared to the m
roscopic scale on which the medium properties may vary
assumes that the microscopic distribution of the two fluid
controlled by the capillary forces. The capillary pressure a
the relative permeabilities are functions of the microstruct
of the porous material, and depend on the local saturatio

Just like the classical Darcy law, generalized Darc
equation was first introduced on an empirical basis~Muskat
and Meres@6#; Muskatet al. @7#!, and later received a justi
fication in various theoretical frameworks~see Bourgeat@8#!,
if the classical requirement of scale separation of the hom
enization theory and a few conditions relative to the flu
interfacial properties are satisfied.

Two-phase flows in heterogeneous or fractured por
media are described by the generalized Darcy laws for
two fluids, coupled by a global continuity equation, a
supplemented with constitutive equations for the relative p
meabilities and saturation-capillary pressure relationsh
which are generally nonlinear. The difficulty of the simul
tion stems from this nonlinearity, from the sharp contrast
the matrix and fracture properties and from the random ch
acter of the medium geometry. Thus, most of the earlier c
ceptual or numerical approaches replaced this complex
tem by simpler idealized models.

A common approach is based on the extension of
double porosity model introduced for single-phase flow
Barenblatt and Zheltov@9# and Barenblattet al. @10#, fol-
1063-651X/2003/68~2!/026703~24!/$20.00 68 0267
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lowed by Warren and Root@11#. The review article of Ka-
zemi and Gilman@12# describes many variants of such mo
els. Panfilov@13# combines the double porosity model with
double scale expansion in order to derive the effective m
roscopic phase permeabilities, and numerically solves
closure problems in a few simple two-dimensional situatio

Capillary models have also been used for direct simu
tion of drainage and imbibition~Fenwick and Blunt@14#;
Patzek@15#; Hughes and Blunt@16#! or to evaluate effective
macroscopic relative permeabilities~ @17#!.

The present work is based on a three-dimensional disc
description of the fracture network and of the embedd
matrix. Any fracture network geometry, any type of boun
ary condition, and any distribution of the fracture and mat
properties can be addressed, without simplifying approxim
tions. Therefore, this description can be used to investig
any type of flow or transport problems, as well as other p
cesses, which may be considered in future developme
such as mechanical deformation and hydromechanical c
pling, that simplified models like equivalent pipe networ
are at a loss to address. The main drawback of this di
approach used to be its computational requirements—
thanks to the progress of the computers it is not a real is
anymore. The numerical tools described here are able
handle several hundreds of fractures.

Other discrete fracture numerical models have been
scribed in the literature. Many are reviewed by Bogdan
et al. @18#. They generally do not incorporate a full 3D de
scription of both fracture and matrix flow. For instance, t
simulation package Rockflow~Kaiseret al. @19#! apparently
does not include a 3D mesh of the matrix rock. The pack
TOUGH2 ~see e.g., Wu and Pruess@20#! does not incorporate
fractures as discrete elements; fractures are covered by
ume elements, and a dual-porosity model is applied. T
packageFRACMAN distributed by Golder is apparently lim
ited to a few fractures and to single-phase flow. The num
cal model CompFlow~Ungeret al. @21#! and its extension by
Sloughet al. @22# impose that all the fracture planes are o
thogonal. In all these cases, a major limitation seems to
the lack of an appropriate 3D mesh generator. A poss
exception is the model of Bastianet al. @23#, coupled with
the mesh generator of Scho¨berl @24#, but we are not aware o
any systematic application of this software.
©2003 The American Physical Society03-1



ua
ca
n
th
n
th
ich

te
F
a
tio
is
ne

ib
es
fra

l-
s

em
d

e
le
c
ur
ut
ur

ec
at
he

V
pp
fro
re
,

ap
o

re
wo
th
ge
th
l b

o
ile
-

th
o

It
le

in

by
n
ee-
ase
ro-
an

the
o-
ua-
rm.
d to

’s
ri-

esh-
the
the

IV.
l-
an
the
ase

y,
rt-
d in

We
ble

an
nted
per-
for
re
fly

ari-

ec.

rit-
rac-
e in
ey

er-
tical
to

BOGDANOV et al. PHYSICAL REVIEW E 68, 026703 ~2003!
The physical model relies on generalized Darcy’s eq
tions, which are assumed to apply on the intermediate s
of our description, i.e., typically on a metric scale, with no
linear and possibly hysteretic constitutive models for
capillary function and the relative permeabilities. In additio
we use a local equilibrium hypothesis, including between
fractures and the immediately surrounding matrix, wh
means that the capillary pressure is continuous.

There are of course many complex, yet realistic and in
esting situations where such a description is inadequate.
instance, fractures generally have self-affine geometries
scaling properties, which make an homogenized descrip
very difficult, if not impossible, on a range of scales. Imm
cible fluid displacement with buoyancy effects in self-affi
fractures was investigated theoretically by Schmittbuhlet al.
@25# and experimentally by Auradouet al. @26#. It was shown
that long range correlations induce peculiar phase distr
tion patterns and control many aspects of the flow proc
Many other recent studies addressed two-phase flows in
tures or in porous media on a microscopic scale~e.g., Aker
et al. @27#; Flekko”y et al. @28#; Kundsen and Hansen@29#;
Méheustet al. @30#!. Emphasis is often put on flow channe
ization and fingering, and many effects that cannot be ea
homogenized are reported.

However, we do not address this first upscaling probl
in this paper. Instead, we assume that our intermediate
scription scale is large enough to encompass the rang
local self-affinity, so that the Darcy equations are applicab
Note, to support this, that even though the fracture surfa
are often self-affine over a very wide range, their two s
faces are generally mated on the large scale. Hence, a c
length exists beyond which a regular behavior of the fract
aperture and of its transport properties is recovered~see, e.g.,
Brown et al. @31#!.

From this local description, we may proceed with a s
ond upscaling up to the field scale, when the standard st
tical homogeneity requirements are fulfilled. Most of t
present calculations address this situation, in Secs. V and
There are also cases where a second upscaling is ina
cable, for at least three reasons. The first reason stems
the nonlinearity of the equations, which causes the appa
flow properties to become rate dependent. In the following
criterion is introduced, which is basically a large scale c
illary number, below which this effect is negligible. The tw
other reasons are related to structural features. They are
two classical inhibitors for any homogenization procedu
namely, large scale heterogeneity, such as a fracture net
with scaling properties, and some types of flows where
boundary conditions induce significant gradients over ran
that are comparable with the typical length scales of
structure. In such situations, the numerical model can stil
applied for direct simulations. Large scale heterogeneity
self-affinity are not addressed in this paper, but a deta
example of simulations with a doublet of injection
production wells is provided.

The purpose of this paper is to briefly present the me
odology and the first results obtained in the determination
the two-phase flow properties of fractured porous media.
a significant extension of our previous papers on sing
02670
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phase permeability of fracture networks~Koudinaet al. @32#!
and on incompressible or compressible single-phase flow
fractured porous media~Bogdanov et al. @18#; Bogdanov
et al. @33#!. A general description of the approach is given
Adler and Thovert@34#. As already stated, our simulatio
code for unsteady two-phase flow, based on a fully thr
dimensional discrete fracture model, can be applied to c
studies, in an arbitrary setting, or to determine the mac
scopic properties of a fractured medium to be used in
upscaled description.

The paper is organized as follows. Section II provides
mathematical framework for two-phase flow in fractured p
rous media, including the transport and the constitutive eq
tions that are eventually reformulated in dimensionless fo
Dimensionless parameters and criteria are also introduce
quantify various physical regimes. In particular, ana priori
criterion for the possibility of upscaling generalized Darcy
equation is devised, which is later confirmed by the nume
cal simulations.

Section III adresses the numerical aspects. The 3D m
ing of randomly fractured media is described first. Then,
spatial and temporal discretizations of the equations and
solution algorithm are presented.

Networks of parallel fractures are considered in Sec.
The illustrative simple example of an array of infinite para
lel fractures is treated first. Since an analytical solution c
be obtained in this case, it provides a direct check of
numerical codes. A generalization for steady-state two-ph
flow of the classical result of Snow@35# for single-phase
flow in networks of infinite plane fractures is given. Finall
the simulation of the flow in a closed regularly compa
mented reservoir is presented in details, and discusse
comparison with homogenized models.

Complex realistic situations are addressed in Sec. V.
consider here networks of random fractures in a permea
rock matrix. Detailed results are given first in Sec. V A for
illustrative case. Then, more systematic results are prese
in Sec. V B; the steady-state macroscale phase relative
meabilities are determined as functions of saturation,
typical situations with percolating or nonpercolating fractu
networks. The influence of the other parameters is brie
considered in Sec. V C.

The previous results are discussed in Sec. VI, in comp
son with two simple models.

Finally, a few concluding remarks are gathered in S
VII.

II. MATHEMATICAL FORMULATION

A. Transport equations

Recall that the governing equations for the flow are w
ten at some intermediate scale, small compared to the f
ture extension but large compared to the typical pore siz
the matrix and to the typical fracture aperture. Hence, th
result from the homogenization of the microscopic Navi
Stokes equations, and the standard requirements of statis
homogeneity for this preliminary upscaling are supposed
be fulfilled.
3-2
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TWO-PHASE FLOW THROUGH FRACTURED POROUS MEDIA PHYSICAL REVIEW E68, 026703 ~2003!
Let the porous rock matrix have a porosityem and a bulk
permeabilityKm @L2# that can vary with space. The flow i
the matrix is described by a generalized Darcy law for e
phase, with relative permeabilitiesKr ,i ( i 5w,n). Subscripts
w and n refer to the wetting and nonwetting fluids, respe
tively. The local seepage velocitiesv ī are given by

v ī52
Km Kr ,i

m i
“~Pi2r igz! ~ i 5w,n!, ~1a!

where m i is the viscosity,r i is the density, andPi is the
pressure for fluidi. For concision, denoteF i the potential
Pi2r igz and L i5Kr ,i /m i the phase mobilities. Then, Eq
~1a! reads

v ī52KmL i ¹F i ~ i 5w,n!. ~1b!

The fluids are considered as incompressible. Hence,
continuity equations and a global condition on the satu
tions Si can be written as

Sn1Sw51, ~2a!

em

]Si

]t
1“•v ī50 ~ i 5w,n!. ~2b!

Additional constitutive equations are required to relate
capillary pressurePc5Pn2Pw and the relative permeabili
ties Kr ,i to the fluid saturations. They are discussed in S
II B.

Note that in the limit of an inviscid and weightless no
wetting phase (mn50,rn50), Pn is a constant, which can b
taken equal to 0 without loss of generality, and Eqs.~1! and
~2! reduce to

em

]Sw

]t
1¹•@KmLw“~Pc1rwgz!#50. ~3!

This is the so-called Richard’s equation~Richards @36#!,
which is commonly used in hydrological studies to descr
unsaturated ground water flow.

Equations similar to Eqs.~1! and ~2! are applied for the
flow through the fractures. We assume that the hydra
properties of a fracture can be described by an effective c
ductivity s @L3#. The in-plane flow ratesjs,i per unit width
are related to the surface pressure gradients“sPi by the
two-dimensional generalized Darcy laws:

js,i52
ss r ,i

m i
“sF i ~ i 5w,n!, ~4a!

wheres r ,i are the relative permeabilities of the fractures.
l i denotes the fluid mobility in the fractures r ,i /m i , Eq.~4a!
reads

js,i52sl i“sF i ~ i 5w,n!. ~4b!

The conductivitys can be position and fracture depende
For a fracture that can be viewed locally as a plane chan
02670
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of apertureb, filled with a porous material~e.g., gouge or
breccia! with permeabilityK f , s is given by

s5bKf . ~5!

It is assumed that the fractures oppose a negligible resist
to flow normal to their plane. Hence, the pressuresPi , Pc ,
and the potentialsF i are continuous across the fractures.

Again, constitutive equations, discussed in the followi
subsection, are required to relate the capillary pressure
the relative permeabilitiess r ,i to the fluid saturations in the
fractures.

Conservation equations similar to Eq.~2! could be written
for the fractures, which should include exchange terms w
the surrounding matrix. In view of the finite volume schem
used for the numerical solution, it is more convenient
write a global conservation equation that accounts for b
matrix and fracture flow in a control volume. Suppose th
the volumeV, with boundary]V, contains part of one or
several fractures, denoted byF. By applying the divergence
theorem, conservation of phasei in V can be written as

E
V2F

em

]Si

]t
dv1E

VùF
e f

]Si

]t
dv1E

]V2F
n•v ī ds

1E
]VùF

n• js,idl50 ~ i 5w,n!, ~6!

wheren is the unit vector normal to]V. The volume of the
fractures inF is supposed to be negligible compared to t
pore volume in the matrix inV2F. Therefore, Eq.~6! can
be simplified into

E
V

em

]Si

]t
dv1E

]V
n•v ī ds1E

]VùF
n• js,idl50 ~ i 5w,n!.

~7!

Thus, the fractures introduce a singular contribution to
mass balance equation~2b!.

The flow equations can be rewritten in terms of one of
potentials and of the capillary pressure, thanks to condit
~2a!. In the rock matrix, the sum of Eqs.~2b! for the two
phases yields

“•@Km~Lw1Ln!“Fn#

5“•~KmLw“Pc!2
]

]z
~KmLw!Drgez , ~8a!

whereDr5rn2rw is the density contrast andez is the ver-
tical unit vector. This linear stationary equation relatesFn to
the instantaneous capillary pressure field. On the other h
Eq. ~2b! for the wetting phase can be written as

em

]Sw

]t
5“•@KmLw“~Fn2Pc1Drgz!#. ~8b!

It describes the temporal evolution ofSw ~and thus ofPc and
Sn), as a function of the fieldsFn andPc .
3-3
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The balance equations~7! over a control volume, which
possibly contains fractures, can be transformed in the s
way

E
]V

Km~Lw1Ln!n•“Fnds1E
]VùF

s~lw1ln!n•“Fndl

5E
]V

KmLw~n•“Pc2Drgn•ez!ds

1E
]VùF

slw~n•“Pc2Drgn•ez!dl, ~9a!

E
V

em

]Sw

]t
dv5E

]V
KmLwn•“~Fn2Pc1Drgz!ds

1E
]VùF

slwn•“~Fn2Pc1Drgz!dl.

~9b!

This formulation is the starting point for the numeric
scheme described in Sec. III.

B. Constitutive equations

Constitutive equations are required for the closure of
set of transport equations in the preceding subsection. N
that their choice is partly arbitrary, and different models m
be suited for various types of rock matrix or fractures. Tho
implemented here are among the most common, and
could easily be substituted with others to address spe
situations.

First, the stress balance at the fluid interface at the mic
scopic scale has to be taken into account. Due to interfa
tension, a pressure jumpPc takes place across the interfac
which is called the capillary pressure

Pc5Pn2Pw5Fn2Fw1Drgz. ~10!

Experimental evidence~see, e.g., Marle@2#; Adler and Bren-
ner @37#; Bear and Bachmat@3#; Reitsma and Kueper@38#!
shows thatPc is related to the saturationsSi . Numerous
phenomenological or semiempirical formulas exist to mo
this relationship~see Chenet al. @39# and the reference
above!. The most widely used is the van Genuchten equa
~van Genuchten@40#!, which can be written as

Sw5F11S Pc

P0
D nG (12n)/n

, ~11!

whereP0 is a characteristic pressure,n is an index. Typical
values ofn range from 1 to 4. Estimates ofP0 are given
below.

Note that experimental measurements of capillary pr
sures are generally performed with fluids at rest, when
interface freely settles at a location that minimizes its ar
Viscous forces may deform the interface if the fluids a
flowing, which may affect the capillary pressure-saturat
relationship. However, this effect should remain reasona
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small if the capillary numberC that compares the magn
tudes of the viscous and interfacial stresses is small eno
It is defined as

C5
mU

g
, ~12!

whereU is a typical fluid velocity andg is the interfacial
tension. This number is generally very small for undergrou
flows ~typically less than 1026).

Equation~11! was applied both in the rock matrix and i
the fractures. Recall that owing to the local equilibrium h
pothesis, the pressuresPn andPw and the capillary pressur
Pc are continuous; they are equal in a fracture and in
matrix rock along its surface. However, the parametersP0
andn are generally different in the two domains. In partic
lar, at the microscopic scale, the pressure jump across
interface between the two fluids is inversely proportional
the meniscus radius, which is of the order of the typical p
size. Therefore, one may expect that

P0}
g

AK
,

P0,f

P0,m
'AKm

K f
5k. ~13!

Unless otherwise stated, the computations in the follow
correspond toP0,f5kP0,m .

On the other hand, the relative permeabilities appearin
generalized Darcy’s equations~1! and~4! also depend on the
fluid saturations. Many models have been considered for
rous media~see, e.g., Bear and Bachmat@3#; Chen et al.
@39#!. Again, the most widely used model for the wettin
phase relative permeability was proposed by van Genuc
@40#:

Kr ,w5Sw
1/2@12~12Sw

n/(n21)!(n21)/n#2. ~14!

Note that Eqs.~11! and ~14! suppose thatSw can vary
over the whole range from 0 to 1. If its practical variatio
are limited by irreducible and maximal valuesSwr andSws ,
Eqs. ~11! and ~14! are generally written in terms of the e
fective saturationS̃w :

S̃w5
Sw2Swr

Sws2Swr
. ~15!

Residual saturations were not considered in the present s
lations, but could easily be included.

The relative permeability for the nonwetting phase is a
sometimes modeled according to Eq.~14!, with Kr ,w andSw
replaced byKr ,n andSn , respectively. However, the relativ
permeability curves for the two phases are generally not m
ror images of one another. Thus, a different model was u
here, which is discussed below.

Two-phase flows in fractures have given rise to compa
tively less experimental studies than three-dimensional
rous media, but a few references can be found in the lite
ture. They are reviewed, for instance, by Persoff and Pru
@41# and Fourar@42#. The relative permeabilitiess r ,i are
sometimes found proportional to the saturationsSi , with
3-4
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s r ,w1s r ,n51 ~e.g., Romm@43#!, but more generally lower
values withs r ,w1s r ,n!1 are observed~see Fourar and Bo
ries @44#!. This is especially true for rough walled fracture
In the present simulations, we used a simple model fors r ,n :

s r ,n5Sn
q , ~16!

with the exponentq equal to 2. This model was also applie
for Kr ,n in the rock matrix. Morover,s r ,w was described by
an equation of the type of Eq.~14!. It can be noted that in
most of the situations considered here, the wetting ph
saturation in the fractures is very small and, therefore,s r ,w is
very small ands r ,n is of the order of unity, for any reason
able choice of constitutive equations.

In summary, the capillary pressurePc , the relative per-
meabilities for the wetting fluidKr ,w ands r ,w and the rela-
tive permeabilities for the nonwetting fluidKr ,n ands r ,n are
described both in the matrix and in the fractures by Eqs.~11!,
~14!, and~16!, respectively.

Note that although the capillary pressurePc is identical in
the fracture and in the adjacent matrix, the saturations m
differ if P0,fÞP0,m @see Eq.~13!# or if the exponentn has
different valuesnfÞnm . Therefore, the relative permeabil
ties Kr ,i and s r ,i may also be different. Sharp saturatio
contrasts are actually the rule, due to the small value ofk.
For instance, with the constitutive parameters in Secs.
and V B, Sw in the fractures is smaller than 0.05 for an
saturation smaller than 0.85 in the matrix nearby.

C. Dimensionless formulation

Dimensionless variables, denoted by primes, can be in
duced by using characteristic quantities of the problem
possible choice is based on the typical values of the ma
porosity and permeability,ēm andK̄m , on the pressureP0,m ,
on the wetting fluid viscositymm and on a characteristi
length scaleL:

r85
1

L
r, “85L“, em8 5

em

ēm

, ~17a!

Pi85
Pi

P0,m
, F i85

F i

P0,m
, r i85

gL

P0,m
r i , ~17b!

K85
K

K̄m

, s85
s

LK̄m

, L i85mwL i , ~17c!

t85
K̄mP0,m

ēmmwL2
t, v i85

mwL

K̄mP0,m

v i , j i85
mw

K̄mP0,m

j i .

~17d!

Hence, the dimensionless transport equations~1!, ~2!, ~4!,
~8!, and~9! read

v i8̄52Km8 L i8“F i8 ~ i 5w,n!, ~18!

Sn1Sw51, ~19a!
02670
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em8
]Si

]t8
1“8•v i8̄50 ~ i 5w,n!, ~19b!

js,i8 52s8l i8“s8F i8 ~ i 5w,n!, ~20!

“8•@Km8 ~Lw8 1Ln8!“8Fn8#

5“8•~Km8 Lw8“8Pc8!2
]

]z8
~Km8 Lw8 !Dr8 ez ,

~21a!

em8
]Sw

]t8
5“8•@Km8 Lw8“8~Fn82Pc81Dr8z8!#, ~21b!

E
]V

Km8 ~Lw8 1Ln8!n•“8Fn8ds8

1E
]VùF

s8~lw8 1ln8!n•“8Fn8dl8

5E
]V

Km8 Lw8 ~n•“8Pc82Dr8n•ez!ds8

1E
]VùF

s8lw8 ~n•“8Pc82Dr8n•ez!dl8, ~22a!

E
V

em8
]Sw

]t8
dv85E

]V
Km8 Lw8 n•“8~Fn82Pc81Dr8z!ds8

1E
]VùF

s8lw8 n•“8~Fn82Pc81Dr8z!dl8.

~22b!

The constitutive equations~10!, ~11!, ~13!, ~14!, and~16!
yield

Pc85Pn82Pw8 5Fn82Fw8 1Dr8z8, ~23!

Sw5@11Pc
8nm# (12nm)/nm ~matrix!, ~24a!

Sw5F11S Pc8

k D nf G (12nf )/nf

~ fractures! , ~24b!

Kr ,w5Sw
1/2@12~12Sw

(nm /(nm21)
!(nm21)/nm#2

Kr ,n5Sn
q ~matrix!, ~25a!

s r ,w5Sw
1/2@12~12Sw

nf /(nf21)
!(nf21)/nf#2

s r ,n5Sn
q ~ fractures! . ~25b!
3-5
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D. Governing dimensionless parameters

In view of the numerous physical parameters, many
mensionless numbers play a role in the problem. Some
them describe the fractured medium intrinsic properties, s
ass8, which compares the single-phase fracture and ma
transmissivities. Others characterize the fluid properties s
as the viscosity ratio. Finally, dimensionless numbers can
introduced to compare the magnitude of the three type
forces acting on the fluids, namely, viscous forces, interfa
tension, and buoyancy.

The capillary numberC ~12! determines whether the flui
interface is locally deformed by the flow. It can be estima
in the matrix from the typical wetting phase velocity@see Eq.
~1a!#. By using Eqs.~13! and ~17!,

Cm;
AKm

L
Kr ,w G, ~26!

whereG5“8P8 is the magnitude of the dimensionless ma
roscopic pressure gradient. The ratioAKm/L of the micro-
scopic to macroscopic length scales is generally of the o
of 1026 or less. The counterpart ofCm for the fractures is
Cf;Cm /k, which is larger but still much smaller than 1
Thus, the shape of the fluid interface is determined at
pore scale by the capillary forces only, with the importa
consequence that the local constitutive equations~24! and
~25! do not depend on the flow rate. Note that this does
rule out a possible dependence on history, for example, w
hysteretic capillary function and relative permeability.

On a larger scale, however, the flow can induce chan
in the saturation field. An upper boundDSM of the order of
magnitude of the local saturation variations between a
equilibrium state and a stationary flow~or by extension be-
tween two stationary flows with different macroscopic dr
ing pressure gradients! can be estimated as

DSM;Lu“PuU ]S

]Pc
U5GU ]S

]Pc8
U . ~27!

The derivative in Eq.~27! is at most of the order of unity. Fo
instance, it ranges between 0.1 and 0.4 fornm52 in Eq.
~24a! when 0.2<S<0.95. Hence, the dimensionless press
gradient G is a direct measure of the possible saturat
variations, and it can be regarded as a macroscopic capi
number. In particular, these variations are negligible ifG
satisfies

G!
1

U ]S

]Pc8
U . ~28!

More precisely, the saturation variations should hav
small effect if they are small compared to bothS and 1
2S. SinceDSM in Eq. ~27! is already a loose overestimat
these two conditions can be combined into the followi
criterion:
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G <Gc5
min~S,12S!

U ]S

]Pc8
U . ~29!

This defines the physical range where two-phase flow
safely be described in terms of macroscopic relative per
abilities independent of the flow rates. It will be shown
Sec. V C 2 that Eq.~29! is a conservative criterion; the mac
roscopic relative permeabilities are actually found fairly co
stant for pressure gradients as large as (3/2)Gc .

The contribution of gravity forces can be quantified by t
Bond number, which compares the buoyancy forces to
interfacial forces, and is classically defined as

Bo5
gDrL2

g
, ~30!

whereDr is the difference in density of the two fluids. Al
though gravity effects are not addressed in the following, i
worth noting that in view of Eq.~13! the vertical capillary
pressure gradient at rest, which controls the vertical va
tions of saturation, is related to Bo by the ratio of the micr
scopic to macroscopic length scale

]Pc8

]z8
5

AKm

L
Bo. ~31!

All the dimensionless numbers in the above describe the
ance of forces in a rest or in a steady state. The trans
dynamics between two different states can be described
introducing the capillary diffusion coefficientDc @see Eq.
~8b!#,

Dc52
KKr

em

]Pc

]S
. ~32!

In view of the numerical results obtained in the following,
seems that the limiting step for the transition from one st
to another with a different saturation field is the flow of th
nonwetting fluid through the matrix, at least in the inves
gated range of parameters. Therefore,K, Kr , e, and m
should be replaced in Eq.~32! by Km , Kr ,n , em , andmn ,
respectively. It is natural to build a Pe´clet number Pec , using
this diffusion coefficient and the typical nonwetting pha
velocity U5KmKr ,n“P/mn , which yields

Pec5
UL

Dc
5L

u“Pu

U]Pc

]S U 5
G

U]Pc8

]S
U . ~33!

It is worth noting that Pec is actually independent of which
fluid is used as a reference, sinceKr and m in U and Dc
cancel in Eq.~33!. Pec only depends on the pressure gradie
magnitude and on the capillary properties. In view of E
~28!, this Péclet number is smaller than 1 in the range d
fined by criterion~29!.
3-6
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Furthermore, a grid Pe´clet number can be obtained simp
as (dM /L)Pec , which is even smaller. This ensures that t
flow should not induce sharp saturation fronts with a thic
ness smaller than the grid resolution, which would be poo
accounted for by the finite volume formulation described
Sec. III B.

A typical transient timeT can be defined as follows:

T5
L2

Dc
5

emmn

P0,m

L2

Km

1

Kr ,nU]Pc8

]S
U . ~34a!

In dimensionless forms, this time constant reads@see Eq.
~17d!#

T85
mn

mw

1

Kr ,nU]Pc8

]S
U . ~34b!

In the range of parameters considered in the following,T8
varies from 1 to 100. In dimensional terms, this rough
corresponds from one day to one year. Such long transi
times can have important consequences for the interpreta
of well tests and for the exploitation of oil reservoirs.

III. NUMERICAL MODEL

A. Three-dimensional meshing of fractured porous media

The first step of the numerical solution is to discretize
fracture network and then the porous medium surround
the fractures in a consistent way. The geometry of the m
to be generated is constrained by many randomly loca
fractures. In addition, meshes should be routinely built
large statistical sets of stochastically generated samp
Therefore, a very robust and fully automated meshing al
rithm is required.

A literature review was done by Bogdanovet al. @18#. The
meshing technique was also extensively described in this
per; therefore, it is briefly schematized here. The fract
network is triangulated first, as described by Koudinaet al.
@32#. Then the space between the fractures is paved by
unstructured boundary-constrained tetrahedral mesh, acc
ing to an advancing front technique. Typical performanc
and computational requirements are discussed by Bogda
et al. @18#. The grid resolution can be quantified by the typ
cal sizedM of the surface and volume elements.

Three-dimensional views of two triangulated fractur
media are shown in Fig. 1. In both cases, the fractures
hexagonal, with circumscribed radiusR, and the cell size is
L54R. Figures 1~a! and 1~b! are the samples used in Se
V A. The cell containsNf r516 fractures,dM5R/3, and the
mesh contains about 1800 node points, 22 000 triangles,
11 000 tetrahedra. Figure 1~c! is one of the samples used
Sec. V B, withNf r532. The discretization is slightly fine
(dM5R/4). The mesh contains about 3700 node poin
46 000 triangles, and 23 000 tetrahedra.
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The influence of the discretization parameterdM on the
flow calculation results is illustrated and quantified in Se
V A.

B. Spatial discretization of the equations

We describe in this subsection the spatial discretization
Eqs. ~22!. Time discretization is addressed in the followin
subsection, as part of the description of the solution al
rithm.

The rock matrix is represented by tetrahedral volume
ements and the fractures are represented by triangular su
elements. The transport coefficientsKm ands, as well as the
porosityem , are considered as uniform over these eleme

The nonwetting phase potentialFn and the capillary pres-
surePc are evaluated at the mesh points located at the
tices of the tetrahedra and triangles. Since the fractures
viewed as vanishingly thin, empty, or very permeable laye

FIG. 1. The network ofNf r516 fractures in the sample used fo
the simulations in Figs. 12 and 13~a!. The saturation maps in Fig
12 correspond to the horizontal marked planeP. The three-
dimensional meshes of the same fractured medium~b! and of an-
other sample withNf r532 ~c!. Distances are normalized by th
fracture-circumscribed radiusR. Both samples are spatially per
odic, with cell sizeL54R. The tetrahedral volume elements in th
cubic unit cell22<x,y,z<12 are displayed. The protuding frac
tures in~b,c! sit astride the boundaries with the neighboring ce
Several periodic replicas are shown for some of them. For the s
of clarity, the edges and the intersection lines of the fractures h
been thickened.
3-7
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there is no pressure jump between two points facing e
other on the two opposite sides of a fracture. Thus, sin
values ofFn and Pc can be used in the numerical formul
tion per vertex of fracture element.

A finite volume formulation of the problem is obtained b
applying the balance equations~22! to control volumesV
surrounding each of the mesh points, as shown in Fig. 2

For the evaluation of the surface integrals in Eq.~22!, the
gradients“8Fn8 and“8Pc8 are considered as constant ov
each mesh element and, therefore, they are linear funct
of Fn8 andPc8 at the element vertices. The mobilitiesL i8 and
l i8 are also supposed to be piecewise constant, per tetr
dron or triangle. For each mesh volume or surface eleme
mean saturation̂Sw& is defined as the volume average of t
saturationsSw evaluated at the element vertices. Then,
mobilities in the elements are deduced from the mean s
ration^Sw&. For instance, Eq.~22a! can be written as a set o
linear equations relating the values ofFn8 and C85Pc8
2Dr8z8 at the node points

B•Fn82A•C850, ~35!

where the matricesB and A depend on the absolute an
relative permeabilities, in addition to the mesh geometry.

The volume integral in Eq.~22b! can be evaluated in two
different ways. On one hand, one may use in each tetra
dron the value ofSw deduced from the capillary pressure
the central grid point. Alternatively, one may use in the t
rahedra the mean saturation^Sw& defined above, which also
depends on the capillary pressures in the neighboring m
points. A similar treatment of the time derivative, describ
in the following subsection, applies in both cases.

C. Time discretization and solution algorithm

The strong nonlinearity of the coefficients in Eqs.~22!
requests an implicit time formulation. The one used here
an extension of the modified Picard scheme described
Celia et al. @45# for the solution of Richards equation. Th
main idea of the method is the linearization of the time d
rivative in a mass conservative form.

FIG. 2. Control volumeV for the mass balance equations at
node; in this illustration, the node is on a fracture.
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The derivative]Sw /]t8 is approximated by the first-orde
difference over a time stepdt8,

]Sw

]t8
5

1

dt8
~Sw

p 2Sw
p21!, ~36!

where the superscriptp refers to the successive timest08
1pdt8. Sw

p is obtained as the asymptotic value of success
estimationsSw

p,k

Sw
p 5 lim

k→`

Sw
p,k . ~37!

Finally, Sw
p,k results from the iterative calculation of

Sw
p,k115Sw

p,k1S ]Sw

]Pc8
D p,k

~Pc8
p,k112Pc8

p,k!. ~38!

Hence, the estimate of]Sw /]t at iterationk11 is

S ]Sw

]t8
D p,k11

5
Sw

p,k112Sw
p21

dt8
5

Sw
p,k112Sw

p,k

dt8
1

Sw
p,k2Sw

p21

dt8

5
1

dt8
S ]Sw

]Pc8
D p,k

y8p,k111
Sw

p,k2Sw
p21

dt8
, ~39!

with y8p,k115Pc8
p,k112Pc8

p,k . Therefore, the volume inte
gral in Eq.~22b! can be evaluated at iterationk11 as

S E
V

em8
]Sw

]t8
dv D p,k11

5E
V

em8 F 1

dt8
S ]Sw

]Pc8
D p,k

y8p,k111
Sw

p,k2Sw
p21

dt8
Gdv.

~40!

The discretized equation~22b! for the capillary pressure
at current iterationk11 given the potential field can be writ
ten in vectorial form as

1

dt8
Cp,k

•y8p,k111
1

dt8
V•~Sw

p,k2Sw
p21!

5Ap,k
•~Fn8

p,k2C8p,k11!. ~41!

The matricesC and V are diagonal ifSw in the volume
integral in Eq.~22b! is evaluated from the capillary pressu
at the central grid point only~see end of Sec. III B!.

SinceC8p,k115C8p,k1y8p,k11, Eqs.~35! and~41! yield
finally the following set of equations, which summarizes t
whole algorithm

Bp,k
•Fn8

p,k5Ap,k
•C8p,k ~42a!
3-8
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S 1

dt8
Cp,k1Ap,kD •y8p,k115Ap,k

•~Fn8
p,k2C8p,k!

2
1

dt8
V•~Sw

p,k2Sw
p21!.

~42b!

In a first implementation, the global mass conservation eq
tion ~35! was solved once per time step for the potential fi
Fn8 , with the phase distribution quantified by the capilla
pressureC8 at the beginning of the time step; then Eq.~42b!
was solved iteratively untily8p,k11 converges toward 0, to
determine the change in saturation occurring duringdt.
However, it appeared that reevaluating the matricesA andB
and the fieldFn8 after each updating ofC8 improves the
numerical performances. Thus, Eqs.~42a! and ~42b! are
solved alternatively until convergence ofy8p,k11 toward 0,
which makes the solution scheme fully implicit. Both e
ementary problems~42a! for Fn8

p,k and~42b! for y8p,k11 are
solved by use of aCGSTAB conjugate gradient algorithm.

Note that in the modified Picard formulation, the soluti
for the capillary pressure at time stepp is searched for in
terms of its increment with respect to time stepp21, which
is the sum of the successivey8p,k11. Hence, the magnitude
of the right-hand side in Eq.~42b! can be used as a natur
stopping criterion for the Picard iterative loop~see Celia
et al. @45#!.

As already mentioned, the right-hand side of Eq.~42b!
should decrease along thek iterations. It sometimes happen
however, that its norm increases from stagek to stagek
11. In such cases, a backtracking technique can be u
~see Presset al. @46#!, i.e.,C8p,k is incremented by a fraction
l of y8p,k11, with lmin<l,1, in order to obtainC8p,k11.
Alternatively, a Newton step can be applied to determ
from the fields at stagek the increment ofC8p,k that yields
the smallest norm of the right-hand side of Eq.~42b! at stage
k11. In practice, maximum efficiency is obtained with
combination of the two techniques.

The value ofdt8 is automatically recomputed at each tim
step. Its choice is based on a desired maximum satura
incrementDS. The new stepdtp118 is deduced from the
maximum of the instantaneous local time derivati
]Sw /]t8. In view of Eq. ~36!, this derivative is exactly the
rate of variation over the previous step. Hence,

dtp118 5
DS

maxu]Sw /]t8u
5

DSdtp8

maxuSw
p 2Sw

p21u
. ~43!

Other choices are possible, such as a maximum differenc
total flow rate through the cell over the time step. This lat
criterion might be more relevant for the computations
steady-state global medium properties, especially for la
contrasts between the properties of matrix and fractures
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IV. REGULAR FRACTURE NETWORKS

A. Array of infinite parallel plane fractures

Consider the situation sketched in Fig. 3~a! of a porous
matrix that contains an array of infinite parallel plane fra
tures, with a spacingL that is taken as the unit length@see
Eq. ~17!#. A flow is imposed by a pressure gradient paral
to the fracture planes. The matrix permeability isKm , the
fracture conductivity iss and its apertureb!L. The global
absolute permeability of this fractured medium, in the dire
tion of the fractures, is

K̄5
~L2b!Km1s

L
'KmS 11

s

LKm
D . ~44!

The capillary pressure is supposed to be initially unifor

FIG. 3. Homogeneous rock matrix containing an array of in
nite parallel fractures~a! and its relative permeabilities~b!. The
solid lines are the curves for the matrix and for the fractures, wh
are identical, withnm5nf5q52. The other lines correspond to Eq
~47! for s851/4, k51023/2 (•••••) and s8525, k51025/2

(2222). The symbols are results of numerical simulations

K̄r ,n (h) and K̄r ,w (s) .
3-9
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equal toPc , and it obviously remains so for a stationary flo
parallel to the fractures. The wetting fluid saturations in
matrix and in the fractures,Swm and Sw f , are different be-
cause of different capillary properties. The mean global sa
ration is dominated by the matrix saturation

^Sw&5
~L2b!emSwm1be fSw f

~L2b!em1be f
'Swm . ~45!

The global relative permability for fluidi, K̄r ,i , is easily
obtained from

LK̄K̄r ,i5~L2b!KmKr ,i1ss r ,i , ~ i 5n,w!. ~46!

This yields finally, in dimensionless terms,

K̄8511s8, K̄r ,i5
Kr ,i1s8s r ,i

11s8
~ i 5n,w!. ~47!

Results~44!–~47! are also valid if the fractures are no
evenly spaced, withL equal to the mean spacing, i.e., to t
inverse of the volumetric fracture area.

These formulas are compared to the results of the num
cal code in Fig. 3. A perfect agreement is obtained. T
influence of the fractures is much stronger onK̄r ,n than on
K̄r ,w , since they offer a preferential path for the nonwetti
fluid, due to the small values ofk.

B. Multiple families of parallel plane fractures

In order to generalize Eq.~47! to media containing severa
families of fractures, it is convenient to rewrite it in a slight
different form.

Note first thats8 is simply the ratio of the absolute frac
ture transmissivitys to the absolute transmissivityLKm of
the slab of matrix between two fractures. For a fractu
medium in capillary equilibrium, it is natural to define th
corresponding ratios i8 for each of the phases

s i85
ss r ,i

LKmKr ,i
5

s r ,i

Kr ,i
s8 ~ i 5n,w!. ~48!

The prefactor ofs8 in Eq. ~48! only depends on the capillar
pressure. Then, Eq.~47! can be reformulated in the nicel
symmetric form

K̄8511s8, K̄ i85Kr ,i~11s i8! ~ i 5n,w!, ~49!

where K̄ i8 is the global effective permeability for phasei,

K̄ i85K̄8K̄r ,i .
Suppose now that the medium containsN families of frac-

tures, with conductivitiessp , spacings or reciprocal volu
metric areasLp and normal vectorsnp (p51 to N), with
sp85sp /LpKm . When Sw51 and a macroscopic pressu

gradient“P is applied, the seepage velocity in the matrix

v̄521/mKm“P and the flow rate per unit width in the frac
tures isjp521/m sp(I2npnp)•“P. Thus, the absolute per
meability of the fractured medium is given by
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K̄8511 (
p51

N

sp8~ I2npnp!. ~50a!

Except for the unit term in the right-hand side, which stan
for the contribution of the matrix, this is the classical res
of Snow @35#.

A similar expression can be obtained when consider
each of the phasesi 5n or w, by replacing the matrix and
fracture absolute permeabilities by their product with the c
responding relative permeabilities. This yields the global
fective permeability tensor for the fluidi

K̄i85Kr ,iS I1 (
p51

N

sp,i8 ~ I2npnp!D ~ i 5n,w!.

~50b!

In the particular case of a continuous and isotropic ori
tation distribution of identical fractures, with total volumetr
area 1/L, the tensorsK̄8 and K̄i8 are spherical, and~50! re-
duces to

K̄8511 2
3 s8, K̄ i85Kr ,i~11 2

3 s i8!. ~51!

Note that both Eqs.~50a! and ~50b! result from superpo-
sition principles. Hence, Eq.~50b! is valid only as long as
the flow equations for each of the two fluids are linear. T
requirement is fullfilled in a stationary flow in capillary equ
librium, but it is generally not satisfied in transient flows.

C. Sugar-box reservoir

We consider here the two-dimensional problem sketc
in Fig. 4. A rectangular reservoir with impermeable boun
aries is divided into 537 square blocks with permeabilit
Km and sizeL2. L is taken as the unit length. The blocks a
separated by an array of fractures with uniform propert
s851 and k51023/2. The rheological parameters aremn
510mw andnm5nf5q52. The reservoir is initially at rest

FIG. 4. A sugar-box reservoir divided into 537 square blocks
by an array of fractures. An injection well~left! and a production
well ~right! are located at the centers of two blocks. Wetting fluid
injected with a flow rateQw , and the nonwetting fluid fraction in
the produced fluid isFn .
3-10
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with a uniform capillary pressurePc8510, i.e.,Sw'0.10 in
the matrix andSw'0.0032 in the fractures.

Wetting fluid is injected with a constant flow rateQw8
51 through a well~on the left in Fig. 4!, and fluid is pro-
duced at another well~on the right in Fig. 4!, which contains
a fractionFn of nonwetting fluid. Both wells are located a
the centers of matrix blocks. The nonwetting phase pres
at the production well is taken as the pressure reference,
Pn

out50.
Although the problem is two-dimensional, the calcu

tions are performed in three dimensions, in a 53731 L3

volume, with periodicity conditions along thez axis. The
blocks are subdivided into smaller cubes with sizeL/5,
which contain 24 tetrahedral volume elements; hence,
mesh is periodic with the nodes arranged on a face-cent
cubic lattice. A dimensionless timet8 is defined as the ratio
of the injected volume to the total volumeV of the reservoir

t85
Qwt

V
. ~52!

Saturation maps in the rock matrix are displayed for va
ous times in Fig. 5. The progression of a relatively ste
saturation front is clearly visible. Downstream of the fro
the initial saturation is undisturbed (Sw'0.1). Then, satura-
tion rises up to about 0.7 over a distance about one block
L.

The front separates two regions where the mobility of
wetting fluid in the matrix is much smaller~downstream! or
much larger~upstream! than the mobility of the nonwetting
fluid. In the initial conditions that prevail downstream of th
front, Kr ,w'7.731026, whereasKr ,n'0.81; hence,Lw
,1025Ln . Upstream of the front,Sw.0.7, Kr ,w.0.072,
andKr ,n,0.086, which yieldsLw.10Ln .

The flow globally consists of the displacement of the no
wetting fluid by the wetting fluid, as illustrated by the velo
ity maps for both fluids in Fig. 6, when the saturation front
about halfway through the reservoir. The wetting fluid flo
rate is imposed at the injection well. Its streamlines dive
from the well towards the front, whereas the nonwetti
phase velocity is very small. Downstream of the saturat
front, the nonwetting fluid streamlines converge from t
front towards the production well. The wetting fluid is near
immobile, and the produced fluid is almost only the nonw
ting fluid. This pattern lasts until the saturation front reach
the production well.

However, not the whole nonwetting fluid is displace
since its mobility in the matrix becomes smaller than t
mobility of the wetting fluid whenSw is larger than 0.7.
Thus, a significant fraction of the nonwetting fluid is le
behind the front in the bulk of the matrix blocks. By cap
lary diffusion, it slowly reaches the surrounding fracture
through which it eventually flows to the production we
This entrapped nonwetting fluid is clearly visible in the sa
ration maps of Fig. 5, and in the mean saturation profiles
Fig. 7.

When the front reaches the production well, the mobil
of the wetting fluid in the matrix around the well sudden
increases, and it exceeds that of the nonwetting fluid w
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Sw'0.7. The proportion of produced wetting fluid rises dr
matically ~see Fig. 8!. Simultaneously, the overall pressu
drop strongly increases~see Fig. 9!, since the increase ofLw
does not compensate the decrease ofLn .

It should be noted that the fractures are never a prefe
tial path for the wetting fluid. In the initial conditions (Pc8
510,Sw,m'0.10), the transmissivity ratiossw8 @see Eq.~48!#
is about 1027; behind the front (Pc8'1.0,Sw,m'0.71), it is
of the order of 1026, and in a late stage not reached in th
simulation (Pc850.2,Sw,m'0.98), it is still smaller than
1024. Nevertheless, larger velocities are observed in Fig
in the matrix near to the fractures, sinceSw ~and thusKr ,w) is
larger there than in the bulk of the blocks, due to the dep
tion of nonwetting fluid that migrates towards the fracture

Conversely, the matrix and the fractures initially ha
contributions of the same order of magnitude to the nonw
ting fluid flow, with sn8'1.2 whenSw,m'0.10, and the frac-
tures become dominant as soon as the saturation in the

FIG. 5. Wetting phase saturation at various times~top to bot-
tom!. The left column corresponds to the sugar-box reserv
sketched in Fig. 4. The right column corresponds to an unfractu
reservoir with uniform equivalent properties; the broken lines
shown only to make the comparison easier with the left column
both cases, the walls are impermeable.
3-11
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BOGDANOV et al. PHYSICAL REVIEW E 68, 026703 ~2003!
trix increases~e.g.,sn8.10 whenSw,m.0.7).
Figure 10 shows in more details the flow field of bo

phases at various times in the block located at the middl
the reservoir. The saturation front enters the block from
left in the first frame (t850.27). Then, it progresses until
roughly covers the block att850.345. The flows of the two
fluids are roughly pistonlike upstream and downstream of
front. Within the front, the nonwetting fluid flow starts d
verging towards the surrounding fractures. Finally, when
front has left the block (t8>0.6), a quasisteady pattern
observed, where the nonwetting fluid diffuses from the b
of the block to the fractures. Note that the velocities a
much smaller than in the earlier stages, and that they h
been rescaled in the figure.

For comparison, another simulation was performed by
placing the fractured rock by an homogeneous medium w
uniform equivalent properties. Effective permeabilities o
tained from Eq.~50b! are applied for each of the phases, a
the capillary pressure-saturation relationship of the matri

FIG. 6. The velocity fields in the sugar-box matrix for the we
ting ~a! and nonwetting~b! fluids at timet850.345 in the simula-
tions of Fig. 5. A few large vectors near to the wells are not plott
The dotted lines correspond to the fractures.
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used, according to Eq.~45!. The saturation maps obtained b
this homogenized description are shown in the right colu
in Fig. 5, in comparison with the results of the full calcul
tions.
.

FIG. 7. Saturation profiles, in average over they sections, at
various times that correspond to the maps in Fig. 5. The absci
are in block size units. The data correspond to the full calculati
~—! and to the simplified problem in a homogeneous equival
medium (2222).

FIG. 8. The fractionFn of nonwetting fluid in the produced
fluid, as a function of the dimensionless timet8.
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Although Eq.~50b! is a priori not valid in this situation,
since the saturation varies and the flow equations are re
nonlinear, the two sets of results are in good qualitat
agreement on the global scale.

However, significant differences remain even after lo
times. In the late stages in Fig. 5, the nonwetting fluid is s
present in the blocks in the upstream part of the reserv
whereas this area is fully saturated with wetting fluid in t
results of the homogenized model. This is also apparen
the mean saturation profiles in Fig. 7. This is due to
underestimation in the homogenized model of the tran
time of the nonwetting fluid from the bulk of the blocks
the fractures.

In the late stages, the rate of nonwetting fluid trans
from the matrix blocks to the fractures can be estimated
the following simple argument. Let^Pn&B and^Pn&F denote
the nonwetting fluid pressures, averaged over a matrix bl
and over the fractures surrounding it, respectively; moreo
^Sw&B denotes the mean saturation in the block, and^Ln&B
the mean nonwetting fluid mobility. The typical pressure g
dient is 2(̂ Pn&B2^Pn&F)/L, and the block perimeter is 4L.
Therefore, the transfer rate to the fractures is of the orde
8Km^Ln&B(^Pn&B2^Pn&F),

d^Sw&B

dt8
'8^Ln&B~^Pn&B2^Pn&F!. ~53a!

This is a typical exchange term in dual-porosity models
compressible single-phase flows~Warren and Root@11#!. It
can be generalized in a more symmetric form

d^Sw&B

dt8
'8

^Lw&B^Ln&B

^Lw&B1^Ln&B
~^Pc&B2^Pc&F!. ~53b!

WhenSw is large, Eq.~53b! reduces to Eq.~53a!, sinceLn
!Lw and the gradient ofPw is much smaller than the gra
dient of Pn , but Eq. ~53b! can also apply in the opposit
limit when the wetting fluid mobility is small.

FIG. 9. Overall pressure dropDPn8 between the injection and
production wells, as a function of the dimensionless timet8.
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The time derivative of the nonwetting fluid content of th
central block in the reservoir, as obtained from the full n
merical calculations, is compared to predictions~53! in Fig.
11. A good agreement, within about 15%, is observed
t8>0.6, which corresponds to the time when the saturat
front has crossed and left the block~see Fig. 5!, and when the
nonwetting fluid diverging flow pattern~see Fig. 10! has es-
tablished. At earlier times, whenLn is not much smaller than
Lw , the saturation variations mostly result from the d
placement mechanism, which can obviously not be descri
by Eq. ~53!, but they are reasonably well accounted for
the homogeneous medium model.

Consequently, a fairly good description of the flow bo

FIG. 10. Wetting~left column! and nonwetting~right column!
velocity fields in the matrix block at the center of the reservoir,
various times.
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BOGDANOV et al. PHYSICAL REVIEW E 68, 026703 ~2003!
downstream and upstream of the saturation front could
achieved by a dual-porosity model, with the capilla
pressure-saturation relationship of the matrix in the prim
porosity, the fluid effective permeabilities obtained from E
~50b! in the secundary porosity, and a coupling equation
the form of Eq.~53b!. Such a model is presented by Panfil
@13#.

However, it should be remembered that the present
case is the ideal sugar-box model, where such a descrip
can indeed be expected to be successfully and practic
applicable. In the general case of complex random netwo
of finite fractures, there is no equivalent of result~50b!. The
determination of the steady-state global relative permea
ties is the object of Sec. V. The modelization of the excha
term is another difficult problem, due to the randomness
the matrix domains shape and size, and it should proba
involve a broad range of time scales. Finally, in view of E
~53b!, such a model cannot account for the spatial variati
of saturation that exist on the fracture scale, even in a ste
state flow, as demonstrated in Sec. V A.

V. RANDOMLY FRACTURED POROUS MEDIA

We address in this section complex situations, where
rock matrix contains a network of randomly located fra
tures. The first subsection provides detailed illustrative
sults in a single random realization, including the evoluti
of the saturation maps, starting from various initial pha
distributions. Then, more systematic results are presente
Sec. V B. The relative permeabilities of randomly fractur
rocks are computed for two fracture densities that corresp
to nonpercolating and percolating networks, respectively
view of the large number of parameters, only the mean s
ration is varied, and all other quantities are kept constant
equal to typical values. The influence of these paramete
briefly considered in Sec. V C.

FIG. 11. The time derivatived^Sw&B /dt8 of the mean saturation
in the matrix block at the center of the reservoir as a function of
dimensionless timet8. The data correspond to the numerical sim
lations~—! and to the predictions of Eq.~53a! (2222) and Eq.
~53b! (2•2•2) .
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Throughout this section, the fractured medium is su
posed to be macroscopically homogeneous. Therefore,
the purpose of determining macroscale relative permea
ties, an unbounded medium is represented by the peri
juxtaposition of identical cubic unit cells. Hence, the geo
etry, the local fluxes, the saturation fields, and the press
gradient are spatially periodic. The flow is induced by a la
scale pressure gradient. The global phase saturations
given as initial conditions and are conserved along time.

A. Illustrative examples

A detailed set of results is presented in this section, re
tive to an homogeneous matrix rock containing the fract
network shown in Figs. 1~a! and 1~b!. The fractures are plane
regular hexagons, with a circumscribed radiusR, which is
taken as the length unitL in Eq. ~17!, and they have a con
stant permeabilitys851 with k51023/2. The cell size is
(4R)3, anddM5R/3. The network does not percolate. Th
constitutive parameters are set as described in Sec. II B,
nm5nf5q52. The fluid densities are equal and their vi
cosity ratio ismn /mw510.

All the frames in Fig. 12 are wetting phase saturati
mapsSw in the matrix in the horizontal sectionP in Fig.
1~a!. The three columns of Fig. 12 show the evolution of t
saturation field when a macroscopic flow is induced by
pressure gradienti“Pi5P0,m /R, starting from the three dif-
ferent initial saturation fields in the top row, with identic

global saturationS̄w50.371.
The leftmost initial state corresponds to rest equilibriu

with uniform capillary pressure. The two others are arbitra
initial phase distributions, with bands normal or parallel
the applied pressure gradient“P.

In all cases, an identical steady regime is reached, wh
saturation is not uniform.Sw ranges from about 0.32 to 0.43
and it is different on the inlet and outlet sides of the fra
tures. The disturbances in the saturation field introduced
the presence of the fractures during a steady flow with
spect to the rest state are due to the different capillary pr
erties of the fractures and rock matrix@see Eq.~13!#. They
are observed in all our simulations, and increase with
fracture permeabilitys8 and with the mean flow rate~or
pressure gradient!. This effect will be specifically investi-
gated in a future work.

The evolutions of the global mean seepage velocitiesv̄̄w8

and v̄̄n8 are plotted for the three initial phase distributions

Fig. 13. v̄̄w8 corresponds to the instantaneous value of

global relative permeabilityK̄r ,w defined in Sec. V B, andv̄̄n8

corresponds tomw /mnK̄r ,n . Identical phase flow rates ar
reached in all cases, although the convergence is not mon
nous. The dimensionless time required to reach the limit is
the order of 10, which is consistent with the time consta
T8'3 predicted by Eq.~34b!.

Before we proceed with systematic calculations in the f
lowing section, it may be the right place to discuss the effe

e
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FIG. 12. Wetting phase satura
tion at various times~top to bot-
tom!, in the planeP marked in
Fig. 1~a!. The mean flow is ori-
ented from the left to the right of
the figure. The mean saturation

always S̄w50.371. Each column
corresponds to the evolution o
the saturation, which starts from
the initial condition shown at the
top of the column.
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of the grid resolution on the results of the simulations. This
done here by considering a second example, which we o
used in the past as an illustrative benchmark~see Koudina
et al. @32#!. The sample has a sizeL53R and it contains
Nf r510 fractures. All the transport and constitutive para
eters are set exactly as in the previous example. The frac
network percolates in thex direction only. The spanning
cluster contains six fractures, and four fractures are isola
Hence, a variety of situations can be tested by setting
macroscopic pressure gradient along thex, y, andz axes.

Three meshes were built, with different discretization p
rametersdM5R/3, R/5, and R/8. Sections through thes
meshes are shown in the left column of Fig. 14. As in
previous case, calculations were run from an arbitrary ini
phase distribution, until a steady state was reached, w
the phase permeabilities were measured. The results
given in Table I.
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Note first that nearly identical effects are obtained in t
three directions, regardless of the percolation status.

computed absolute permeabilityK̄ varies very little; it is
larger by 1% (dM /R55) and by 3% (dM /R53) than for

dM /R58. The wetting phase flow rate, i.e.,K̄K̄r ,w , is nearly
insensitive to the grid resolution, which is natural since it
essentially the same as for intact matrix, as discussed in
V B. The largest differences are observed for the nonwett

phase flow rate.K̄K̄r ,n is larger by 3% (dM /R55) and by
8% (dM /R53) than fordM /R58. The error scales roughly
as a quadratic function 0.7(dM /R)2. Hence, an overestimat
of about 5% is a fair guess of the error associated withdM
5R/4, which is used throughout the rest of the paper.

Saturation maps for a steady flow along thex direction are
shown in the right column of Fig. 14, for the three discre
zations. They are in excellent agreement.
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B. Steady-state relative permeabilities as functions
of mean saturation

The previous example has shown that identical satura
fields and phase flow rates are eventually reached whe
fractured medium is submitted to a macroscopic press
gradient“P, starting from very different initial phase distr
butions. It is, therefore, possible to define steady state m
roscopic phase relative permeabilities for this medium a
given mean saturationS̄w . These relative permeabilitiesK̄r ,i
are intrinsic in the sense that they do not depend on
initial conditions; it will be shown on a few examples in Se
V C that they do not depend either on the magnitude of
applied macroscopic pressure gradient, nor on the visco
ratio, at least in a reasonable range.

Thus, for the steady flow of two given fluids in a fracture
medium, it is possible to relate the mean global phase fl

ratesv̄̄ i to the phase pressure gradients by a generalized
cy’s law of form ~1!

v̄̄ i52
K̄K̄r ,i

m i
~“Pī2r igez! ~ i 5w,n!, ~54!

whereK̄ is the macroscopic absolute permeability of the m
dium. Recall thatK̄ was investigated by Bogdanovet al.
@18#, for the same type of fractured porous media as con
ered here.

Equation~54! is the first step towards the upscaling of t
steady state two-phase flow problem. It corresponds to
transport equation~1! in an homogeneous material. The co

servation equation~2! applies also toS̄i and v̄̄ i , for steady
flows. Finally, the data for the relative permeabilitiesK̄r ,i

FIG. 13. The dimensionless seepage velocitiesv̄̄w8 and v̄̄n8 of the
wetting and nonwetting phases as functions of the dimension
time t8, for the simulations in Fig. 12. 1, 2, and 3 correspond to
left, middle, and right columns of Fig. 12.
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from the present numerical calculations are the macros
counterpart of the constitutive equation~14!. The last miss-
ing element is an upscaled capillary pressure-saturation r
tionship. This topic will be discussed at the end of this su
section.

ss
e

FIG. 14. Illustration of the grid resolution effects. Sectio
through the mesh of a fractured sampled withL/R53, Nf r510,
and dM /R51/3, 1/5, and 1/8~top to bottom, left column!, and
corresponding wetting phase saturation maps for a steady flow
ented from the left to the right of the figure~right column!.

TABLE I. Steady-state permeabilities computed in the sa
sample along three directions for three meshes with different re
lutions ~see text in Sec. V A!.

Direction dM /R53 dM /R55 dM /R58

x 1.611 1.579 1.558

K̄8 y 1.455 1.431 1.411

z 1.392 1.369 1.354
x 0.003136 0.003125 0.003218

K̄8Kr ,w̄
y 0.003121 0.003129 0.003126

z 0.003084 0.003097 0.003099
x 0.8928 0.8530 0.8290

K̄8 Kr ,n̄
y 0.7491 0.7191 0.6950

z 0.6898 0.6617 0.6449
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FIG. 15. Macroscopic relative permeabilitiesK̄r ,i as functions of the mean saturationS̄w . Data are for samples containing 16~a! or 32
~b! hexagonal fractures. The cell size isL54R. The fractures have a permeabilitys851, andk51023/2. The fluids have equal densities

The symbols are the averages ofK̄r ,n (h) and K̄r ,w (s) over 27 calculations, conducted inNr59 random realizations, with a pressu
gradient with magnitudeP0,m /R set along thex, y, andz axes. The horizontal lines show the full variation range of the individual data.
solid lines are the relative permeabilities for the fractures and for the rock matrix, withnm5nf5q52. The broken line in~b! is prediction

~51! for K̄r ,n for infinite plane fractures with the same characteristics and the same global intrinsic permeability.
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In view of the large number of parameters, which inclu
the rock and fractures geometry and transport properties
fluid characteristics, and the coefficients in the constitut
equations, in addition to the initial and boundary conditio
we chose to study only the influence of the mean satura
S̄w on K̄r ,i , for two fracture densities and a single typic
value of the other parameters. Specifically, the expone
nm , nf , and q are all equal to 2; the viscosity ratio i
mn /mw510 and the fluids have the same density; the fr
ture permeability iss851 with k51023/2.

However, we considered samples of sizeL54R contain-
ing either 16 or 32 randomly located fractures. An exam
with Nf r532 is shown in Fig. 1~c!. Nr59 realizations were
generated in each case, and the flow equations were so
with a pressure gradient of magnitudeP0,m /R set along the
x, y, andz axes, successively. In the first case, the percola
probability of the fracture network in a prescribed directi
is about 20%, whereas in the latter, it is about 80%. T
examples displayed in Figs. 1~b! and 1~c! belong to the first
and second families, respectively.

The computations were run starting from initial rest st
equilibrium conditions, i.e., with a uniform capillary pressu
corresponding to various mean saturationsS̄w in the range
0.1– 0.9, until convergence of the saturation field. In ad
tion, a single-phase calculation was performed in order
determine the sample absolute permeability. The relative
meabilitiesK̄r ,i for each case were then deduced from
phase flow rates via Eq.~54!.

The results are shown in Figs. 15~a! and 15~b!, for the 16-
and 32-fracture samples, respectively. The symbols co
spond to the statistical averages over 27 calculations, and
02670
he
e
,
n

ts

-

e

ed

n

e

e

i-
o
r-

e

e-
he

error bars to the full range of variation of the individual da
The solid lines are the relative permeabilities for the fra
tures and for the rock matrix, which are identical functions
the saturation, in the present case. The mean results are
summarized in Table II.

In spite of the difference in percolation probability b
tween the two cases, the general aspects of the results
similar. The presence of the fractures increases the rela
permeability for the nonwetting phase and decreases the
tive permeability for the wetting phase, with respect to t
intact matrix material. However, the amplitude of the
variations is larger for the denser fracture networks.

The strongest effects are observed for the largest sat

tions and for the nonwetting fluid permeabilityK̄r ,n . This is
a consequence of the different capillary functions of the fr
tures and rock matrix@see Eq.~13!#. For the same value o
Pc , the nonwetting phase saturation is much larger in
fractures than in the surrounding matrix, and the relative p
meability s r ,n is larger thanKr ,n . Thus, the fractures are
preferential paths for the nonwetting phase.

Conversely,K̄r ,w is smaller thanKr ,w in the rock matrix,
but this is mostly a consequence of the increase of the a
lute permeability induced by the presence of the fractur
K̄.Km . The productsK̄K̄r ,w and KmKr ,w are identical,
which means that the fractures do not significantly affect
wetting phase flow rate, with respect to the intact rock. T
is confirmed in Fig. 16, where the normalized phase fl
ratesFi5K̄K̄r ,i /Km5K̄8K̄r ,i are plotted as functions ofS̄w .

Let us finally consider the macroscopic capillary pressu
saturation relationship. The mean saturationS̄w corresponds
3-17
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TABLE II. Numerical results in the base cases851, G51, mn /mw510, nf5nm5q52, k51023/2. The data are averages over thex,
y, andz directions for nine random realizations of fractured media containingNf r516 of 32 hexagonal fractures.Pc,r8 is the initial~rest state!

capillary pressure, andSw̄ is the corresponding mean saturation.Pc̄8 is the volume-averaged capillary pressure in the steady regime.Kr ,n and

Kr ,w are the matrix relative permeabilities corresponding toSw̄. K̄8Kr , ī is the normalized flow rate of phasei in the final steady regime.Kr , ī

is the corresponding global relative permeability.

Nf r516, s851, G51, mn /mw510, nf52, nm52, k51023/2

Pc,r8 Sw̄ Pc̄8 Kr ,n Kr ,w K̄8Kr ,n̄ Kr ,n̄ K̄8 Kr ,w̄ Kr ,w̄

0.00 1.0000 0.000 0.000 1.000 0.000 0.000 1.316 1.000
0.75 0.8000 0.746 0.040 0.143 0.121 0.092 0.152 0.116
1.00 0.7071 1.007 0.086 0.0721 0.209 0.158 0.0741 0.0564
1.50 0.5547 1.509 0.198 0.0210 0.379 0.288 0.0211 0.0161
2.00 0.4472 2.007 0.306 0.00745 0.521 0.396 0.00745 0.00567
2.50 0.3714 2.505 0.395 0.00312 0.632 0.480 0.00311 0.00237
3.00 0.3162 3.004 0.468 0.00148 0.719 0.546 0.00148 0.00113
5.00 0.1961 5.030 0.646 0.000167 0.927 0.704 0.000165 0.00012
10.00 0.0995 10.000 0.811 0.000008 1.109 0.843 0.000008 0.00000

Nf r532, s851, G51, mn /mw510, nf52, nm52, k51023/2

0.00 1.0000 0.000 0.000 1.000 0.000 0.000 1.657 1.000
0.50 0.8945 0.465 0.011 0.289 0.165 0.100 0.338 0.204
0.75 0.8001 0.747 0.040 0.143 0.299 0.180 0.153 0.0926
1.00 0.7071 1.009 0.086 0.0721 0.428 0.258 0.0739 0.0446
1.50 0.5547 1.512 0.198 0.0210 0.630 0.380 0.0211 0.0128
2.00 0.4472 2.009 0.306 0.00745 0.795 0.479 0.00745 0.00450
3.00 0.3162 3.005 0.468 0.00148 1.017 0.614 0.00148 0.00089
5.00 0.1961 4.997 0.646 0.000167 1.241 0.748 0.000168 0.00010
10.00 0.0995 10.000 0.811 0.000008 1.438 0.868 0.000008 0.00000
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in a rest state to a capillary pressurePc,r . Since the intersti-
tial volume in the medium is widely dominated by the po
volume in the rock matrix,Pc,r is related toS̄w by the law
~11! for the matrix, with n5nm and P05P0,m . When a
steady flow takes place through the fractured medium,
saturation and capillary pressure fields are not uniform~see
Fig. 12!. The volume average of the fluctuations ofSw is 0,
since S̄w is conserved. However, due to the nonlinearity
Eq. ~11!, the volume averageP̄c is not necessarily equal t
Pc,r . It was calculated for the 27 steady states obtained
the two types of fractured media. It appears that the dif
ence betweenP̄c andPc,r is negligible~see Table II!. Hence,
the volume averaged capillary pressure does not differ
tween rest state and steady flow.

Recall that in the present case the global volume aver
is equivalent to an average over the matrix only, since
fracture volume is negligible. The previous statement mi
not be valid if the matrix contained three-dimensional h
erogeneities such as lenses of a more permeable materi
this case, the concentration of the nonwetting fluid in
permeable region would induce a noticeable decrease o
saturation in the matrix.

C. Influence of the other parameters

The influence of various parameters, namely, the frac
permeabilitys8, the magnitudeG of the driving pressure
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gradient, the viscosity ratiomn /mw , and the exponentsnm

andnf , was briefly tested by varying a single parameter a
time with respect to the base case considered in Sec. V
Calculations were run for a few values of the mean satura

S̄w , on a single sample of fractured medium, containi
Nf r516 or 32 fractures. The results are given in Tables I
VI.

1. Fracture permeability

It should be recalled first that the fracture permeabilitys
depends both on the aperture and on the filling permeab
@see Eq.~5!#. In the following, the aperture was kept con
stant. Hence, variations ofs correspond to variations ofk,
which, in turn, modify the capillary properties of the fractu
@see Eqs.~11! and ~13!#.

The numerical results fors851 to 1000 are given in
Table III. Recall thats851 corresponds to the base case
Sec. V B.

Note at first that the normalized fluxK̄Kr ,w̄ for S̄w51 is
the fractured medium absolute permeabilityK̄. As observed
by Bogdanovet al. @18#, for large fracture permeabilities, i
increases asymptotically as a linear function ofs8 for the
percolating network (Nf r532), whereas it tends toward
finite limit for the nonpercolating network (Nf r516). In the
latter case, the flow rate is controlled when the fractures
very permeable by the gaps that the fluid has to cross thro
3-18
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TWO-PHASE FLOW THROUGH FRACTURED POROUS MEDIA PHYSICAL REVIEW E68, 026703 ~2003!
the matrix between the fractures.
Whens increases, the wetting fluid relative permeabil

K̄r ,w decreases, but this is merely a consequence of the
crease ofK̄; indeed, the productK̄Kr ,w̄ remains nearly con-
stant. It was already noted in Sec. V B that the fractures
not significantly contribute to the wetting phase flow wh
s851. For largers8, Sw in the fractures, and thuss r ,w , are
smaller. It can easily be checked that with the present par
eters,s r ,w decreases much faster thans8 increases. Hence
the fractures contribute even less to the wetting fluid fl

FIG. 16. Normalized phase flow ratesFn5K̄8K̄r ,n (h) and

Fw5K̄8K̄r ,w (s) corresponding to the data in Fig. 15.
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when s8 increases. Recall that this applies only when t
variations ofs result from a change of the fracture fillin
permeability.

On the other hand, the fractures are more and more s
rated with the nonwetting fluid whens8 increases. Hence
when the fracture network percolates and dominates the
bal absolute permeabilityK̄, the total permeabilityK̄Kr ,n̄

approachesK̄, and Kr ,n̄ tends toward unity. When the ne
work does not percolate, the non-wetting fluid flux increas
with s8, but it tends toward a finite limit, as doesK̄. The
global relative permeabilityKr ,n̄ first increases, and the
slightly decreases, with a maximum arounds8510.

2. Pressure gradient

Denote byG the dimensionless macroscopic pressure g
dient, i.e.,

“P5G
P0,m

R
. ~55!

It was decreased to 0.1 or increased to 10 in a few case
shown in Table IV. Of course, the global absolute~single
phase! permeability K̄ does not depend onG, and it is a
constant for each of the two parts of the Table, forNf r516
or 32.

For low saturations (S̄w<0.2), the phase relative perme
abilities are nearly unchanged by a change ofG from 1 to 10.
The variations ofKr , ī never exceed 3%.

For large saturations (S̄w>0.7), the relative permeabili
ties vary more significantly whenG changes from 0.1 to 1
Generally, bothKr ,n̄ and Kr ,w̄ slightly increase whenG in-
creases by a factor of 10. The variation is maximum (19
for the nonwetting phase with a large saturation (S̄w50.8).
However, the nonwetting phase permeability behaves in
opposite way forS̄w50.9, with a decrease by 7%.

Several mechanisms may play a role in these variatio
The spatial saturation variations increase withG, causing
local variations of relative permeability and modifying th
hydraulic interactions between the fractures. Strong gradie
may even cause the intrusion of wetting fluid in the fractur
This will be investigated in detail in a future work.

Still, these observations are quite consistent with criter
~29!. With the present parameters,Gc is equal to
A(12S)/(11S)/S. For Sw50.0995 (Gc'11), G51 and
G510 yield identical results. ForSw50.196 (Gc'6), the
results forG51 andG510 differ at most by a few percents
The same applies to the data forG50.1 andG51, when
Sw50.7 (Gc'0.8). However,Gc'0.5 andGc'0.3 for Sw
50.8 andSw50.9, respectively. Then,G51 exceeds 2Gc ,
and significant saturation changes may occur, thereby m
fying the apparent relative permeabilities with respect to
smaller gradientG50.1, by 10– 20%.

It is gratifying to note that Eq.~29! indeed provides a
reliable a priori criterion stating whether intrinsic macro
scopic relative permeabilities can or cannot be defined
will be seen in Sec. VI A that the same criterion also det
3-19



as in

BOGDANOV et al. PHYSICAL REVIEW E 68, 026703 ~2003!
TABLE III. Numerical results for individual realizations with a nonpercolating (Nf r516) or a percolating (Nf r532)
fracture network, when the fracture permabilitys8 varies with respect to the base case in Table II. Same notations
Table II.
s
d

st
h

his
tion

The
mines whether the macroscopic two-phase flow propertie
the fractured porous medium can be accurately evaluate
using a simple first-order model.

3. Viscosity ratio

A few calculations were run with a viscosity contra
mn /mw51 instead of 10 in the base case of Sec. V B. T
02670
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results in Table V show a total absence of influence of t
parameter. This also supports the macroscopic descrip
~54!.

4. Capillary functions

Finally, the exponentsnf andnm were changed from 2 to
3 in a few cases. The results are presented in Table VI.
e in Table

TABLE IV. Numerical results for individual realizations with a nonpercolating (Nf r516) or a percolating (Nf r532)

fracture network, when the macroscopic pressure gradient is changed by a factor of 10 with respect to the base cas
II. Same notations as in Table II. Lines starting with a star correspond to the predictions of model~57! and ~59!.
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TABLE V. Numerical results for individual realizations with a nonpercolating~Nf r516) or a percolating (Nf r532)
fracture network, when the viscosity contrastmn /mw is changed by a factor of 10 with respect to the base case in Tab
Same notations as in Table II.
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change ofnf induces negligible changes in the relative p
meabilities. This is because the fractures are nearly satur
with nonwetting fluid both fornf52 andnf53. A similar
behavior can be expected for any fracture capillary funct
that yieldsSw!1.

A change in the capillary properties of the rock matrix h
more dramatic effects. First, for a given initial capillary pre
surePc,r , it changes the mean saturationSw̄, as shown by
Table VI. However, for the same saturation, it also modifi
the relative permeabilities in the matrix@see Eq. ~14!#.
Therefore,Kr ,w̄ for nm53 does not correspond to the valu
obtained with the same mean saturation whennm52. For
instance, withNf r516, nm52 andSw̄50.63, an interpola-
tion of the data in Table II yieldsKr ,w̄'0.038, instead of
0.086 fornm53 in Table VI. The nonwetting phase glob
relative permeabilities are in better agreement, but this
because the model forKr ,n does not involve the exponentnm
@see Eq.~16!#.

VI. DISCUSSION

A. Comparison with a capillarity dominated model

Underlying the macroscopic description of steady tw
phase flows in terms of relative permeabilities independ
of the driving pressure gradient magnitude is the assump
that the spatial phase distribution is not significantly infl
enced by the flow, with respect to the equilibrium rest sta
This corresponds to the small value of the capillary num
~12! and to criterion~29!.
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In this approximation, the local distribution of the phas
in the pore volume is assumed to be determined by capil
forces only, and each phase flows through its own system
channels as if the other phase were immobile. Thus, the
flows are actually decoupled, and can be treated as
single-phase flows in a medium where the local permeab
is determined by saturation, via the local relative permeab
ties.

These considerations, together with the additional feat
that the fractures are nearly saturated with the nonwet
fluid, can be applied to devise a simple model for the pred
tion of the global relative permeabilities.

Recall first that the macroscopic single-phase permea
ity of a fractured medium can be written as~see Bogdanov
et al. @18#!

K̄5Kmx~r8,s8,v8!, ~56!

wherer8 is a measure of the network density, andv8 is the
hydraulic resistance of the fractures to cross flow, which
taken equal to 0 in the present case. In the following,
write in short x(s8), since the two other parameters a
fixed. The functionx was tabulated by Bogdanovet al. @18#
for various values of the density and fracture permeability
can also easily be computed for any given fractured medi
since it involves only single-phase flow.

Suppose that in the rest state the mean saturationS̄w cor-
responds to a capillary pressurePc

0 . The saturation in the

matrix Sw,m is nearly equal toS̄w , and the associated relativ
as in

TABLE VI. Numerical results for individual realizations with a nonpercolatingNf r516) or a percolating (Nf r532)

fracture network, when the exponentsnf or nm are modified with respect to the base case in Table II. Same notations
Table II.
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TABLE VII. Comparison of the full solution of the two-phase flow equations in single realizations of porous m
containing a non-percolating (Nf r516) or a percolating (Nf r532) fracture network, with models~57! and~59!. Data are for
G51, mn /mw510, nf5nm5q52, k51023/2.
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permeabilities are denoted byKr ,i
0 . The saturation in the

fractures results from Eqs.~11! and ~13!, and is generally
close to 1, except for very large mean saturationS̄w . The
corresponding relative permeabilities in the fractures
s r ,i

0 , with s r ,w
0 !1.

Consider first the wetting-phase flow. As already noted
Sec. V B, the fractures have a negligible contribution to
flow, sinces r ,w

0 !1. In the present model, the fractures
not present any resistance to cross-flow, and thus, they
neutral with respect to the wetting fluid. Hence, the wett
fluids flows through a uniform medium with apparent perm
ability KmKr ,w

0 , and the global wetting-phase relative perm
ability is

K̄r ,w5
KmKr ,w

0

K̄
5

Kr ,w
0

x~s8!
. ~57!

On the other hand, the nonwetting fluid flows through
fractured porous medium with apparent matrix permeabi
KmKr ,n

0 and fracture permeabilityss r ,n
0 . Denote bysn8 the

dimensionless ratio defined similarly tos8 for the nonwet-
ting phase@see Eq.~48!#

sn85
ss r ,n

0

LKmKr ,n
0

5s8
s r ,n

0

Kr ,n
0

. ~58!

Then, the global apparent permeability of the fractured m
dium is given by Eq.~56! as KmKr ,n

0 x(sn8), and the corre-
sponding relative permeability for the nonwetting phase

K̄r ,n5
KmKr ,n

0 x~sn8!

K̄
5Kr ,n

0
x~sn8!

x~s8!
. ~59!

Predictions~57! and ~59! are compared with the full so
lution of the two-phase flow equations in Table VII, fo
single realizations of porous media containing a nonperco
ing (Nf r516) or percolating (Nf r532) fracture network, for
various fracture permeabilitiess851 to 103 and two mod-
erate values ofS̄w , 0.32 and 0.55. The other parameters
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set as in Sec. V B. The critical gradientGc is about 4 and 2

for S̄w50.32 and 0.55, respectively; therefore, criterion~29!
is fairly well satisfied. The functionx was computed before
hand for a few values ofs8, and the values required for th
application of Eqs.~57! and ~59! were obtained by a spline
interpolation of the data.

Note first that the agreement is always very good for
wetting phase. The only significant differences are an und
estimation by about 7% for the networks of very permea

fractures (s>100) and for the largest saturationS̄w50.55.
In this situation, the fracture network seems to slightly co
tribute to the wetting fluid flow.

The agreement is also very good for the nonwetting ph
in the sample containing a percolating fracture network. T
differences between the numerical solution and the pre
tion ~59! is always less than 1%, except for the least perm
able fracturess851, where it reaches 3%.

The two previous cases are the most simple, since e
phase flows in a single domain, namely, the wetting phas
the matrix and the nonwetting fluid in the percolating fra
ture network. Nonwetting phase flow when the network do
not percolate is more complex, since the fluid has to fl
through both the fractures and the matrix.

Nevertheless, a good agreement is also observed for

nonwetting phase forS̄w50.32. Prediction~59! slightly un-

derestimatesK̄r ,n , but the difference is small. It increase
with the fracture permeability, but remains smaller than 8
for s85103.

The largest errors occur for very permeable fractures

S̄w50.55. The underestimation ofK̄r ,n by Eq. ~59! reaches
15% and 18% fors85102 and 103, respectively.

Another comparison is provided in Table IV, with numer
cal simulations for small and large values of the mean sa
ration, and different magnitudes of the macroscopic press
gradientG. In all the cases, predictions~57! and ~59! are in
excellent agreement with the full numerical solution for t
smallest value ofG, as expected in view of the simplifying
assumption of the model.
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In summary, the predictions of the model are quite sa
factory, in the range of pressure gradient defined by criter
~29!.

B. Comparison with the infinite plane model

It was shown by Koudinaet al. @32# that in the limit of
large densities, the single phase permeability of fracture
works is reasonably well approximated by a simple mode
infinite plane fractures, where the volumetric fracture are
conserved. The same applies for fractured porous m
when the fractures are very permeable, since the contribu
of the matrix to the flow is negligible. Therefore, one m
wonder whether a similar property applies for the nonwett
phase in the case of two-phase flow through fractured po
media, since the fracture transmissivity is generally mu
larger than the matrix transmissivity, even for moderates8,
due to the larger relative permeability in the fractures@see
Eq. ~58!#.

This was tested by comparing in Fig. 15~b! the results of
the full solution of the two-phase flow equations with t
analytical expression~51!, for identical fracture apertureb
and permeability ratiok. The volumetric area of the frac
tures was set in Eq.~51! in order to match the global intrinsi
permeability K̄ of the random fractured media. It appea
that Eq. ~51! does not agree with the numerical data. F
S̄w50.8, Eq.~51! overestimatesK̄r ,n by a factor larger than
two, even thoughsn8 is equal to about 20. ForS̄w50.9, with
sn8'85, the overestimation is a factor larger than 3.

Paradoxically, a better agreement is observed for sm
saturationsS̄w , where the model is less justified, sincesn8 is

not large compared to 1~e.g., sn8'2s852 for S̄w50.3).
This is probably because the fractures do not introd
strong heterogeneities, and any reasonable mixing
would yield reasonable estimates of the transport coeffici

Hence, it can be concluded that the infinite plane fract
model fails to account for the two-phase flow properties
random fractured porous media, even when the fracture d
sity is fitted to match the single-phase permeability.

VII. CONCLUDING REMARKS

We presented in this paper a numerical tool for the sim
lation of two-phase flows in fractured porous media, toget
with a set of applications that demonstrated its ability
handle steady or transient flows in complex random med

Owing to the large number of physical parameters,
scope of the simulations was necessarily restricted to a
representative situations. Still, a systematic study of the m
roscopic flow properties was conducted as a function of
global mean saturation, for two types of media contain
percolating or nonpercolating fracture networks, and the
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fluence of many other parameters was briefly addressed
Among the main results is the demonstration that the la

scale steady-state flow properties can be estimated from
rest state phase distribution, if criterion~29! is fullfilled.
However, this still requires the solution of the flow equatio
in the actual fractured medium complex geometry, since n
ther the absolute nor the relative permeabilities are ac
rately predicted by an infinite plane model for small or mo
erate fracture density. For faster flows, the phase distribu
is influenced by the fluid motion, and a full solution of th
coupled two-phase flow equations cannot be avoided. Th
the macroscopic counterpart of the property that the lo
capillary function measured in a rest state applies under fl
if, but only if, the capillary number is small enough.

Although the results correspond to certain types of c
stitutive equations~capillary function and relative perme
abilities!, many of the main features are expected to apply
a more general setting. For instance, criterion~29! may have
to be applied either to the matrix or to the fractures or in
mixed form, but it probably always applies in some sen
Similarly, time constant~34b! may actually have to be evalu
ated for the wetting or nonwetting phase, in the fractures
in the matrix, depending on which flow is physically e
pected to be limitant, but probably always have the sa
general form.

The numerical model should be extended by including
few additional features. Some are minor changes, such a
introduction of residual saturations. Hysteretic local capilla
functions can also, in principle, be easily introduced, exc
for possible numerical convergence difficulties, and wou
probably induce new types of behaviors on the macrosco
scale. Mixed-wettability cannot be accounted for in t
present implementation of the model, but could probably
introduced, provided that consistent constitutive equati
are used~see, e.g., Kjosaviket al. @47#!. Finally, fractures
can act as obstacles to the flow in their normal directions,
several reasons such as capillary effects, filling with a ma
rial less permeable than the matrix rock, or alteration of
matrix material along the fracture caused, for instance,
solute precipitation. This would result in apparent press
discontinuities on the intermediate scale of the present
scription. Technically, accounting for these effects requires
decouple the pressures on either side and in the middle o
fractures, as done by Bogdanovet al. @18# for single-phase
flow. However, capillary barriers would require addition
constitutive equations, which are apparently not yet clea
stated.
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