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Hexagonal pattern instabilities in rotating Rayleigh-Bénard convection of a non-Boussinesq fluid:
Experimental results
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Valerie Vidal
Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05, France
(Received 2 January 2004; revised manuscript received 2 March 2004; published 16 June 2004

Motivated by the Klippers-Lortz instability of roll patterns in the presence of rotation, we have investigated
the effects of rotation on a hexagonal pattern in Rayleigh-Bénard convection. While several theoretical models
have been developed, experimental data cannot be found in the literature. In order to check the validity of the
predictions and to study the effects of rotation on the behavior of the system, we present experimental results
for a non-Boussinesq Rayleigh-Bénard convection with rotation about the vertical axis. Rotation introduces an
additional control parameter, namely the dimensionless rotation(Yaterfd?/ v, wheref is the rotation rate
(in Hz), d is the thickness of the cell, andis the kinematic viscosity. We observe that the cell rotation induces
a slow rotation of the pattern in the opposite directier{) X 107%) in the rotating frame. Moreover, it tends to
destroy the convective pattern. No oscillation of the hexagonal pattern over the range of its existence
(2=<6) has been observed.

DOI: 10.1103/PhysRevE.69.066311 PACS nun®erd7.54:+r, 47.27.Te, 47.20.Ky

[. INTRODUCTION wheref is the rotation ratéin Hz), d is the thickness of the
. . oL . . cell, andv is the kinematic viscosity19,20. Theory[20-24
Experiments allowing a guantitative comparison with the'agrees in predicting that in the presence of rotation, the hex-

oretical investigations are essential to check available thec.)aigonal pattern is still the primary instability. Disagreement is

ries and to suggest new directions in theoretical studies. Th|8ver the secondary instability, i.e., what happens when one

has been particularly successful for Rayleigh-Bénard conve_:(i(-eeps increasing the control parameteBome[20-22 pre-

gggéaflhﬁu%)rgegl\c/insm‘%setzznt])ect(ivr:eseli“tnvgo()f;reilkllclerlhriwilge Ig?;;dict that the steady hexagons lead to oscillating hexagons via
Y P gid p a Hopf bifurcation wher) > (), , where()y, is the rotation

and heated from below has become a paradigm of Patteiflie above which the Kuppers-Lortz instability is predicted

formation[1-3]. : : :
b i . . [19]. Others[23,24 predict that, in the presence of rotation,
rerﬂrltJilgs I?)nn?[gn? Oeursastljnris?s V\rllkc])?nnteheli ?t{elep?dgl}'?\ce% ot he steady hexagons go to modulai@d space and time
prop b GUIGIHFE o] Yy exagons via a supercritical bifurcation. They also predict

[6-11 predicts that in a non-Boussinesq Rayleigh-Benar hat if one keeps increasirg the modulated hexagons them-

convection, hexagons are formed via a subcritical bifurcatiorgelves become unstable and a regular pattern breaks down
when the Rayleigh numbeR, which is proportional to the leading to a temporally and spatially chaotic state. In this

tempe.rature d|fferencAT be.“(vee” the bottom and the top case, the disordered state locally exhibits a structure with
plate, increases above its critical valRg(i.e., AT>AT,). In hexagonal symmetry which rotates in time

]EE:?aSti (())rf] tf:;a:;(:;nr:]enssrl]%rxsl p;}r:tmﬁgﬁg'lgéﬂgrle, t?tit?lle- for In order to check which one of these theories predicts the
s.<e<zp, and rolls are stable foe> e, (Fig. 1). Previous real behavior of the system, we have performed some experi-

. . -~ ! ments of Rayleigh-Bénard convection on a non-Boussinesq
experiments confirmed the validity of those theoretical Pr%uid (SFs) with rotation about the vertical axis. The results
dictions [12-18. However, the effect on a convective non- 5 :

Boussinesq fluid of a rotation about a vertical axis has stil?"® compared to the theoretical predictions and help to gain a

not been experimentally investigated, while several theoretipetter understanding of the consequences of rotation on the

cal models have been developed. Motivated by the Kl‘Jpperss-yStem behavior.

Lortz instability of roll patterns in the presence of rotation,

we have investigated experimentally the effects of rotation !l- APPARATUS AND EXPERIMENTAL PROCEDURE

on a hexagonal convective pattern. Rotation breaks the up- experiments have been performed in a Rayleigh-
down symmetry and introduces an additional control paramggnarq convection cell with a circular cross section of radius
eter, namely the dimensionless rotation réte2mfd*/v, =4 170,005 cm, rotating around the vertical axis. A de-

tailed description for the experimental setup can be found in
[25]. The fluid (gag is Sk at a pressure of
*Currently at Université de la Polynésie Francaise, Tahiti, Frencil07.839+0.001 psi; the Prandtl numbeiis 0.797. The top
Polynesia. Electronic address: guarino@upf.pf plate is a sapphire and the bottom plate is an optical flat
"Electronic address: vidal@ipgp.jussieu.fr diamond-machined aluminum surfaf26]. We have used a
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4 ) tween two consecutive images varies between 0.39 and
No rotation G 300 s.

Rolls The working parameters such as the cell thickness, the
pressure, and the mean temperature have been optimized to
fit the apparatus characteristics and limitations. The best

RN Hexagons compromise has been found in order to have, at the same
. ~ VAR time, the best shadowgraph sensitivity, the greatest aspect
e /\fk’:: ratio I', the largest existence domain for the hexagons and
/ S~ AT o1s <ATmax=30 °C, whereAT,s is the temperature dif-
/ ference at which the rolls are stable aikd,,, is the largest
/ / | General temperature difference which is possible to apply to the sys-
T} solution tem.
; In order to check the effects of the boundary conditions
& € on the convective pattern, similar experiments have been
\ performed on a Rayleigh-Bénard convection cell with
' smoother boundary conditions on the bottom plagmp.
For this cell, the spacind, between the top plate and the flat
t _ (b) part of the bottom platé0=<r <r,=3.18 cm) is 760+1um,
ia] | With rotation corresponding td'y=ro/dy=42.6+0.15. Over the radius in-
Rolls terval ro<r<r,;=4.44 cm, the bottom plate has a profile
yielding d/dy=1-0.0361-cog(r-rg)m/(r;—rg)}]. The
7 Hexagons mean temperature and the pressure of the fluid are the same
Lol TS / as that in the flat bottom plate cell.

Al

/._
v

Limit cycle
IIl. RESULTS

/ ! General ~ At =0, the temperature difference for the onset of con-
M) | solution vection is AT.=18.73 °C, measured by shadowgraphy. In
AN Fig. 2, images of the flat cell are showneat0.01, 0.02, and
: 0.03 for different values of). They are obtained by image
Se.al processing of the direct shadowgraph visualization. First, the
raw pictures are divided by a background image, taken at
FIG. 1. Bif ion di ; B ) q £<0, in order to eliminate the dependence of the illumina-
Without 1ot t‘l unrcatltohn huagramn or annop'b_?fsi']rr'esqh YRE]. 41 tion or the bottom plate reflectivity on the local heterogene-

Ithout rotation(a) the hexagons gain stability through a saddie ;o agter performing a two-dimensional fast Fourier trans-
node bifurcation. Hexagons are stable g e <gp, and rolls are L . - .

- _form (FFT), a radial filter is applied. An inverse FFT then
stable fore > ¢,. Hexagons become unstable through a transcritica ds to the final i M detail thi d
bifurcation involving a general solution, where the three amplitude eads fo the inal image. Viore details on 1his procedure are
developed in25]. For Q=0 [Figs. 4a), 2(e), (i), 3(a), and

are all nonzero but not all equah| is the amplitude of the insta- . . . .
bility. With rotation (b), the hexagons become unstable to a limit 3(©); the primary instability consists of a hexagonal pattern

cycle through a Hopf bifurcatioroscillating hexagons The limit (¢ =<0.02, evolving towards a straight roll pattern for larger

cycle terminates at the general solution branch. €. ) . o
When a rotation about the vertical axis is imposed on the

paper sidewall. The spacind between the two plates is system, two main effects can be observed. The first one is the
710+1um, corresponding to an aspect ratib=r/d appearance of randomly distributed defects in the hexagonal
=58.80+0.15. The mean temperature of the fluid has beepattern. Those defects consist mostly of small domains in
fixed atT=40 °C. In these conditions, f&@=0, we expect a which a roll pattern develops. These small roll patterns can
temperature differencdT,=18.99 °C for the onset of the be seen at lovf)(<4) and ate <0.02 [see Figs. &), 2(c),
convective regiméfrom R=agd®AT/xv=1708, wherew is  2(f), and 2g)]. The number of those defects dependsson
the coefficient of thermal expansiog,is the acceleration of and is independent d. The second effect due to the rota-
gravity, andx is the thermal diffusivity. The vertical thermal tion is the invasion, from the edge of the cell towards the
diffusion time is t,=d?/k=1.121's, ,=-5.17X 1074, &, center, of three different oriented sets of rolls. Ssin-
=0.016, antt,=0.0613. Shadowgraph visualization has beercreases, these three sets of rolls appear at a lew@he
used to image the systefi5]. The camera, set in the rotat- interval ine in which the hexagonal pattern and then the rolls
ing frame, takes images of the cell from above. The distanceredicted for(=0 (for largere) are observed thus becomes
between the pixels is 263+im. For each experiment, first smaller for larger rotation rates. For<3) <6, these rolls

Q) is imposed to the system, and then the temperature diffemever develop and the system switches directly from hexa-
enceAT (givene). We then wait 1.5 {=481%,) in orderto  gons to three sets of rollgigs. 2k), 2(1), 3(b), and 3d)].

let the top and bottom plates’ temperatures equilibrate. Thefor 1=6, the hexagonal pattern is never obseryEds.

we take 256, 512, or 912 pictures. The elapsed tinbe-  2(d), 2(h), and 21)]. Therefore, the domain if2 shows an

—
7
om

&£
v
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€=0.02

€=0.03

FIG. 2. Images of the convective pattern in the flat ¢ebbserved from aboyes=0.01, 0.02, and 0.03 for the firéa,b,c,d, second
(e,f,g,h, and third row(i,j,k,I), respectivelyQ)=0, 2, 4.2, and 6 for the firgt,e,), second(b,f,j), third (c,g,K, and fourth column(d,h,I),
respectively. The image processing required to obtain these pictures is described in the text.

upper limit for the developing and thus the analysis of the hexagonal pattern. All these results are summarized in Fig. 4,
where the region of stability in thées,)) plane is indicated
for each observed pattern.
In order to characterize the hexagonal pattern, we have

2 ¢ P computed the structure factstk,t), defined as the modulus
f&ﬁ 5] of the two-dimensional FF{Fig. 3). To study the dyanamics
% of the three sets of rolls composing the hexagonal pattern, we
i . % X ST
< have first calculated the angular distribution

3 F(6,t) (0<6<m), where F(6,1) is the integral ofS(k,t)
e ¥ R over k in the upper half-plang,>0 [Fig. Ya)]. We then
b) : calculate the integral of the peakmaxima I; (i=1,2,3,
& o) d) . G corresponding to the three sets of rolls composing the hex-
;M% agonal structure. The behavior bf(i=1,2,3 as a function
;’“‘ i of time is then studiedFigs. 6 and B)]. Because the edge
= mode tends to destroy the hexagonal pattern, only the central
& part of the cell(40% of the radiushas been considered. In
j order to check a large range of frequencibstween 10°
fﬁ‘m B and 1.3 Hz, different sampling timesét, i.e., the time
T elapsed between two consecutive pictures, have been used
(0.3<6t<300 9. The three peaks always have about the
FIG. 3. (a,b,c,d show the calculated structure functioB&,t) ~ Same amplitude, and no periodicity is found in the behavior
of images(e,g,i,) from Fig. 2, respectivelysee text In (a), the six ~ Of the amplitudes. As an example, in Fig. 6 the(
characteristic peaks of a hexagonal pattern can be observed, whitel,2,3 are plotted as a function of time fd2=3 ande
(c) shows the two characteristic peaks of a roll pattern. =0.003. In Figs. @), 6(c), and Ge), 6t=200 s, while in Figs.

0
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0.06 T 0.01 |

z |2
c
0.05 + Rolls 2 0008 |
e
j o
.04 + =
00 S 0.006 -
Three sets <
©00.03 of rolls 5
= 0.004 |-
)
Hexagons o
002+ —
. 0.002 [
w
0.01 +
0
0 . r r . , %
0 1 2 3 4 5 6
Q 8000

FIG. 4. Experimental phase diagram. The region of stability of
the different observed patterns is represented i(4h@) plane. At 6000

low rotation rate({2 <3), the system goes from hexagons to rolls. @,
For 3= =<6, rolls never develop and the system switches from g :
hexagons to three sets of rolls. At high rotation refe>6), the j= 4000

three sets of rolls become the primary instability.
2000 ¥

6(b), 6(d), and &f), &t=0.39 s. Thel;’s temporal Fourier
transforms[Figs. §g) and &h)] show that there is no peri- 0
odicity in their behavior. Similar results have been found for 0 0.5 1 1.5 2 25 3
all the Q ande at which the hexagonal pattern is formed. Angle [rad]

Figure §b) shows a typical time plot of the angular dis-

tribution F(6,t) when the hexagonal pa.lt-tern IS presen.t, forhexagonal pattern found at=0.017 ()=2. The three peaks repre-

8=22.89 s01=2, ar.‘dszo-_017- The_posmo_n O,f the maxima sent the three sets of rolls composing the hexagonal structure which

changes as a function of time. Their velocity is constant and,,. gq° apartF(6,t) is normalized so thafF(6,t) dg=1. The

it can be calculated by determining the position of the maxi+ (g ) plotted here is the first of the series shown in the time-angle

mum at each time. That means that there is a periodic rotgiot below.(b) Time-angle plot for the same experiment. Images are

tion, at frequencyf, (w:277fpd2/ v, in term of adimensional taken with ast=22.89 s time interval. The 2D Fourier transform

frequency of the two-dimensional Fourier transform. This rotates with a period of 75507 s, corresponding to a dimensionless

rotation is opposite to the cell one, i.e., the fluid rotatesw=10"*

slower than the whole apparat@sote that the images are

taken in the rotating frameThe value ofw is about 18-10*  the flat cell. Indeed, we have observed a periodic rotation of

times smaller thar). the two-dimensional Fourier transform. Once again, no 0s-
In Fig. 7, the dimensionless rotation rateof the Fourier  cillating hexagons have been observed. The effects of rota-

transform has been plotted as a functioneofor different  tion on the convective pattern are the same as in the previous

values of(). Measurements have been made(at?2 (dia-  set of experiments. The only difference is that in the cell with

mondg, =3 (squarey (1=4.2 (open circley and =5  the ramp, the rolls are not straight but cury&ity. 10. Then

(triangles. The lines indicate the best linear fit=ane. For  their two-dimensional Fourier transform does not consist of a

each(), in the limit of the experimental errors, the fits indi- small circular spot, but of a comma-shaped s@€t. 10).

cate that fore=0, w=0. Therefore, at the onset of convec- The solid circles in Fig. 9 represent the measurements made

tion, the fluid has the same angular velocity as the cell. Thevith the cosinusoidal-ramp-shaped cell(at 3.93. The best

plot in Fig. 8 shows the linear relationship between the codinear fit for those points is the same, in the limit of the

efficient ag and Q3. This confirms the logical assumption experimental errors, as the one fitting the measurements

that w depends both on the modulus and on the direction ofmade with the flat cell.

Q. The plot ofw as a function o&Q? (Fig. 9) shows that all

points represented in Fig. 7 collapse together on a straight

line. We can therefore conclude thatcs(3, and we find V- CONCLUSION

€=4.6x10"% Within the limit of the experimental errors, Our experiments in Rayleigh-Bénard convection with ro-

w=0 at the onset of convection. tation about the vertical axis have shown no oscillating hex-
The results of the experiments performed with a ramp oragonal pattern. Instead, we have observed two different fea-

the bottom plate of the cell are similar to those obtained withtures in the rotating cell. First, small localized defects

FIG. 5. (@) Angular distributionF(,t) as a function of for the

066311-4
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4 ol s 9 0.07

3 4 0.06
Iy I3 0.05

2

1 1 0.04

4 b 5 f ® 003
L’ Izg 0.02

2 2 0.01

1 1

4f ol s 2) 0 0 20 40 60 , 80 100 120 140
I3 I :

2l 3 FIG. 8. The coefficieny as a function of)2. The straight line

2 represents the best linear fi,=mO%. The coefficient of linear
1 i correlation is 0.99 andh=4.6x 1074,
0 2 4 6 8 0 50 100 150 200
Time [104s] Time [s]
dy h) sets of rolls appear at a lowewhen() increases. Fof <3,
100 100 the interval ine in which the hexagonal pattern, and then the

20 S0 rolls, predicted by the bifurcation diagram in the nonrotating
£ s case develogFig. 1), becomes smaller for large rotation

1 : rates. For 3=() <6, the system switches directly from the

0 05 1 15 2 25 3
Frequency [mHz]

0

05 1 15 2 25 3
Frequency [Hz]

hexagonal pattern to the three sets of rolls, and the rolls
predicted for large never develop. Fafl =6, the hexagonal
pattern is never observed and the three sets of rolls develop

FIG. 6. (a,b,0 Amplitudesl; of the three peaks composing the
hexagonal pattern as a function of time, fa=3, £¢=0.003, and
6t=200 s.(e,f,g Same aga)—c), with 6t=0.39 s.(d,h) Mean tem-
poral Fourier transform of the above(i=1,2,3 for st=200 s and

at the onset of convection. These results are summarized in
the experimental phase diagram in Fig. 4. The two-

dimensional Fourier transform always displays three peaks,
characteristic of the hexagonal pattern as well as three dif-

6t=0.39 s, respectively, in a semilogarithmic scale. In all the ﬁg'ferently oriented sets of rolls.

For any rotation rat€), we have observed a slow rotation

o i of the convective pattern, in the direction opposite to the
consisting of rolls appear in the hexagonal pattern. Thesgstation cell(w in the rotating framg The pattern therefore

ures, arbitrary units have been used on yhexis.

small domains are randomly distributed. Their number de-
pends ore, and is independent d2. Secondly, the hexago-

nal pattern is progressively invaded from the cell edge to-
wards the center by three different sets of rolls. These three

0.0012 | [3)

0.001
3

0.0008 |
8 0.0006 |

0.0004

0.0002

0.005 0.01 0.015 0.02 0.025

FIG. 7. Dimensionless rotation frequenayof the 2D Fourier
transform as a function of, for Q=2 (<¢), Q=3 (0), 1=4.2(0),
and(Q=5(A). The solid lines represent the best linear fit for e@ch
seriesiw=age.
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0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

0

0.5

2.5

FIG. 9. Dimensionless rotation frequenay as a function of
€ eQ3 The solid circles represent the measurements mad@ at
=3.93 with the cell for which the bottom plate is shaped with a

cosinusoidal ramp. The other series of points are defined in Fig. 7.
The different()-series points collapse together on a single curve.
The solid line represents the best linear(fit=csQ?). We find ¢
=4.6X 1074, which is in agreement with the fit of Fig. 8.
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tionship does not depend on the boundary conditions or the
thickness of the cell.

Our experimental results seem to confirm that, in order to
make good predictions, a theoretical model must take in ac-
count the spatial modulatiofi23,24, rather than simply
mode interaction$20-22. Indeed, mode interaction models
predict the onset of oscillating hexagons via a Hopf bifurca-
tion, and do not allow the possibility of the pattern defects
observed in our experiments. In order to make a more quan-
titative comparison with the spatially and temporally modu-
lated hexagons predicted 1p83,24, further experiments are

4 necessary.
FIG. 10. (a,b Images of the convective pattefabserved from ACKNOWLEDGMENTS
abovg in the cell with a ramp on the bottom plate, fox0.012 and
£=0.046, respectively. In both experimenf3=3.93. (c,d) Struc- All experiments have been performed at iQuest, in the
ture functions associated witla) and(b), respectively. Image pro- laboratory of Guenter Ahlers: we are grateful to him for pro-
cessing has been required to obtain these picts@s text viding all the apparatus and making this work possible. We

also wish to thank Hermann Riecke for the interesting dis-
rotates slower than the ceth is found to depend both ot  cussions about this work, and Sergio Ciliberto for his valu-
ande, and to followw=ceQ3, with c=4.6x 10°*. This rela-  able help.
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