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[1] Flow in fractured porous media was first investigated by Barenblatt and Zheltov
[1960] and Barenblatt et al. [1960] by means of the double-porosity model. A direct,
exact, and complete numerical solution of the flow in such media is given in this paper for
arbitrary distributions of permeabilities in the porous matrix and in the fracture network.
The fracture network and the porous matrix are automatically meshed; the flow equations
are discretized by means of the finite volume method. This code has been so far applied to
incompressible fluids and to statistically homogeneous media which are schematized as
spatially periodic media. Some results pertaining to random networks of polygonal
fractures are presented and discussed; they show the importance of the percolation
threshold of the fracture network and possibly of the porous matrix. Moreover, the
influence of the fracture shape can be taken into account by means of the excluded
volume. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 3210 Mathematical Geophysics:

Modeling; 3230 Mathematical Geophysics: Numerical solutions; 5104 Physical Properties of Rocks: Fracture
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1. Introduction

[2] Consider a set of fractures which are embodied in a
porous solid matrix. An academic example of such a
medium is displayed in Figure 1; the fractures are permeable
as will be made more precise in the second Section and they
are surrounded by a permeable porous medium; both per-
meabilities may vary with space. Hence, when a fluid is
flowing through such a medium, the fractures and the porous
matrix interact. Historically, this complex situation was first
addressed by Barenblatt and Zheltov [1960] and Barenblatt
et al. [1960]. In their double-porosity model, the porous
matrix and the fracture network are viewed as overlapping
and mutually communicating continua. These papers moti-
vated many further works, since the topic is of large
industrial interest. Most natural water or oil underground
reservoirs are fractured and the major portion of these
precious fluids is stored in the porous matrix; however, they
tend to flow toward the wells through the easiest paths, i.e.,
through the fracture network. Hence, a detailed study of the
interaction between the porous matrix and the fractures is
necessary to better predict the reservoir properties.
[3] Warren and Root [1963] modeled a fractured porous

rock as an idealized system made up of identical rectangular
porous parallelepipeds separated by an orthogonal network

of fractures. Flow is assumed to take place in the fracture
network which is fed by the porous blocks. This sort of
model was further developed by Odeh [1965] for reservoirs
in which the pattern of fractures was not known.
[4] All these equations have been thoroughly studied in

the literature with many different boundary conditions. It is
not our purpose to review them here; the interested reader
may consult the following references: van Golf-Racht
[1982], Chen [1989, 1990], and Pinder et al. [1993].
[5] This type of model provides a phenomenological

description which is valid on a large scale, where the
fractured medium properties are represented by macro-
scopic effective coefficients. However, due to its continuous
character, it cannot describe singular features, such as the
interaction of a well with a single fracture of the network; it
cannot either be applied when the medium is heterogeneous
on all scales up to the field scale.
[6] Other possible approaches have been presented by

Adler and Thovert [1999]. The most important is probably
the multiscale analysis of flow through fractured porous
media which was initiated by Aifantis [1980] and extended
by Arbogast et al. [1990], Lévy [1988, 1990], and Panfilov
[1990, 1994].
[7] The present work is based on a three-dimensional

discrete description of the fracture network and of the
embedding matrix. Hence, any fracture network geometry,
any type of boundary condition and any distribution of the
fracture and matrix properties can be addressed, without
simplifying approximations. Therefore this description can
be used to investigate any type of flow or transport prob-
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lems, as well as other processes which may be considered in
future developments, such as mechanical deformation and
hydromechanical coupling, that simplified models like
equivalent pipe networks are at a loss to address. The main
drawback of this direct approach used to be its computa-
tional requirements, but thanks to the progress of the
computers it is not a real issue anymore. The numerical
tools described here are able to handle several hundreds of
fractures.
[8] The history of discrete fracture models goes about

twenty years back, with for instance the two-dimensional
model of Long et al. [1982]. Soon after, three-dimensional
fracture networks made up of disk-shaped or polygonal
fractures were addressed, but they were generally converted
into approximately equivalent networks of one-dimensional
pipes [e.g., Long et al., 1985; Cacas et al., 1990a, 1990b).
The package MAFIC, in the FRACMAN suite of Golder
Associates, still makes use of this approach [Dershowitz
and Fidelibus, 1999]. This simplification allows for fast
calculations with large networks, but interaction with the
rock matrix can obviously be accounted for only by using
an approximate description. For instance, they are intro-
duced by a one-dimensional dual-porosity approach in
MAFIC [Dershowitz and Miller, 1995].
[9] Another set of models makes use of boundary ele-

ment methods to provide a more detailed description of the
flow in the fractures [Elsworth, 1986a, 1986b; Andersson
and Dverstorp, 1987]. This accounts much better than pipe
networks for the complex hydraulic interactions of several
mutually intersecting fractures. However, the boundary
element method is ill-suited to describe the interactions
with the imbedding matrix.
[10] In a third approach, a two-dimensional mesh is

constructed on the fracture network, such as in MAFIC
(as an alternative to the pipe model), ROCKFLOW [Kaiser
et al., 1999] or FRACAS [Bruel, 2001]. Flow in the

fractures is solved by finite elements or finite volume
methods, but exchanges with the matrix, when they are
accounted for, are described by a dual porosity interaction
with unresolved blocks. The numerical model COMP-
FLOW [Unger et al., 1995] and its extension by Slough
et al. [1999] operate along the same lines, with the addi-
tional condition that all the fracture planes are orthogonal,
so that only rectangular fracture elements and matrix blocks
exist.
[11] Very few discrete fracture numerical models incor-

porate a full 3d description of both fracture and matrix flow.
PORFLOW [Runchal, 2000] was devised to model flow in
porous media, but it can accommodate a few discrete
fractures, along the elements of the mesh. The package
TOUGH2 [see, e.g., Wu and Pruess, 2000] is also originally
dedicated to porous media, and it does not incorporate
fractures as discrete elements; fractures are covered by
volume elements, and a dual-porosity model is applied.
Granet et al. [1998] mesh both the fracture and matrix
spaces, but in two dimensions only. Finally, flow in the rock
matrix may be simulated in MAFIC using a fully discretized
rock matrix; however, according to the product documenta-
tion, the fully-discretized approach becomes cumbersome as
the complexity of the fracture networks increases.
[12] The main obstacle to a full three-dimensional

description seems to be the lack of an appropriate 3D mesh
generator. A possible exception is the model of Bastian et
al. [2000], coupled with the mesh generator of Schöberl
[1997], but we are not aware of any systematic application
of this software.
[13] The purpose of this paper is to briefly present the

methodology and the first results obtained in the determi-
nation of the permeability of fractured porous media. It is a
significant extension of our previous paper on the perme-
ability of fractured media [Koudina et al., 1998]. We
address here steady state single-phase flow. The code can
be applied to case studies, in an arbitrary setting, or to
determine the macroscopic properties of a fractured medium
to be used in an upscaled description, as done in the present
case. Hence, the main contribution of this paper is to
provide a first systematic parametric study of the influence
of fracture density and conductivity on the effective macro-
scopic permeability of fractured media, based on a fully
three-dimensional discrete fracture model. Unsteady single-
phase compressible flow is addressed in the same general
setting by Bogdanov et al. [2003] and two-phase flow is
currently under investigation.
[14] This paper is organized as follows. Section 2 pro-

vides the basic equations; flow is governed by two Darcy
laws, one in the porous matrix and one in the fractures, with
two different permeabilities. In addition, a resistance to flow
perpendicular to the fracture is introduced. Then, this set of
equations is made dimensionless and the physical situation
can be characterized by a series of parameters; the most
important is the ratio between the fracture and matrix
permeabilities.
[15] Section 3 describes the discretization of the previous

system of equations, which necessitates two steps. The first
one, which is by far the more difficult, consists in the
meshing of the fracture network by triangles and of the
porous matrix by tetrahedra; the two meshes coincide on
the fractures. When this is achieved, by an advancing front

Figure 1. Example of a three-dimensional fracture net-
work made of identical polygons. The volume of size L3

contains 495 hexagons; L = 12R, where R is the radius of
the circle in which the hexagon is inscribed.
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technique, the conservation equations are discretized by the
classical finite volume method which consists of integrating
the equation over elementary volumes. Some limitations of
this technique are pointed out.
[16] The resulting numerical code is applied in Section 4

to random networks of polygonal fractures. First, regular
hexagons are used mostly to analyze the role of the
percolation threshold of the fracture network on the macro-
scopic permeability of the fractured porous rock. Then, the
influence of the fracture shape is studied; it shows again that
the results for networks of fractures with various shapes
obey a single law when expressed in terms of the dimen-
sionless fracture density defined as the number of fractures
per excluded volume. Section 5 discusses the influence of
the dimensionless fracture density. Four regimes are distin-
guished from low to very large densities. Finally, some
concluding remarks end this paper and describe some
current extensions of this work.

2. Equations

[17] Let the rock porous matrix have a bulk permeability
Km [L2] that can vary with space. The local seepage velocity
v is given by Darcy’s law

v ¼ �Km

m
rP; ð1Þ

where m is the fluid viscosity and P is the pressure. The
continuity equation for the local seepage velocity in the
porous matrix reads as

r � v ¼ 0: ð2Þ

[18] We assume that the hydraulic properties of a fracture
can be characterized by two effective coefficients, namely a
fracture permeability s [L3] and a cross resistance w [L�1].
They can be defined by considering two situations where
the main flow direction is set parallel and normal to the
fracture plane, respectively. In the first case, the flow rate js
is usually defined per unit width of the fracture; js is related
to the surface pressure gradient rs P by the two dimensional
Darcy’s law

js ¼ � s
m
rsP ð3Þ

Hence, it is clear that the fracture permeability s is
homogeneous to the cube of a length because the flux js is
taken per unit width of the fracture. This can be compared
to (1) where v is a flux per unit area. In the second case of
a flow normal to the fracture plane, the seepage velocity
v? normal to the fracture induces a pressure drop �P
given by

v? ¼ � 1

mw
�P: ð4Þ

[19] Many different situations can be described by this
simple formalism. Suppose first that the fractures are empty
and that they can be described by an equivalent aperture b;
then,

s ¼ b
3

12
; w ¼ 0 ð5aÞ

Second, suppose that the fracture has been filled by some
impermeable material (such as shales or veins); then,

s ¼ 0; w ¼ 1 ð5bÞ

Third, consider a fracture which is empty, but whose walls
have been partially clogged by some chemical,

s ¼ b
3

12
; w 6¼ 0 ð5cÞ

The last typical case is the one of a plane channel of
aperture b, filled with a porous material with permeability
Kf. The knowledge of Kf and b is sufficient to determine s
and w,

s ¼ bKf ; w ¼ b

Kf

ð6aÞ

and reversely,

Kf ¼
ffiffiffi
s
w

r
; b ¼

ffiffiffiffiffiffi
sw

p
ð6bÞ

In random fractures, the dependence of s and w on Kf can be
more complex than portrayed in (6a), (6b) [Kumar et al.,
1991], but nevertheless, the fracture hydraulic properties
can be characterized by these two effective coefficients.
Hence, the introduction of independent values s and w
enables us to describe many different situations. In the rest
of this paper, we shall mostly focus our interest on the last
case summarized by relation (6a and 6b).
[20] The mass conservation equation for the flow in a

fracture reads

r � js ¼ � vþ � v�ð Þ � n; ð7Þ

where n is the unit vector normal to the fracture plane which
can be oriented in two equivalent ways; v+ is the seepage
velocity in the matrix on the side of n and v� is the seepage
velocity on the opposite side.
[21] The transport equations (1)–(4), (7) have to be

supplemented with macroscopic boundary conditions. We
suppose here that the fractured medium is statistically
homogeneous on a scale intermediate between the field
scale and the typical fracture size; hence, its properties can
be determined on a sample whose size L is large with
respect to the fracture size and small with respect to the field
scale. A classical step [see Adler, 1992, and the references
therein], consists in replacing the whole medium by an
infinite medium composed by the juxtaposition of identical
unit cells of size L and of volume t0.
[22] Such a medium is thus spatially periodic. When a

macroscopic pressure gradient rP is exerted on it, it can be
shown [cf. Adler, 1992] that the local fields v, js and rP are
periodic functions of the space variable r; briefly speaking,
they are called spatially periodic.
[23] The overall seepage velocity ��v is defined as the

average velocity of the fluid over the unit cell; hence, it
can be evaluated as [cf. Adler and Thovert, 1999]

��v ¼ 1

t0

Z
tm
vdtþ

Z
Sf

jsds

( )
; ð8Þ
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where tm is the matrix volume and Sf is the surface of all the
fractures. This flux is related to the pressure gradient by
Darcy’s law

��v ¼ �K

m
rP: ð9Þ

Two equivalent macroscopic permeabilities can be defined.
The first one Kn [L2] is the permeability of the fracture
network only; it is relevant when the matrix contribution to
the flow can be neglected and was studied recently by
Koudina et al. [1998]. It corresponds to the steady state
effective permeability in dual porosity models, where the
matrix flow is ignored. The second one Keff [L

2] is relative
to the fractured porous medium. Since it accounts for the
matrix permeability, it is always larger than the correspond-
ing Kn.
[24] As usual in fluid mechanics, it is useful to introduce

dimensionless quantities by defining three basic character-
istic quantities: (1) typical fracture radius R, (2) typical
fracture aperture b, and (3) rock matrix permeability Km.
[25] The corresponding dimensionless variables are

denoted by primes

b ¼ Rb0 Kf ¼ KmK
0
f ð10aÞ

s ¼ RKms0 w ¼ R

Km

w0 ð10bÞ

Keff ¼ KmK
0
eff Kn ¼

s
R
K 0
n ¼ Kms0K 0

n ð10cÞ

Equations (6a), (6b) becomes

s0 ¼ b0K 0
f w0 ¼ b0

K 0
f

ð11aÞ

and reversely,

K 0
f ¼

ffiffiffiffiffi
s0

w0

r
b0 ¼

ffiffiffiffiffiffiffiffi
s0w0

p
ð11bÞ

[26] These dimensionless quantities can be immediately
used in the analysis of the various physical regimes which
may exist in a fractured porous medium. More precisely, the
influence of the fractures in the rock matrix is illustrated in
the chart displayed in Figure 2, as a function of their in-
plane and normal transport coefficients s0 and w0. It depends
a priori on the two transport coefficients (s0, w0); in the case
of a filled channel (see equations (6a) and (6b)), these two
parameters can be expressed in terms of the fracture
aperture and filling permeability (b0, K0

f).

3. Numerical Model

[27] The basic idea of the numerical model consists of
generalizing what has been done for fracture networks by
Koudina et al. [1998] to fractured porous media. This
necessitates two steps. The first one is to discretize the
fracture network and then the porous medium surrounding
the fractures in a consistent way. The second one is to
discretize the local partial differential equations in a finite
volume formulation. Recall from Section 2 that an
unbounded fractured porous medium has been assumed to

be statistically homogeneous and that it can be represented
by the juxtaposition of identical cubic unit cells. Hence, the
geometry, the local fluxes and pressure gradient are spatially
periodic functions of space.

3.1. Three-Dimensional Meshing of Fractured Porous
Media

[28] The geometry of the mesh to be generated is con-
strained by many randomly located fractures. In addition,
meshes should be routinely built for large statistical sets of
stochastically generated samples. Therefore a very robust
and fully automated meshing algorithm is required.
[29] Two main approaches exist for the generation of

unstructured grids within arbitrarily shaped regions in three
dimensions, namely Voronoi algorithms which progressively
modify an existing grid by the insertion of new points [Yuen
et al., 1991; Tacher and Parriaux, 1996; George and
Borouchaki, 1997] and advancing front techniques which
simultaneously generate grid points and mesh elements such
as tetrahedra, from the domain boundaries [Peraire et al.,
1988; Hassan et al., 1995; Hassan et al., 1996]. The
interested reader can find a general review of these
techniques in the work by Frey and George [2000].
[30] The method applied here belongs to the second

family. The fracture network is triangulated first as described
by Koudina et al. [1998]. Then the space between the
fractures is paved by an unstructured boundary-constrained
tetrahedral mesh, by an advancing front technique.
[31] The fractures provide the boundary surface enclosing

the 3D domain to be covered by the mesh, i.e., the initial
front of the generation process. It is represented by a list of
the oriented triangular faces of the 2D triangulation of the
fracture network.
[32] Then, the space is progressively covered by tetrahe-

dra. The basic step consists of adding a fourth point to an
existing triangle of the front in order to build a tetrahedron.
The new point is inserted at an equal distance d from the
three vertices of a triangle of the front, if no other grid point
is closer than d. Initially, d is equal to the maximum segment
length dM in the 2D mesh of the fracture network, but this
value is slightly modified as the process goes. Whenever
possible, tetrahedra are also formed by connecting triangles
of the front without inserting any new point. Hence, the
front is progressively deformed by insertion of new faces,
when a new point is inserted, and deletion of the existing
triangles which are used to form tetrahedra. The number of
faces in the front varies and the process terminates when it
reduces to zero. As the algorithm proceeds, one can see that
the meshed portion of space makes progress, hence the
name of advancing front technique.
[33] Three-dimensional random fracture networks may

have a very complex topology. For example, several dis-
connected fracture clusters can exist for small densities,
whereas the matrix can be subdivided by the fractures into
separate blocks for large densities. Automated procedures
had to be implemented in order to cope with these
situations.
[34] At the end of the process, the unmeshed domain

reduces to a number of small but irregular polyhedra. Local
mesh refinement is then applied in order to resolve situa-
tions which cannot be triangulated by the standard techni-
que, such as Schönhart polyhedra, whose definition is given
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by Frey and George [2000]. Actually, this technique is
much more involved than it may seem at first sight; in
particular, round-off errors play an unexpected and
important role, especially in regions where many fractures
mutually intersect.
[35] Examples of computational requirements are given

in Table 1, for various sample sizes and network densities.
The memory space increases linearly with the number Np of
grid points, whereas the computation time increases as Np

2.3.
In addition, Np is roughly proportional to the sample volume

and it increases slower than the fracture density. For
hexagons with dM/R = 1/4,

Np  18
L

R

� �3:175

r00:704 ð12Þ

Finally, the ratio of the number Nq of volume elements to
the number Np of grid points is almost constant. It ranges
from 6.1 to 6.25 for small densities r0 � 4 (including the
case of matrix without any fracture, r0 = 0), and does not

Figure 2. Influence of the fractures in the rock matrix as a function of their in-plane permeability s0 and
of their resistance to cross flow w0. In the case of filled channels described by equations (6a), (6b), the
hyperbolas

ffiffiffiffiffiffiffiffi
s0w0

p
¼ b0 correspond to constant apertures b0, radial lines s0/w0 = Kf

02 correspond to a
constant permeability Kf

0 of the filling material in the fractures, and the top right region is unphysical.
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exceed 6.37 for r0 up to 16. This shows that the mean
number of tetrahedra adjacent to a grid point is nearly
constant (equal to 25), i.e., that the volume elements are not
distorted even for very large density, when each fracture
intersects an average of 16 other ones.
[36] Figure 3 is a 3D view of a triangulated fractured

medium. The cell size is L = 4R; the cell contains Nfr = 32
fractures; the discretization parameter dM is R/4. The
triangulation contains 4575 node points, 56748 triangles
and 28374 tetrahedra. The discretization of the fractures is
also displayed in Figure 3. The distribution of the volumes
of the tetrahedra is given in Figure 4. The average volume is
2.26 10�3R3, and nearly all these volumes are ranging
between the volumes of regular tetrahedra with edge lengths

dM/2 and 2dM. The volume fraction of elements smaller than
dM/2 is 0.41%. This relatively narrow distribution is an
important feature, since it improves the numerical con-
ditioning of the discretized flow equations.

3.2. Single and Triple Control Volume

[37] The rock matrix is represented by tetrahedral volume
elements, with given permeabilities Km, and the fractures by
triangular surface elements. The pressure is evaluated at the
vertices of these elements.
[38] When the fractures are viewed as vanishingly thin,

empty or very permeable layers (w ! 0), there is no
pressure jump between two points facing each other on
the two opposite sides of a fracture (see equation 4). A
single value of the pressure can be used in the numerical
formulation per vertex of fracture element. Thus the mass
balance in the single control volume in Figure 5a is
implemented to obtain the equation for the pressure at a
node.
[39] However, if the fractures are filled with a low-

permeability material or if their walls are partially clogged
(w ^ b/Km), they are obstacles to the flow, and a pressure

Figure 3. Three-dimensional view of a triangulated
periodic fractured medium, with L = 4R, Nfr = 32 and dM =
R/4. For the sake of clarity, the edges of the fractures have
been thickened. The tetrahedral volume elements in the cubic
unit cell �2 � x, y, z � + 2 are displayed. The protuding
fractures sit astride the boundaries with the neighboring
cells.

Figure 4. Volumetric histogram of the volumes of the
tetrahedra in the meshed porous medium of Figure 3. The
dashed lines are the volumes of regular tetrahedra with edge
length dM/2, dM and 2 dM.

Table 1. Examples of Computational Requirements for the Meshing of Fractured Porous Media, With dM = R/4,

and for the Flow Solution, With s0 = 102 and the Triple Control Volume Formulation on the Fracturesa

Nfr r0 Np Nt Nq

Mesh Generation Flow Solution

Memory, MB CPU Time, s Memory, MB CPU Time, s

L = 4R 32 4 3766 45994 22997 5.7 347 26 63
L = 4R 65 8 6049 76904 38452 10.1 985 34 156
L = 4R 100 12 8122 103422 51711 15.8 1976 46 140
L = 4R 131 16 10303 130906 65453 19.0 3713 57 180
L = 6R 110 4 15167 189632 94816 19.5 7345 86 130
L = 6R 166 6 17671 223112 111556 24.4 10494 100 260
L = 8R 262 4 36194 452048 226042 52.0 76157 200 345
L = 10R 512 4 71054 887540 443770 106. 259538 400 800

aThe samples with size L3 contain Nfr hexagonal fractures. Np, Nt, and Nq are the numbers of mesh points, triangles, and
tetrahedra, respectively. The dimensionless density r0 is defined by (17). The CPU times are for a Pentium III-1GHz
workstation.
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difference can appear between their two faces. It is then
necessary to solve for these two values P ± of the pressure.
For convenience, a third value of the pressure Pf is
introduced, in the middle plane of the fracture. Three
balance equations are written, over the three control
volumes displayed in Figure 5b, to obtain the necessary
equations. The normal fluxes v± � n in equation (7) are ap-
proximated as

v� � n ¼ � 2

mw
Pf � P�� 	

: ð13Þ

More complex situations occur along the intersection line of
two fractures (with 5 values of P) and at the intersection
point of three fractures (with 9 values of P).
[40] Note that the triple control volume technique is

required even for very permeable fractures in order to address
transient compressible flows [Bogdanov et al., 2003].

[41] The balance equations for the control volumes
around each mesh point, together with pressure drop con-
ditions across the unit cell in the direction of the mean
pressure gradient rP, provide a set of linear equations for
the pressures, which is solved by using a conjugate gradient
algorithm.
[42] This solution is actually much less demanding in

computational time than the mesh generation, as shown by
the examples in Table 1, which were run with the triple
control volume formulation and s0 = 102. As a rule, CPU
time increases slower than the number of grid points,
although fluctuations exist for individual random fracture
network realizations.

3.3. Limitations of the Model

[43] In the current implementation of the discrete model,
the fracture volume is superimposed on the embedding
matrix. Therefore the presence of a fracture can only increase
the flow rate along its plane (additional conductivity) and
decrease the flow rate in the direction normal to its plane
(additional resistance). For instance, the model cannot rep-
resent the slight increase of permeability in the direction
normal to a fracture, due to the replacement of a slab of rock
by an empty layer, since this empty layer is actually added
and not substituted. Similarly, a fracture filled with a material
with very small permeability increases the permeability in
the direction in its plane, since it is added (‘‘in parallel’’) to
the matrix in its volume, and not substituted to it.
[44] Of course, the influence of these artifacts vanishes if

the added conductance or resistance, for the in-plane and
cross flows, respectively, are dominant. For the in-plane
flow, this corresponds to fractures either empty or filled
with a very permeable material

Kf � Km K 0
f � 1 s0 � b0 ð14Þ

In this situation, the artificial resistance to cross flow w0 =
b02/s0 is negligible, and the computations are valid. For the
cross flow, this corresponds to the opposite case of a low-
permeability filling

w � b

Km

K 0
f � 1 w0 � b0 ð15Þ

The artificial additional conductance along the fracture
plane s0 = b02/w0 is then negligible.
[45] When K0

f � 1, i.e., when the fracture filling material
has a permeability comparable to the rock matrix, the error
due to double contribution of the fracture volume is of the
same order of magnitude as the disturbance in permeability
induced by the presence of the fracture. However, this
situation corresponds to quasi neutral fractures, which is of
little interest.

Figure 5. (a) Single and (b) triple control volumes for the
mass balance equations at a point on a fracture.

Table 2. Validity of the Computations, According to the Fracture Transport Coefficients

s0 w0
Contribution of
In-plane Flow

Contribution of
Cross Resistance

Channel with filling (equations 6a and 6b) Kf
0 � 1 � b0 � b0 negligible accurate

Channel with filling (equations 6a and 6b) K f
0 � 1 � b0 � b0 inaccurate inaccurate

Channel with filling (equations 6a and 6b) Kf
0 � 1 � b0 � b0 accurate negligible

Channel with clogged walls (equation 5c) � b0 � b0 accurate accurate
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[46] Finally, if both s0 and w0 are larger than b0, for
instance for the channels with clogged walls described by
(5c), both in-plane and cross flows are accurately described.
These general statements are summarized in Table 2.

[47] Note that in the two situations (14, 15) where the
computations are accurate, only the fracture in-plane con-
ductance or cross resistance play a role. Hence, the macro-
scopic permeability of the fractured rock should depend on

Figure 6. Permeabilities K0
eff of individual samples, with Nfr = 4 to 65 hexagonal fractures with aperture

b0 = 0.01 in a unit cell with size L = 4R versus the fracture conductivity s0. The solid lines are the overall
statistical averages hK0

effi. The dashed and dotted lines are the averages hK0
effip and hKeff

0 inp over the
configurations containing a percolating or a nonpercolating fracture network, respectively.
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a single parameter, s0 or w0, for the conducting and insulat-
ing fractures, respectively.

4. Results

[48] Let us present in this Section the results that we
obtained and which are totally novel to the best of our
knowledge.
[49] We consider fractures filled with a permeable mate-

rial, whose transport properties are given by (6a), (6b). In
addition, we suppose that the coefficients s0 and w0 are
constant. This is obviously a simple case when compared to
real networks, but variable values could be readily intro-
duced; in this first study, the emphasis was put on the
density of the network and on the fracture shape.
[50] As shown in Figure 2, the hydraulic properties of the

fractures depend on two parameters, (s0, w0) or (b0,K0
f ),

which can be varied independently. However, the fractures
cannot simultaneously present significant in-plane conduc-
tivity and cross resistance if b0 � 1, which is the only
physically relevant situation. Then, their properties can be
described by a single parameter, either s0 or w0, for
conducting and insulating fractures, respectively.
[51] The results in the following were obtained with b0 =

0.01, which corresponds to an hyperbola very close to the
axes of coordinates in Figure 2, and they apply for any small
value of b0. Fractures with s0 > b0 are conducting and
fractures with s0 = b0 are hydraulically neutral. For s0 < b0, the
fractures are insulating, and the results should be considered
as functions of the resistance w0 = b02/s0 = 10�4/s0.

4.1. Permeability of Fractured Porous Media With
Hexagonal Fractures

[52] The fractures which compose the network are ran-
domly located. More precisely, the centers of the hexagons
are uniformly distributed over the unit cell, while their
orientation is also random and isotropic. The hexagonal
shape is chosen for its simplicity and because it is a first
approximation to a disk.
[53] The permeabilities of individual samples are plotted

in Figure 6 versus the dimensionless fracture conductivity s0

for various fracture densities. The unit cell size is L = 4R,
and it contains Nfr hexagonal fractures which ranges
between 4 and 65.
[54] It is necessary to recall the following definition [see

Adler and Thovert, 1999]; the excluded volume Vex of an
object is defined as the volume into which the center of
another object may not enter if overlap of the objects is to
be avoided. For convex polygons of constant area A and
perimeter P, Vex can be shown to be [Adler and Thovert,
1999]

Vex ¼
1

2
AP ð16Þ

The density r is defined as being the number of fractures per
unit volume. However, it will prove useful to use the
dimensionless density r0 defined as the number of fractures
per excluded volume

r0 ¼ rVex ð17Þ

It is also equal to the mean number of intersections per
fracture. Note that for disk-shaped fractures the definition
(17) differs only by a factor p2 from the dimensionless crack

density rR3 defined by O’Connell and Budiansky [1974].
However, the introduction of the excluded volume in (17)
helps unifying the results for other fracture shapes, as
shown by Huseby et al. [1997] and Koudina et al. [1998]
and in section 4.2.
[55] It is the right place to recall some general concepts

on percolation [cf. Stauffer and Aharony, 1994]. The
probability of percolation P(r0, L) of a fracture network of
density r0 embedded in a volume L3 depends on r0 and L, as
shown in Figure 7. When L is finite, for a given density,
some realizations percolate and some do not. It is only in the
limit of infinite values of L that one can define a percolation
threshold r0c below which the networks never percolate and
above which they always percolate. Huseby et al. [1997]
showed that the dimensionless value of this percolation
threshold is equal to r0c  2.26.
[56] For r0 � 1, the finite fracture networks percolate very

rarely, as can be seen in Figure 7; the global permeability
K0
eff always reaches a finite limit when s0 increases. When

s0 > 1, the medium permeability is increased by the
presence of the fractures, but when s0 becomes large
enough, the flow rate is controlled by the pressure drop in
the regions where the fluid must flow through the rock
matrix between two fractures or fracture clusters.
[57] For r0 � 1, the finite fracture networks percolate

more and more frequently. Then, the fluid can cross the
whole sample without penetrating the rock matrix. Thus,
when s0 � 1, the contribution to the flow of the embedding
rock matrix becomes negligible, and K0

eff increases linearly
with s0.
[58] In the remaining nonpercolating configurations, the

fluid still has to cross part of the rock matrix, and K0
eff

remains finite as s0 tends to infinity. However, since the
distance to travel between to fracture clusters decreases with
r0, these finite limit values of K0

eff increase with the network
density.
[59] The same data are plotted in Figure 8, versus the

network density r0. For intermediate densities r0 and large
conductivities s0, the scatter of K0

eff increases tremendously,
because of the coexistence of percolating and nonpercolat-
ing configurations.

Figure 7. Probability of percolation P(r0, L) of networks
of hexagonal fractures as a function of the dimensionless
density r0 for various sizes L = 4 (solid circles), 6 (stars), 10
(open circles) and 20 R (open squares). The data are
averages over 500 random realizations.
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[60] Finally, the overall statistical average hK 0
effi and the

averages hK 0
effip and hK 0

effinp over the samples containing a
percolating or a nonpercolating network, respectively, are
plotted against the network density r0 and against the
fracture conductivity s0 in Figure 9.
[61] These data are discussed in more details in section 5.

It might be useful to recall at the end of this subsection that
the situations where the fractures percolate or not has been
addressed by Lévy [1990] in her multiple scale analysis.

4.2. Influence of the Fracture Shape

[62] The influence of fracture shape has been investigated
by considering networks of square or icosagonal (twenty-
sided) fractures, with Nfr = 16 or 32 fractures in a unit cell
with size L = 4R, and networks of rectangular fractures with
aspect ratios a = 2 (Nfr = 32 or 64) and a = 4 (Nfr = 56 or
112) in the same unit cell.

[63] Since the excluded volume Vex depends on the shape,
the dimensionless network densities are lower (for squares
and rectangles) and larger (for icosagons), respectively, than
in networks of hexagonal fractures, for the same number of
fractures (see Table 3). Their average permeabilities hK0

effi,
hK0

effip and hK0
effinp are plotted in Figure 10 as functions of r0

and of s0. For a constant number of fractures, the
permeability is larger for icosagons than for hexagons, both
for percolating and nonpercolating networks; under the
same conditions, the permeability is smaller for squares and
rectangles than for hexagons. However, when plotted
against the density r0, all the data fall on the curves obtained
with hexagons for the corresponding conductivity s0.
[64] Hence, as it was already obtained for the permeability

of fracture networks [cf. Koudina et al., 1998], the influence
of the shape can be almost completely taken into account by
using the density r0 based on the excluded volume if the

Figure 8. Permeabilities K 0
eff of individual samples, with Nfr = 4 to 65 hexagonal fractures with aperture

b0 = 0.01 and conductivity s0 = 10�6 to 104, in a unit cell with size L = 4R, versus the network density r0.
The solid lines are the overall statistical averages hK 0

effi. The dashed and dotted lines are the averages
hK 0

effip and hK 0
effinp over the configurations containing a percolating or a nonpercolating fracture

network, respectively.
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polygon aspect ratio is close to one. Geometrical anisotropy
of individual fractures has a significant effect only
for nonpercolating highly conductive fracture systems.
Although these fractures do not create a continuous path
through the medium, the number of fractures is larger for the
same density. Thus they carry fluid over longer distances
and the flow has to cross shorter distances through the
porous matrix between neighboring fractures.

5. Discussion

[65] Various situations exist according to the network
density r0, which are illustrated in Figure 11. They yield
different behaviors which are discussed in the following
subsections.

5.1. Low Densities: R0 ��� 1

[66] As seen in Figure 7, finite fracture networks with r0 �
1 percolate very rarely. All the fractures are isolated or in

small disconnected clusters (Figure 11a). Their influence on
K0
eff is only due to local disturbances in the flow field

around each fracture. If the density is very small, one may
assume that these disturbances do not interact, and one can
tentatively evaluate K0

eff by summing the individual
contributions of each fracture.

Figure 9. Overall statistical average of the permeability hK0
effi and averages hK0

effip and hK0
effinp over

the samples containing a percolating or a nonpercolating network, respectively, corresponding to the data
in Figures 6 and 8.

Table 3. Density r0 of the Networks of Fractures With Various

Shapes Considered in Figure 10, for a Unit Cell With Size L = 4Ra

Fracture Shape Nfr = 16 Nfr = 32 Nfr = 56 Nfr = 64 Nfr = 112

Rectangular: a = 4 - - 2.0 - 4.0
Rectangular: a = 2 - 2.15 - 4.30 -

Square 1.41 2.83 - - -
Hexagonal 1.95 3.90 - - -
Icosagonal 2.42 4.83 - - -

aHere a is the aspect ratio. From top to bottom, the shape of the fractures
is closer and closer to a disk.
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[67] It can be shown that in the dilute limit, the perme-
ability of a rock matrix containing superconducting (s0 =1,
w0 = 0) or totally insulating (s0 = 0, w0 = 1) randomly
oriented and noninteracting circular fractures is given by
[Shafiro and Kachanov, 2000]

K 0
eff ¼ 1þ 32

9p2
r0 þ O r02

� 	
r0 � 1; s0 ¼ 1;w0 ¼ 0ð Þ ð18aÞ

K 0
eff ¼ 1� 8

9p2
r0 þ O r02

� 	
r0 � 1; s0 ¼ 0;w0 ¼ 1ð Þ ð18bÞ

[68] Fractures with noncircular shape can of course yield
first order corrective terms different from the values in
(18a), (18b). Moreover, the smallest network density inves-

tigated here, namely r0 = 0.487, for hexagonal fractures, is
still too large to assume that the dilute limit theory is
applicable.
[69] Nevertheless, the numerical data in Figure 12 for

small densities and s0 = 104 and s0 = 10�6 (w0 = 100) can be
fitted by equations with the same general form as (18a),
(18b), with coefficients of the same order of magnitude,
namely 0.57 versus 0.36 in equation (18a) and �0.059
versus �0.090 in equation (18b), respectively.
[70] Note that many refinements of the first order expan-

sion (18a), (18b) have been proposed in the literature [see,
e.g., McCarthy, 1991; Zimmerman, 1996], but as concluded
by Zimmerman [1996], these extensions of the dilute-limit
result cannot account for the interactions of closely spaced

Figure 10. Statistical averages of the permeability hK0
effi (Figures 10a and 10d), hK0

effip (Figures 10b
and 10e), and hK0

effinp (Figures 10c and 10f ) for samples containing fractures with various shapes, as
functions of the network density r0 (Figures 10a–10c) and of the fracture conductivity s0 for Nfr = 32
(Figures 10d–10f ) and b0 = 0.01. Data are for squares (solid squares), rectangles with aspect ratios a = 2
(solid triangles) and a = 4 (solid diamonds), and icosagons (solid circles). The solid lines correspond to
the results obtained for hexagons, i.e., to the averages in Figure 9.
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fractures, which dominate the problem close to the
percolation limit.

5.2. Intermediate Densities: 1 ��� R
00 ��� 4

[71] In this range of densities, and for the sample size L =
4R considered here, percolating and nonpercolating fracture
networks coexist in a statistical set of random realizations of
unit cells of finite extent, as shown in Figure 6.
[72] This does not induce any dramatic effect when the

fracture filling is less permeable than than the rock matrix
(s0 � b0), as shown by Figure 6. The fractures behave as
obstacles for the flow, but the rock matrix remains
continuous, and the permeability K0

eff roughly decreases as
a linear function of the network density. There is no
significant difference between the averages hK0

effip and
hK0

effinp over the percolating and nonpercolating networks.
A linear fit of the data for the hexagonal fracture networks,
with s0 = 10�6 (w0 = 100) yields

hK 0
eff i ¼ 0:9972� 0:0546r0 s0 � 1;w0 � 1; r ¼ 0:9998ð Þ ð19Þ

[73] For very conducting fractures (s0 � 1), a very
different behavior is observed between the percolating and
nonpercolating networks.
[74] Fractures in nonpercolating networks form finite

clusters, which are preferential flow paths, but unconnected
ones (see Figure 11b). For s0 � 103, the hydraulic resistance
of these clusters becomes negligible, and permeability is
controlled by the gaps that the fluid has to cross through the
matrix between neighboring clusters. Hence, hK0

effinp
becomes independent of s0. It increases with r0, since the

size of the clusters increases and their separation decreases.
hK0

effinp reaches about 10 for r0 = 3 (Figure 9). The data for
r0 > 3 are very noisy, because nonpercolating networks
become very rare.
[75] If the network percolates, i.e., if the fractures form a

connected path through the medium, Keff is at least equal to
Kn, and therefore

hKeff ip � hKnip; hK 0
eff ip � s0hK 0

nip ð20Þ

Note that the two permeabilities Keff and Kn have been
defined as direct applications of (9). Hence, hK0

effip does not
reach any finite limit when s0 increases. For finite fracture
conductivity s0, the rock matrix also contributes to the flow,
as well as fractures which are not connected to the
percolating cluster but can be reached by crossing short
gaps through the matrix (Figure 11c). For instance, with r0 =
2.5, about one third of the fractures do not belong to the
percolating cluster [Koudina et al., 1998, Table II]. Thus the
inequality in equation (20) is strict. However, the difference
between hK 0

effip and s0 hK 0
nip should decrease when s0

increases, since the contribution of the matrix to the flow
becomes negligible.
[76] This is checked in Figure 13a, where the average

hK0
effip for samples containing networks of square, rectan-

gular, hexagonal or icosagonal fractures with s0 � 102, are

Figure 11. Two-dimensional illustration of various possi-
ble situations according to the network density r0. Shaded
arrows denote short gaps that the fluid has to cross through
the matrix from a conducting fracture or cluster of fractures
to a neighboring one.

Figure 12. Permeability of samples containing low-
density networks of hexagonal, superconducting or insulat-
ing fractures versus the density r0. The symbols correspond
to individual realizations, the solid lines correspond to the
statistical average, and the dashed lines correspond to
equations (18a), (18b).
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compared with s0hK0
nip as determined by Koudina et al.

[1998], for networks of hexagonal fractures, with the same
sample size L = 4R. For instance, for r0 = 3, hK0

effip exceeds
s0 hK0

nip by a factor about 4 for s0 = 102 and by a factor
about 2 for s0 = 104.
[77] The same observations can be made in Figure 14a,

where the ratio hK0
effip/s0 is plotted as a function of r0, for

networks of hexagons and s0 = 10 to 104. For r0 < 2.5, our
data are less reliable because fewer networks percolate, and
strong statistical fluctuations result from the proximity of
the percolation threshold r0c = 2.3.

5.3. Large Densities: 4 ��� R
0 ��� 8

[78] When r0 still increases, or when r0 > r0c in a large
enough sample, the probability of percolation of the finite
fracture networks tends toward 1; for instance, it is larger
than 0.99 for r0 = 4 if L = 4R, and for r0 = 3 if L = 8R. In
addition, almost all the fractures are connected to the
percolating cluster when r0 � 4 [see Koudina et al., 1998].
[79] When fracture conductivity increases, the contribu-

tion of the matrix to the flow vanishes faster than in the
previous case of intermediate densities, because it does not
help reaching isolated fractures anymore (Figure 11d).
Figures 13b and 14b shows that the fractured medium and
fracture network permeabilities are nearly equal for r0 � 4
and s0 � 103

hKeff i  hKni; hK 0
eff i  hK 0

nis
0 r0 � 4; s0 � 103

� 	
ð21Þ

[80] For insulating fractures, there is no qualitative
change with respect to the behavior for smaller densities.
A least squares fit of all the data for r0 � 8 introduces a
quadratic correction to the first order expansion (19)

hK 0
eff i ¼ 1:0010� 0:0604r0

þ 0:0014r02 s0 � 1;w0 � 1; r ¼ 0:99996ð Þ ð22Þ

5.4. Very Large Densities

[81] Very dense networks were not investigated in this
study, but some trends can be extrapolated from the pre-
vious results.
[82] For very conducting fractures, the fractured rock

permeability is expected to remain equal to the fracture
network permeability, as stated by equation (21).
[83] For insulating fractures, a regular decrease of K0

eff,
such as the one predicted by equation (22), can be expected
as long as the rock matrix remains well connected. A
transition to another regime should take place only when the
fracture density is so large that the rock is partitioned into
disconnected finite blocks, and the fluid has to cross the
fractures in order to travel through the sample. A rough
estimate of the density corresponding to this transition can
be derived as follows.
[84] The density of finite solid blocks bounded by the

fractures was obtained by Huseby et al. [1997] and Adler
and Thovert [1999] as

r0b  5:710�5r04:46 ð23Þ

The volume fraction fb of finite blocks is

fb ¼
Vb

Vex

r0b ð24Þ

where Vb is the average block volume, and Vex the fracture
exclusion volume. The largest tetrahedral block which can
be obtained from the intersection of four fractures has a
volume Vb ¼

ffiffiffi
6

p
R3=4, i.e., Vb/Vex = 0.062. Therefore the

rock matrix is not expected to stop percolating ( fb = 1)
below r0  17. Huseby et al. [1997] have built thousands of
fracture networks, with various fracture shapes and r0 up to

Figure 13. Average permeabilities (a) hK 0
effip and (b)

hK0
effi in porous samples containing networks of square

(solid square), rectangular with aspect ratios a = 2 (solid
triangles) and a = 4 (solid diamonds), hexagonal (solid
inverted triangles) or icosagonal (solid circles) fractures,
with conductivities s0 = 102, 103 or 104. The solid line and
open symbols correspond to s0 hK0

nip (a) and s0 hK 0
ni (b), as

determined by Koudina et al. [1998], for networks of
hexagonal fractures (solid lines) and rectangular fractures
with aspect ratios a = 2 (open triangles) and a = 4 (open
diamonds).
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16, and never observed a complete partition of the matrix
into finite blocks.

6. Concluding Remarks

[85] The permeability of a fractured porous medium has
been investigated by a direct approach which takes into
account the real geometry of the fracture network and the
distribution of the physical properties. This approach
required the development of a new software.
[86] Its application in this paper was limited to domains

with spatially periodic boundary conditions, but other con-
ditions can be easily implemented in the code in its present
version.
[87] These results have shown the importance of the

percolation threshold of the fracture network, which has
been specifically addressed in Section 5.2. In Section 5.4, a
second percolation threshold which occurs for large den-

sities when the porous matrix stops percolating, is tenta-
tively discussed. Moreover, the shape of the fracture can be
taken into account by means of the excluded volume.
[88] The summary of the results in Figure 14 also shows

that the contribution of matrix flow to the global effective
permeability Keff is very important for small and inter-
mediate fracture densities, and that it is still significant even
for large densities when the fractures are poorly conducting.
This demonstrates the interest of the present approach. The
difference between Keff and its approximation Kn used in
dual porosity models can only be quantified by actually
solving the flow equations in the fully discretized fracture
and matrix domains.
[89] This study of flow through fractured porous media

has been extended to single-phase compressible flow [Bog-
danov et al., 2003]. Transient multiphase flows are currently
investigated, and coupling between hydrodynamic and
mechanic phenomena will be addressed in a near future.

[90] Acknowledgments. Most computations were performed at
CINES (subsidized by the MENESR) whose support is gratefully acknowl-
edged.
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