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Macroscopic diffusion on rough surfaces
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We consider diffusion on rough and spatially periodic surfaces. The macroscopic diffusion Eerisor
determined by averaging the local fluxes over the unit &lis proved to be the unit tensor for macroscopi-
cally isotropic surfaces. For general surfaces, an asymptotic analysis is applied, when the ratio of the oscillation
amplitude to the size of the unit cell is a small parametéFhe microscopic field is determined up @(s°)
in analytical form and an algorithm is derived to calculate higher order terms. We also deduce general
analytical formulas foD up to O(e®) and derive an algorithm to compuBeas a series iz?.

DOI: 10.1103/PhysRevE.69.011607 PACS nunier81.10-h, 68.35.Fx, 02.70.Wz, 02.30.Jr

[. INTRODUCTION ized to 1; this value may be distinct of the atomic value on a
perfect surface and may take into account the various impu-
Diffusion on surfaces influences many dynamical pro-rities and defects that any real surface contains. The macro-
cesses and therefore has important applications in severgtopic diffusion was introduced in Ref19], where it is
fields. A first example is surface conduction, which plays acalled the surface capacity. A general analysis of flow and
role in electrolytes; it is presently explained by the diffusiontransport on surfaces is presented in R26l].
of ions within the Stern |ayel‘ which is of molecular thickness Th|S paper iS organized as fo||ows_ The Surface gradient
[1]. Another field is related to dynamical processes involvinggperator and the Laplace equation on surfaces are detailed in
chemisorbates on solid surfaces; it has attracted attention f@oc |1 1n Sec. III. diffusion is studied on doubly periodic
a long y|me(Refs.[2—4] among many othejsand it ha; S€EN  surfaces by an asymptotic analysis; the ratio of the oscilla-
explosive growth in the past ten years. Several reviews havg,, ampiitude to the size of the unit cell is assumed to be
been published starting with the classm_al one in Refand ... _equal to a small parameter We derive the local concentra-
they are recommended to the reader since they cover dn‘fe;Ei—on in the surface in theorem 2 up @(&%)
ent aspects of the domal®—8]. Besides the experimental In Sec. IV we investigate the ma?crosco.ic diffusion tensor
studies(see Refs[4], [9], [10] and the references thergima : 9 P

number of theoretical and numerical studies was simulated i hgn the r_epresentanv_e ce_II Is a square. An |somorph|s_m_ 'S
the recent years. If some of them are more theoretical i efined which relates diffusion on surfaces and conductivity

character and use as a starting point the Green-Kubo r&f SPecial composite materialor instance, polycrystals
sponse function formalisfil1], most of them are based on Thg main results of Sec. IV are summarized by the two prop-
Monte Carlo calculationf12—17. erties
Most of these numerical studies deal with situations Theorem 1. Let the representative cell be a square. Then
where the surface is not an atomic plane and thus contairdetD=D?=1.
certain defects of some sort. These defects can be geometri- Corollary. Let the representative cell be a square and the
cal such as linear steps on an otherwise plane suffsgleor  surface be macroscopically isotropic. TheD, is the unit
of chemical nature such as quenched impurifis8]. These tensorl.
defects are thus local in character, in the sense that they are The proof parallels a Matheron’s formul&ef. [21], p.
of atomic dimensions. 122 and the well-known Dykhne-Keller manipulations for
However, to the best of our knowledge, there is no studycomposite materialg22—24.
on the influence of large scale defects on surface diffusion, Section V is devoted to a determination of the effective
such as surface roughness; on real surfaces, roughnessdigusion tensorD of the general surface up 1©(&°). In
likely to exist on all scales. It will be the major purpose of Sec. VI, we study square representative cells. A general al-
this paper to describe the local concentration fields on suchorithm is derived to calculat® in an analytical form up to
surfaces and to determine the macroscopic diffusion tensor ig(£2"*2) for a given numben. Examples of determination

an analytic form. of D up to O(¢?? are given for some surfaces. Finally, it
On large scales, surface diffusion on a rough surfa&e  will be shown in Sec. VIl that this general approach is useful
governed by the following equation&8]: for studying surface diffusion on the atomic scale when suit-
able changes are made.
Vs j=0, j=—DV, N Technical details are gathered in RgI5] available at the

Electronic Physics Auxiliary Service. It is divided into two
whereV s is the surface gradient operatprthe local flux,c  parts; the first one contains the derivation of the procedure to
the solute concentration, arial the molecular diffusion co- derive the second order terms, and the second one the sym-
efficient. For sake of simplicityD is constant and normal- bolic algorithm.
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Il. GRADIENT OPERATOR AND LAPLACE EQUATION
ON SURFACES

In the present section, we derive the Laplace operator on

a surfaceS in a form convenient for our purposes. Let the
surfaceS be defined as the function

or

(xy)eQ (2

in the spaceR® whereQ is a simply connected domain with
piecewise smooth boundarieg,¥,z) is an orthonormal sys-
tem of coordinates. We assume that the funcfiexy) has
continuous second derivatives in the closureof

The gradient operatd?v 5 on S has the forn{18]

z=f(x,y) r(x,y)=xy,f(x,y))

Vse=(I—-nn")-Vc,

©)

where the functiort(x,y,z) is continuously differentiable in
the vicinity of S; | is the identity operator;Vc
:=(agclax,dclay,dcl9z) T, whereT denotes the transpose op-
erator; the normal unit vectar can be expressed as follows
n=Vf/o=(18)(fy.f,,—1)T; S:=(1+fZ+2)Y2 Here, the
dyadicnn' is given by

2 f.f, —fy
2
nnT=? fufy f5  —fy].
—f, —f, 1

One can write the gradient in the expanded form

- e-
IX
1+ —f,f, .
Vse=| ~fiy 1+ f, iy (4)
2 2
fy LR FE R i I I
| iz

Let us apply Eq(4) to the surface=f(x,y). Instead of the
concentratiorc(x,y,z), it is convenient to use the function
d(x,y)=c(x,y,f(x,y)). Then Eq.(4) becomes

1+f5 —f,f,
1
Vsb=| —fxfy 14631V, (5)
fy fy

WhereVXyz(a/ax,a/&y)T. Let us introduce the matrix
1+15 —f,f,
—ffy, 1+f%

1

K=§ . (6)

C(X+N\1,Y,2)—Cc(X,Y,2)=\q,
c(X,y+X\,,2)=c(X,Y,2),

PHYSICAL REVIEW E 69, 011607 (2004

Then, the first two components of E&) can be written as a
two-dimensional vector

q:Knyd’- (7)

g denotes the two components in the,)() plane of the
opposite of the flux on the surfacg Formula(7) will be
used for calculating the effective diffusivity tensor. The
Laplace operator on the surfadeis given by the following
formula[26]:

1
AS¢:Eny'(5Kny¢)- (8
Here,K can be considered as the contravariant metric tensor
of S. To prove this, we first consider the vector-function
r(x,y)=(x,y,f(x,y)) from Eq. (2) which determines the
surfaceS. Next we contract the covariant metric tensor

Iy Ty
Ty
and calculate the determinadt. The contravariant metric
tensor is constructed as the inverse matrix of @y.M ! is
equal toK defined by Eq(6).

It follows from Eg. (8) that the Laplace equation can be
written as follows:

1+f2
f,fy

ffy
1+f2

B -y

M_ =

©)

Fy-Ty

1
ny' ( 5Kvxy¢) =0,

5 (10
or, in an expanded form,
1——2— ot | 1— fi)cb Sl
| Pt \ 1 32| Py g b
XL+ =2 £, Fy + (L)
X(fyopy+fypy)=0. (11

. ASYMPTOTIC EXPANSION AND BOUNDARY VALUE
PROBLEM FOR GENERAL CELLS

In the following, the surfac& is assumed to be spatially
periodic with a unit cell whose projection on tlg-plane is
Q. For our purpose, it is sufficient to consider the case where
the domain Q is a rectangle {(x,y) e R%|x|<\./2]y
|<\./2} with sides\; and\, and of areax;\,. When an
external concentration gradie¥ic=(—1,0) is applied along
the x direction, the concentration(x,y,z) satisfying equa-
tions (1) on the surfaces must verify the following period-
icity conditions:

VSC(X+)\1,y7Z):V$C(Xava),

Vsc(X,y+2A5,2)=VC(X,Y,2). (12

Conditions(12) must be fulfilled at the edges of the surface located on the pbaresi /2, y==*\,/2. Then Eqs(1) and

(12) are considered as a conjugation problemSn

011607-2
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It follows from Sec. Il that the same problem can be stated in terms of the funéfiry):=c[x,y,f(x,y)] with the
following boundary conditions

}\1 )\1 (9¢ )\1 é’d’ )\l
¢(?1y>_¢(_7!y :}\11 &(?-Y):&(_?,Y),

)\2 )\2 a(ﬁ )\2 &d) )\2
T e | R I | "

Problem(11) [or (13)] are standard jump problems on the  Remark 3The general unit cells of doubly periodic func-
torus represented by the rectan@evith identified opposite tions in the plane are parallelograrf28]. In order to solve
sides for the elliptic equatiofill). There are various meth- the Poisson equation in each step of the cascade in such
ods to solve such problems. The most popular ones are ttezlls, it is possible to apply the same asymptotic expansions
method of integral equatiori27] and the method of finite using Green’s functions[27]. However, application of
elements[20]. However, they give only numerical results. Green’s functions implies too long computations. In Sec. VI,
Here, a perturbation method based on asymptotic analysise could construct a fast solver for the Poisson equation in
will be used. Computations of the integrals are avoided andectangular unit cells only. The case of parallelograms re-
the solution of problem$11l) and (13) is derived in an ex- quires a separate investigation and is not considered in the

plicit form. present paper.
We assume that the sides and\ , of the rectangl® are
sufficiently large in comparison with the amplitudeof the IV. DIFFUSION TENSOR. SQUARE CELL

oscillation of the surfaceA is supposed to be of order 1;
hence, the ratié\/\, is characterized by the small parameter  Diffusion on the surfaces is described at the large scale by
e=2m/\,. We also assume that; and\, have the same a second order macroscopic diffusion tensor

scale, i.e., the parameter=\ /), is of orderO(&°). Let us

make a change of variables in the functifx,y) from Eq.

(2) and equate it td1(¢,7n), where the functiorh(é&,7n) is D=
defined for|g<m, |7<ml/w, the new variables=ex, 7

=ey are the so called fast variables. We assumefttély)  \hich is understood as follows. First, we note that the mac-
is doubly periodic, i.e., h(§+2m,7)=h(¢,7)=hl{,7  roscopic diffusion in the-direction is absent, sinc8 is pe-
+ (27 w)] and it is twice differentiable in the closure &  (jodic in x and y, and hence the macroscopic ten&has
The small oscillation of the surface in terms bf¢,7)  only x andy components. Locally, the surfac® (x andy
means that the absolute valueshef h,, h¢, hg,, andh,,,  pelong to the cel) has a unit diffusion coefficient. L&t be

Dy D
D D

Xy

xy yy

are of smaller order than; and\, since substituted by the plane doma@
The macroscopic tens@ can be shown to be defined by
fy=ehg, fy=eh,, the surface integral

— o2 — o2 — o2
fXX_S hgg, ny_S hgﬂ" fyy—S h777]' (14)

— 1 1
Theorem 2. Problem (11) [or (13)] have a unique solution D-Ve= NN, f qua‘sle)\z f quédX dy, (17)
up to an arbitrary additive constant. This solution is repre-

sented in the form where the imposed gradient is equal to the ve&ar The
5 oppositeq of the local flux is defined by Ed7), and corre-
p(Xy)=x+e®(£,7)+0(e%), (19 sponds tovc. Let us recall thas= V1+fZ+f2. The tensor
. o . D is symmetric as it should from general principlg29].
where®(&,7) is a periodic solution of the problem Note that definition(17) is consistent with the definition of
the surface capacity19].
Gt P, =he(hgeth, ). (16) The Laplace equatiofil0) can be considered as a two-

dimensional elliptic equation with respect to the potential
The proof of the theorem is standard and it is based on theé(x,y), which derives conductivity of the plane composite

asymptotic analysis applied to probleiid) [or (13)]. material with the local conductivity tensdr:=8K. Then, the
Remark 1 An explicit form of the function® will be  vector — &g can be treated as a flux in the composite mate-
given in Section VI. rial, and the tensob from Eq.(17) as the effective conduc-

Remark 2 The asymptotic analysis applied to the prob-tivity tensor. Therefore, we have created an isomorphism be-
lems(11) and(13) can be extended to higher ter@gs™), tween the diffusion on the surface and the conduction in
where m=3. We shall do it in Sec. VI for the case;  the composite material represented by the with the
=\,. local conductivity tensoA. Let us study this tensor

011607-3
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2
1+65 —f,f,
—f,f, 1+fF

1

)

22
2 S5752>
8 7774420 9005 0
. (l ) 555555505
Z = 20552052050
EIFSA2FAZHLHKI>
2555858 RERS
555055555 ,o,""

2022,
S5E5S

The eigenvalues oA are § and 5~ 1. Hence, the tensok in
the principal axes becomes

A 0
o &)
The local conductivities along the principal axes @rand FIG. 1. Cylindrical surface.
5L Let
detD=D,,D,,—D%,=1. (19
(o] 0
7| o o, There is a surprising consequence of Ekp) for a mac-

roscopically isotropic surface, nametylzol’l or o1=1,
denote the effective conductivity tensor corresponding to thé€., the macroscopic diffusion tensor for isotropic surfaces

local tensorA. with a square unit cell is always equal to the unit tensor
For the rest of this section, we assume t@eis a square (corollary from Sec. )i o .
cell. Following Matheron21], we rotate the cel of the Consider an example which illustrates the physical es-

composite materigof the surfacgby 90°. Then, for the new Sence of theorem 1. Let the surface be cylindrical and
structure the conductivity tensor in the principal axes bedts generator parallel to theaxis (see Fig. 1 The unit cell

comes Q is a square of side 1; however, the length of the arc of
circle isl. o
. 51t O} First, the imposed gradiedt/x is parallel to thex axis.
R™~ 0 s Then, the total flux of solute is equal telD (dc/dx). Sec-

ond, the imposed gradient is along theaxis; the corre-
Let us consider another composite material defined by theponding flux is given by (D/I)(dc/dy).
resistivity tensoiR*, i.e., 5 ! and 6 denote the local resis- Hence, these relations can be summarizedDRy=1D
tances along the principal axes. Hence, conductivity isand Dy,=D/I; therefore we getDXXDyyzDz. In other
changed into resistivity and vice versa. Since conductivity isvords, the longer length in one direction implies a smaller
the inverse of resistivity, the conductivity tens&* corre-  conductivity; but, when it is viewed from another direction,
sponding to the resistivity tens@®* in the principal axes it offers a larger surface and thus a larger conductivity.
becomes

s 0 V. DIFFUSION TENSOR FOR A GENERAL CELL
A* ~[ } AT LOW ORDER
0 &1 . T
In Sec. IV, we obtained an exact result for diffusion on
The effective conductivity tensok? has the same form as isotropic surfaces. For general surfaces represented by a

A, since the local tensors have the same form. Rotate thgduare cell, formul&l9) has been deduced. We now proceed

cell by 90° backward. Hence, the effective resistivity tensof© discuss general surfaces represented by a rectangular cell.
of the original composite material is obtained: In order to determineD from Eq. (17), it is sufficient to
consider diffusion under two external fields in tkeandy

g, O directions, separately. Let us first choose thalirection;
Re~ 0 . then, we can determine the two components of the diffusion
71 tensor
Using the relation between the conductivity and resistivity 1 1
coefficients, we arrive at the fundamental formula (DXX,DXy)TZWJ f ngszﬁf f qodx dy,
12 S 12 Q
o10,=1. (20

Therefore, the effective conductivity tensdr, (the macro- Where the vecto is defined by Eq(7). Substituting Egs.
scopic diffusion tensob) in the principal axes becomes  (6) and(7) into Eq. (20), we obtain

o; O b 1 JJ 1
D~ . =
0 ot PN ) JofZ+ 12
Then the invariant déd is always equal to unity for the 2 %_ 5_¢
square cel(theorem 1 from Sec)l x| (fy+ 1) IX Bty ay dx dy. (21)

011607-4
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The componenD,, is calculated as follows:

D - 1 jf 1
YN ) JofEHiE+

1%
—fyfy— ¢

X xy&

(f +1) ;f)dx dy. (22

The functiong(x,y) from Egs.(21) and (22) is solution of
the problemg11) and (13).

Let us apply the formulag2l) and (22) to the first order
approximation. Substitution of Eq15) into Egs.(21) and
(22) yields

, ® T mlo [ 1 ) )
DXX:].—S m I E(hg_hn)_cbg dgdn
+0(e%).

We apply the Green formula

]

lexz

l)\2

wherem-+n=4.
Formulas(24)—(27) have the following interpretation in
the space’, endowed by the scalar product and the norm:

w T 7w
FO)= gz | |7 Fiemeiemazn,

IFI?=(F.F). (28)
For instance, Eq924)—(26) can be written as
1 2 2
=5 (Ihdl*=[h,[%) (he.hy)
D=1-¢2 L +0(&?).
(he.hy) S =Th,)1%)
(29

Formula (29) is valid up toO(&*) in terms of the fast
variables. Let us deduce a higher order formulaDousing

the function®(&,7) from theorem 2. For the definiteness,

consider the componem,,.
expanded as

Equation(15) can be further

B(x.y)=x+eD(&n)+e°pa(E, 77)+83¢3(§,77)+0(8:326)

fjffdxdy 1+2)\)\2JJ

PHYSICAL REVIEWED, 011607 (2004

[ fyootef oo

and use the periodicity ob to obtain

(23

w T 7lw
Dxle—szﬁ f_J_m(h;— h?)dédn+0(e?).
(24)

Similar arguments yield the formulas

w 7 7l
D=t fﬁ fﬁ heh,dgdy O, @9

1+s f J (hf—h2)dédn+0O(s*).
R (26
In terms off, Egs.(24)—(26) take the form
—f2)dx dy —Lfffxfydxdy-
+O(A ™", (27)

2
—fydxdy

where ¢, and ¢35 are unknown functions. Substitution of Eq.
(30) into Eq. (21) yields

XX 477 f*ﬂf*’ﬂ/a)

1 1
+ed (¢a)e— E(hg—hf,))cbg—héhncb,]—i— 5 (hg+h?)

1- s( (hf—h?)— ®g)+8(¢2)§

(31

3
x|z~ hi”dgdmo@).

First, we note that application of the Green formys)
cancels the unknown functions, and ¢5. Hence Eq(31)
becomes

2
e & 2 2\, .4
Dxx—mfwj#/w(l—?(hg—hn)‘l‘s

1
+ 5 (3h¢+2hZh’ - h‘,‘])) )dgd 7

1
2 2
-5 (h?-n?)

+0(&f). (32
Here, O(e®) was changed int®(&®), because it can be
shown thatD is an even function o. Formula(32) can be
written as follows:

011607-5
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2

e 1
Dyx=1+ 5 (Ihdl*=Ih,?) +&* §(3||h§||2+ 2(hZ,h%)

1
—[n%)2)— E(hé—hi,(bQ—(hfhn,(I),,)} +0(e%).

(33

Recall that| Vh|?=hZ+h? . Equation(33) shows that calcu-
lation of D,, up to O(sﬁ) requires only the knowledge of
function ®(¢,7) from Theorem 2. The same is true for the
tensorD.

Let us consider an elementary example of the surface:

¢ 2wx 2wy )\1 _ A,
(x,y)=sin N sin " [x|< 5 ly|< 5
Then,
. . T
h(¢ n)=sinésinoy, &<, |7,|<Z’

wherew is recalled to be equal t9,/\,. The Poisson equa-
tion (16) becomes
q)§§+ o 77

=—(1+w?)cosésingsirfwy.  (34)

It is easily seen that the function

D¢, 77)— ! sm2§(1+w —C0S 2w 7))

is doubly periodic and satisfies E@4). D, is deduced from
Eqg. (33) as

2 4

D=1+~
o= 1+ 512

§(1—w2)+ (21-8w?—13w*) + O(&").

Along similar lines, we obtain

D,,=0,

Xy

2

+ 2 (02— 1)+ o
FACANTT

4

Dy=1 ——(210*—8w?—13)+ O(&%).
One can see th@,,D,,=1 up toO(e®) and that it verifies
theorem 1.

Remark 4 Note that wherw is replaced byw *, Dy, is
not replaced byD,,. This is due to the fact that when
(M1,\>) is replaced by X,,\;), wis replaced byn ! ande
is multiplied by a factom/\,.

VI. DIFFUSION TENSOR FOR SQUARE CELLS
AT HIGHER ORDERS

A. General

PHYSICAL REVIEW E 69, 011607 (2004

given in Sec. lll, we solve the surface Laplace equation on
the surface with the following boundary conditions:

A A J J A
¢(§,y —¢(—§,y>=>\ af:( Y= af( §,y>,

A A dp| N\ 9 A
¢x,§)=¢(x,_§), W(X’E):W(X’_E)’
(35)

by using the fast variable§=ex, n=¢ey, wheree=2mx/\.
Hence,w is equal to 1. We decomposgg X,y) onto slow and
fast components:

¢(X|y) = FO(X!y) + F(SX,Sy).

It is known from theorem 2 thdty(x,y) =x. We are looking
for F(&,n) in the form of an expansion

©

F(¢, n)=k§l eXpi(£,7m).
Then,

[

d(xy)= > (36)
K=—1

8k¢k(§177);
where ¢_1(&,17)=¢, ¢o(&,7)=0; the unknown functions
¢ (k=1,2,...) are periodic in the squate ,7) X (—m,m),
i'e'v ¢k(§+ T, 77) = ¢k(§1 77+ 77) = ¢k(§1 77) .

Let us rewrite Eq(10) as an expansion ia in terms of
the fast variables. First, we introduce the matrices

2
h2  hh, |={

2
heh, h3,
In order to calculate Eq$20) and(22), we rewrite the vector
g in terms of the fast variables

10

P= o 1l

1
=K V,yp= < (I +e?P)V, . (37
Here, in agreement with E¢36),
Vigp= 2 &V i1, (38

sinceV,,=¢V, whereV = (d/d¢,dl975)" is the gradient in
the fast variables. Using Eq&7) and (38), we obtain

o

- %u +e2P)(eV)=V_,+ 21 82”( Von_1

n
+ > A H™((2m-1)HI —2mP)V¢2n2m1>
m=1

n

Vot 2 AgH™ !
m=1

4 2n+1
s

Let us discuss anisotropic surfaces in the present section.

Consider the cas@;=\,=\ where calculations become

easier since it is possible to avoid calculations of the inte-

grals and to deduce analytical formulas for the teri3aof
higher order ine=27/\. According to the general scheme

X ((2m—1)H] —2mP)V¢2n_2m), (39)

where

011607-6
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"

1
=g?V. 5(1TeP)V¢ a b
FIG. 2. Example 1. The surfacg defined by Eq(53).

(—1)™(2m—3)!! s o s :
m= Zmi and H:=|Vh|[?=hZ+h.

(40) !

We putn!! =1 for all n<0. Applying the operato¥,, to
(39), we obtain the Laplace operator ¢has a series in the
powers oOfe,

R
NN

S
N
\\\\\\\} e

.\\\
X

)

OAsp= ny' ( 5Kvxy¢)

] n
=Z " Ay g+ 2 Amﬁm(d’zn—zm—l)) One can see thath, satisfies a Poisson equation with a
n=1 m=1 known right-hand partp, satisfies a Poisson equation with a
o n right-hand part depending dvi¢p, and so on. Therefore, the
+ 2 82n+2( Apon+ 2 AL ¢2n2m)), cascad€g43) is correct, i.e., each function is determined by
n=1 m=1 the previous ones.

(41) A Poisson equation has a unique solution in the class of
doubly periodic functions up to an arbitrary additive con-
where the linear operatof,, acts on the scalar function stant. Since we need in the final formulas the flux, i.e., the
@(&,m) as follows: derivatives of¢,(&,7), it is useless to determine this arbi-
_ " _— trary constant at each step of cascéi®).
La(p)=2m—1)HMAp+mH The component®,, andD,, by performing the integra-
X[(2m—1)VH-V$—2V-(PV ¢)] tion in the fast variables can be calculated as

B _ m—2 ) 1 T T
2m(m—1)H™ ?VH - (PV ¢), (42 (DXX,DW)T:L‘_WZf_J_Wangdn, (47)

where A is the Laplace operator in the fast variables. The

Laplace equatior s¢»=0 holds if and only if the coefficient whereq has the form of Eq(39). Hence, Eq(47) becomes
of every power ofe is equal to zero. This implies that we

have reduced the Laplace equation to the two separate cas- T T - on
cades of Poisson equations (Dxx:Dyxy) =(1,0) +n§1 €
n n
Adon-1= —le AnLm(ban-2m-1), (43 X 2 Anl(2m=1)by, = 2mc, ],
- m=1
n (48)
Adyn=— AnL —om)s 44 ;
Pan mzzl il b2n-2m) “4 where the vectorb, , andc, , are given by
wheren=1,2,.... 1 (= (=
One can see that E(¥4) becomes bnvm:m j_wj_ﬂHmV b2n-2m-10€d7,

Adp=0, n=1.2,..., (45)

1 T T
Chm=7—2 H™ PV ¢y, _om-1dédn, (49
since the initial term¢, is equal to zero. It follows from "M 4 f—wf—w Pan-zm-10Ed7, (49

Liouville’s theorem for the class of doubly periodic functions

[28] that ¢b,,= constant fom=1,2,.... andA, andH are given by Eq(40).
Let us write the first two equations of E(3): Let us represent the functidnas a Fourier series:
Adi=hheeth,,), h(¢,7)=2 [asicogs+tn) +bysin(se +t)]

1 (50)
Adg=5 (NE=hD)[(D1)ee= (ba) yyl+20ch,(h1) e+ (e

We can assume in representati@@) thats varies from 0 to
+o0, and thatt varies from—« to +«, because

ag1 COgSé+tn) + b sin(sé+ty)
+hi(h§§+3hnn)+4h§hnh§ﬂ]' (46) =ag;Cog —sé—tn)—bg Sin(—sé—ty).

1
)N b1) et hy( 1)yl — 5 hhZ(3hg+h,,)

011607-7
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1.4 €=0 €=0.5
D}ﬁ)—’_—-—-— X Y
1.2 e 1
/ D{3) 1
P BN 1
1 ——
o y4RE AN /T TN\
e — ] |5 S | 4 U \
0.8 (1) / \
Dy, X X
—{—0.5 05 1 J\1—0 5 05 V
o 05 ) \\0.5 //
0.4 D2 — \\ // S e
— |
—
0.2 =
- D _
[ —— xy €=1
0.2 0.4 0.6 0.8 1 1.2 1.4 ¥
€
FIG. 3. Dependence of the tensbrcomponents orz for the /’ ‘\

surfaces defined by E@53) (solid lineg and by Eq.(55) (broken 65
lines). /

We can also takeby;=0 for t<O0, since bg;sinty= \\1_—//
—byg; sin(—t#). Moreover, we puige= 0, since we shall only -
use derivatives oh(¢, 7).

In order to apply the above algorithm ¢60), we have to FIG. 4. Example 1. Dependence of the tenBopn ¢ for the
solve in each step of casca@#6) a Poisson equation with a surface defined by Eq53): £=0, 0.5, and 1 in the first three pic-
right hand side of the general form tures and for alk (O<e<1) in the last picture.

¥(& m)=acogsétty)+Bsin(sé+ty), (51)

where« and B are constants. Tern($1) appear because of
the following operations at each step of cascat®: (i) all
partial derivatives of Eq(51) have the form(51), (ii) the

result of the multiplication of termé51) is also reduced to a Basically, the same methodology can be applied to the

linear combination of terms of the same tyjji,) the Pois-  gerjvation of the second order terms starting from &g).
son equation This is detailed in Appendix A of Ref25].

¢§§+ 4’7]7]: 7(§a 77)

has the unique solution

this series for any double periodical functipt¢, ). Hence,

at each step we do not perform any direct integration, since it
is reduced to arithmetic operations. The longest operation
consists of reexpanding the trigonometric series.

B. Numerical examples

The general algorithm is given in Appendix B of Ref.

25].
) [
d(En=—"Z 7 (52)
st+t? 1. Example 1
Hence, this solution is of the same form as Esfl). Let us consider an example where the surf&ds given

It is necessary to note that at each step of cas¢4Ble by the function(see Fig. 2
the constant term witls=t=0 never appears because the

right hand side of Eq(43) is a sum of derivatives of trigo- L . 1
nometric functions. Hence, the denominator of E8p) is h(¢,7)=sin¢ sin 2= 5[0015_2”)_C03§+2”)]'
never zero. (53

In order to calculate the integrals in Edq47), we

represent the integrands as Fourier series. Themhen, application of the algorithm yields the following for-
V4m?[T [T _p(& n)dédy is equal to the zeroth term of mulas forD

~ 1+9.49508°+33.0992*+52.0162°+36.1186:°+8.71534'°
*X"149.12008°+30.106%*+43.9516:°+27.704%%+ 5.97388 1*’

D,,=0, D,,=Dyl. (54)

011607-8
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Here, we apply the Padapproximation(10, 10 which pro- 2. Example 2

vides an approximation up ©(s%) to the polynomial form Consider another example when the surf&de given by
of D,, obtained by the algorithm from Sec. VIA. The last the function(see Fig. %

two equalities from(54) are obtained by straightforward 3

computations up td (%) and they numerically confirm h(¢,7)=cod3&—7)— 7 cod£—3n)+ 5 coE+37)

theorem 1. The components of the tenBof54) for O<e<1 3 1 3¢+ 55
are presented as function enn Fig. 3. The tensor ellipse of 4 cog3¢+ 7). (59
D [30] is presented in Fig. 4. In this case, we obtain

1+ 65.05382+1442.1¢*+ 12868.4°%+ 40773.58+25197.8 10

D 116555382+ 147143+ 13418.5°+ 44493 4°+ 32150.6 " (56)
o 1.87%2%+104.69%*+1881.82°+11724.%4+15838.8*° .
XY 1+65.525@°+1509.92*+ 14484.6°+51634.2%+ 37182.¢1% 57
i 1+75.22832+1968.12%+20570.5°+ 70022.6¢:3+ 46386.51° -
Y 1+74.7283%+1930.4%*+19610.8°+61118.6:8+ 30072.¢ 1% (58)
|
We apply here the Padmproximation(10, 10. The compo- Then, it is obvious that the previous methodology applies.
nents of the tensdd [Eq. (56)] are presented in Fig. 3. The The following example would correspond to the simplest
tensor ellipse oD is presented in Fig. 6. possible anisotropic case and would be induced by an imagi-
nary surface of the form
VII. APPLICATIONS TO PLANE SURFACES WITH )
VARIABLE DIFFUSION COEFFICIENTS Z=Z,t esSInX. (60)

In this section we shall provide two examples of variable
diffusion coefficients on the atomic scale as often investi-The resulting local diffusion tensor would be

gated in the references cited in Sec. I. In the first case, the

previous formalism can be readily applied while in the sec- €-0 €-0.5
ond case, the whole methodology could be applied again, bu v v
some portions of the symbolic algorithm should be modified.

First, suppose that the local diffusion is a spatially peri- i A
odic tensorD; which is of the form / \ /G/l \

D
4]
]

[
D= oK. 59 —i—o.s 0 5/_ 2 —(—0.5 0 5/L

65 05—/
N N
whereK is given by Eq.(6).
e=1 Y
Y

N

™
; \_//

D
g

—]/—O 51 0 =
Nl
a b
FIG. 6. Example 2. Dependence of the tenBopn ¢ for the
FIG. 5. Example 2. The surfac® defined by Eq(55). surface defined by Ed55).
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VIIl. CONCLUSION

The main purpose of this paper was to obtain analytical

formulas for the macroscopic diffusion tensor of surfaces.

Then, the whole machinery developed in the previous seowe derived a boundary value problem for the Laplace opera-

tions would apply.

Conversely, ifD, is a known spatially periodic tensor, it is
possible in some cases to derive a functi¢r,y) such that
it verifies Eq.(59).

tor (11). We applied an asymptotic analysis to study the

boundary problem and deduced approximate analytical for-
mulas. We proved theorem 2, where the local field is deter-
mined up toO(&?) in terms of the functiomb(¢,) satisfying

When this is not the case, one has to solve directly they poisson equation. The results of the calculation of the local

equation

Vyy (D Vyye)=0. (62

The same method can be easily applied to &8), since
we do not use constraints &hin the algorithm described in

field were applied to the determination of the macroscopic

diffusion tensom. First, D was proved to be the unit tensor

for isotropic surfaces. A general algorithm to calculate higher

order terms was constructed which is based on a cascade of
Poisson equations. In particular, analytical formulas Ror

Sec. IV. For instance, suppose that we have a local diffusiopyere deduced. The tensbrwas computed up t®(s%?) for

coefficient equal to

D,=D,(1+ esinxsiny) (63

Then, the macroscopic diffusion can be expressed as

e & €

[ 8
8 64 5120 O

D=D,| 1

(64)

two particular surfaces. Technical details are supplied in Ref.

[25].
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