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[1] A general three-dimensional numerical model for single-phase, slightly compressible
flow through fractured porous media is introduced. It is based on a discrete fracture
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with various fracture densities and conductivities. The well pressure response can be
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1. Introduction

[2] This work addresses single-phase, slightly compres-
sible flow through fractured porous media. A very general
three-dimensional numerical model based on a discrete
fracture representation is proposed, together with an appli-
cation to the simulation of pressure drawdown well testing,
which is an established and widely used technique for the
evaluation of formation transport properties. It consists in
measuring the pressure response to flow from a well,
generally under nonstationary conditions.
[3] Owing to the specific transport properties of fractures,

the flow through a naturally fractured porous medium
differs drastically from that in a conventional porous
medium formed by intergranular porosity. The key feature
is that the porous matrix provides the main storage for the
fluids, while transport takes place mainly through the
fracture system. Furthermore, matrix/fracture flow interac-
tions govern many of the medium transport properties.
Because of the complexity and diversity of most natural
fracture systems, the determination of fractured porous
media transport properties remains an open issue of great
practical importance. For instance, the present numerical
tool can be applied for the interpretation of well test data, in
order to quantify the characteristics of a reservoir or,
conversely, to optimize the design of a producing well,
given the reservoir characteristics.
[4] The numerous existing models of transient, slightly

compressible flow through fractured porous media are

actually based on few different approaches. Since the early
1960s, when it was first proposed by Barenblatt and Zheltov
[1960], the model based on the concept of two overlapping
continua underlies the theory of flow through double-
porosity media. The model has been used extensively for
decades starting from the generalization proposed by War-
ren and Root [1963] with media consisting of rectangular
porous parallelepipeds. Many analytical treatments in the
framework of this model have been presented in the review
article by Chen [1989]. Recently, Reis [1998] and Gwo et al.
[1998] allowed for a larger degree of randomness, by
incorporating in the model field observations of fracture
spacing distribution.
[5] The discrete approach allows a more detailed descrip-

tion of the matrix/fracture flow interaction accounting for
the flow behavior in individual elements of the medium. It
has been applied successfully for a variety of regular finite
or infinite fracture systems [see, e.g., Snow, 1969; Wilson
and Witherspoon, 1974; Boulton and Streltsova, 1977a;
Young, 1992; Shikaze et al., 1998].
[6] In contrast with the previous analytical or finite

difference numerical approaches, Noetinger and Estebenet
[2000] describe a continuous-time random walk method to
model transient flow in fractured rocks, and use it to
determine the exchange coefficient involved in a dual-
porosity formulation. Applications are restricted to small
two-dimensional (2-D) regular test cases, but the approach
should be applicable to more complex networks.
[7] An interesting approach for very dense fracture sys-

tems originated from the analysis of the multiple length
scales in natural fracture networks and was motivated by the
analogy with diffusion on fractals. Acuna and Yortsos
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[1995] proposed such a model and numerically investigated
the pressure transient response of finite fractals. Mo et al.
[1998] describe a fracture network flow model based on
algebraic topology, and analyze their results in relation to
percolation theory. However, in both works, the matrix is
impermeable and flow is restricted to the fracture network.
[8] Direct numerical determination of the permeability of

fractured porous media was addressed by Koudina et al.
[1998] and Bogdanov et al. [2002]. Their numerical model
makes use of a full 3-D description of the discrete fracture
system, and the steady single-phase flow equations are
solved in periodic porous unit cells containing arbitrary
random fracture networks. Integration of the local flow field
yields the macroscopic permeability.
[9] We present in this paper an extension to unsteady

compressible flow of the numerical models of Koudina et
al. [1998] and Bogdanov et al. [2002], and applications to
the simulation of pressure drawdown well tests in various
model situations.
[10] This paper is organized as follows. The governing

equations are presented in section 2 for the flow in the rock
matrix, in the fractures, and in the well and for their coupling.
A list of the symbols and notations is provided in Table 1.
[11] Then the numerical model is described in section 3.

This includes first the construction of an unstructured three-
dimensional mesh of the fractured medium, where discrete
fractures are represented by surface elements. The well is
introduced in a second step and does not have to coincide
with edges of the mesh. The partial differential equations
are discretized in a finite volume fully implicit formulation,
with particular care taken about the description of the
exchanges between the well and its surroundings.
[12] In section 4, a few classical analytical solutions for

wells in unfractured media are recalled and used to assess
the performances of the numerical model.
[13] Analytical results for a well intersecting a single

fracture are reviewed in section 5.
[14] Finally, randomly fractured media are addressed in

section 6. Examples of pressure drawdown curves are
presented first. They give rise to a variety of behaviors,
which are discussed in comparison with the case of the well
intersecting a single fracture. Then wells at various loca-
tions in media with various fracture density and conductiv-
ity are considered. The well pressure response is shown to
depend on its interconnectivity with the fracture network.
For long times, it can be modeled as a well in a homoge-
neous medium with an apparent radius, which is generally
larger than its real radius and depends on the density of
well/fracture intersections.
[15] Some concluding remarks are given in section 7.

2. Governing Equations

[16] The fractured porous medium can be represented as
an arbitrary, generally random, set of fractures embedded
into a solid porous matrix whose physical properties may
vary with space. The fractures may intersect or not. They
also interact by means of flow through the adjacent volumes
of porous matrix. Hence pressure is continuous throughout
the medium.
[17] However, at the large scale, each fracture can be

viewed as vanishingly thin, with transport properties that
generally differ drastically from those of the ambient porous

matrix, and may be considered as a surface of singularity.
For instance, a steep pressure gradient may exist across a
poorly conducting fracture, which results in an apparent
pressure jump at the macroscopic scale. Similarly, the flow
rates normal to the two surfaces of a very conducting
fracture may differ significantly. In addition, the typical
time for pressure variations in transient flows is quite
different in the matrix and in the fractures.
[18] The discrete fracture model used in the present work

explicitly accounts for these features. Therefore it allows
detailed investigations of transitory flow regimes and of the
influence of the well intersections with the fracture network.

2.1. Flow in the Porous Matrix

[19] Consider a porous matrix with a bulk permeability
Km [L2] which may vary with space. Darcy law can be
written for the local seepage velocity v in the matrix

v ¼ �Km

m
rP; ð1Þ

where m is the fluid viscosity and P is the pressure. The
continuity equation for slightly compressible flow reads as
follows:

�mCm

@P

@t
þr � v ¼ dwJw ð2Þ

where �m and Cm are the matrix porosity and total
compressibility, respectively. The source term Jw on the
right-hand side of equation (2) represents the exchanges with
the well. The Dirac function dw has dimensions [L�2] (length
of well per volume) and Jw has dimensions [L2T �1] (flow
rate per unit length of well). On the scale of description used
here, the well appears as a line without thickness.
[20] If the volumetric capacity �mCm is constant, equation

(2) can be written as

@P

@t
�r � DmrPð Þ ¼ dwJw

�mCm

; Dm ¼ Km

m�mCm

ð3Þ

where Dm is the matrix pressure diffusivity.

2.2. Flow in Fractures

[21] We assume that the hydraulic properties of a fracture
can be characterized by two effective coefficients, namely, a
conductivity s [L3] and a cross-resistance w [L�1] [see
Bogdanov et al., 2002]. The first coefficient relates the flow
rate j per unit width of the fracture to the surface pressure
gradient rsP by the two-dimensional Darcy’s law

j ¼ �s
m
rsP ð4aÞ

where rs is the gradient operator restricted to a surface,
rs = (I � nn) � r. Here I is the unit tensor and n is the
normal vector to the fracture plane. The second coefficient
relates the pressure drop �P across a fracture to the
normal seepage velocity v?

v? ¼ � 1

mw
�P: ð4bÞ
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[22] For illustration, the fracture can be viewed as a plane
channel of aperture b, filled with a porous material with
permeability Kf, porosity �f, and total compressibility Cf.
Then s and w are given by

s ¼ bKf ; w ¼ b

Kf

ð5Þ

A nonzero resistance w may exist even for totally open
channels, if their walls are partially clogged by a deposited
chemical. Onur and Satman [1998] examined the influence
of such a fracture skin on the well pressure response, in the
framework of a double-porosity description.
[23] The continuity equation for the flow through a

fracture reads as

b �f Cf

@P

@t
þrs � j ¼ v� � vþð Þ � nþ bdwJw ð6Þ

where v+ is the seepage velocity in the matrix on the side of
n and v� is the seepage velocity on the opposite side. These
velocities are given by equation (1). Again, if b�f Cf is
constant in a fracture, a pressure diffusivity Df can be
defined, and equation (6) can be written as

@P

@t
�rs � DfrsP

� �
¼ v� � vþð Þ � n

b�f Cf

þ dwJw
�f Cf

; Df ¼
s

bm�f Cf

ð7Þ

[24] The intersection line I ij of two fractures Si and Sj is
supposed to have no specific contribution to the flow; thus
the flow rates from I ij to the adjacent fractures sum up to
zero. Let Nij and Nji be two vectors perpendicular to the
intersection I ij which lie in the two fractures Si and Sj,
respectively. Then

Nij � jþi � j�i
� �

þ Nji � jþj � j�j

� �
¼ 0 ð8Þ

where ji
+ (resp. ji

�) is the flux in Si on the side of (resp.
opposite to) Nij.
[25] Note that the simplifying assumptions of uniform

�mCm and b�f Cf used to write down the diffusion equations
(3) and (7) and for the simulations in the present work are
by no means a requirement for the numerical model, since
the discretized equations are really based on the general
equations (2) and (6).

2.3. Flow in the Well

[26] We assume that the flow within the well is laminar
and quasi-steady. The latter assumption implies that storage
effects in the well casing are negligible over a time step.
Thus we obtain the following one-dimensional balance
equation for a quasi-steady flow along the well axis [see,
e.g., Sudicky et al., 1995]

Kw

m
@2Pw

@s2
� Jw sð Þ þ Qwd s� shð Þ ¼ 0 ð9Þ

where Pw is the well pressure, s is the distance along the
well from its head at sh, Qw is the total pumping rate applied

at the well head, and d is the Dirac function. The well
hydraulic conductivity Kw [L4] can be evaluated from the
Hagen-Poiseuille equation for flow in a circular pipe,

Kw ¼ pr4w
8

ð10Þ

where rw is the well radius. Since rw
2 
 Km and rw 
 b, the

well is highly conductive with respect to both the matrix
rock and fractures. When pressure variations along the well
are neglected, equation (9) reduces to

Pw sð Þ ¼ Psh ð11Þ

2.4. Overall Boundary Conditions

[27] Standard boundary conditions in reservoir engineer-
ing are either of Dirichlet type, with an imposed far-field
pressure P1, or of Neumann type, with no-flux conditions
at the boundaries of a closed reservoir. Both types of
conditions can be applied in the present model. However,
since the investigated domain is necessarily finite in numer-
ical simulations, these conditions have to be applied on the
boundaries @t of a finite domain t,

P ¼ P1; on @t ð12aÞ

or

v � nt ¼ 0; j � nt ¼ 0; on @t ð12bÞ

where nt is the unit vector normal to @t.
[28] In practice, a parallelepipedic cell t was used in all

the simulations. The well was always set along a straight
line parallel to the z-axis, throughout the cell, and spatial
periodicity was applied in the x-, y- and z-directions for the
system geometry and for the pressure and flow fields.
Hence this situation corresponds to a periodic square array
of infinite vertical wells. Because of periodicity, no-flux
surfaces exist in the three directions, which correspond to
the cell boundaries @t; this no-flux condition is exact for
simple axisymmetric cases and only approximate for more
complex cases such as randomly fractured media. Two
successive horizontal no-flux surfaces can be regarded as
the bottom and ceiling of a producing layer between
impervious barriers. Similarly, the vertical no-flux surfaces
can be interpreted as the lateral boundaries of a closed
reservoir.
[29] Of course, given the characteristics of an actual

reservoir, this periodicity condition can be straightforwardly
replaced by conditions (12) on an arbitrary surface @t.
[30] All the simulations reported here correspond to a

pressure drawdown test, i.e., to a well producing at constant
rate Qw from a field initially at rest

P r; t ¼ 0ð Þ ¼ P0 ð13Þ

The initial pressure P0 is arbitrary and can be taken as P0 = 0
without loss of generality. Qw corresponds here to the flow
rate from the portion of the well contained in a single cell of
the periodic medium. If the pressure variations along the
well are taken into account, the imposed flux Qw is built in

BOGDANOV ET AL.: PRESSURE DRAWDOWN WELL TESTS SBH 11 - 3



the conservation equation (9). If the simplified equation (11)
is applied, Psh has to be determined from the condition

Z
well\t

Jw sð Þds ¼ Qw ð14Þ

2.5. Dimensionless Formulation

[31] Dimensionless variables, denoted by primes, can be
introduced by using characteristic quantities of the problem.
A possible choice, based on the system properties b, R, Km,
m, and Dm and on a typical pumping rate Q, is

r ¼ Rr0; t ¼ R2

Dm

t0; P ¼ mQ
RKm

P0 ð15aÞ

v ¼ Q

R2
v0; j ¼ Q

R
j0; Jw ¼ Q

R
J 0w ð15bÞ

Kw ¼ R2KmK
0
w; Qw ¼ QQ0

w; ð15cÞ

s ¼ R Kms0; w ¼ R

Km

w0; h ¼ �f Cf b

�mCmR
ð15dÞ

The unit scale R is a characteristic lateral extent of the
fractures; for instance, it can be the radius of the circle into
which the fracture is inscribed; r is the vector which denotes
the position with respect to a fixed reference frame.
[32] Other choices are possible. In particular, the well

radius rw can be used as the characteristic length scale
instead of the fracture size R. This is appropriate to describe
the very early stage of a well test, when the flow is confined
very near to the well [Earlougher, 1977]. This length scale
is not used in this paper. Alternatively, the size of the
drainage area A of a closed reservoir can be used as length
unit, as done in section 4 (see equation (37)).
[33] As an illustration of the definition (15), for an oil

with viscosity 10�2 Pa s, compressibility 0.3 � 10�8 Pa�1,
a porosity �m = 0.1 and a permeability Km ranging from 1
mD to 1 D, Dm ranges from 3 � 10�4 to 0.3 m2 s�1, and the
timescale R2/Dm from 5 minutes to 3 days for R = 10 m and
from 10 hours to 1 year, for R = 100 m.
[34] Note that all the dimensionless quantities are denoted

by a prime, and they are implicitly defined by equation (15).
For instance, the aperture b, with the dimension of a length,
is made dimensionless by R

b0 ¼ b

R
ð16Þ

and the same is done for other quantities.
[35] With the definitions (15), the complete set of gov-

erning equations then reads in the matrix,

v0 ¼ �r0P0;
@P0

@t0
� r02P0 ¼ d0wJ

0
w ð17aÞ

in the fractures,

j0 ¼ �s0r0
sP

0; v0? ¼ � 1

w0�P0;

@P0

@t0
� s0

h
r02P0 ¼ v�0 � vþ0ð Þ � n

h
þ b0

h
d0wJ

0
w

and in the well

K 0
w

@2P0
w

@s02
� J 0w sð Þ þ Q0

wd
0 s0 � s0h
� �

¼ 0 ð17cÞ

Equations (17b) and (17c) show that the problem is
governed by five dimensionless numbers, relative to the
fracture (b0, s0, w0, h) and well (K 0

w) properties.
[36] In the present work, we only consider very conduct-

ing fractures and neglect pressure variations along the well.
Unless otherwise stated, all the results are given for w0 ! 0,
K 0

w ! 1, b0 = h =10�3, and s0 
 1.

3. Numerical Model

[37] We will consider in the present work both simple
deterministic test configurations and more realistic and
complex randomly fractured porous media. Whereas spe-
cific discretization techniques could be used in the first
situations, for instance, with local grid refinements [see,
e.g., Banerjee et al., 2000], we are really interested in the
latter case where geometrical randomness requires great
flexibility.
[38] The numerical model is a generalization of what has

been done for flow in fracture networks by Koudina et al.
[1998] and for flow in fractured porous media by Bogdanov
et al. [2002].
[39] The simulations consist of two steps. The first step is

to discretize the system geometry, i.e., the fracture network,
the porous medium surrounding the fractures, and the well,
in a consistent way. The second step is to discretize the
partial differential equations (2), (6), and (9), in a finite
volume, time-implicit formulation.

3.1. Triangulation of Fractured Media
and Description of the Well Geometry

[40] In order to pave the whole space with tetrahedra, the
fracture network is triangulated first as described by Kou-
dina et al. [1998], by an advancing front technique, starting
from the fracture contours and intersection lines. Then the
space located in between the fractures is also paved by an
advancing front technique, as described by Bogdanov et al.
[2002]. The fractures provide the boundary surface enclos-
ing the 3-D domain to be covered by the mesh, i.e., the
initial front of the generation process. The basic step
consists of adding a fourth point to the existing triangles
in order to build a tetrahedron; hence the space is pro-
gressively covered by tetrahedra. The scale of the discre-
tization is controlled by a typical spacing dM between the
mesh points. Actually, this technique is much more
involved than it may seem at first sight; the position of
the fourth point has to be carefully checked so that the
additional tetrahedron does not overlap with previous
elementary volumes and so that it does not cross any
fracture.
[41] A 3-D view of an example of a triangulated

fractured medium is displayed in Figure 1a. The fractures
are hexagons which are inscribed in circles of radius R.
The cell size is L = 4R; the cell contains Nfr = 32 fractures.
The triangulation with dM = R/4 contains 4575 node
points, 56748 triangles, and 28,374 tetrahedra. The dis-
cretization of the fractures is also displayed in this figure.
The samples used in section 6 are actually larger than this

(17b)
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example, with L = 6R (see Figure 1b); they typically
contain 2 � 104 nodes, 2 � 105 triangles, and 105

tetrahedra.
[42] In a subsequent step, the well is superimposed on the

3-D unstructured mesh, as described in section 3.2.3. For
any given well geometry, the intersections of the well with
the triangles of the numerical mesh are determined. This
yields on one hand the locations of the intersections of the
well with fractures and, on the other hand, the end points of
the well segments contained in the matrix tetrahedral
volume elements.
[43] Note that the initial triangulation is performed with-

out considering the well. A possible alternative is to take the
well into account from the start during the construction of
the mesh, so that mesh points would be distributed with
arbitrary spacing right on the well. However, the 3-D
triangulation of complex media is a time-consuming step.
The present procedure allows one to perform it only once
for a given medium, and then to vary the well geometry or
location at negligible cost.
[44] The typical size dM of the volume and surface

elements has to be set small in comparison with the
typical size R of the fractures, for a good rendering of
the fractured medium geometry, and large in comparison
with the well radius rw, since the well is considered as a
line without thickness in the numerical model. Recall also
that rw is supposed to be large in comparison with the
fracture aperture. Finally, in the present simulations, we
only consider highly conducting fractures, which implies

that b2 is large in comparison with Km. This hierarchy of
scales can be summarized as

ffiffiffiffiffiffi
Km

p
� b � rw � dM � R ð18Þ

3.2. Finite Volume Formulation

[45] When the triangulation step is completed, the rock
matrix is represented by tetrahedral volume elements, with
given properties �m, Cm, and Km, and the fractures by
triangular surface elements with given properties �f, Cf, b,
s, and w. All these parameters can be set independently,
on a per-element basis. The pressure is evaluated at the
vertices of the surface and volume elements (open circles
in Figure 2c). The well is represented by a series of
segments in the volume elements that it crosses. The
pressure in the well is evaluated at the midpoints of these
segments and at the intersection of the well with fractures
(black dots in Figure 2c).
[46] However, according to equation (4b), pressure may

take different values in the matrix on either sides of a
fracture. It is therefore necessary to solve for these two
values P± of the pressure (see Figure 2b). A third value of
the pressure Pf is introduced, in the middle plane of the
fracture, which is used for equation (6) in the fracture.
More complex situations occur along the intersection line
of two fractures (with 5 values of P) and at the intersection
point of three fractures (with 9 values of P).

Figure 1. Three-dimensional views of triangulated periodic fractured media. The illustrative example in
Figure 1a contains Nfr=32 hexagonal fractures with circumscribed radius R. The cell size is L = 4R, and
dM = R/4. For the sake of clarity, the edges of the fractures have been thickened. The tetrahedral volume
elements with their centers in the cubic unit cell �2 R � x, y, z � +2 R are displayed. The protruding
fractures sit astride the boundaries with the neighboring cells. The sample in Figure 1b is one of those
used in section 6, with L = 6R, Nfr = 166, and dM = R/4. The intersections of the fractures (thick lines) and
of the tetrahedral volume elements with the cell boundaries are shown.
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[47] The equations for the node pressures are obtained by
integration of the balance equations (2), (6), and (9) over a
control volume � around each mesh point.
[48] Several types of control volumes exist, according to

the location of the mesh point, in the bulk of the rock matrix
or on a fracture, with or without a well nearby. These
different situations are considered below.
3.2.1. Control Volume in the Rock Matrix
[49] Let us start with the simplest case of a node point in

the bulk of the matrix, without a well nearby. This situation
is depicted in Figure 2a. The control volume � is made up of
one fourth of all the tetrahedral volume elements incident to
the point under consideration. The continuity equation (2) is
integrated over the volume �, with application of the
divergence theorem to convert the flux divergence into a
surface integralZ

�

�mCm

@P

@t
þr � v

� 	
dv ¼

Z
�

�mCm

@P

@t
dvþ

Z
@�

n � v ds ¼ 0

ð19Þ

Recall that the matrix properties �m, Cm, and Km are taken as
uniform over each tetrahedral volume element. The seepage
velocity v in each tetrahedron is evaluated from equation (1),

where the pressure gradient is deduced from the pressures at
the four vertices. Thus v is piecewise constant over @�, and it
is a linear combination of the pressure at the center point and
at the neighboring mesh points. Therefore, after cumbersome
but straightforward calculations, the balance equation (19)
can finally be written as a linear equation relating the
pressures Pi at point i and Pj at surrounding points

Ci

@Pi

@t
¼

X
j

Mij Pj � Pi

� �
ð20Þ

where the summation is taken over all neighbors j. Ci is the
volume integral of �mCm over �i. The matrix of coefficients
Mij depends on the geometry of the control volume and on
the permeabilities Km of the volume elements it intercepts. It
is symmetric, since the fluid exchange between the control
volumes �i and �j around the points i and j is evaluated in
the same way when equation (19) is applied to �i and �j,
which ensures global mass conservation.
3.2.2. Mesh Point on a Fracture
[50] As already mentioned, three pressures P± and Pf are

defined for a mesh point on a fracture F. To obtain the
necessary equations, three balance equations are written,

Figure 2. Control volumes around a point in the matrix (a) and on a fracture (b). Two-dimensional
illustration of the introduction of the well in the mesh (c). Well intersection with a fracture surface
element (d), and with a matrix volume element (e).
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over the three control volumes depicted in Figure 2b, �±

on either side of the fracture and �f in the fracture.
[51] The volumes �± are treated as in the previous case,

with an exchange term q± with the fracture added to
equation (19)Z

��
�mCm

@P�

@t
dvþ

Z
@���F

n � v ds ¼ q� ð21aÞ

�f is made of one third of each triangular surface elements
adjacent to the point under consideration. Equation (6) is
integrated over �f, which yieldsZ

�f

b�f Cf

@Pf

@t
dsþ

Z
@�f

n � j dl ¼ q� � qþ ð21bÞ

The flux j in each triangle intercepting �f is evaluated from
equation (4a) where rsP is a linear combination of the
pressures at the triangle vertices. Finally, in agreement with
equation (4b), the exchange terms q± are modeled as

q� ¼
X
j

2Aj

mwj

P� � Pf

� �
ð21cÞ

where the summation runs over the triangles Tj intercepting
�f ; Aj is the area of �f\Tj. The balance equations (21a) and
(21b) yield three linear equations with the same form as
equation (20).
[52] More complex situations occur at the intersection of

two or three fractures. Four or eight matrix control volumes
are then in contact with �f, each of them exchanging fluid
with the fractures through two or three interfaces. On the
other hand, on a fracture edge, a single matrix control
volume surrounds �f, with fluid exchange through two
interfaces. Equations (21a)–(21c) can be straightforwardly
extended to handle such situations.
[53] It should be mentioned here that for fractures with

small cross resistance (w0 < 1), the pressures P± on the faces
are always very close to Pf, as can be expected. However,
this means that fluid can be quasi-instantaneously trans-
ferred between the fracture and the matrix in the neighbor-
ing control volumes �±. Thus a storage volume per unit area
of fracture of the order of dM�mCm is added to the theoretical
value b�f Cf. Although the flow rate along the fracture in a
stationary situation is not modified, this results in a large
decrease of pressure diffusivity, with an apparent diffusivity
coefficient

D̂f �
b�f Cf

dM �mCm

Df ¼
h
d0M

Df ð22Þ

This effect will be illustrated on an example in section 5.
3.2.3. Intersection of the Well With Surface and
Volume Elements
[54] The well is treated as a one-dimensional highly

conductive system superimposed on the medium. Accord-
ingly, it can be viewed as a line source or sink in the
fractured porous medium, decomposed into elementary
parts corresponding to its intersections with the grid surface
and volume elements. Thus the approach which has recently
been successfully implemented by Sudicky et al. [1995] is
generalized here to unstructured meshes; moreover, the well
does not necessarily follow edges of the mesh.

[55] If the well intercepts a control volume, the source
terms involving Jw in equations (2) and (6) have to be added
to the balance equations (19) and (21b). Recall that the
pressure in the well is given at the midpoints of the
segments contained in the tetrahedral volume elements
and at the intersections of the well with the fractures (see
Figure 2c). Therefore we need to model the exchanges
between the well and the fractured medium, in order to
relate Jw to the instantaneous pressures in the well and in the
surrounding mesh points.
[56] Consider first the simple case of a well crossing at w

a triangular element T on a fracture with vertices w + ri, i =
1, 2, 3. Denote by Pw and Pi the pressures at w and w + ri,
respectively (Figure 2d). The well radius rw is assumed to
be negligible in comparison with the triangle size dM.
[57] It is natural to model the pressure field in T as the

superposition of a global trend, induced for instance by a
large-scale transverse flow and represented in T by a
constant pressure gradient G and of a disturbance induced
by the presence of the well, modeled according to analytical
solutions. For a linear well in a closed reservoir with
permeability K (in the pseudo steady regime), or in an
unbounded homogeneous medium (for time t large in
comparison with r2/D), the pressure field at distance r from
the well is given by (see section 4)

P r; tð Þ ¼ Pw tð Þ þ m Jw tð Þ
2pK

ln
rw

r

� �
ð23Þ

Assuming that sufficient time has elapsed since the
beginning of the well test, so that equation (23) is
applicable, this superposition yields the pressure at the
triangle vertices

Pi tð Þ ¼ Pw tð Þ þ G � ri þ
mbJw tð Þ
2ps

ln
rw

ri

� 	
ð24Þ

[58] Equation (24) can be solved to obtain Jw as a linear
combination of the differences Pw � Pi, which is the desired
relationship. Furthermore, the flux Jw from the well to the
surface element T can be distributed among the control
surfaces containing the three triangle vertices in proportion
to the corresponding differences Pw � Pi (see Figure 2d)

Jw;i ¼
Pw � Pi

Pw � Pj

� �
a

Jw ¼ aiJw ð25Þ

where ai is the areal coordinate of w in T [Huyakorn and
Pinder, 1983] and h ia denotes an average weighted by the
ai. The quantity bJw,i can be directly added to the right-hand
side of the discretized equation (20).
[59] A similar approach can be applied to the interaction

of a well segment with a matrix volume element (Figure 2e).
Suppose a well segment of length l centered at w is
contained in a tetrahedral volume element �. The model
is still based on the theoretical result (23), and the pressures
at the tetrahedron vertices are given by

Pi tð Þ ¼ Pw tð Þ þ G � ri þ
mJw tð Þ
2pKm

ln
rw

bri

� 	
ð26Þ
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where b is a geometrical factor accounting for the
difference between the distance ri from the vertices to the
midpoint rw of the well segment and the projected distance
from the vertices to the well. For unstructured meshes, b
may be evaluated as an averaged cosine of the angle
between ri and well direction. As equation (24), (26) can be
solved to obtain Jw as a linear combination of the
differences Pw � Pi. Then the total flux Jw from the well
segment to the matrix in the tetrahedron is distributed
among the control volumes containing the four vertices of
� in proportion to the corresponding differences Pw � Pi

(see Figure 2e)

Jw;i ¼
Pw � Pi

Pw � Pj

� �
v

Jw ¼ viJw ð27Þ

where vi is the volume coordinate of w in the tetrahedron
[Huyakorn and Pinder, 1983] and h iv denotes an average
weighted by the vi. The quantity l Jw,i can be directly added
to equation (20).
[60] Note that when using equation (23), it was implicitly

assumed that the porous matrix or the fracture is homoge-
neous or at least that their properties do not vary signifi-
cantly in the neighborhood of the surface or volume
element. Although the technique is formally applicable
without modifications in heterogeneous media, since only
local characteristics are used in equations (23)–(27), accu-
rate results cannot be expected unless the characteristic
length scale of inhomogeneities is large in comparison with
the typical element size dM; however, this is a general
requirement for a satisfactory description of any heteroge-
neous medium, even in the absence of a well.
[61] In case of large heterogeneities, a possible way to

introduce a first order correction could be the technique
used by Durlofsky [2000], in a similar context. The pro-
ductivity index W, related to the coefficient of Jw in
equations (23), (24), and (26), is evaluated for a model
configuration made up of two concentric homogeneous
regions. The outer one has the macroscopic effective
properties of the heterogeneous medium; the inner one
has a radius of the order of the heterogeneity length scale
and properties obtained from a local average of the medium
properties near the well. Thus the resulting well flux/well
pressure relationship (i.e., the productivity index) is modi-
fied merely by the introduction of a skin coefficient,
positive or negative. However, this first-order correction is
not used here.
3.2.4. Flow in the Well
[62] The flow in the well is governed by equation (9),

which provides an equation relating the pressures at the
midpoints of the well segments and at its intersections with
fractures. It is discretized in the usual way. Consider a point
p on the well, and denote d± the distance to the neighboring
points p ± 1. Then

Kw

m
Ppþ1 � Pp

dþ
� Pp � Pp�1

d�

� 	
� hp Jw; p ¼ 0 ð28aÞ

where hp is the length l of the well segment in the
tetrahedron containing p, or b if p is at the intersection
with a fracture. Jw is the linear combination of Pp and of

the pressures at the surrounding mesh points obtained by
solving equations (24) or (26). At the well head p = 1,
the equation is modified to incorporate the head flow rate
Qw

Kw

m
P2 � P1

dþ

� 	
� h1 Jw;1 þ Qw ¼ 0 ð28bÞ

[63] In the following, pressure variations along the well
are neglected. Hence a single well pressure Pw can be
defined, and fluid conservation along the well can be
written as

X
p

hp Jw;p ¼ Qw ð29Þ

3.3. Solution of the Discretized Equations

[64] Time derivatives are discretized to first order, in a
fully implicit formulation. Since the matrix for the set of
linear equations to be solved at each time step is not
symmetric because of the exchange terms with the well
(25) and (27), a biconjugate gradient algorithm is used.
[65] As is usual with diffusion equations, the time step dt

has to satisfy the criterion

D dt � h2 ð30Þ

where h is the typical space discretization scale and D is the
diffusivity. In view of the contrast between the diffusivities
of the fractures and matrix, this condition cannot be fulfilled
everywhere. In practice, we used dt � dM

2 /4Df for the
simulations of the early stages of the drawdown tests, in
order to describe in detail the flow along the fractures. Later,
when the pseudo steady regime is reached, larger time steps
dt � dM

2 /hDf were used. The product hDf is a global
diffusivity coefficient estimated by neglecting the matrix
permeability and the fracture storage.
[66] Note that dt is always much larger than b2/Df. This is

in agreement with equation (21c), which corresponds to a
steady cross-fracture flow.

4. Comparison With Analytical Solutions

[67] A few simple cases have analytical solutions, which
can be used as references to assess the performance of the
numerical model.
[68] A first standard test case for any well model is the

so-called drawdown test for a single vertical well in a
uniform porous medium without any fracture, initially at
rest, at a given constant pumping rate Jw per unit length of
the well. In such a situation, the flow is two dimensional,
and therefore it is not influenced by the periodicity con-
dition along z.
[69] For a transversally unbounded medium, the transient

solution for the pressure P(r,t) at a distance r from the well
is given by [see, e.g., Streltsova, 1988]

P r; tð Þ ¼ � mJw
4pKm

Ei � r2

4Dmt

� 	
ð31Þ
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where the exponential integral function Ei(x) is defined as
[see Gradshteyn and Ryshik, 1965]

Ei xð Þ ¼
Z x

�1

et

t
dt ð32Þ

After a short initial period, equation (31) reduces to the
well-known approximate logarithm form

P r; tð Þ ¼ mJw
4pKm

ln
4Dmt

r2
þ 0:81

� 	
; �1% for t >

100r2

4Dm

� 	

ð33Þ

P represents the well pressure if r is equal to rw in equations
(31) or (33).
[70] Another basic solution is the pseudosteady long-time

solution for a finite region with drainage area A [Bourdarot,
1996; Earlougher, 1977]

P r; tð Þ ¼ Jwt

�mCmA
þ mJw
4pKm

ln
A

r2
þ ln

2:2458

CA

� 	
; ð34Þ

where CA is a shape factor which depends on the reservoir
geometry and on the location of the well. It is provided by
Bourdarot [1996] and Earlougher [1977] for a variety of
situations, together with the minimum time when it becomes
applicable. The term independent of time in equation (34)
allows one to evaluate the medium properties in the finite
flow region.
[71] Finally, Carslaw and Jaeger [1959] provide a gen-

eral solution for the 2-D axisymmetric well problem, with
flow or pressure conditions at the well surface and at any
cylindrical outer boundary. For instance, for a well with
constant pressure Pw in an unbounded medium,

P r; tð Þ ¼ Pw þ 2Pw

p

Z 1

0

J0 xrð ÞY0 xrwð Þ � Y0 xrð ÞJ0 xrwð Þ
J 20 xrwð Þ þ Y 2

0 xrwð Þ
e�Dmtx

2dx

x
;

ð35Þ

where J0, Y0 denote the conventional Bessel functions of
zero order. The corresponding total instantaneous well flux
may be approximated by

JwðtÞ ¼ 4pKm J� gJ2
� �

ð36Þ

for qD = 4 Dmt/rw
2 
 1, where J = (ln qD � 2g)�1 and g =

0.57722. . . is Euler’s constant.
[72] The results of test runs are compared in Figures 3

and 4 with these analytical solutions. The domain was a
cubic region of size L, containing a uniform medium and
crossed by a straight well of length L. The data are
presented in terms of the dimensionless time tDA based on
the drainage area A = L2

tDA ¼ 4Dmt=L
2 ð37aÞ

When the flux Jw is imposed, the dimensionless pressure
Pw,DA is defined as

Pw;DA ¼ 4pKm

mJw
Pw ð37bÞ

When the well pressure is imposed, the dimensionless flow
rate Jw,DA is defined as

Jw;DA ¼ m
4pKmPw

Jw ð37cÞ

[73] The calculations in Figure 3 have been carried out
with periodicity conditions. The discretization size dM, the
time step dt and the horizontal location xw of the well have
been varied. The well radius is rw = L/300. The analytical
result (33) applies for early times, i.e., before the pressure
fields of the periodic replicas of the well overlap.
[74] The data in Figure 3a correspond to dtDA = 4/900,

with dM/L = 1/9, 1/12 and 1/18, and a constant flow rate Jw.
The well pressure is plotted as a function of the dimension-
less time tDA. The agreement with the analytical result (33)
improves when the discretization is refined from dM = L/9 to
dM = L/12, and then slightly deteriorates when dM is further
decreased to 1/18. However, the deviations from equation
(33) never exceed 4% in the range 0.01 � tDA � 0.2 even
for dM = L/9.
[75] In Figure 3b, the flow rate Jw is kept constant, dM =

L/12, and the time step is varied, with dtDA = 16/900, 8/900,
and 4/900, i.e., Dmdt/dM

2 = 0.64, 0.32, and 0.16, respec-
tively. The influence of this variation on the calculated well
pressure is very small, with less than 3% difference between
dtDA = 16/900 and 4/900 when tDA � 0.1, and almost
vanishes when tDA � 0.1.
[76] In Figure 3c, dM = L/12, and dtDA = 0.009 (Dm dt/dM

2 =
0.32), with a constant flow rate Jw, but three different well
locations xw are considered. Because of the periodic boun-
dary conditions, the three calculations are in principle
equivalent. However, the well crosses the elements of the
unstructured mesh at different locations, which results in
different discretizations of the well, with different sets of
well segments. The comparison of the three curves shows
that the resulting well pressure may vary by about ±1%,
which is of the order of the influence of the changes of dM in
Figure 3a. The same comments apply to Figure 3d, where
the same parameters were used to compute Jw,DA as a
function of tDA for a constant well pressure Pw.
[77] The small deviation of the numerical data in Figure 3

from the analytical solution (33) may result from at least
three reasons. Two of them are related to the description of
the fluid exchanges between the well and the surrounding
medium. First, the rule applied in equations (25) and (27) to
distribute the flux Jw among the neighboring control vol-
umes is partly arbitrary. Second, the use of a single average
coefficient b in equation (26) is also an approximation.
However, the main reason is probably the first-order dis-
cretization of equation (19), which assumes piecewise
constant pressure gradient and velocity over the mesh
elements (except in the elements that intercept the well,
where this linear approximation is replaced by the analytical
development (24)). The influence of the first and last
approximations should decrease as the discretization is
refined; however, the convergence toward the exact solution
is not monotonous (see Figure 3a), because some random-
ness is introduced by the location of the well intersection
with the mesh elements. The influence of using an average b
is not directly related to dM, but the present data show that it
is negligible. Recall, in addition, that this approximation is
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not used to describe the intersection of fracture surface
element with the well (compare equations (24) and (26)).
[78] The calculations in Figure 4 correspond to a uniform

medium in a closed domain of size L, with rw = L/400, dM =
L/16, and dtDA = 0.04. In case 1, the vertical well is located
on the axis of the cell, i.e., at distance L/2 = 8dM from the
four lateral boundaries. In case 2, it is midway between the
axis and one of the walls (at a distance L/4 = 4 dM from a
wall), and in case 3, it is midway between the axis and one
of the angles, i.e., at a distance L/4 = 4dM from two walls.
[79] For early times, the results can be successfully

compared with the analytical solution (33) in an unbounded
medium. The location of the well does not matter, since the
influence of the impervious boundaries is not felt by the

flow. However, the curve for case 3 deviates from equation
(33) sooner than cases 1 and 2, because the well is closer to
a corner of the closed reservoir. For longer times, all the
curves converge towards the corresponding pseudo steady
solutions (34), with the shape factors CA given by Ear-
lougher [1977].

5. Straight Well Intersecting a Single Fracture

[80] A well intersecting a single fracture is a basic case
which has also given rise to analytical results and which can
constitute the basis for modeling more complex situations.
[81] Let us first mention the case of a single fracture,

bounded or unbounded, in an impervious medium. Flow is

Figure 3. Comparison of numerical simulations for a straight well in a cubic domain with size L and
periodicity conditions, with the analytical result (33) (solid curves). The well pressure Pw,DA for a
constant flow rate Jw (a,b,c) and the flow rate Jw, DA for a constant well pressure Pw (d) are plotted versus
time tDA. In Figure 3a, dtDA = 4/900, and dM/L = 1/9 (dotted curves), 1/12 (dash-dotted curves), and 1/18
(dashed curves). In Figure 3b, dM = L/12 and dtDA = 16/900 (dotted curves), 8/900 (dash-dotted curves),
and 4/900 (dashed curves). In Figures 3c and 3d, dM = L/12, and dtDA = 0.009, and the three discontinuous
curves correspond to different locations of the well in the unit cell.
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restricted to the fracture volume. The problem is formally
equivalent to the 2-D situations addressed in section 4;
equations (31)–(35) apply with the matrix properties Km,
Dm, �m, and Cm replaced by the corresponding quantities for
the fracture.
[82] To our knowledge, no general transient solution was

provided yet for the general case of a well intercepting a
finite single fracture in a permeable porous medium, with
well/matrix, well/fracture, and fracture/matrix exchanges.
[83] Hydraulically generated fractures, highly conductive

and generally parallel to the well have received considerable
attention [see, e.g., Gringarten and Ramey, 1974; Grin-
garten et al., 1974; Streltsova, 1988, and references
therein]. Analytical solutions generally assume either a
uniform pressure or a uniform surface exchange rate with
the matrix in the fracture. A transient regime takes place
generally, with fracture pressure variations proportional to
time at power tn, with 0.25 � n � 0.5. Later on, the well/
fracture system behaves like a well with a larger effective
radius.
[84] Boulton and Streltsova [1977b] considered periodic

parallel infinite fractures with spacing H, intercepting a well
at right angle. Fluid is drained from the matrix material
through the fractures; direct well/matrix exchanges and
radial flow in the matrix are ignored. For very conducting
fractures, three regimes can be distinguished. At early times,
flow is mainly due to fracture compressibility; as mentioned
above, it is governed by an equation of the form (31), based
on the fracture properties. For intermediate times, matrix
provides fluid to the fracture, where the pressure varies at a
slower rate, with the prefactor in equation (33) divided by

about 2. Such a behavior is also observed in other transient
situations, for instance, with a well crossing a single fracture
[see Weir, 1999]. The factor 1/2 is related to the hypothesis
of no radial flow in the matrix, and other models would
yield slightly larger coefficients [Young, 1992]. Finally, at
late times, matrix and fracture pressures at a given radial
distance equilibrate, and equation (31) applies again, with a
modified diffusivity Ds which accounts for the fracture
permeability and for the composite storage in the fracture
and in the matrix

Ds ¼
Df

1þ H�mCm

b�f Cf

ð38Þ

[85] Simulations have been run in such a geometry, with a
fracture normal to the well which crosses the whole unit
cell. Periodicity is applied in the direction of the well, and
the spacing H is equal to the cell size L. However,
periodicity is also applied in the transverse directions.
Therefore the simulations correspond to a closed reservoir,
with L � L drainage area, instead of the unbounded domain
in the derivation of Boulton and Streltsova [1977b]. The
fracture size R is defined as R = L/2, and therefore L0 = L/R
= 2 and the dimensionless times t0 in equation (15a) and tDA
in equation (37a) are equal.
[86] Two simulations were conducted, with or without

taking into account the well/matrix exchanges. A constant
flow rate Qw is applied, and the numerical results are
presented in terms of the dimensionless pressure Pw,DA =
4p KmLPw/mQw and of its derivative with respect to the
logarithm of time, �w,DA = dPw,DA/d ln t

0 (see equation (37)).
The results for dM

0 = 1/8, b0 = h = 5 � 10�4, rw
0 = 5 � 10�3,

and s0 = 50 are plotted against t0 in Figure 5.
[87] The first observation is that the curves with or

without well/matrix exchanges do not differ much. With
the parameters used here, they are widely dominated by the
flow through the fracture.
[88] Owing to the lateral no-flux boundaries, Pw is not

expected to exactly obey the same three regimes as in the
Boulton and Streltsova [1977b] solution. At early times,
when flow is confined in the fracture, an additional tran-
sition should take place at t � L2/4 Df (t

0 � Dm/Df = h/s0 =
10�5) between the logarithmic and linear behaviors, (33)
and (34), when the pressure wave reaches the cell bounda-
ries. This is indeed observed in Figure 5.
[89] After a very brief transient (region A in Figure 5),

there is a plateau in the curves for �w,DA (region B), which
corresponds to the values predicted by equation (33),
namely, L0/s0 = 1/25 ((mQw/b)/(4pKf) = mQw/4pRKms

0 =
(mQw)/(4pLKm) (L0/s0)) without well/matrix exchanges or
about L0/(L0 + s0) = 1/26 with well/matrix exchanges,
respectively. This plateau is followed by a steeper increase
(region C), where the slope of �w,DA versus t

0 is about 0.78,
in a logarithmic plot, which means that Pw,DA grows as t

0.78.
If the porous matrix were impervious, the pressure would
increase linearly with time at this stage, according to
equation (34).
[90] However, owing to the excessive storage in the

fracture which results from the discretization (see section
3.2.2), these two events last for too long a time. Based on
Df, the pressure wave should reach the cell boundary at t0 �
10�5, whereas the plateau of �w,DA lasts until t

0 � 10�3. The

Figure 4. The well pressure Pw,DA for a constant flow rate
Jw versus time tDA. Numerical results computed in a closed
cubic domain of size L, with dM = L/16 and dtDA = 0.04
(solid curves); analytical results (33) (dashed curves) and
(34) (dotted curves). Curves labeled (1–3) correspond to
different positions of the well in the drainage region, as
depicted in the insert. Brackets indicate the ranges of
validity within ±1% of the infinite medium (33) and pseudo
steady (34) solutions, as given by Earlougher [1977].
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analytical solutions from equation (32) based on the theo-
retical diffusivity Df or on the modified diffusivity D̂f in
equation (22) are plotted in Figure 5. The latter curve is in
very good agreement with the numerical results in the
transient fracture flow period.
[91] Later on, flow in the matrix becomes significant, and

another regime is reached (region D). The slope of the
curve of �w,DA is about 0.46, up to t0 = 1/4, which is of
the order of the typical time t0 � 1 (t � H2/4Dm) for the
pressure wave to travel from the fracture to the middle of
the matrix layer. This regime corresponds to a power
dependence of Pw on time as t0.46, as observed with
hydraulic fractures, rather than to the halved logarithmic
law of Boulton and Streltsova [1977b], again because of the
domain impervious boundaries. Finally, another pseudo
steady regime is reached for t0 > 1/4, with a law of the
form of equation (34) (region E).
[92] Two hydraulic conductivities can be measured from

the well pressure curve, in the first and last regimes
described above. First, the plateau B of �w,DA provides
the fracture conductivity, as already mentioned. Note that its
value is not influenced by the exaggerated fracture storage.
Second, in the final pseudo steady regime E, Pw increases
linearly with time (see equation (34)). An extrapolation at

zero time of this linear law provides an estimate of a global
effective permeability Keff for the fractured medium.
[93] In situations where the reservoir size L is large in

comparison with the scale R of the fractures (which is not
satisfied here), the fractured medium at sufficient distance
from the well can be viewed as an equivalent homogeneous
medium. Keff is then an estimate of its permeability. It is
shown in section 6 that it is directly related to the effective
permeability of the fractured porous medium determined by
Koudina et al. [1998] for steady state flow.
[94] For illustration, the pressure at the mesh points is

plotted as a function of the distance r0 = r/R from the well in
Figure 6 at various times in the four successive regimes,
when exchanges are allowed between well and matrix. At
the end of the initial transient flow in the fracture (Figure
6a), and even in the subsequent pseudo steady period
(Figure 6b), pressure in the matrix remains at its initial
value, except in the close vicinity of the well. The analytical
prediction of Boulton and Streltsova [1977a] at early time
for the pressure in the fracture based on D̂f in equation (22)
is also plotted in Figure 6a. It is in excellent agreement with
the numerical results.
[95] Later, during the third period, pressure in the fracture

is much more uniform (Figure 6c). Pressure in the matrix
increases, according to the distance from the fracture.
Owing to the advancing front technique used for the mesh
generation, the mesh points tend to arrange in a series of
layers parallel to the fracture plane, and the corresponding
pressures form a family of curves. Pressure at the point
closest to the fracture has already started to increase, while
the part of the matrix most remote from the fracture is still
unaffected. Finally, in the global pseudo steady regime,
pressure increases linearly with time throughout the
medium. Its variations with the radial distance r from the
well and with the vertical distance from the fracture are of
similar orders of magnitude.

6. Well Through a Fractured Porous Medium

6.1. Fracture Network Model

[96] We consider here randomly fractured media, as
modeled by Huseby et al. [1997]. The fractures are plane
polygonal objects, randomly located and oriented in space.
In the present case, they are regular hexagons, inscribed in
disks of radius R. An infinite network is obtained by a
periodic reproduction of a cubic unit cell of size L3 in the x-,
y- and z-directions. An example is displayed in Figure 1b,
which contains 17,643 nodes, 222,820 triangles, and
111,410 tetrahedra.
[97] The density of fractures is quantified by the dimen-

sionless parameter r0, which is the number of fractures per
excluded volume Vex, equal to 9

ffiffiffi
3

p
R3=2 for hexagons [see

Huseby et al., 1997; Adler and Thovert, 1999]. r0 is also a
measure of the connectivity of the fracture network, since it
is the mean number of fractures intersecting a given
fracture. In particular, r0 determines the percolation of the
fracture network, with a percolation threshold r0c � 2.3. For
r0 > r0c, a connected set of fractures exists which spans the
whole medium. For r0 < r0c, the fractures are isolated or in
small disconnected clusters. Bogdanov et al. [2002] have
shown that this has a dramatic influence on the macroscopic
permeability of the fractured medium. Percolating clusters
are preferential flow paths throughout the medium, whereas

Figure 5. The well pressure Pw,DA and its logarithmic time
derivative �w,DA versus the dimensionless time t0, for a
straight well intersecting a series of parallel plane fractures,
with spacing H = L, in a closed reservoir with a square
drainage area L � L. Data are for rw

0 = 5 �10�3, s0 = 50, b0 =
h = 5 �10�4, and dM

0 = 1/8. Curves correspond to Pw,DA and
�w,DA with (solid curves) or without (dash-dotted curves)
well/matrix exchanges, and to the analytical prediction (32)
for Pw,DA based on Df (dashed curves) or on D̂f in equation
(22) (dotted curves). Straight lines indicate fitted slopes
0.78, 0.46 and 1. Horizontal arrows correspond to the values
of the plateau of �w,DA predicted by equation (33), with or
without well/matrix exchanges. Open circles show the times
corresponding to the four stages in Figure 6.
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isolated fractures merely facilitate fluid flow over short
distances.
[98] For very conducting fractures, it is expected that the

number nI of intersections of the well with the network is a
key parameter for the flow, since it conditions the fluid
exchanges. Its statistical properties can be derived as fol-
lows. The mean number NI of well intersections with
fractures in the unit cell can be evaluated from the volu-
metric surface area SS of the fracture network, which is given
for hexagons by [Adler and Thovert, 1999]

SS ¼ r0

3R
ð39Þ

After averaging over the fracture orientations relative to the
well direction, one obtains

NI ¼
r0L
6R

ð40Þ

Conversely, the mean spacing between the intersections is

SI ¼
6R

r0
ð41Þ

Since the fractures are located according to a Poisson process,
their intersections with the well are also Poissonian. Thus nI
obeys a Poisson law with parameter NI, and the spacings sI
obey a negative exponential law with parameter 1/SI

P nI ¼ nð Þ ¼ Nn
I

n!
e�NI ; f sIð Þ ¼ 1

SI
e�sI=SI ð42Þ

Figure 6. The pressure PDA at the mesh points on the fracture (open circles) and in the matrix (solid
circles) as a function of the radial distance r0 to the well. The data correspond to the simulations in Figure
5, including direct well/matrix exchanges, at the times marked on the curve for Pw,DA, t

0 = 6.25 �10�4 (a),
3.75 � 10�3 (b), 0.025 (c) and 0.25 (d). The solid curve in Figure 6a is the complete series solution for
the pressure in the fracture from Boulton and Streltsova [1977a], based on D̂f .
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These probability laws show that very small or very large
numbers of intersections, compared with NI, have small
probabilities. For instance, the probability for 3 � nI � 10
(7 � nI � 17) is about 0.9 for NI = 6 (NI = 12). However, the
spacing distribution is very broad, with a large probability of
small values.

6.2. Examples of Pressure Drawdown Curves

[99] As a rule, all the typical flow regimes present in
Figure 5 can be observed in the drawdown curves for wells
in randomly fractured media. In particular, the two latest
regimes, namely, the ‘‘hydraulic fracture’’ and the pseudo-
steady flow, can always be clearly identified. However, the
early and intermediate regimes are often blurred or do not
show up at all, and additional features can appear in the
curves.
[100] First, during the period when flow takes place

mainly in the fractures, the pressure wave starts propagating
in the fractures which cross the well and then spreads out in
all the fractures connected to them. Of course, different
curves are obtained according to whether the number nI of
intersections is smaller or larger than the expected value NI.
Also, fluid exchanges between the well and different parts
of the fracture network may take place in parallel, but over
different timescales. Recall that the number of fractures
intersecting a given fracture is also a Poisson variable. Thus
with, for instance, r0 = 4, there is a probability about 0.09
that a fracture is connected to one or zero fractures and
about 0.11 that it is connected to 7 or more fractures. Hence
the drainage areas corresponding to the various parts of the
network connected with the well can be quite different,
which yields different onset times and durations for the
pseudo steady fracture flow.
[101] As a whole, though, the influence of all these

statistical fluctuations decreases with the network density
r0. For r0 = 6, the fractures are very interconnected; the

multiple paths from any point on the network to any other
point allow fast communication and prevent the pressure to
evolve in very different ways in different areas. For r0 = 4, a
small fraction of the fractures are not connected to any
others. Finally, for r0 = 1.5, most of the fractures are single
or in pairs and behave independently.
[102] Typical results for a network with density r0 = 6 are

given in Figure 7 for rw
0 = 0.01 and two values of the

conductivity s0 = 102 and 103. In this case, the actual number
nI of intersections is equal to the expected value NI = 6.
[103] The four flow regimes identified in Figure 5 can be

observed here, i.e., transient and pseudo steady fracture
flows, followed by transient and pseudo steady global
flows. The decrease in the logarithmic time derivative �w,DA

at t0 � 10�4 is commonly observed and corresponds to the
spread of the pressure wave in the ramified network, with
decreasing hydraulic resistance.
[104] For illustration, the analytical solution by Boulton

and Streltsova [1977b] for a spacing equal to the mean
value SI is also shown in Figure 7, for the theoretical Df and
for D̂f . With the correction for the fracture storage, the
analytical solution for the case of parallel fractures yields a
very good estimate of the well pressure during the transient
fracture flow in this randomly fractured medium, for both
values of s.

6.3. Effective Properties of the Fractured
Porous Medium

[105] Simulations were run for fractured porous media in
cells with size L = 6 R, containing 41, 110, or 161 fractures.
These values correspond to densities r0 = 1.48, 3.97, and
5.81, respectively, and NI = r0. A set of measurements for
100 different horizontal positions of the well head showed
that the statistical properties (40)–(42) are satisfied.
[106] Pressure drawdown was simulated in each case with

rw
0 = 0.01, various fracture conductivities s0 = 10 to 1000,

Figure 7. Pressure Pw,DA (solid curves) and its derivative �w,DA = dPw,DA/d ln t0 (dash-dotted curves) for
a pressure drawdown test, for a fracture network with r0 = 6 in a unit cell with size L = 6. The well
intersects nI = 6 fractures. Data are for rw

0 = 0.01, b0 = 10�3; s0 = 102 (a) and s0 = 103 (b). The analytical
solution by Boulton and Streltsova [1977b] for a spacing equal to the mean value SI = R is given for the
theoretical Df (dashed curves) and for D̂f (dotted curves).
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and for various locations of the well head, which yield
different numbers nI of fractures intersected by the well. In
the late pseudo steady stage, the well pressure always
increases linearly with time. The results can be analyzed
by comparison with the pressure response of a well in a
homogeneous medium with permeability Kr and storage
coefficient �gCg (see equation (34))

Pw tð Þ ¼ Jw

�gCgA
t þ mJw

4pKr

ln
A

r2w
þ ln

2:2458

CA

� 	
ð43aÞ

or in dimensionless form

Pw;DA tð Þ ¼ 4pR2�mCm

A�gCg

t þ 1

K 0
r

ln
A

r2w
þ ln

2:2458

CA

� 	
; ð43bÞ

where A = L2 and CA = 30.8828 for a square drainage area
[Earlougher, 1977].
[107] Least squares linear fits of the numerical data

always yield a value of the slope in agreement with the
expected value, with a relative error less than 10�3. Thus
the relative uncertainty on the intercept P0,DA with the
ordinate axis is of the same order of magnitude, and Kr

0

can be deduced from P0,DA with the same accuracy

K 0
r ¼

ln A=r2w
� �

þ ln 2:2458=CAð Þ
P0;DA

ð44Þ

[108] This apparent global permeability relative to radial
flow from the well is plotted in Figure 8, as a function of
s0, for the three network densities r0 and the various
numbers nI of well/fracture intersections. The figure also
shows the macroscopic effective permeability Keff

0 of the
fractured media, relative to steady linear flow, as deter-
mined by Bogdanov et al. [2002] (see section 1).
[109] Clearly, for a givenmedium and a given conductivity,

Kr strongly depends on nI. As a rule, Kr is significantly larger
than Keff, except for small values of nI, compared with the
expected NI, which are statistically unlikely (see section 6.1
and equation (42)). Hence Kr cannot be regarded as an
intrinsic property of the fractured medium, since it depends
on boundary conditions.
[110] On physical grounds, it can be expected that the

well pressure response should depend on the far-field
effective permeability of the medium, which can be identi-
fied as Keff, and on the particular interactions of the well
with the fracture network in a given situation. This can be
modeled in a first approximation by introducing a skin
factor S in equation (43)

Pw;DA tð Þ ¼ 4pR2�mCm

A�gCg

t þ 1

K 0
eff

ln
A

r2w
þ ln

2:2458

CA

þ 2S

� 	
ð45Þ

[111] Such a parameter appears in various situations [Ear-
lougher, 1977]. Heterogeneities near the well, such as the
ones caused by formation damage, can be described in this
way. The skin factor S is positive (negative) if permeability
around the well is smaller (larger) than in the surrounding
medium. For instance, if permeability is Ka in a cylindrical

region with radius ra around the well and K beyond this
radius, S is given by

S ¼ K

Ka

� 1

� 	
ln
ra

rw
ð46Þ

For late times and on a large scale, hydraulic fractures along
the well also require such a correction.
[112] The value of S which results via equation (45)

from the numerical value of P0 was evaluated. It is plotted
in Figure 9a as a function of the spacing between the
well/fracture intersections normalized by its expected
value, sI /SI. The spacing is a more intrinsic character-
ization of the well and fracture interconnections than the
number nI of intersections, because its statistical expect-
ation and its standard deviation do not depend on the
sample size. S increases with the spacing. A least square
linear fit yields

S ¼ 2:5
sI

SI
� 1

� 	
� 1:6 r ¼ 0:963ð Þ ð47Þ

[113] Of course, the data are somewhat scattered around
the mean linear law (47), for several reasons. First, stat-
istical fluctuations can be very important, especially for

Figure 8. Effective permeability K0
eff (solid circles) and

apparent permeability K0
r (open squares) for fractured media

with r0 = 1.48 (a), 3.97 (b) and 5.81 (c), as functions of the
fracture conductivity s0. Data are for a unit cell size L = 6R
and various numbers nI of intersections of the well with the
fracture network.
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small nI (i.e., large spacings); for instance, if the well crosses
a single fracture, the well pressure response is very sensitive
to the connectivity of this fracture with the rest of the
network. Second, S depends a priori on the fracture con-
ductivity. For example, it should vanish for poorly conduct-
ing fractures. Only large conductivities s0 are considered
here, but the value of S for s0 = 10 are generally smaller (in
absolute value) than the values for s0 = 102 and 103, which
are very similar. Finally, S can also depend on the network
density r0, in particular because of size effects when r0 is not
much larger than r0c. In this case, the well intersects finite
clusters of connected fractures, and S is expected to depend
on the ratio of their typical size to the reservoir size L.
[114] Nevertheless, equations (45) and (47) provide a

guideline for the prediction of the performances of a well,

given the effective properties �gCg and Keff of the fractured
medium and the connectivity of the well with the fracture
network, for highly conducting and well-connected frac-
tures. The density of well-fracture intersections is generally
readily available from well log data, whereas Keff can be
determined from the fracture network and matrix properties
[Bogdanov et al., 2002].
[115] Other representations of the same data are possible.

They are based on a priori models for the interactions of the
well with the fracture network, and do not bring any
additional information with respect to equations (45),
which is the raw result of the numerical simulations. Still,
they might be of interest, since they provide a more
intuitive quantification of the well interaction with the
fractures.

Figure 9. Coefficient S (a) and apparent well radius rw,a
0 (b) as functions of the spacing sI/SI;

permeability ratio Ka/Keff for ra = R as a function of the number of intersections nI/Ni (c). Data are for a
well with a radius rw = R/100 in a randomly fractured medium, with various densities r0 and fracture
conductivities s0. The broken lines correspond to the fit (47) in Figures 9a and 9b and to the fit (50) in
Figure 9c.
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Table 1. Notationa

Symbol Definition Reference

A Reservoir drainage area [L2]
Aj Intersection of a mesh triangle with a control volume equation (21c)
ai Areal coordinates in a triangle equation (25)
b Fracture aperture [L]
CA Shape factor [�] equation (34)
Cf Total compressibility (fracture) equation (6)
Cg Total compressibility (homogeneous medium) equation (43)
Ci Coefficient of the discretized equations equation (20)
Cm Total compressibility (matrix) equation (2)
d± Distance between mesh points on the well equation (28a)
Df Pressure diffusivity (fracture) equation (7)

D̂f Apparent pressure diffusivity equation (22)

Dm Pressure diffusivity (matrix) equation (3)
Ds Modified pressure diffusivity equation (38)
Ei(x) Exponential integral function equation (32)
H Fracture spacing
hp Length of well segment in a control volume equation (28a)
I Unit tensor

I ij
Intersection line of fractures i and j equation (8)

j Flow rate per unit width of a fracture equation (4a)
J0 Bessel function of zeroth order equation (35)
ji
± Flow rate in fracture i toward an intersection line equation (8)
Jw Flow rate per unit length from the well to the matrix

[L2T�1]
equation (2)

Jw,DA Dimensionless flow rate Jw equation (37c)
Jw,i Flux from the well to a mesh point equations (25) and (27)
Ka Apparent permeability near the well equation (46)
Kf Fracture filling permeability equation (5)
Km Matrix permeability [L2]
Kr Apparent permeability relative to radial flow equation (43)
Kw Well hydraulic conductivity [L4] equation (10)
Keff Global effective permeability
L Sample size
l Length of well segment section 3.2.3
Mij Coefficient of the discretized equations equation (20)
n Normal vector to fracture plane
Nfr Number of fractures in a sample Figure 1
NI Mean number of well/fracture intersections in the unit cell equation (40)
nI Number of well/fracture intersections in the unit cell equation (42)
nt Unit vector normal to the domain boundary @t equation (12b)
P Pressure
p, p ± 1 Mesh points on the well equation (28a)
P± Pressure on either sides of a fracture Figure 2b
P0 Initial pressure equation (13)
Pf Pressure in the fracture Figure 2b
Psh

Well pressure equation (11)
Pp Pressure at a mesh point on the well equation (28a)
Pw Well pressure equation (9)
P1 Far-field pressure equation (12a)
P0, DA Intercept of pressure curve with ordinate axis equation (44)
Pw,DA Dimensionless pressure based on the drainage area equation (37b)
q± Fracture/matrix exchanges equation (21c)
Qw Total well flow rate [L3T �1] equation (9)
R Characteristic fracture extent or radius equation (15)
r radial distance from the well equation (23)
r Position vector
ra Radius of damaged zone equation (46)
rw Well radius equation (10)
rw Position vector of a mesh point on the well section 3.2.3
rw, a Apparent well radius equation (48)
S Skin factor equation (45)
s Distance along the well from its head sh equation (9)

S Volumetric surface area of the fracture network equation (39)

sI Well/fracture intersection spacing equation (42)
SI Mean well/fracture intersection spacing equation (41)
T, Tj Triangular mesh element
t Time
tDA Dimensionless time based on the drainage area equation (37a)
v Seepage velocity in the matrix equation (1)
v?, v

± Seepage velocity normal to a fracture equations (4b) and (6)
vi Volume coordinates in a tetrahedron equation (27)
Vex Excluded volume section 6.1
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[116] First, an apparent well radius rw,a can be introduced as

rw;a ¼ rw e�S ð48Þ

Equations (45) is then equivalent to equation (34) with rw
replaced by rw,a. The apparent radius rw,a is plotted in
Figure 9b. Of course, this semilogarithmic plot is equivalent
to the linear plot of S in Figure 9a, and the fit (47) can be
used in equation (48) for the estimation of rw,a. However,
the order of magnitude of rw,a is interesting. The apparent
radius is larger than rw = R/100 when the spacing sI is
smaller than about 3/2 SI. It reaches about half the fracture
radius for the spacings sI � SI/2, and it could even be larger
for smaller spacings, although the probability of such an
event is very small. On the opposite limit of large spacings,
the apparent radius can be much smaller than rw. Thus the
fracturation of the matrix has two distinct effects. On one
hand, it increases the medium permeability and the well
efficiency. On the other hand, it also enhances the ex-
changes of the well with its surrounding, except when the
well happens to be very poorly connected with the fracture
network.
[117] Another interpretation of the parameter S as a skin

factor can be given as follows. One may consider the
fractured medium crossed by the well as an equivalent
medium with permeability Ka. Note that Ka may differ
from Keff. For instance, for small densities r0 < r0c, the
fractures are poorly connected which limits their influence
on the permeability Keff, whereas even isolated fractures
fully contribute to enhance the transfers with the well. If
we assume that Ka applies in a cylinder with radius R
around the well, it is related to S by equation (46), which
yields

Ka ¼
1

1� S
ln rw=R

Keff ð49Þ

The results plotted in Figure 9c versus nI/NI show that for
r0 � 4, Ka increases roughly linearly with the density of
intersections,

Ka

Keff

� 1:31þ 0:94
nI

NI

� 1

� 	
r ¼ 0:89ð Þ ð50Þ

However, the data for r0 = 1.48 are very scattered, which
means that for small fracture densities, the interaction of the
well with the fractures cannot be modeled by such a simple
model.

7. Concluding Remarks

[118] The numerical model presented in this paper for 3-D
single-phase compressible flow through fractured porous
media was shown to perform well in simple reference cases
and was applied to simulate well testing in randomly
fractured media.
[119] The flexibility of the numerical description of the

discrete fracture network makes it possible to directly
simulate the operation of a well in a real setting, given field
data relative to the fracture locations and characteristics. In
addition, the fact that the numerical mesh is generated prior
to the introduction of the well allows for an easy optimiza-
tion of the well design, according to any relevant criterion.
[120] Although it was not illustrated in this paper, the

numerical model is ready to handle heterogeneous matrix
or fracture properties, far from or in the absence of the
well. This is an important feature, in view of the experi-
ments and simulations of Sonnenborg et al. [1999], which
showed that spatial variations of the fracture aperture may
have a significant influence on the exchanges with the
matrix. Additional work is needed to accurately describe
the fluid exchanges between a well and its heterogeneous
surroundings.

Symbol Definition Reference

W Productivity index section 3.2.3
xw Horizontal location of the well Figure 3c
Y0 Bessel function of zeroth order equation (35)
b Geometrical factor equation (26)
g = 0.57722. . . Euler’s constant equation (36)
d(s), dw Dirac functions equations (9) and (2)
dM Typical mesh point spacing section 3.1
�P Pressure drop across a fracture equation (4b)
dt Time step section 3.3
�f Porosity of fracture filling equation (6)
�g Porosity of an homogeneous medium equation (43)
�m Matrix porosity equation (2)
h Compressibility ratio equation (15d)
m Fluid viscosity
nij Vector normal to the intersection I ij equation (8)
�w, DA Log-time derivative of Pw,DA section 5
� Tetrahedral volume element
r0 Fracture network density section 6.1
r0c Critical fracture network density section 6.1
s Fracture hydraulic conductivity [L3] equation (4a)
t, @t Sample volume, and its boundary equation (12)
�, @� Control volume and its boundary section 3.2
�f, �

± Parts of � in the matrix and fracture section 3.2.2
rs Gradient operator restricted to a surface equation (4a)

aUnlisted primed symbols are dimensionless parameters defined according to equation (15).

Table 1. (continued)
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[121] Another desirable extension of the model is the
incorporation of two-phase flow, which will be addressed
in the near future.
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CINES (Montpellier), subsidized by the MENESR, whose support is
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Bourdarot, G., Essais de Puits: Méthodes d’Interprétation, Technip, Paris,
1996.

Carslaw, H. S., and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., 510
pp., Clarendon, Oxford, England, 1959.

Chen, Z.-X., Transport flow of slightly compressible fluids through double-
porosity, double-permeability systems: A state-of-the-art review, Transp.
Porous Media, 4, 97–116, 1989.

Durlofsky, J. F., An approximate model for well productivity in heteroge-
neous porous media, Math. Geol., 32, 421–438, 2000.

Earlougher, R. C., Advances in Well Test Analysis, Soc. Pet. Eng. AIME
Monogr. Ser., vol. 5, Henry L. Doherty Mem. Fund of AIME, New York,
1977.

Gradshteyn, I. S., and I. M. Ryshik, Tables of Integrals, Series and Pro-
ducts, Academic, San Diego, Calif., 1965.

Gringarten, A. C., and H. J. N. Ramey, Unsteady-state pressure distribu-
tions created by a well with a single horizontal fracture, partial penetra-
tion, or restricted entry, Soc. Pet. Eng. J., 14, 413–426, 1974.

Gringarten, A. C., H. J. Ramey, and R. Raghavan, Unsteady-state pressure
distributions created by a well with a single infinite conductivity vertical
fracture, Soc. Pet. Eng. J., 14, 347–360, 1974.

Gwo, J. P., R. O’Brien, and P. M. Jardine, Mass transfer in structured
porous media: Embedding mesoscale structure and microscale hydrody-
namics in a two-region model, J. Hydrol., 208, 204–222, 1998.

Huseby, O., J.-F. Thovert, and P. M. Adler, Geometry and topology of
fracture systems, J. Phys. A Math Gen., 30, 1415–1444, 1997.

Huyakorn, P. S., and G. F. Pinder, Computational Methods in Subsurface
Flow, Academic, San Diego, Calif., 1983.

Koudina, N., R. Gonzalez-Garcia, J.-F. Thovert, and P. M. Adler, Perme-
ability of three-dimensional fracture networks, Phys. Rev. E, 57, 4466–
4479, 1998.

Mo, H. H., M. Bai, D. Z. Lin, and J.-C. Roegiers, Study of flow and
transport in fracture network using percolation theory, Appl. Math. Mod-
elling, 22, 277–291, 1998.

Noetinger, B., and T. Estebenet, Up-scaling of double porosity fractured
media using continuous-time random walks methods, Transp. Porous
Media, 39, 315–337, 2000.

Onur, M., and A. Satman, Interpretation of single-well pressure transient
data from naturally fractured reservoirs, In Situ, 22, 181–237, 1998.

Reis, J. C., Effect of fracture spacing distribution on pressure transient re-
sponse in naturally fractured reservoirs, J. Pet. Sci. Eng., 20, 31–47, 1998.

Shikaze, S. G., E. A. Sudicky, and F. W. Schwartz, Density dependent
solute transport in discretely-fractured geological media: Is prediction
possible?, J. Contam. Hydrol., 34, 273–291, 1998.

Snow, D. T., Anisotropic permeability of fractured media, Water Resour.
Res., 5, 1273–1289, 1969.

Sonnenborg, T. O., M. B. Butts, and K. H. Jensen, Aqueous flow and
transport in analog systems of fractures embedded in permeable matrix,
Water Resour. Res., 35, 719–729, 1999.

Streltsova, T. D., Well Testing in Heterogeneous Formations, John Wiley,
New York, 1988.

Sudicky, E. A., A. J. A. Unger, and S. Lacombe, A noniterative technique
for the direct implementation of well bore boundary conditions in three-
dimensional heterogeneous formations, Water Resour. Res., 31, 411–
415, 1995.

Warren, J. R., and P. J. Root, The behaviour of naturally fractured reser-
voirs, Soc. Pet. Eng. J., 228, 245–255, 1963.

Weir, G. J., Single-phase flow regimes in a discrete fracture model, Water
Resour. Res., 35, 65–73, 1999.

Wilson, C. R., and P. A. Witherspoon, Steady state flow in rigid networks of
fractures, Water Resour. Res., 10, 328–335, 1974.

Young, R., Pressure transient in a double-porosity medium, Water Resour.
Res., 28, 1261–1270, 1992.

����������������������������
P. M. Adler, Institut de Physique du Globe de Paris, tour 24, 4 Place

Jussieu, 75252 Paris Cedex 05, France. (adler@ipgp.jussieu.fr)
I. I. Bogdanov, V. V. Mourzenko, and J.-F. Thovert, Laboratoire de

Combustion et de Detonique, SP2MI, BP 179, 86960 Futuroscope Cedex,
France.

BOGDANOV ET AL.: PRESSURE DRAWDOWN WELL TESTS SBH 11 - 19


