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Hexagonal pattern instabilities in rotating Rayleigh-Bénard convection of a non-Boussinesq fluid:
Experimental results
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Motivated by the Küppers-Lortz instability of roll patterns in the presence of rotation, we have investigated
the effects of rotation on a hexagonal pattern in Rayleigh-Bénard convection. While several theoretical models
have been developed, experimental data cannot be found in the literature. In order to check the validity of the
predictions and to study the effects of rotation on the behavior of the system, we present experimental results
for a non-Boussinesq Rayleigh-Bénard convection with rotation about the vertical axis. Rotation introduces an
additional control parameter, namely the dimensionless rotation rateV=2pfd2/n, wheref is the rotation rate
(in Hz), d is the thickness of the cell, andn is the kinematic viscosity. We observe that the cell rotation induces
a slow rotation of the pattern in the opposite directions<V310−4d in the rotating frame. Moreover, it tends to
destroy the convective pattern. No oscillation of the hexagonal pattern over the range of its existence
sVø6d has been observed.
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I. INTRODUCTION

Experiments allowing a quantitative comparison with the-
oretical investigations are essential to check available theo-
ries and to suggest new directions in theoretical studies. This
has been particularly successful for Rayleigh-Bénard convec-
tion: the convective system consisting of a thin, wide hori-
zontal fluid layer confined between two parallel rigid plates
and heated from below has become a paradigm of pattern
formation [1–3].

A fluid is non-Boussinesq when the dependence of its
properties on temperature is not negligible[4,5]. Theory
[6–11] predicts that in a non-Boussinesq Rayleigh-Bénard
convection, hexagons are formed via a subcritical bifurcation
when the Rayleigh numberR, which is proportional to the
temperature differenceDT between the bottom and the top
plate, increases above its critical valueRc (i.e.,DT.DTc). In
terms of the adimensional parameter«=DT/DTc−1, the bi-
furcation diagram shows that hexagons are stable for
«a,«,«b and rolls are stable for«.«r (Fig. 1). Previous
experiments confirmed the validity of those theoretical pre-
dictions [12–18]. However, the effect on a convective non-
Boussinesq fluid of a rotation about a vertical axis has still
not been experimentally investigated, while several theoreti-
cal models have been developed. Motivated by the Küppers-
Lortz instability of roll patterns in the presence of rotation,
we have investigated experimentally the effects of rotation
on a hexagonal convective pattern. Rotation breaks the up-
down symmetry and introduces an additional control param-
eter, namely the dimensionless rotation rateV=2pfd2/n,

where f is the rotation rate(in Hz), d is the thickness of the
cell, andn is the kinematic viscosity[19,20]. Theory[20–24]
agrees in predicting that in the presence of rotation, the hex-
agonal pattern is still the primary instability. Disagreement is
over the secondary instability, i.e., what happens when one
keeps increasing the control parameter«. Some[20–22] pre-
dict that the steady hexagons lead to oscillating hexagons via
a Hopf bifurcation whenV.VKL, whereVKL is the rotation
rate above which the Küppers-Lortz instability is predicted
[19]. Others[23,24] predict that, in the presence of rotation,
the steady hexagons go to modulated(in space and time)
hexagons via a supercritical bifurcation. They also predict
that if one keeps increasing«, the modulated hexagons them-
selves become unstable and a regular pattern breaks down,
leading to a temporally and spatially chaotic state. In this
case, the disordered state locally exhibits a structure with
hexagonal symmetry which rotates in time.

In order to check which one of these theories predicts the
real behavior of the system, we have performed some experi-
ments of Rayleigh-Bénard convection on a non-Boussinesq
fluid sSF6d with rotation about the vertical axis. The results
are compared to the theoretical predictions and help to gain a
better understanding of the consequences of rotation on the
system behavior.

II. APPARATUS AND EXPERIMENTAL PROCEDURE

All experiments have been performed in a Rayleigh-
Bénard convection cell with a circular cross section of radius
r =4.17±0.005 cm, rotating around the vertical axis. A de-
tailed description for the experimental setup can be found in
[25]. The fluid (gas) is SF6 at a pressure of
107.839±0.001 psi; the Prandtl numbers is 0.797. The top
plate is a sapphire and the bottom plate is an optical flat
diamond-machined aluminum surface[26]. We have used a
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paper sidewall. The spacingd between the two plates is
710±1mm, corresponding to an aspect ratioG=r /d
=58.80±0.15. The mean temperature of the fluid has been
fixed atT=40 °C. In these conditions, forV=0, we expect a
temperature differenceDTc=18.99 °C for the onset of the
convective regime(from R=agd3DT/kn=1708, wherea is
the coefficient of thermal expansion,g is the acceleration of
gravity, andk is the thermal diffusivity). The vertical thermal
diffusion time is tn=d2/k=1.121 s, «a=−5.17310−4, «r
=0.016, and«b=0.0613. Shadowgraph visualization has been
used to image the system[25]. The camera, set in the rotat-
ing frame, takes images of the cell from above. The distance
between the pixels is 263±1mm. For each experiment, first
V is imposed to the system, and then the temperature differ-
enceDT (given«). We then wait 1.5 hs.4817tnd in order to
let the top and bottom plates’ temperatures equilibrate. Then
we take 256, 512, or 912 pictures. The elapsed timedt be-

tween two consecutive images varies between 0.39 and
300 s.

The working parameters such as the cell thickness, the
pressure, and the mean temperature have been optimized to
fit the apparatus characteristics and limitations. The best
compromise has been found in order to have, at the same
time, the best shadowgraph sensitivity, the greatest aspect
ratio G, the largest existence domain for the hexagons and
DTrolls,DTmax.30 °C, whereDTrolls is the temperature dif-
ference at which the rolls are stable andDTmax is the largest
temperature difference which is possible to apply to the sys-
tem.

In order to check the effects of the boundary conditions
on the convective pattern, similar experiments have been
performed on a Rayleigh-Bénard convection cell with
smoother boundary conditions on the bottom plate(ramp).
For this cell, the spacingd0 between the top plate and the flat
part of the bottom plates0ø r ø r0=3.18 cmd is 760±1mm,
corresponding toG0=r0/d0=42.6±0.15. Over the radius in-
terval r0, r , r1=4.44 cm, the bottom plate has a profile
yielding d/d0=1−0.036f1−coshsr −r0dp / sr1−r0djg. The
mean temperature and the pressure of the fluid are the same
as that in the flat bottom plate cell.

III. RESULTS

At V=0, the temperature difference for the onset of con-
vection is DTc=18.73 °C, measured by shadowgraphy. In
Fig. 2, images of the flat cell are shown at«=0.01, 0.02, and
0.03 for different values ofV. They are obtained by image
processing of the direct shadowgraph visualization. First, the
raw pictures are divided by a background image, taken at
«,0, in order to eliminate the dependence of the illumina-
tion or the bottom plate reflectivity on the local heterogene-
ities. After performing a two-dimensional fast Fourier trans-
form (FFT), a radial filter is applied. An inverse FFT then
leads to the final image. More details on this procedure are
developed in[25]. For V=0 [Figs. 2(a), 2(e), 2(i), 3(a), and
3(c)], the primary instability consists of a hexagonal pattern
s«ø0.02d, evolving towards a straight roll pattern for larger
«.

When a rotation about the vertical axis is imposed on the
system, two main effects can be observed. The first one is the
appearance of randomly distributed defects in the hexagonal
pattern. Those defects consist mostly of small domains in
which a roll pattern develops. These small roll patterns can
be seen at lowVsø4d and at«ø0.02 [see Figs. 2(b), 2(c),
2(f), and 2(g)]. The number of those defects depends on«
and is independent ofV. The second effect due to the rota-
tion is the invasion, from the edge of the cell towards the
center, of three different oriented sets of rolls. AsV in-
creases, these three sets of rolls appear at a lower«. The
interval in« in which the hexagonal pattern and then the rolls
predicted forV=0 (for larger«) are observed thus becomes
smaller for larger rotation rates. For 3øVø6, these rolls
never develop and the system switches directly from hexa-
gons to three sets of rolls[Figs. 2(k), 2(l), 3(b), and 3(d)].
For Vù6, the hexagonal pattern is never observed[Figs.
2(d), 2(h), and 2(l)]. Therefore, the domain inV shows an

FIG. 1. Bifurcation diagram for a non-Boussinesq fluid[23].
Without rotation(a) the hexagons gain stability through a saddle
node bifurcation. Hexagons are stable for«a,«,«b and rolls are
stable for«.«r. Hexagons become unstable through a transcritical
bifurcation involving a general solution, where the three amplitudes
are all nonzero but not all equal.uAu is the amplitude of the insta-
bility. With rotation (b), the hexagons become unstable to a limit
cycle through a Hopf bifurcation(oscillating hexagons). The limit
cycle terminates at the general solution branch.
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upper limit for the developing and thus the analysis of the hexagonal pattern. All these results are summarized in Fig. 4,
where the region of stability in thes« ,Vd plane is indicated
for each observed pattern.

In order to characterize the hexagonal pattern, we have

computed the structure factorSskW ,td, defined as the modulus
of the two-dimensional FFT(Fig. 3). To study the dyanamics
of the three sets of rolls composing the hexagonal pattern, we
have first calculated the angular distribution

Fsu ,td s0,u,pd, where Fsu ,t) is the integral ofSskW ,td
over k in the upper half-planeky.0 [Fig. 5(a)]. We then
calculate the integral of the peaks(maxima) I i si =1,2,3d,
corresponding to the three sets of rolls composing the hex-
agonal structure. The behavior ofI i si =1,2,3d as a function
of time is then studied[Figs. 6 and 5(b)]. Because the edge
mode tends to destroy the hexagonal pattern, only the central
part of the cell(40% of the radius) has been considered. In
order to check a large range of frequencies(between 10−5

and 1.3 Hz), different sampling timesdt, i.e., the time
elapsed between two consecutive pictures, have been used
s0.3,dt,300 sd. The three peaks always have about the
same amplitude, and no periodicity is found in the behavior
of the amplitudes. As an example, in Fig. 6 theI i si
=1,2,3d are plotted as a function of time forV=3 and«
=0.003. In Figs. 6(a), 6(c), and 6(e), dt=200 s, while in Figs.

FIG. 2. Images of the convective pattern in the flat cell(observed from above). «=0.01, 0.02, and 0.03 for the first(a,b,c,d), second
(e,f,g,h), and third row(i,j,k,l), respectively.V=0, 2, 4.2, and 6 for the first(a,e,i), second(b,f,j), third (c,g,k), and fourth column(d,h,l),
respectively. The image processing required to obtain these pictures is described in the text.

FIG. 3. (a,b,c,d) show the calculated structure functionsSskW ,td
of images(e,g,i,l) from Fig. 2, respectively(see text). In (a), the six
characteristic peaks of a hexagonal pattern can be observed, while
(c) shows the two characteristic peaks of a roll pattern.
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6(b), 6(d), and 6(f), dt=0.39 s. TheI i’s temporal Fourier
transforms[Figs. 6(g) and 6(h)] show that there is no peri-
odicity in their behavior. Similar results have been found for
all the V and« at which the hexagonal pattern is formed.

Figure 5(b) shows a typical time plot of the angular dis-
tribution Fsu ,td when the hexagonal pattern is present, for
dt=22.89 s,V=2, and«=0.017. The position of the maxima
changes as a function of time. Their velocity is constant and
it can be calculated by determining the position of the maxi-
mum at each time. That means that there is a periodic rota-
tion, at frequencyfp (v=2pfpd

2/n, in term of adimensional
frequency) of the two-dimensional Fourier transform. This
rotation is opposite to the cell one, i.e., the fluid rotates
slower than the whole apparatus(note that the images are
taken in the rotating frame). The value ofv is about 103–104

times smaller thanV.
In Fig. 7, the dimensionless rotation ratev of the Fourier

transform has been plotted as a function of« for different
values ofV. Measurements have been made atV=2 (dia-
monds), V=3 (squares), V=4.2 (open circles), and V=5
(triangles). The lines indicate the best linear fitv=aV«. For
eachV, in the limit of the experimental errors, the fits indi-
cate that for«=0, v=0. Therefore, at the onset of convec-
tion, the fluid has the same angular velocity as the cell. The
plot in Fig. 8 shows the linear relationship between the co-
efficient aV and V3. This confirms the logical assumption
that v depends both on the modulus and on the direction of
V. The plot ofv as a function of«V3 (Fig. 9) shows that all
points represented in Fig. 7 collapse together on a straight
line. We can therefore conclude thatv=c«V3, and we find
c=4.6310−4. Within the limit of the experimental errors,
v=0 at the onset of convection.

The results of the experiments performed with a ramp on
the bottom plate of the cell are similar to those obtained with

the flat cell. Indeed, we have observed a periodic rotation of
the two-dimensional Fourier transform. Once again, no os-
cillating hexagons have been observed. The effects of rota-
tion on the convective pattern are the same as in the previous
set of experiments. The only difference is that in the cell with
the ramp, the rolls are not straight but curved(Fig. 10). Then
their two-dimensional Fourier transform does not consist of a
small circular spot, but of a comma-shaped spot(Fig. 10).
The solid circles in Fig. 9 represent the measurements made
with the cosinusoidal-ramp-shaped cell atV=3.93. The best
linear fit for those points is the same, in the limit of the
experimental errors, as the one fitting the measurements
made with the flat cell.

IV. CONCLUSION

Our experiments in Rayleigh-Bénard convection with ro-
tation about the vertical axis have shown no oscillating hex-
agonal pattern. Instead, we have observed two different fea-
tures in the rotating cell. First, small localized defects

FIG. 4. Experimental phase diagram. The region of stability of
the different observed patterns is represented in thes« ,Vd plane. At
low rotation ratesV,3d, the system goes from hexagons to rolls.
For 3øVø6, rolls never develop and the system switches from
hexagons to three sets of rolls. At high rotation ratesV.6d, the
three sets of rolls become the primary instability.

FIG. 5. (a) Angular distributionFsu ,td as a function ofu for the
hexagonal pattern found at«=0.017,V=2. The three peaks repre-
sent the three sets of rolls composing the hexagonal structure which
are 60° apart.Fsu ,td is normalized so thateFsu ,td du=1. The
Fsu ,td plotted here is the first of the series shown in the time-angle
plot below.(b) Time-angle plot for the same experiment. Images are
taken with adt=22.89 s time interval. The 2D Fourier transform
rotates with a period of 75 507 s, corresponding to a dimensionless
v=10−4.
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consisting of rolls appear in the hexagonal pattern. These
small domains are randomly distributed. Their number de-
pends on«, and is independent ofV. Secondly, the hexago-
nal pattern is progressively invaded from the cell edge to-
wards the center by three different sets of rolls. These three

sets of rolls appear at a lower« whenV increases. ForV,3,
the interval in« in which the hexagonal pattern, and then the
rolls, predicted by the bifurcation diagram in the nonrotating
case develop(Fig. 1), becomes smaller for large rotation
rates. For 3øVø6, the system switches directly from the
hexagonal pattern to the three sets of rolls, and the rolls
predicted for large« never develop. ForVù6, the hexagonal
pattern is never observed and the three sets of rolls develop
at the onset of convection. These results are summarized in
the experimental phase diagram in Fig. 4. The two-
dimensional Fourier transform always displays three peaks,
characteristic of the hexagonal pattern as well as three dif-
ferently oriented sets of rolls.

For any rotation rateV, we have observed a slow rotation
of the convective pattern, in the direction opposite to the
rotation cell(v in the rotating frame). The pattern therefore

FIG. 6. (a,b,c) AmplitudesI i of the three peaks composing the
hexagonal pattern as a function of time, forV=3, «=0.003, and
dt=200 s.(e,f,g) Same as(a)–(c), with dt=0.39 s.(d,h) Mean tem-
poral Fourier transform of the aboveI i si =1,2,3d for dt=200 s and
dt=0.39 s, respectively, in a semilogarithmic scale. In all the fig-
ures, arbitrary units have been used on they axis.

FIG. 7. Dimensionless rotation frequencyv of the 2D Fourier
transform as a function of«, for V=2 (L), V=3 (h), V=4.2 (s),
andV=5 (n). The solid lines represent the best linear fit for eachV
series:v=aV«.

FIG. 8. The coefficientaV as a function ofV3. The straight line
represents the best linear fitsaV=mV3d. The coefficient of linear
correlation is 0.99 andm=4.6310−4.

FIG. 9. Dimensionless rotation frequencyv as a function of
«V3. The solid circles represent the measurements made atV
=3.93 with the cell for which the bottom plate is shaped with a
cosinusoidal ramp. The other series of points are defined in Fig. 7.
The differentV-series points collapse together on a single curve.
The solid line represents the best linear fitsv=c«V3d. We find c
=4.6310−4, which is in agreement with the fit of Fig. 8.
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rotates slower than the cell.v is found to depend both onV
and«, and to followv=c«V3, with c=4.6310−4. This rela-

tionship does not depend on the boundary conditions or the
thickness of the cell.

Our experimental results seem to confirm that, in order to
make good predictions, a theoretical model must take in ac-
count the spatial modulation[23,24], rather than simply
mode interactions[20–22]. Indeed, mode interaction models
predict the onset of oscillating hexagons via a Hopf bifurca-
tion, and do not allow the possibility of the pattern defects
observed in our experiments. In order to make a more quan-
titative comparison with the spatially and temporally modu-
lated hexagons predicted by[23,24], further experiments are
necessary.
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«=0.046, respectively. In both experiments,V=3.93. (c,d) Struc-
ture functions associated with(a) and (b), respectively. Image pro-
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