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S U M M A R Y
We present an application of the spectral-element method to model axisymmetric flows in
rapidly rotating domains. The primitive equations are discretized in space with local ten-
sorized bases of high-order polynomials and in time with a second-order accurate scheme that
treats viscous and rotational effects implicitly. We handle the pole problem using a weighted
quadrature in elements adjacent to the axis of rotation. The resulting algebraic systems are
solved efficiently using preconditioned iterative procedures. We validate our implementation
through comparisons with analytic and purely spectral solutions to laminar flows in a spherical
shell. This axisymmetric tool is the kernel on which complexity will be added subsequently in
the long-term prospect of building a parallel spectral-element based geodynamo model.

Key words: geodynamo, rotating flows, spectral-element method.

1 I N T RO D U C T I O N

As the Earth sheds its heat, its interior undergoes large-scale con-
vective motions. Inside its liquid metallic outer core, these motions
generate in turn the geomagnetic field, as was originally proposed
by Larmor (1919). More than 80 yr after his founding hypothesis it
is now widely accepted that thermochemical convection indeed pro-
vides enough energy to power the geodynamo (Gubbins & Roberts
1987). Modelling this complex magnetohydrodynamic process is
made difficult by the low molecular viscosity of iron under core
conditions (Poirier 1988; de Wijs et al. 1998). In fact, the ratio of
viscous stresses to the Coriolis force in the force balance of the core,
measured by the Ekman number E, is very small (10−12 at most) re-
sulting in sharp viscous boundary layers (called Ekman layers) of a
few metres. Thus, we have little hope in the near future of resolving
these small length-scales numerically in a computer model of the
geodynamo, even if we account for the impressive rise in (parallel)
computing power expected in the coming years.

Despite these difficulties great insight into the working of the
geodynamo has been gained over the past decade thanks to progress
made jointly by laboratory and numerical modellers (Busse 2000).
As a matter of fact, Glatzmaier & Roberts (1995) simulated the
magnetohydrodynamics of an artificially hyperviscous core and pre-
sented the first computer simulation of a geomagnetic field reversal
using a 3-D spherical dynamo model. Although far from the ap-
propriate parameter regime, their model produced a magnetic field
remarkably similar to the magnetic field of the Earth. This semi-
nal result led subsequently these and other authors (Glatzmaier &
Roberts 1996a; Kuang & Bloxham 1997) to investigate a range of
geophysical problems related to the dynamics of the Earth’s core,

including the differential rotation of the inner core (Glatzmaier &
Roberts 1996b), the angular momentum budget of the Earth
(Bloxham 1998), the secular variation of the Earth’s magnetic field
(Bloxham 2000a) and, in a palaeomagnetic perspective, the validity
of the geocentric axial dipole hypothesis (Bloxham 2000b).

From a numerical standpoint, current dynamo models are based
on spherical harmonics to describe the horizontal dependency of
the variables (Glatzmaier 1984; Kuang & Bloxham 1999; Holler-
bach 2000). The method is certainly the most natural one to con-
sider when attacking the problem of modelling the circulation of a
convecting (or precessing) Boussinesq liquid metal in spherical ge-
ometry (see also Tilgner 1999). For instance, the analytic character
of spherical harmonics permits one to perform a poloidal–toroidal
decomposition both of the magnetic and the velocity fields, thus sat-
isfying exactly the solenoidal requirements upon these vector fields
(Glatzmaier 1984). Moreover, their use leads to a weak numeri-
cal dispersion, and they achieve an almost uniform resolution of the
spherical surface. They also circumvent the pole problem that arises
when using spherical (r , θ , φ) coordinates. Unfortunately, the main
drawback of spherical harmonics originates from their global defi-
nition, which requires a rather expensive pseudospectral calculation
of the non-linear terms, and consequently gives rise to a difficult
processing on parallel computers. As a result, current dynamo sim-
ulations are not performed at Ekman numbers smaller than 10−4

(Christensen et al. 1999) for simulations that span several magnetic
diffusion timescales, unless one uses a controversial hyperviscosity
(Zhang & Jones 1997; Grote et al. 2000).

Questions remain on the ability of these smooth models to reflect
turbulent motions in the Earth’s core and to reproduce long-term
features of the geomagnetic field, as pointed out by Dormy et al.
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(2000). There is hope, however, that if one is able to prescribe a
small enough Ekman number, one will reach a parameter regime
asymptotically appropriate for the Earth’s core. Indeed, from a the-
oretical standpoint the core has two options as to how to operate its
dynamo, commonly referred to as the weak and strong field regimes
(Roberts 1978). The dynamo inside the Earth may fluctuate between
these states (Zhang & Gubbins 2000), but looking at computer mod-
els of the dynamo we have yet to discover how large rotation has to be
before a dynamo has the choice between these two distinct regimes.
St. Pierre (1993) found that E = O(10−5) was sufficiently small
to obtain a subcritical strong field dynamo in his plane layer study.
However, before applying these results to the real Earth one would
have to repeat them in spherical geometry, and vary the Ekman num-
ber (and other relevant parameters) enough to be able to determine
whether or not there are these two distinct regimes. Indeed, that
is precisely the ultimate objective of this work. Nevertheless, St.
Pierre’s results suggest that the O(10−4) Ekman number currently
being used may need to be reduced by an order of magnitude before
one is even qualitatively in the right regime.

A reduction in Ekman number could be attained by using numer-
ical methods that execute efficiently on modern parallel computers
via domain decomposition and explicit message-passing. In fact,
domain decomposition methods based on explicit message-passing
have already proven to be successful in finite-element models sim-
ulating flow inside the Earth’s mantle at high convective vigour
(Bunge & Baumgardner 1995). Moreover, these methods are well
suited to the growing trend of using cost-effective, off-the-shelf PC-
clusters in geophysical modelling (Bunge & Dalton 2001). Conse-
quently, our long-term effort aims at developing a numerical dynamo
model that retains the accuracy and robustness of spectral methods
while performing well on modern parallel computers such as clusters
of PCs. Our approach is based upon the use of the spectral-element
method (SEM), a variational technique that relies on high-order local
shape functions (Patera 1984; Bernardi & Maday 1992). The SEM,
in fact, combines the geometrical flexibility of the finite-element
method with the exponential convergence and weak numerical dis-
persion of spectral methods (Maday & Patera 1989). In addition, its
local character lends itself naturally to domain decompositions, and
allows for non-uniform resolution inside the computational domain,
i.e. for grid-refinements in localized regions such as the narrow Ek-
man boundary layers inside the core. Recent geophysical applica-
tions of the SEM include ocean-atmosphere modelling (Taylor et al.
1997; Levin et al. 2000; Giraldo 2001) as well as regional and global
seismic wave propagation (Komatitsch & Vilotte 1998; Komatitsch
& Tromp 1999; Capdeville et al. 2002; Chaljub et al. 2003). To our
knowledge, however, the SEM has not yet been applied to models
of deep Earth flows, neither in the mantle nor in the core.

While Chan et al. (2001) already investigated the implementation
of a finite-element method to solve the spherical kinematic dynamo
problem, we present and validate here the application of the SEM
to the Navier–Stokes equation in an axisymmetric, non-magnetic
context. This axisymmetric case can readily be generalized to fully
3-D applications by coupling the SEM in the meridional plane with
a Fourier expansion in the longitudinal direction. In this so-called
Fourier–spectral-element approach (Bernardi et al. 1999), the 3-
D problem is broken into a collection of meridional subproblems,
which in turn may be parallelized into a number of spatial subdo-
mains. We use cylindrical (s, φ, z) coordinates and solve for primi-
tive variables. We thus do not rely on the expansion of the velocity
in terms of a poloidal and a toroidal field: a poloidal–toroidal de-
composition generates high-order differential operators which can
in turn lead to a substantial numerical dispersion. We therefore show

explicitly in this paper how the divergence-free requirement on the
velocity field is satisfied with our method. We show furthermore,
how we handle the singularities at the axis of rotation by using a
weighted Gauss–Lobatto quadrature (Bernardi et al. 1999).

The outline of this paper is as follows: Section 2 recalls the sys-
tem of equations of interest, and its detailed variational treatment is
presented in Section 3. We then describe the spatial and temporal dis-
cretizations of the variational problem in Sections 4 and 5. The val-
idation of the implementation proceeds by comparing SEM results
with analytical solutions for steady and unsteady Stokes problems
(Section 6) and with published spectral solutions in a rapidly rotat-
ing context (Section 7). The SEM is shown in all cases to exhibit the
spectral convergence properties of standard spectral methods and to
provide numerical accuracy of better than one per mil relative to the
reference solution. A concluding discussion follows in Section 8.

2 G OV E R N I N G E Q UAT I O N S

As illustrated in Fig. 1, we are interested in describing the axisym-
metric motion of an incompressible Newtonian fluid filling an ax-
isymmetric container of arbitrary meridional shape �. The revolu-
tion of � around the axis of symmetry � gives rise to the full 3-D
domain �̆. We assume that the rotation rate ω is constant and that
the rotation vector ω is parallel to �. The unit vector along this axis
is denoted by ẑ. Under these conditions, the flow of the fluid is gov-
erned by the following non-dimensional equations (e.g. Gubbins &
Roberts 1987):

∂t u + 2ẑ × u = −∇p + E∆u + f in �, (1a)

∇ · u = 0 in �, (1b)

Figure 1. The approach we describe aims primarily at solving the Navier–
Stokes equation in spherical/spheroidal shells (right). Its flexibility allows,
however, to handle axisymmetric containers of more complicated shape (left)
that one could use in a laboratory experiment. In each case, the 3-D domain
�̆ follows from the revolution of its meridional section � around its axis of
symmetry �. ∂� is the boundary of �.
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684 A. Fournier et al.

where u is the velocity of the fluid, p is its pressure augmented of the
centrifugal acceleration, and f denotes the body forces which include
potentially the non-linear interactions. The actual treatment of the
non-linearities is beyond the scope of the present paper. However, let
us mention that they may be dealt with in an explicit fashion, by ab-
sorbing them into f. The relative importance of viscous to rotational
effects is measured by the non-dimensional Ekman number:

E = ν

ωL2
, (2)

in which ν represents the kinematic viscosity of the fluid and L the
depth of the container. For problem (1) to be well-posed, we specify
boundary conditions ub(t) on the domain boundary ∂� (which does
not include the intersection of � with �), and conditions on the
initial state u0(x).

3 VA R I AT I O N A L F O R M U L AT I O N

The spectral-element method, such as the standard finite-element
method, relies on the variational formulation of the equations of
interest. At any time t ∈ [0, T ], we consider the velocity and pressure
field that we denote by ut (x) = u(x, t) and pt(x) = p(x, t). Using
cylindrical coordinates (s, φ, z), the three vector components of ut

will subsequently be indicated by (ut,s , ut,φ , ut,z). The variational
formulation of problem (1) is obtained by multiplying eqs (1a) and
(1b) with appropriate trial functions and integrating the resulting
system over the domain �. An elementary volume of integration
d� is a torus, obtained by the revolution of a rectangular meridional
section of area dsdz around � (see Fig. 1). It is thus given by

d� = 2πs ds dz. (3)

Following Bernardi et al. (1999), we define the space of square
integrable functions L2

1(�)

L2
1(�) =

{
w : � → R, ‖w‖ =

(∫
�

w2 d�

)1/2

< ∞
}

. (4)

We associate the inner product (·, ·)1

∀( f, g) ∈ L2
1(�) × L2

1(�), ( f, g)1 =
∫

�

f g d�. (5)

We also introduce the 2-D weighted Sobolev space H 1
1(�) as the

subspace of L2
1(�) containing those functions whose first partial

derivatives are also square integrable

H 1
1 (�) = {

w ∈ L2
1(�), ∂sw ∈ L2

1(�), ∂zw ∈ L2
1(�)

}
. (6)

To account for boundary conditions, it is necessary to define the
subspace of functions in H1

1(�) which vanish on ∂�

H 1
1
(�) = {

w ∈ H 1
1 (�), w = 0 on ∂�

}
. (7)

In the axisymmetric case considered here, the three components of
the velocity (ut,s , ut,φ , ut,z) have to satisfy different conditions on
the axis �. Indeed, ut,s and ut,φ must vanish on � whereas ut,z must
satisfy the symmetry condition ∂ su t,z = 0.

ut,s = ut,φ = 0, on �, (8a)

∂sut,z = 0, on �. (8b)

The latter condition is a so-called natural condition, and is automat-
ically satisfied by the solution of the associated variational problem.

However, the nullity condition on ut,s and ut,φ , which is of the es-
sential kind, has to be enforced and requires the introduction of
V 1

1(�):

V 1
1 (�) = {

w ∈ H 1
1 (�), w = 0 on �

}
. (9)

Again, the imposition of the boundary conditions on ∂� requires us
to define V 1

1
(�) as

V 1
1
(�) = {

w ∈ V 1
1 (�), w = 0 on ∂�

}
. (10)

We can now define the space of admissible velocities at any given
time t

H1(�) = V 1
1 (�) × V 1

1 (�) × H 1
1 (�), (11)

and the space of velocity trial functions

H1

(�) = V 1

1
(�) × V 1
1
(�) × H 1

1
(�). (12)

These two spaces, therefore, differ only in that the trial functions
have to vanish where the value of the velocity is imposed. As no
boundary condition is prescribed on the pressure field, the space of
pressure trial functions is the same as the space of pressure basis
functions, and consists simply of the space of square integrable
functions defined over �. This collection of spaces now enables us
to recast problem (1) in its equivalent variational form:

For any time t in [0, T] find (ut, pt) in H1(�) × L2
1(�) with ut −

ub(t) in H1

(�), such that:

∀v ∈ H1

(�), (∂tut, v)1 + (2ẑ × ut , v)1 + Ea(ut, v)

− d(v, pt) = (f, v)1, (13a)

∀q ∈ L2
1(�), d(ut , q) = 0. (13b)

This problem is a standard saddle-point problem, where eq. (13a) has
to be solved for a velocity that satisfies the divergence-free constraint
(13b). The pressure field is the Lagrange multiplier associated with
this constraint. Here we have introduced the bilinear form a, which
is the variational equivalent of the Laplacian:

a(u, v) = a0(us, vs) + a0(uφ, vφ) + a0(uz, vz)

+
∫

�

1

s2
(usvs + uφvφ) d�, (14)

in which

a0( f, g) =
∫

�

(∂s f ∂s g + ∂z f ∂z g) d�. (15)

The divergence/gradient form d is given by

d(v, q) =
∫

�

q

(
∂svs + vs

s
+ ∂zvz

)
d�. (16)

Note that both of these forms appear in the variational momentum
eq. (13a) after an integration by parts, and that the pressure does not
have to be continuous on �. Importantly, it can be shown (Bernardi
& Maday 1992) that the existence of a unique solution to the saddle-
point problem (13) is guaranteed, if a so-called compatibility condi-
tion between the velocity and pressure spaces is respected. We will
return to this point in more detail in the following section.

4 S P E C T R A L - E L E M E N T
M E T H O D O L O G Y

In this section, we describe how the weak formulation (13) of
the original problem (1) is discretized in space using the spectral-
element method. We want to restrict ut and pt in (13) to finite-
dimensional spaces Xh and Yh , respectively and denote their dis-
cretized version by ut,h and pt,h. As illustrated in the top row of
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Spectral-element modelling of the axisymmetric Navier–Stokes equation 685

Figure 2. Top, the domain � is broken into a collection of ne non-overlapping spectral elements �e. Each �e is the image of the reference square �2 = [−1,
1]2 under an invertible local mapping F e . For spatially complex � (a), F e is a subparametric transformation, otherwise F e is analytical (b). Middle, when �e

is not adjacent to the axis, its local shape functions for velocity and pressure are defined by the tensor product of the Lagrangian interpolants (LI) defined over
the family of Gauss–Lobatto Legendre points of order N . (c) The 11 velocity LI defined by the GLL points of order 10. (d) The 9 Pressure LI defined by the
interior GLL points of order 10. Bottom, when �e is adjacent to the axis, the discretized velocity must exhibit the proper behaviour when approaching the axis.
A weighted quadrature is thus used which incorporates the cylindrical radius in its weight, and has one velocity point strictly on the axis. (e) The 11 velocity
LI defined by the weighted GLL points of order 10. Notice the resulting asymmetry in the shape functions in contrast to (c). (f) The 9 pressure LI defined by
the interior weighted GLL points of order 10.

Fig. 2, we define these spaces by decomposing the global domain
� into a collection of ne non-overlapping elements �e, such that

� =
ne⋃

e=1

�e. (17)

Here, each �e is the image of a reference square �2 = [−1, +1]2

under a local invertible mapping F e : (ξ, η) ∈ �2 ⇒ (s, z) ∈ �e

with a well-defined inverse. Dealing with a deformed quadrangle
enables us to perform a separation of variables (ξ , η) and therefore
to use a tensorized basis. Figs 2(a) and (b) illustrate the two options
we have in practice to implement this mapping. When the shape of
the domain � is complex (see Fig. 2a), we use a so-called subpara-

metric mapping (Hughes 1987; Reddy 1993), where the transfor-
mation is parametrized by the datum of the images of control points
in �2. When � is simple (e.g. when it is the meridional section of
a spheroid, see Fig. 2b), an analytic expression for F e is preferred.

In each element, velocity and pressure are approximated locally
via a tensorized basis of high-order polynomials (shown in the mid-
dle and the bottom panels of Fig. 2), hence the terminology of
spectral elements introduced by Patera (1984). To avoid spurious
pressure modes, Bernardi & Maday (1988) suggest taking

Xh = H1(�) ∩ P N ,ne , (18)

Yh = L2
1(�) ∩ PN−2,ne , (19)
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686 A. Fournier et al.

where

PN ,ne = {
w[F e(ξ, η)] |�e ∈ PN (ξ ) × PN (η), e = 1, ne

}
(20)

and

P N ,ne = PN ,ne × PN ,ne × PN ,ne . (21)

Here, PN is the space of those polynomials defined over [−1, 1]
of degree less or equal to N . In other words, each component of
the restriction of the velocity in a given element �e is described
in terms of the tensor product of polynomials of order N along the
ξ and η directions. Definition (18) also requires the velocity to be
continuous at the boundary between two elements. For the pressure
field, instead, the order of the polynomials is set to N − 2, and
definition (19) does not require pressure to be continuous at the
elements boundaries. It can been shown, as in Bernardi & Maday
(1992), that the lower degree used to discretize pressure in this so-
called PN − PN−2 approach provides a unique discrete solution
(ut,h, pt,h) to the problem of interest. Similarly, the discrete space of
velocity trial functions is defined as

X
,h = H1

(�) ∩ P N ,ne . (22)

We now describe in detail the exact nature of the polynomials. The
basis for PN is related to the Gauss-type quadrature formula used
to evaluate the integrals which appear in the variational formulation
(13). Such integrals can be broken into a sum of elemental integrals,
i.e. one can write∫

�

f d� =
ne∑

e=1

∫
�e

f d�e. (23)

As we use cylindrical coordinates, elements adjacent to the axis
of symmetry � (which we will hereafter refer to as axial elements)
have to be distinguished from elements away from the axis. We
group the n� axial elements in �� such that

�� =
n�⋃

e=1

�e, (24)

whereas the non-axial elements are grouped into

�∅, �∅ = � \ �� =
ne⋃

e=n�+1

�e. (25)

When �e is not axial (such as elements �3, �4, �5, �6 in Fig. 2a,
or elements �3, �4 in Fig. 2b), PN is spanned by the set of La-
grangian interpolants hN

i , i ∈ {0, . . . , N} defined by the N +1
Gauss–Lobatto Legendre (GLL) points ξ N

i , i ∈ {0, . . . , N} on [
−1, 1]. Fig. 2(c) displays this family of polynomials for N = 10.
For the pressure, the basis for PN−2 is the set of Lagrangian inter-
polants hN−2

i defined on the interior GLL nodes ξ N
i , i ∈ {1, . . . , N

− 1} (see Fig. 2d). We are now in a position to define the quadrature
rule over the non-axial elements

∀�e ∈ �∅,
∫

�e
f d�e ≈

N∑
i, j=0

ρiρ j s f [F e(ξi j )]|J e|(ξi j ), (26)

where the ρ i , i ∈ {0, . . . , N} are the quadrature weights associated
with the Gauss–Lobatto formula of order N , ξ i j = (ξ N

i , ξ N
j ), and

|J e| stands for the Jacobian of the mapping F e.
When �e is in contact with the axis of symmetry (elements �1

and �2 in Figs 2a and b), a different quadrature must be used to
perform the integration in the ξ -direction. Indeed, the presence of
an s factor in the elementary volume d�e would lead to an undeter-
mined system of the form ‘0 = 0’, if integrals were to be evaluated
on collocation points located on � (Gerritsma & Phillips 2000). This

and the enforcement of the essential boundary conditions (8a) on
� favours the use of a weighted Gauss–Lobatto quadrature, which
incorporates the cylindrical radius in its weight. We denote by ζ N

i ,
i ∈ {0, . . . , N} and σ i , i ∈ {0, . . . , N}, respectively, the nodes and
weights associated with this new quadrature. For any polynomial �

in P 2N−1(�), we then have∫
�

�(ξ )(1 + ξ ) dξ =
N∑

i=0

σi�
(
ζ N

i

)
. (27)

In the ξ -direction, a basis for PN is thus the set of Lagrangian
interpolants lN

i , i ∈ {0, . . . , N} defined by the ζ N
i , i ∈ {0, . . . ,

N}, and a basis for PN−2 is the set of Lagrangian interpolants lN−2
i

defined by the ζ N
i , i ∈ {1, . . . , N −1}. We show these two bases in

Figs 2(e) and (f), respectively, for a polynomial order N = 10. In the
η direction, for which no underdetermination is expected, we retain
the quadrature rule and the related basis that we defined previously
for non-axial elements. In summary, the following integration rule
applies for elements adjacent to �

∀�e ∈ ��,

∫
�e

f d�e ≈
N∑

i, j=0

σiρ j

s(ζ i j )

1 + ζ N
i

f [F e(ζ i j ])|J e|(ζ i j ),(28)

where ζ i j = (ζ N
i , ξ N

j ). The apparent singularity involving the term
s(ζ N

i , ξ N
j )/(1 + ζ N

i ) when ζ N
i = −1, or, equivalently, when s = 0 is

easily removed by the application of L’Hospital’s rule. Further de-
tails concerning the quadrature formulae can be found in Appendix
A, or to a greater extent in (Bernardi et al. 1999 chapters IV and VI).
Note that in any situation, the basis for the velocity is continuous
across subdomain boundaries, while the basis for the pressure is not.

The discrete velocity field is given by

ut,h[x(ξ, η)] =
n�∑

e=1

N∑
i, j=0

(
ueij

t,s, ueij
t,φ, ueij

t,z

)
l N
i (ξ )hN

j (η)

+
ne∑

e=n�+1

N∑
i, j=0

(
ueij

t,s, ueij
t,φ, ueij

t,z

)
hN

i (ξ )hN
j (η). (29)

Here, the (ueij
t,s , ueij

t,φ , ueij
t,z) are the nodal velocities at the collocation

points in the eth element and x = (s, z) is the meridional position
vector. Likewise, the discrete pressure reads:

pt,h[x(ξ, η)] =
n�∑

e=1

N−1∑
i, j=1

peij
t l N−2

i (ξ )hN−2
j (η)

+
ne∑

e=n�+1

N−1∑
i, j=1

peij
t hN−2

i (ξ )hN−2
j (η). (30)

In the remainder of this paper,ut = (ut,s,ut,φ ,ut,z) will be the vector of
velocity unknowns, and pt the vector of pressure unknowns. Fig. 3
displays a simple spherical mesh showing the collocation points
associated with velocity and pressure.

The spatial discretization of problem (13) proceeds by specifying
the trial functions. We follow a classical Galerkin approach, and
build X
,h and Yh with the nodal shape functions associated with
the velocity and pressure degrees of freedom, respectively. This
leads to the semi-discrete version of problem (13):

Find at any time t ∈ [0, T ] the solution (ut, pt) of

M∂t ut + Cut + EKut − DT pt = Mft , (31a)

−Dut = 0. (31b)

In this system, M is the diagonal mass matrix, C is the Coriolis
antisymmetric matrix, K is the stiffness matrix, and D/ DT denotes
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Spectral-element modelling of the axisymmetric Navier–Stokes equation 687

Figure 3. SEM mesh for spherical shell geometry with ne = 4 spectral
elements of order N = 4 used for analytic and numerical benchmarks (see
the text). Velocity and pressure nodes are represented by black triangles and
white circles, respectively. Axial elements �1 and �2 resort to a weighted
Gauss–Lobatto quadrature (see the text) resulting in a different spacing of
nodes in latitude relative to non-axial elements �3 and �4, the nodes of
which are the images of the standard GLL points.

the divergence/gradient matrix. On the right-hand side, ft denotes the
forcing vector. An extensive derivation of system (31), together with
a detailed description of the various matrices is given in Appendix B.
It is worthwhile to mention that these matrices are not stored, except
for the diagonal mass matrix. Instead, because of the tensorized
formulation, the result of their actions on nodal vectors is directly
computed and assembled. Storing the stiffness matrix and applying
it to a nodal field would require O(neN4) operations. Instead, the
resulting field can be computed in O(neN3) operations, along with
a significant reduction in memory requirements.

5 T I M E D I S C R E T I Z AT I O N

Having presented the spatial discretization of (13), we are now ready
to specify how time marches on. We break the interval [0, T] into
segments of equal length �t, and denote by un and pn the value of ut

and pt at t = tn = n�t . The time derivative in (31a) is approximated
via a second-order backward differentiation formula (BDF2):

∂t un = 3un − 4un−1 + un−2

2�t
. (32)

At each time step tn, we have to solve a modified Stokes problem of
the form:

Hun − DT pn = Mtn, (33a)

−Dun = 0, (33b)

in which:

H = 3

2�t
M + C + EK (34)

is a Helmholtz operator modified by the addition of the effects due
to rotation, and tn = fn + (4un−1 −un−2)/(2�t).

Our strategy to invert the coupled system (33) follows a so-called
Operator Integrated Factor (OIF) splitting scheme, originally intro-
duced by Maday et al. (1990). This is a modified version of the more
standard Uzawa algorithm (Arrow et al. 1958), which we describe
briefly here. Problem (33) is the discrete version of the original
saddle-point problem (13). In order to apply an Uzawa method, one
would split (33) and solve first for the pressure field pn. Indeed,
multiplying (33a) by DH−1 and using the discrete incompressibil-
ity condition (33b) leads to the following elliptic system:

DH−1DT pn = −DH−1Mtn . (35)

Once pn is known, it can be used in (33a) to compute the velocity
field un. Note, however, that the size of problem (35) precludes a
direct solution, and that each iteration would require that one inverts
H (iteratively as well), resulting in an expensive procedure. The
scheme proposed by Maday et al. (1990) overcomes this problem
by relying on the fact that the SEM mass matrix is diagonal, and
therefore straightforward to invert. Following Couzy (1995), we
write (33) in the equivalent matrix form[

H −DT

−D 0

][
un

pn

]
=

[
Mtn

0

]
(36)

and introduce the auxiliary matrix Q to rewrite the Stokes system
in the following way:[

H −HQDT

−D 0

][
un

δp

]
=

[
Mtn + DT pn−1

0

]
+

[
r

0

]
, (37)

where δ p = pn − pn−1 is the pressure increment, and the residual
term is

r = −(HQ − I)DT δp, (38)

in which I is the identity matrix. If Q = H−1, we retrieve the standard
(expensive) Uzawa system. On the other hand, taking Q = �t

3/2M
−1

is a computationally convenient choice, as M is diagonal. It can be
shown that, in this case, neglecting r in (37) leads to a method which
is formally second-order accurate in time (Fischer 1997 and refer-
ences therein), and therefore does not affect the overall accuracy of
the time scheme. This is the option we retain. Dropping the residual
and carrying out a round of block Gaussian eliminations leads to
the reformulated Stokes problem
H − �t

3/2
HM−1DT

0 E


 [

un

δp

]
=

[
Mtn + DT pn−1

g

]
, (39)

where

E = �t

3/2
DM−1DT , (40)

and

g = −DH−1
(
Mtn + DT pn−1

)
. (41)

E is directly proportional to DM−1 DT , also known as the pseudo-
Laplacian operator (Maday et al. 1993), and g is the so-called inho-
mogeneity. To summarize, the procedure we follow at each time step
consists of first computing g, by inverting the modified Helmholtz
operator H. In other words, we treat viscous and rotational effects
implicitly

g = −DH−1
(
Mtn + DT pn−1

) = −Du∗, (42)
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688 A. Fournier et al.

where u∗ can be interpreted as a first guess for the velocity. H, which
is not symmetric, is inverted iteratively, using a preconditioned sta-
bilized biconjugate gradient algorithm (Van Der Vorst 1992). The
preconditioner is of the element-by-element kind (Wathen 1989),
and proves to be efficient enough, as H is diagonally dominant. The
pressure increment δ p = pn − pn−1 that enforces the incompress-
ibility constraint is then calculated by inverting E

δp = E−1g. (43)

As E is symmetric (see eq. 40), eq. (43) is solved iteratively by
means of a preconditioned conjugate gradient algorithm. The final
velocity un follows from

un = �t

3/2
M−1DT δp + u∗. (44)

This splitting approach is similar to classical splitting techniques,
such as the fractional time step method originally devised by Chorin
(1968). It differs nevertheless, in that the splitting is effected in the
discrete form of the equations. Unlike a fractional step method, no
additional pressure boundary conditions are thus prescribed, and
no temporal error is introduced. We should note that inconsistent
pressure boundary conditions tend to create so-called divergence
boundary layers, located near the domain boundary ∂� (Blair Perot
1993; Tomboulides 1993, and references therein). As rotating fluids
embedded in a container with rigid boundaries tend to generate sharp
boundary layers that can in turn influence the bulk flow (Greenspan
1990), we would rather avoid to generate inconsistent boundary
layers. Our strategy permits this, albeit at a somewhat larger cost than
standard splitting schemes. Indeed, as pointed out by Maday et al.
(1993), the pseudo-Laplacian involved in (43) has a much worse
condition than the standard Laplacian that follows from a fractional
step approach. It is therefore more difficult to invert iteratively. This
problem can, however, be alleviated using an additive overlapping
Schwarz preconditioner, which we describe in Appendix C.

Also, note that the examples that follow correspond to linear
problems. The implicit technique described above being uncondi-
tionally stable, there is no stability constraint on the time step size—
this is precisely why one tries to treat as many terms as possible in
an implicit fashion. In a non-linear situation, however, the explicit
treatment of the non-linear terms (following for instance an Adams–
Bashforth formula) controls the maximum value of the time step that
one can choose. The reader is referred to the book by Deville et al.
(2002), chapters 3 and 6, for an extensive treatment of this issue in
the spectral-element framework.

6 S E M V E R S U S A N A LY T I C
S O L U T I O N S : S T E A DY A N D U N S T E A DY
S T O K E S P RO B L E M S

We verify the accuracy of our implementation of the SEM by com-
paring it to a set of analytical solutions in a spherical shell configu-
ration: the outer (ro) and inner (r i) radii are chosen such that r i/ro is
equal to 1/3. The basic idea behind our analytical tests is to define a
simple reference divergence-free velocity, and to compute the body
force that ensures conservation of momentum. In other words, we
solve the forward problem, where a known velocity field is used to
analytically compute the forcing of the right-hand side, and we then
use this forcing as an input to our SEM code, in order to retrieve the
velocity field numerically.

6.1 Steady stokes problem

In a first series of tests, we disregard inertia and the effects of ro-
tation to consider a steady Stokes problem. The goal of this test is
twofold: first, we wish to verify that the proper spaces are used to
discretize velocity and pressure in our implementation of the PN

− PN−2 approach, that is, we wish to confirm that the SEM veloc-
ity is indeed divergence-free. Second, we also wish to retrieve the
classical spectral convergence properties of spectral methods.

The steady Stokes problem reads:

∆u − ∇p + br̂ = 0 in �, (45a)

∇ · u = 0 in �, (45b)

u = 0 on ∂�. (45c)

Note that r̂ is the unit vector in the radial direction and that the
prescribed forcing br̂ we seek in eq. (45a) is purely radial (it could be
interpreted as an imposed buoyancy force). To define the analytical
reference solution ua, we start by making the standard poloidal–
toroidal decomposition of the velocity (e.g. appendix B of Dahlen
& Tromp 1998):

ua = ∇ × (E sr̂) + ∇ × ∇ × (F sr̂), (46)

where Es and Fs are the toroidal and poloidal fields, respectively,
and where the superscript ‘s’ stands for ‘steady’. Using this expan-
sion, we automatically satisfy eq. (45b) with our reference velocity
solution. Each field is then sought in terms of zonal spherical har-
monics

{E s, F s, b, p} =
∑

l

{
Es

l , Fs
l , bl , pl

}
(r )Ll (cos θ ), (47)

in which Ll is the Legendre polynomial of degree l. As the problem
of interest is linear, we can consider one harmonic at a time. The
radial components of the first and second curls of (45a) reduce to

E s
l = 0, (48)

[
d2

dr 2
− l(l + 1)

r 2

]2

F s
l = bl . (49)

By seeking a purely radial forcing, the toroidal field is identically
zero. As far as the poloidal field is concerned, since (49) is a fourth-
order equation, we need four boundary conditions, two each at r i

and ro. The no-slip boundary conditions imply that

F s
l = d

dr
F s

l = 0 at r = ri, ro. (50)

The procedure for our test is then as follows:

(1) choose an expression for Fs
l that matches the boundary con-

ditions (50);
(2) solve eq. (49) analytically for the appropriate forcing bl;
(3) use this forcing as an input for the SEM code;
(4) solve the Stokes problem using the SEM, starting from a zero

initial guess for velocity and pressure;
(5) quantify the accuracy of the numerical solution uh with re-

spect to the analytical solution ua.

The Stokes problem is solved here with a standard Uzawa algorithm
(Arrow et al. 1958), and the mesh we use is represented in Fig. 3.
It consists of ne = 4 spectral elements. Note that we also vary
the polynomial order N from 4 to 12 in our test, and that Fig. 3
corresponds to the coarsest mesh with N = 4. Depending on the
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Spectral-element modelling of the axisymmetric Navier–Stokes equation 689

Figure 4. Left, log–log plot of relative error (in an L2
1 sense) for the steady Stokes problem (see the text) as function of polynomial order N for harmonic

degrees l = 1, 3 and 5 (top to bottom). Note spectral convergence as N increases. Right, SEM solution uh for the same harmonic degrees obtained using N =
11. The analytic reference solution is not shown here, at it is indistinguishable from the SEM solution.

spherical harmonic degree l of the input velocity field, we either
enforce a zero vertical velocity (when l is even), or a zero radial
velocity (when l is odd) at the equator. Results for the l = 1, 3, 5
harmonics are displayed in Fig. 4. In each case the relative error

‖e‖ =
[∫

�
(uh − ua)2 d�∫

�
u2

a d�

]1/2

(51)

is very small (below one per cent for all cases with N > 5). Moreover,
it decreases exponentially with the polynomial order N . It therefore
exhibits the expected spectral convergence properties of classical
spectral methods. Indeed, when we increase the polynomial order
N , we find that the accuracy of the numerical solution is only limited

by the regularity of the solution sought. This behaviour validates our
implementation of the PN − P N−2 method, and furthermore con-
firms that no spurious pressure modes are present that would pre-
vent the velocity from being divergence-free. Meeting this sine qua
non requirement enables us to turn our attention to time-dependent
problems.

6.2 Unsteady Stokes problem

We now assess the temporal error of the time-marching scheme. The
procedure is identical to the one we followed in the previous sub-
section, save that we introduce temporal variations. In other words,
over the time interval [0, T] we now consider an unsteady Stokes
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690 A. Fournier et al.

Figure 5. Top, SEM mesh (left) with ne = 4 spectral elements of order N =
11 used for the unsteady Stokes problem (see the text) together with snapshot
(right) of harmonic degree 1 velocity field. Bottom, log–log variation of
relative error ‖e‖(T ) versus time step size for five different values of �t
(white circles). The black fit line corresponds to an exponent of 1.94, which
is close to the expected theoretical value (2) for a second-order accurate
time-scheme.

problem of the form:

∆u − ∇p + br̂ = ∂t u in � ∀t ∈ [0, T ] (52a)

∇ · u = 0 in � ∀t ∈ [0, T ] (52b)

u = 0 on ∂� ∀t ∈ [0, T ], (52c)

supplemented by the initial condition u = 0 at t = 0. In an attempt
to focus our attention exclusively on temporal errors, we seek to
ensure that spatial errors are negligible in this benchmark. To this
end, we consider zonal harmonic l = 1 and choose a mesh of ne =
4 elements having a rather high polynomial order of N = 11 (see
Fig. 5, top left). We recall that this fine mesh resulted in a spatial
error of 3.2 × 10−7 in our earlier steady benchmark case (Fig. 4, top
left). The negligible spatial error guarantees that our solution will be
dominated by temporal error due to the time-marching scheme. The
reference velocity field ua, and the forcing to conserve momentum
in eq. (52a) are determined as before. While the toroidal component
of ua is still zero, we define its unsteady poloidal component as:

Fu
l (r, t) = sin(2π t/τ )F s

l (r ), (53)

meaning that we let the steady-state solution from the previous sub-
section oscillate with some arbitrary period τ . The time-dependent
force field consistent with this velocity can be used again as an in-
put to the SEM code. After a time T larger than τ , we evaluate the

normalized error

‖e‖(T ) =
{∫

�
[uh(x, T ) − ua(x, T )]2 d�∫

�
u2

a(x, T ) d�

}1/2

. (54)

We repeat this procedure for various values of the time step �t, and
display the results in the bottom curve of Fig. 5. The error level
(always above 10−5) is dominated by temporal error, as expected.
The largest �t has a value equal to τ/(10π ), while smaller �ts
follow a geometrical sequence of common ratio 1/2. The error level
is proportional to the time step size with a power close enough to
the expected value (1.94 versus 2) to confirm that neglecting the
residual term in eq. (37) does not affect the overall order 2 accuracy
of the time-scheme.

7 S E M V E R S U S E X I S T I N G
N U M E R I C A L S O L U T I O N S : T H E
P RO U D M A N – S T E WA RT S O N P RO B L E M

7.1 Description

We conclude our presentation of the SEM by applying it to a simple
flow problem more relevant to geophysical situations. As shown in
Fig. 6(a), we consider a reference frame rotating at a constant rateω,
where flow is induced inside a spherical shell by the super rotation of
the inner sphere. We assume that the effects of rotation dominate the
viscous effects, which corresponds to E � 1 in eq. (1a). When the
super rotation is small enough, the solution is steady and axisym-
metric (Proudman 1956). Moreover, away from viscous boundary
layers, the velocity must obey the Taylor–Proudman theorem, i.e. it
must be invariant along the axis of rotation

∂zu = 0. (55)

The Taylor–Proudman theorem leads to different flow regimes inside
and outside of an imaginary cylinder C, that circumscribes the inner
sphere and is aligned parallel to the axis of rotation. This cylinder,
commonly referred to as the tangent cylinder, is represented by a
dotted line in Fig. 6(a). Outside of C a fluid particle is insensitive
to the super rotation of the inner sphere. It therefore stays at rest
with respect to the background rotation ω. Inside of C, however, a
fluid particle senses the super rotation of the inner sphere, and is
entrained in its direction. The background rotation induces via the
Coriolis force a meridional circulation that is controlled by pumping
and suction inside the viscous Ekman boundary layers located at the
inner and the outer shell boundaries (see Fig. 6a). The circulation is
completed alongside of C, where a viscous shear layer (referred to
as the Stewartson layer) accommodates the angular velocity jump
between regions inside and outside C.

This classic kinematic flow problem in its asymptotic form was
originally proposed by Proudman (1956). It was developed later by
Stewarston (1957, 1966), who derived the exact structure of the shear
layers alongside of C. Since then it has been treated numerically by
several groups (Hollerbach 1994; Dormy et al. 1998). In fact, though
simple in essence, this so-called ‘Proudman–Stewartson problem’
exhibits the essential features of flows dominated by rotation. Its
linear character, moreover, makes it an ideal test case to verify
the numerical accuracy of our method, leaving aside complications
that inevitably appear when one introduces non-linear effects. The
Proudman–Stewartson problem is also quite challenging numeri-
cally, as one must resolve the narrow Ekman and Stewartson layers
that characterize the circulation when E � 1.

To summarize, we want to study numerically the following set of
equations:

∂t u + 2ẑ × u = −∇p + E∆u in � (56a)
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Spectral-element modelling of the axisymmetric Navier–Stokes equation 691

Table 1. Summary of the Proudman–Stewartson problem results. Relative difference ‖d‖ of SEM and spectral
solution of Hollerbach (1994) for Ekman numbers 10−2, 10−3 and 10−4. ne is the number of elements, N the
polynomial order. Memory requirement is proportional to number of Gauss–Lobatto Legendre points (N nodes), while
computational cost scales approximately with neN3. Note that ‖d‖ is in all cases well below the one per mil level.

E ne N N nodes neN3 ‖d‖
10−2 4 11 529 5324 0.000 002
10−3 9 11 1156 10 648 0.000 167
10−4 140 8 9153 71 680 0.000 119

∇ · u = 0 in � (56b)

u(x, t) = sφ̂ at r = ri (56c)

u(x, t) = 0 at r = ro (56d)

u(x, 0) = 0 in �, (56e)

for values of the Ekman number ranging from E = 10−2 to 10−4.

7.2 Reference numerical solution

First, we describe the reference numerical solution together with the
changes in the physics of the solution, as we go from a slowly rotating
system to a system rotating more rapidly. Our numerical reference
solution is the spectral solution published by Hollerbach (1994). It
is displayed in Fig. 6 for three values of E, 10−2 (Fig. 6b), 10−3

(Fig. 6c) and 10−4 (Fig. 6d). Hollerbach (1994) computed solutions

Figure 6. (a) Sketch (left) of the flow in the Proudman–Stewartson problem (see the text), in a rapidly rotating spherical shell. The flow is induced by a slight
super rotation �ω of the inner sphere. Motion is generated inside the tangent cylinder C only, as the fluid located outside C is insensitive to the super rotation by
virtue of the Taylor–Proudman theorem. Meridional circulation inside C is controlled by Ekman pumping/suction occurring at both boundaries, and is completed
alongside C . A shear layer is created along C to accommodate the shear between the two regions. Numerical solutions (right) to the Proudman–Stewartson flow
problem, computed by Hollerbach (1994), for E = 10−2, 10−3 and 10−4 (b, c, d, top to bottom). On the left contour plots of the meridional stream function are
shown, while the right shows contour plots of the angular velocity. Note the transition from a smooth, essentially viscous solution (b) to a solution dominated
by rotation (d).

to the steady problem, by solving system (56) withdrawing the time-
derivative in eq. (56a). His spectral method satisfies the solenoidal
constraint exactly, as the meridional circulation is described in terms
of a stream function, and in his approach the field variables are
expanded by means of Chebyshev and Legendre polynomials in
the radial and angular direction, respectively. His published results
include solutions for an Ekman number as low as 10−5. These results
were subsequently confirmed by Dormy et al. (1998), who solved the
Stewartson problem for E as small as 2.37 × 10−8, using Legendre
polynomials in the angular direction together with a finite difference
scheme in radius.

Looking at Fig. 6(b), i.e. at the stream function and angular veloc-
ity of the flow at E = 10−2, we note that the solution is still essentially
viscous and smooth. When E is decreased by an order of magnitude
(Fig. 6c), Ekman layers form in the vicinity of the shell bound-
aries. Away from these Ekman layers angular velocity contours
and meridional circulation tend to align themselves with the axis
of rotation, although the Taylor–Proudman theorem is not fully sat-
isfied as viscous effects are still noticeable. When we decrease E
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692 A. Fournier et al.

Figure 7. SEM solutions to the Proudman–Stewartson problem (see the text) for E = 10−2, 10−3, and 10−4 (top to bottom). From left to right, computational
mesh with number of elements (ne) and polynomial order (N); velocity map of meridional circulation (us, uz); and contour plot of angular velocity uφ/s, with
contour intervals of 1/15. From top to bottom, 100|us|max = 4.67, 5.02, 6.13 and 100|uz|max = 6.05, 7.60, 7.92. Note that the relative difference ‖d‖ of SEM
versus Hollerbach (indicated at centre of the shell) is well below one per mil in all cases.

further to a value of E = 10−4, the Ekman layers sharpen signif-
icantly and the Stewartson shear layer starts to develop (Fig. 6d,
right). For this value of the Ekman number E, the circulation in-
side the tangent cylinder follows the Taylor–Proudman theorem
quite well (Fig. 6d, left). This last case is the most challenging
numerically.

7.3 SEM solution to the Stewartson problem

We now turn our attention to the SEM solution of the Stewartson
problem for the same three Ekman numbers considered before. Our

time-dependent calculations start with a fluid initially at rest. We
then time step our code until the flow settles to steady-state, and
compare this steady-state solution uh to the solutions obtained by
Hollerbach. To compute the relative difference between the two
numerical solutions:

‖d‖ =
[∫

�
(uh − us)2 d�∫

�
u2

s d�

]1/2

, (57)

we project the purely spectral solution on the spectral-element grid,
and consider agreement between the two numerical approaches as
acceptable at levels better than ‖d‖ < 10−3.
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Spectral-element modelling of the axisymmetric Navier–Stokes equation 693

Figure 8. Relative difference ‖d‖ of SEM versus Hollerbach(1994) spec-
tral solution to Proudman–Stewartson problem (see the text) for E = 10−3

as function of polynomial order N for computational mesh with and without
grid-refinement, as indicated by inlet-figures. The mesh with uniform res-
olution consists of ne = 4 spectral elements, while the non-uniform mesh
includes ne = 16 elements, concentrated in Ekman layers at both shell bound-
aries. The ne = 16 mesh (bottom curve) shows lower overall difference, as
expected, due to its larger number of elements. Note, however, that this mesh
is characterized by spectral convergence up to the highest polynomial order
(N = 12) employed, while the uniform resolution mesh (top curve) shows a
flattening of the convergence, indicating that mesh-refinement is well suited
to describe the Ekman layers and results in an overall faster convergence
rate.

The SEM results (angular velocity and meridional circulation) for
E = 10−2, 10−3 and 10−4 are displayed on the right-hand side of
Fig. 7 and summarized in Table 1. Recall that unlike Hollerbach
(1994), we do not describe the meridional circulation by means of
a stream-function in our method, and that we solve instead directly
for the primitive variables (us, uz). We also show on the left-hand
side of Fig. 7 the computational mesh used to obtain the solution.

For the large Ekman number case (E = 10−2, Figs 7a–c) four
spectral elements are needed to retrieve the solution. Setting the
polynomial order to 11 leads by virtue of the spectral convergence
properties of the SEM (see Section 6.1) to excellent agreement
with Hollerbach’s solution, as the relative difference between the
two methods for this smooth solution is ‖d‖ = 0.000 002. For
the medium and low Ekman number cases (E = 10−3 and 10−4,
Figs 7d–i), we reproduce Hollerbach’s solution with our required
level of accuracy (‖d‖ < 10−3) at the expense of an increased nu-
merical resolution (see Table 1). In the latter case, we use 140 el-
ements of polynomial order 8 (see Fig. 7g). These elements are
gently squeezed toward the boundaries of the shell. If one were to
squeeze them further, the contrast in aspect ratio between neigh-
bouring elements and the resulting anisotropy in the computational
mesh would lead to a deterioration of condition in the algebraic sys-
tem (39) and thus to a larger computational cost. We do not consider
smaller Ekman number solutions here, because their computational
requirements (integration time and computer memory) would be
prohibitive for single processor runs using standard personal com-
puters. However, we are currently parallelizing our code to enable
computations at lower Ekman numbers.

7.4 Adaptivity and enhanced convergence

We complete our study of the SEM by examining its potential for
grid-refinement. Indeed, the local character of the SEM allows for a

non-uniform paving of the domain. We made use of this property in
our study of the Stewartson problem by radially squeezing spectral
elements in the vicinity of the Ekman boundary layers. More gener-
ally, the adaptivity of grid-based methods, such as the SEM, is well
suited to capture strong gradients by providing increased numerical
solution in regions containing fine-scale structures.

To illustrate this property in a quantitative way, we consider the
solution of the Stewartson problem at E = 10−3 obtained with two
different meshes (portrayed in Fig. 8) for a number of polynomial
orders N . As we have seen before, the value of E in this intermediate
case is small enough to permit the development of strong Ekman
layers. We want to quantify how well we succeed in describing these
localized features of the Proudman–Stewartson solution by using ei-
ther an almost uniform mesh of ne = 4 elements, or a non-uniform
mesh having ne = 16 spectral elements where the exterior elements
are squeezed by a factor of three relative to interior elements. We
expect, for the same polynomial order N , that our mesh with local
grid-refinement should yield better results than our mesh of almost
uniform grid resolution due to its larger number of elements. How-
ever, more importantly, we also expect that our ability to adapt the
mesh geometry to conform to the inherent flow structure, with nar-
row Ekman layers concentrated near the shell boundaries, should
furthermore lead to a faster convergence rate when we increase the
polynomial order. This behaviour is indeed confirmed by the two
curves in Fig. 8 showing the accuracy of our solution as a function
of the polynomial order N . The top curve (for the uniform mesh)
tends to flatten as we increase the polynomial order above 10, while
the bottom curve (for the non-uniform mesh) does not show any
sign of flattening.

8 D I S C U S S I O N

In this paper we have presented the application of the spectral-
element method to model axisymmetric flows in a rapidly rotating
reference frame. Spatial discretization relies on breaking the phys-
ical domain into a collection of ne non-overlapping elements, and
using a local tensorized basis of polynomials of high order N . The
temporal discretization is achieved by means of a second-order ac-
curate backward differentiation scheme for the time-derivative, and
we follow an operator integrated factor (OIF) approach to treat the
resulting modified Stokes problem at each time step. Our use of the
OIF strategy is motivated by the fact that the mass matrix arising
from the spatial discretization is diagonal. Our implementation of
the OIF, relative to a standard implementation of the OIF (Maday
et al. 1990) where only viscous effects are treated, is modified
such as to account for the effects of the Coriolis force. Hence both
viscous and Coriolis effects are treated fully implicitly in our ap-
proach. The computation of the pressure increment is accomplished
using an efficient additive overlapping Schwarz preconditioner.

We have validated our implementation of the method by com-
paring it to analytical and published spectral reference solutions of
axisymmetric laminar flows in a spherical shell. Our steady-state
analytical benchmark solutions demonstrate that no spurious pres-
sure mode exists due to the discretization of the pressure using a
lower polynomial order (N − 2) relative to the polynomial order
(N) that is used for the velocity. The PN − PN−2 approach for veloc-
ity and pressure therefore guarantees the solenoidal character of the
velocity field. These results furthermore served to demonstrate the
spectral convergence properties of the SEM. The unsteady analytic
benchmark solution allowed us finally to verify that the relatively
unusual time discretization strategy adopted here is second-order
accurate.
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Figure 9. 3-D spherical mesh for mixed Fourier–spectral-element approach
(see the text). The mesh consists of 32 spectral elements in the meridional
plane together with 32 equally spaced points in longitude. The spatial domain
decomposition (indicated by grey-scale) for parallel processing is illustrated
for 16 processors handling two spectral elements each.

We have used published spectral solutions to the kinematic
Proudman–Stewartson problem (Hollerbach 1994) at Ekman num-
bers of 10−2, 10−3 and 10−4 to assess the efficacy of the SEM in
a rapidly rotating context. These solutions, which exhibit some of
the essential features of flows dominated by rotation, confirm con-
sistency between the two different numerical techniques at levels
of better than one per mil. In fact, our calculations for the Stew-
artson problem demonstrate for all practical purpose that the SEM
solutions are identical to the solution published by Hollerbach. This
close correspondence between SEM and spectral solution shows
that our inclusion into the SEM of the effects of a dominant Coriolis
force, a relatively novel extension to standard applications of the
SEM, does not affect the overall accuracy of the method.

We have shown that the local character of the SEM is well suited
for a non-uniform paving of the computational domain, i.e. for grid-
refinement in regions of the flow characterized by strong local gra-
dients such as Ekman boundary layers at the core–mantle boundary
(CMB) and the inner-core boundary (ICB). In fact, exploiting mesh-
refinement in the resolution of the Proudman–Stewartson problem
leads to a substantial improvement in the convergence properties
of the method. Given the high numerical accuracy of the SEM, its
local and hence inherently parallel character, as well as its adaptiv-
ity, these early results are encouraging in the long-term prospect of
building a parallel spectral-element based model of the geodynamo.

The extension of the present kernel to 3-D problems can
be achieved through a mixed Fourier–spectral-element approach
(Bernardi et al. 1999), where the longitudinal dependence of the
variables is expanded into Fourier series. The approach, effectively,
breaks the 3-D problem into a set of meridional problems quite
similar to those presented in this paper. The special treatment of
spectral elements adjacent to the axis of rotation we introduced is
well suited for this technique. Moreover, the Schwarz precondi-
tioner we use here to compute the pressure increment at each time

step lends itself naturally to computationally demanding problems
in 3-D applications.

The local character of the SEM allows for a straightforward spa-
tial domain decomposition in the meridional plane using active
message-passing to communicate among subdomains, i.e. for in-
terprocessor communication. The strategy is illustrated in Fig. 9,
where we show an example of a 3-D mesh, grey-scale coded for
parallelization among processors. This approach should allow us,
in the future, to take advantage of the gain in computational speed
on modern parallel computers.

Our method should carry over to the implementation of the mag-
netic component of the geodynamo problem. For example, imposing
the divergence-free constraint on the magnetic field B can be accom-
plished using the same approach we used to enforce the divergence-
free constraint on the velocity field u. Likewise, accounting for the
effects of the inner core (Hollerbach & Jones 1993) can be accom-
plished by extending our computational domain beyond the ICB
radially inwards to include the solid inner core. The main com-
plexity related to the magnetic induction equation lies in imposing
the magnetic boundary conditions at the CMB, where the magnetic
field has to be connected to an exterior potential field. This match-
ing condition translates to an elegant analytic boundary condition
in the context of spherical harmonics (Glatzmaier 1984). It is, how-
ever, less amenable to a local method, and it is yet to find out how
this matching is to be accomplished. An alternative to this matching
has been presented by Chan et al. (2001), who meshed the exter-
nal space up to a few core radii and used approximate magnetic
boundary conditions on the outer surface of the computational do-
main. We are currently investigating different strategies regarding
the implementation of the induction equation and we hope to bene-
fit, in a non-linear context, from the weak numerical dispersion of
the SEM.
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A P P E N D I X A : Q UA D R AT U R E F O R M U L A E A N D P O LY N O M I A L I N T E R P O L AT I O N

A1 Orthogonal polynomials in L2(Λ)

Let us denote the Legendre polynomials of order N with LN . The Legendre polynomials are orthogonal in L2(�), that is

∀(N1, N2),
∫

�

L N1 (ξ )L N2 (ξ )dξ =
{

0 if N1 �= N2

1/(N1 + 1/2) if N1 = N2

(A1)

They satisfy the conditions LN (1) = 1 and LN (−1) = (−1)N . Each LN satisfies the following differential equation:[
(1 − ξ 2)L ′

N

]′ + N (N + 1)L N = 0. (A2)

Legendre polynomials are computed by means of the induction formula{
L0(ξ ) = 1 and L1(ξ ) = ξ,

(N + 1)L N+1(ξ ) = (2N + 1)ξ L N (ξ ) − N L N−1(ξ ), N > 1.
(A3)

A2 Standard Gauss–Lobatto Legendre formula

We recall here the main properties of the standard Gauss–Lobatto Legendre formula. Let us set ξ N
0 = −1 and ξ N

N = 1. Then there exists a
unique set of N − 1 nodes ξ N

i , 1 ≤ i ≤ N − 1 in � and of N + 1 weights ρN
i , 0 ≤ i ≤ N , such that the following exactness property holds

∀� ∈ P2N−1(�),
∫ 1

−1
�(ξ ) dξ =

N∑
i=0

ρN
i �

(
ξ N

i

)
. (A4)

The ξ i , 1 ≤ i ≤ N −1 are the zeros of L′
N and the ρN

i can be expressed as follows

ρN
i = 2

N (N + 1)L2
N (ξ N

i )
, 0 ≤ i ≤ N . (A5)

A basis for PN is made of the Lagrangian interpolants hN
i , 0 ≤ i ≤ N given by

hN
0 (ξ ) = (−1)N−1 (1 − ξ )L ′

N (ξ )

N (N + 1)
, (A6)

hN
i (ξ ) = 1

N (N + 1)L N

(
ξ N

i

) (1 − ξ 2)L ′
N (ξ )

ξ N
i − ξ

, 1 ≤ i ≤ N − 1, (A7)

hN
N (ξ ) = (1 + ξ )L ′

N (ξ )

N (N + 1)
. (A8)

The derivatives of these interpolants, which appear for instance in the divergence and the Laplacian bilinear forms can be estimated using
eq. (A2). We can also derive the pressure basis functions as the set of Lagrangian interpolants hN−2

i defined by the interior Gauss–Lobatto
points ξ N

i , 1 ≤ i ≤ N − 1

hN−2
i (ξ ) = 1 − ξ N

i
2

N (N + 1)L N

(
ξ N

i

) L ′
N (ξ )

ξ N
i − ξ

, 1 ≤ i ≤ N − 1. (A9)

A3 Orthogonal polynomials in L2
1(Λ)

The weighted quadrature we use is based upon a class of polynomials MN defined by

MN (ξ ) = L N (ξ ) + L N+1(ξ )

1 + ξ
, N ≥ 0. (A10)

They are orthogonal in L2
1(�), that is with the weighted measure (1 + ξ ) dξ

∀(N1, N2),
∫

�

MN1 (ξ )MN2 (ξ )(1 + ξ ) dξ =
{

0 if N1 �= N2

2/(N1 + 1) if N1 = N2

(A11)
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Each MN satisfies MN (1) = 1 and the differential equation[
(1 + ξ )2(1 − ξ )M ′

N

]′ + N (N + 2)(1 + ξ )MN = 0. (A12)

The induction formula on the MN is


M0(ξ ) = 1 and M1(ξ ) = 1
2 (3ξ − 1),

N + 2

2N + 3
MN+1(ξ ) =

(
ξ − 1

(2N + 1)(2N + 3)

)
MN (ξ ) − N

2N + 1
MN−1(ξ ), N > 1.

(A13)

A4 Weighted Gauss–Lobatto Legendre (WGLL) formula

We can now define a weighted quadrature formula of the Gauss–Lobatto kind. Let us set ζ N
0 = −1 and ζ N

N = 1. Then there exists a
unique set of N − 1 nodes ζ N

i , 1 ≤ i ≤ N − 1 in � and of N + 1 weights σ N
i , 0 ≤ i ≤ N , such that the following exactness property

holds

∀� ∈ P2N−1(�),
∫

�

�(ξ )(1 + ξ ) dξ =
N∑

i=0

σ N
i �

(
ζ N

i

)
. (A14)

The ζ N
i , 1 ≤ i ≤ N −1 are the zeros of M ′

N and the σ i can be expressed as follows

σ N
0 = 8

N (N + 2)M2
N (−1)

, and (A15)

σ N
i = 4

N (N + 2)M2
N

(
ζ N

i

) , 1 ≤ i ≤ N . (A16)

Again, under these circumstances, we can set as a basis for PN (�) the Lagrangian interpolants lN
i , 0 ≤ i ≤ N

l N
0 (ξ ) = (ξ − 1)M ′

N (ξ )

2M ′
N (−1) + N (N + 2)MN (−1)

, (A17)

l N
i (ξ ) = 1

N (N + 2)MN

(
ζ N

i

) (1 − ξ 2)M ′
N (ξ )

ζ N
i − ξ

, 1 ≤ i ≤ N − 1, (A18)

l N
N (ξ ) = (1 + ξ )M ′

N (ξ )

N (N + 2)
. (A19)

The pressure basis functions l N−2
i , 1 ≤ i ≤ N − 1 are the Lagrangian interpolants on the interior nodes

l N−2
i (ξ ) = 1 − ζ N

i
2

N (N + 2)MN

(
ζ N

i

) M ′
N (ξ )

ζ N
i − ξ

, 1 ≤ i ≤ N − 1. (A20)

A P P E N D I X B : D E R I VAT I O N O F T H E A L G E B R A I C S Y S T E M

Here we explain in detail how the algebraic system (31) resulting from the spatial discretization by spectral elements is derived. Let us recall
that the expansion of the velocity using the elemental basis functions anchored at the Gauss–Lobatto points write

ut,h[s(ξ, η), z(ξ, η)] =
n�∑

e=1

N∑
i=0

N∑
j=0

(
ueij

t,s, ueij
t,φ, ueij

t,z

)
l N
i (ξ )hN

j (η) +
ne∑

e=n�+1

N∑
i=0

N∑
j=0

(
ueij

t,s, ueij
t,φ, ueij

t,z

)
hN

i (ξ )hN
j (η). (B1)

The (ueij
t,s , ueij

t,φ , ueij
t,z) are the nodal velocities at the collocation points in the eth element, and ��(�∅) refers to the collection of elements

which are (not) adjacent to the axis �.
The triplet (e, i, j) corresponds to a local elemental ordering of the nodes. It is useful to define a global numbering of the velocity nodes

numv:

numv : {1, 2, 3} × {1, . . . , ne} × {0, . . . , N }2 → {1, . . . , Nv}
(α, e, i, j) �→ numv(α, e, i, j),

(B2)

in which α refers to a component of the velocity field and Nv is the total number of degrees of freedom for the velocity field (Nv = N v,s +
N v,φ + N v,z). Note that numv is a surjection as some nodes can belong to more than one element. Nv can be estimated only when the exact
topology of the mesh is known.
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698 A. Fournier et al.

The discrete pressure is expanded according to

pt,h[s(ξ, η), z(ξ, η)] =
n�∑

e=1

N−1∑
i=1

N−1∑
j=1

peij
t l N−2

i (ξ )hN−2
j (η) +

ne∑
e=n�+1

N−1∑
i=1

N−1∑
j=1

peij
t hN−2

i (ξ )hN−2
j (η), (B3)

and we can define equivalently a global numbering of the pressure nodes numpx:

nump : {1, . . . , ne} × {1, . . . , N − 1}2 → {1, . . . , Np}
(e, i, j) �→ nump(e, i, j),

(B4)

As pressure is defined element-wise, nump is a bijection. The total number of pressure degrees of freedom is Np = ne(N − 1)2.
Following a Galerkin procedure (Reddy 1993), the trial spaces X
,h and Yh are built with the nodal shape functions associated with the

velocity and pressure degrees of freedom, respectively.
Velocity trial functions Ψ I , 1 ≤ I ≤ Nv can be conveniently chosen so that, when one computes the integrals involved in problem (13), one

obtains a set of three scalar equations, one for each component of the original momentum eq. (1a). In other words, we set

ΨI =




(�Is , 0, 0), Is = I − �Ns if 1 ≤ I ≤ Nv,s

(0, �Iφ , 0), Iφ = I − �Nφ, if Nv,s + 1 ≤ I ≤ Nv,s + Nv,φ,

(0, 0, �Iz ), Iz = I − �Nz if Nv,s + Nv,φ + 1 ≤ I ≤ Nv,

(B5)

where �Ns = 0, �N φ = N v,s and �Nz = N v,s + N v,φ .
For any α ∈ {1, 2, 3}, the scalar function � Iα is defined by its restrictions on the collection of the subdomains Fv(I α) which contain the

I αth nodal value for component α. Let us define

∀Iα ∈ {1, . . . , Nv,α},
Fv(Iα) = {

e ∈ {1, . . . , ne}, ∃(iαe, jαe) ∈ {0, N }2, numv(α, e, iαe, jαe) = Iα + �Nα

}
.

(B6)

The definition of the velocity trial function can now be properly written in terms of its elemental restrictions

∀e ∈ Fv(Iα), �Iα |�e =
{

l N
iαe

(ξ )hN
jαe

(η) if �e ∈ ��,

hN
iαe

(ξ )hN
jαe

(η) if �e ∈ �∅.
(B7)

The pressure test functions are on the contrary defined element-wise. We can define similarly Fp(I) as

∀I ∈ {1, . . . , Np},
Fp(I ) = {

e ∈ {1, . . . , ne}, ∃!(ie, je) ∈ {1, N − 1}2, nump(e, ie, je) = I
}
.

(B8)

As nump is a bijection, Fp(I) is a singlet. Again, a pressure trial function �I is defined by its restriction on Fp(I)

∀I ∈ {1, . . . , Np}, �I (ξ, η) =
{

l N−2
iFp (I )(ξ )hN−2

jFp (I )(η) if �Fp(I ) ∈ ��,

hN−2
iFp (I )(ξ )hN−2

jFp (I )(η) if �Fp(I ) ∈ �∅.
(B9)

Having defined both the shape and trial spaces for velocity and pressure, we can use the quadrature rules (26) and (28) to compute the integrals
involved in the variational formulation (13). The semi-discrete problem then writes: at any time t ∈ [0, T ], find (ut,pt) solution of

M∂t ut + Cut + EKut − DT pt = Mft , (B10a)

−Dut = 0. (B10b)

M is the Nv × Nv mass matrix which can be expressed as

M =




Ms 0 0

0 Mφ 0

0 0 Mz


, (B11)

where, for each component, the N v,α × N v,α mass matrix Mα is defined as

[Mα]Iα Jα
= (�Iα , �Jα

)1, (Iα, Jα) ∈ {1, . . . , Nv,α}2. (B12)

As the basis functions are defined by the Lagrange interpolants upon the quadrature points, the mass matrix has the remarkable property of
being diagonal.

[Mα]Iα Jα
= δIα Jα

∑
e∈Fv (Iα )




σiαe ρ jαe

s
(
ζ N

iαe
, ξ N

jαe

)
1 + ζ N

iαe

|J e| (ζ N
iαe

, ξ N
jαe

)
if �e ∈ ��,

s
(
ξ N

iαe
, ξ N

jαe

)
ρiαe ρ jαe |J e| (ξ N

iαe
, ξ N

jαe

)
if �e ∈ �∅,

(B13)
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Spectral-element modelling of the axisymmetric Navier–Stokes equation 699

where δ is the Kronecker symbol.
C is the N v × N v Coriolis antisymmetric matrix,

C =




0 −2Ms 0

2Mφ 0 0

0 0 0


. (B14)

K is the N v × N v stiffness matrix

K =




Ks + Ws 0 0

0 Kφ + Wφ 0

0 0 Kz


, (B15)

in which we have used the following notation:

[Kα]Iα Jα
= a0(�Iα , �Jα

), (Iα, Jα) ∈ {1, . . . , Nv,α}2, (B16)

and

[Wα]Iα Jα
=

(
�Iα

s
,
�Jα

s

)
1

, (Iα, Jα) ∈ {1, . . . , Nv,α}2. (B17)

We are using high-order polynomials (typically N ≥ 6), and the long-range interactions between nodes makes Kα dense.
We have also introduced the N v × N p rectangular gradient matrix DT given by

DT =




DT
s

0

DT
z


 . (B18)

The two non-zero components of this matrix are

[
DT

s

]
Is J

=
(

∂s�Is + �Is

s
, �J

)
1

, (Is, J ) ∈ {1, . . . , Nv,s} × {1, . . . , Np}, (B19)

and[
DT

z

]
Iz J

= (
∂z�Iz , �J

)
1
, (Iz, J ) ∈ {1, . . . , Nv,z} × {1, . . . , Np}. (B20)

A P P E N D I X C : A M U LT I L E V E L E L L I P T I C S O LV E R B A S E D U P O N
A N OV E R L A P P I N G S C H WA R Z M E T H O D

The pressure increment at each time step is computed by inverting

E = �t

3/2
DM−1DT . (C1)

Figure C1. Typical iteration count for the calculation of the pressure increment δ p in the case of the Proudman–Stewartson problem. The poor conditioning
of the pseudo-Laplacian to invert leads to a very slow convergence when no preconditioner is used in the conjugate gradient algorithm (circles). The local
component of the preconditioner removes efficiently the high-frequency content of the residual field (squares). Adding its coarse component removes the
large-scale components of the error and leads to an extra factor of two reduction of the iteration counts (triangles).
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700 A. Fournier et al.

This matrix is symmetric positive definite, and is inverted by means of a preconditioned conjugate gradient algorithm. The preconditioner
P−1 is an additive Schwarz preconditioner of the form (Fischer 1997; Fischer et al. 2000)

P−1 = RT
0 E−1

0 R0 +
ne∑

e=1

RT
e E−1

e Re. (C2)

It is the sum of a global coarse grid operator (subscript 0) and local subdomains operators (subscript e). R0,e and RT
0,e denote restriction and

extension operators. The method has a natural parallel aspect in that the subdomains problems can be solved independently. It is based upon
the same ideas as the more classical multigrid approach. The local Laplacian operators Ee are defined over overlapping regions centred on
each spectral element and aim at removing the high-frequency components of the residual field. The coarse grid operator, E0, is constructed
as the linear finite-element Laplacian derived from triangles which vertices are coincident with the vertices of the spectral element. It aims
at removing the large scale component of the residual field, hence its fundamental global character, which theoretically makes the iteration
count independent of ne (e.g. Smith et al. 1996). Both local and coarse problems are small enough so that the Ee and E0 are factorized and
inverted using standard linear algebra libraries.

The efficiency of the preconditioner is illustrated in Fig. C1, for a typical calculation of the pressure increment. With respect to a non-
preconditioned case, the iteration count is decreased roughly by a factor of ten. The coarse grid solver contributes in itself to a decrease by a
factor of two, and has a very modest computational cost.
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