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Time-dependent diffusion simulations which can be measured by nuclear magnetic resonance �NMR� were
numerically performed in consolidated reconstructed porous media saturated by two immobile fluids. The
phase distributions were obtained by an immiscible lattice Boltzmann technique which incorporates interfacial
tension and wetting. The apparent diffusion coefficient in each fluid was determined by a random walk
algorithm. Permeability and conductivity tensors were calculated by finite-difference schemes. The major
properties valid for a single phase could be generalized to two phases. First, the characteristic length �

introduced by Johnson et al. �Phys. Rev. Lett. 57, 2564 �1986�� is of the order of twice the phase volume to
surface ratio. Second, the apparent diffusion coefficients for all porosities, saturations, and phases can be
represented by a single dimensionless curve.

DOI: 10.1103/PhysRevE.72.056317 PACS number�s�: 47.55.Mh, 47.55.Kf, 81.05.Rm, 47.11.�j

I. INTRODUCTION

Multiphase flows through porous media have received a
lot of attention because of their fundamental and industrial
importance. Experimental study of such phenomena is made
easier by NMR because it is a nonintrusive technique and
because it can provide information on crucial quantities such
as saturation. A recent example of the application of NMR is
due to �2�.

The main objective of this paper is to perform numerical
simulations of NMR in porous media saturated by two im-
mobile fluids. Though relaxation effects will be neglected in
this study, it is useful to describe them briefly. Under the
usual circumstances, relaxation due to the solid interface is
much larger than the one due to the fluid-fluid interface �3�.
Therefore, the wetting fluid relaxes first and then the nonwet-
ting one. During experiments, the signals coming from the
two fluids can be distinguished, but this often demands
costly efforts �4�. Numerical simulations have an advantage
in this situation, since these signals can be calculated for
each fluid independently.

Only Toumelin et al. �5� performed numerical simulations
of nuclear magnetic resonance in model porous media satu-
rated by two fluids. In addition to surface relaxation, the
authors took into account bulk relaxation and relaxation due
to internal magnetic field gradients. Such internal magnetic
field gradients originate from the interactions between the
external static magnetic field and the solid grains of the po-
rous media due to irregularities in the pore space, together
with a contrast between the solid and fluid susceptibilities
�3�. The porous medium was schematized by a simple cubic
array of spheres �see also �6��. The pores were filled with
water. Blobs of oil were added at the corners of the cell, and
the configuration was spatially periodic. To obtain mi-
cropores inside the spherical grains, the grain was divided
into smaller cells in which, inversely, the pore was a sphere

at the center and all the rest of the small cell was filled with
water. Surface relaxation could occur at solid-fluid inter-
faces. The fluid-fluid interfaces had zero relaxation strength.

The present study is restricted to a diffusion process with-
out any relaxation. The particles representing the fluid mol-
ecules are specularly reflected from the fluid-fluid interfaces
in the same way as from the fluid-solid ones. The diffusion
process is simulated in each fluid separately by the random
walk algorithm already used by �6�. The emphasis is put on
the apparent diffusion coefficient. Moreover, the porous me-
dia used here reproduce the statistical properties �porosity
and correlation function� of some real porous media such as
sandstones.

The diffusion process is simulated in each fluid phase,
filling the media when the fluids are immobile. The two
phase configurations are determined for various porosities
and saturations. The configurations are calculated by an im-
miscible lattice Boltzmann algorithm �7,8� with periodic
boundary conditions; i.e., the fluid which leaves one side of a
sample comes back by the opposite one.

Simulations are performed on samples of unimodal po-
rous media which are homogeneous and isotropic with a
single correlation length �Sec. II A�. Though the pore
space is isotropic, the phase configuration is not necessarily
isotropic because of the pressure gradient which was
initially applied and of their subsequent return to interfacial
equilibrium.

The apparent diffusion coefficient of each fluid phase is
studied in the same manner as in �6�. For two fluids, it may
also serve as an indicator of the continuity of the phases. If it
tends to zero in some direction, it means that the mean-
square displacement of the fluid molecules is bounded by a
solid surface or an interface with another fluid and that the
fluid does not percolate along this direction.

II. GENERAL

Consider a porous medium saturated with two fluids—
namely, oil and water. Let us assume that water is the wetting
phase.*Corresponding author. Electronic address: adler@ipgp.jussieu.fr
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The apparent diffusion coefficient is determined when the
fluids are motionless. In this equilibrium configuration, the
wetting fluid is mostly located close to the surface of the
solid.

The walkers represent the fluid molecules. Diffusion is
modeled by their random displacements within a given fluid
domain limited by the solid matrix and some different fluid
phase or interface. When the walkers fall onto such solid or
fluid interfaces, they undergo specular reflection without any
relaxation.

A. Porous media

The samples used for this work are the samples of the
homogeneous and isotropic unimodal porous media, recon-
structed according to the algorithm proposed by Adler et al.
�9�. Let us describe briefly the reconstruction process. A real
porous medium can be described by a phase function

Z�x� = �1, if x belongs to the pore space,

0, otherwise.
� �1�

The two major average properties of the medium are

� = Z�x� , �2a�

RZ�u� =
�Z�x� − ���Z�x + u� − ��

� − �2 , �2b�

where � is the porosity, u a translation vector, and RZ�u� the
correlation function of Z�x�.

The porosity � and the correlation function RZ�u� can be
measured on thin sections of real media. Then, a random
field Z�x� can be generated such that Eqs. �2� hold. It can be
shown �9� that it can be derived from a random Gaussian
field X�x� successively passed through a linear filter �which
results in a correlated Gaussian field Y�x�� and a nonlinear
one �which results in Z�x��. The correlation function of Y�x�
is imposed. For the media considered here, it is equal to

Ry�u� = exp − ��u

lp
�2

, �3�

where lp is the correlation length of the pores and u= 	u	.
When a real medium is statistically homogeneous, it can

be represented by a cell of finite size, translated periodically
along three orthogonal axes. This unit cell in its turn can be
discretized into elementary cubes of side a, such that each
cube is either entirely filled with solid or is empty; i.e., it
represents the pore space. Along each side of this cell, there
are Nc elementary cubes. Thus, the cell contains Nc

3 elemen-
tary cubes and its volume is �Nca�3.

Samples of porosity �=0.2, 0.3 and 0.4 discretized by
Nc=32 elementary cubes will be used. The correlation length
lp is equal to 15. The samples are represented in Figs.
1�a�–1�c�.

It should be noted that porous media can be reconstructed
in various ways. For instance, grain reconstruction was pro-
posed by �10� which is well suited for low-porosity sand-
stones. Long-range correlations were introduced by �11�.

B. Equilibrium phase configurations and notations

The diffusion-relaxation process should be simulated over
an equilibrium configuration when the two fluids are motion-
less. To obtain such an equilibrium configuration, fluids are
first moved under a pressure gradient. Then, this pressure
gradient is suppressed and the fluids continue to move for
some time under the action of capillary forces before they
stop.

The motion of two fluids is simulated by an immiscible
lattice Boltzmann �ILB� algorithm �7,8�. Interfacial tension
and wetting are incorporated in this code. Here, water is
supposed to be the wetting fluid.

Let us describe how the equilibrium configurations are
obtained in three steps by the ILB algorithm. First, the two
fluids are arbitrarily placed in two parallel slices �see Fig.
2�a��. Then, a constant-pressure gradient �P is applied to the
sample and the two fluids begin to move. �P is applied for a
time sufficiently long so that the relative permeabilities Kr�

��=w ,o� reach a stationary state �see Fig. 3�. The dimen-
sionless time IT0, when this occurs, varies with � and Sw; it is
equal either to 4�106 or 8�106 iterations. Third, after IT0

iterations, �P is canceled and the two fluids flow under the
action of the capillary forces only until they reach equilib-
rium. Figure 2 shows that during this last step, the phase
configuration undergoes significant variations at least at the
beginning. Progressively, the variations diminish and an
equilibrium configuration is reached. In such a configuration,
the total curvature of the interface is constant. Of course, in
complex porous structures, such equilibrium configurations
are not unique and they depend on the precise way they are
obtained.

During the ILB calculations, each fluid is represented by a
finite set of N� ��=w ,o� colored particles for water and oil.
Therefore, four cases can happen in each elementary cube.

�i� No=0; all the volume of the elementary cube is filled
with water; the total volume of these cubes is noted by Vw.

�ii� Nw�No; the concentration of water is larger than the
concentration of oil; the total volume of such cubes is noted
by Vwi.

�iii� Nw�No; the concentration of water is smaller than
the concentration of oil; the total volume of such cubes is
noted by Voi.

�iv� Nw=0; all the volume of the elementary cube is filled
with oil; the total volume of these cubes is noted by Vo.

In cases �i� and �ii�, the phases in the cubes are pure. In
cases �ii� and �iii�, the corresponding elementary cubes can
be considered as being in the oil-water interface; therefore,
the superscript i standing for interface was included.

Often the majority rule is applied which means that the
fluid elementary cubes are of two sorts. In the first one, Nw is
larger than No ��i�+ �ii�� and the cube is considered to be
filled by water. In the second one, Nw�No ��iii�+ �iv�� and
the cube is filled by oil. The volumes corresponding to the
majority rules are denoted by the superscript t �for total�:

Vwt = Vw + Vwi, Vot = Vo + Voi. �4�
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These four possibilities will be denoted by the index � which
is equal to

� = w,wt,ot,o . �5�

As a direct application, the saturation of phase � is defined
as

S� =
V�

Vp , �6�

where Vp is the total pore volume.
The interfacial area A� of phase � is equal to the total

fluid and solid area bounding phase �.
This might be the right place to comment on this

procedure. As said, the initial configuration perpendicular to
�P is arbitrary and it could be replaced by any other choice.
However, it presents the decisive advantage of being simple

and easily reproducible. Configurations simulating imbibi-
tion or drainage are much more difficult to obtain. In
unpublished studies, various initial configurations were tried
with relatively little influence on the results for intermediate
saturations.

Finally, it is clearly not the purpose of this work to present
relative permeability curves as functions of porosity and
saturations. Such curves can be found in �12�. Calculations
of the resistivity index were made by �13�.

C. Macroscopic properties of the porous media

Some macroscopic properties of the samples were deter-
mined in a systematic way. Geometric properties such as the
interfacial areas and the surface-to-volume ratios were calcu-
lated for each equilibrium configuration. Moreover, percola-
tion of phase � along the x, y, and z directions is character-
ized by p��x ,y ,z�. This function is equal to 1 along a

FIG. 1. Samples of porous media discretized by Nc=32 cubes of side a. Porosity of the samples: �a� �=20%, �b� �=30%, and �c�
�=40%.
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direction if the considered fluid phase is percolating along
this direction and 0 otherwise.

The permeability K� is determined by solving the Stokes
equations in phase � by a fourth-order finite-difference
scheme �14�. Note that during these calculations, a no-slip

boundary condition is also applied to the fluid-fluid inter-
faces.

The macroscopic conductivity tensor D̄� was obtained
by solving the Laplace equation in phase � by a second-
order finite-difference scheme �15�. As a by-product,

FIG. 2. Determination of an
equilibrium configuration for the
sample �=0.4 with Sw=0.4. The
solid phase is transparent so that
only the pore space is seen; water
is gray and oil black. �a� corre-
sponds to the initial arbitrary con-
figuration. From �b� to �e�, the flu-
ids move under a constant
macroscopical pressure gradient
�P parallel to the x axis. From �f�
to �o�, the fluids move under the
influence of the interfacial tension
only. They stop after a large num-
ber of iterations �o�.
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the length scale introduced by �1� is systematically
determined:

�� = 2



V�

�E��r��2dv



A�

�E��r��2ds

. �7�

It is essentially a volume-to-surface ratio with a measure
weighted by the local value of the electric field E��r�. �� is

determined by the same numerical program as D̄�.

D̄� is also equal to the macroscopic diffusion tensor
since diffusion is a solution of the Laplace equation as well.

D̄� is more often referred to as the conductivity tensor since
it is much more convenient to measure conductivity than
diffusion.

An alternative characteristic length of a porous medium
can be introduced along the i axis, i=x ,y ,z:

�i�
� = �8Kii

�Fii
�, �8�

where Fii
�= �D̄ii

� /Dm
��−1 is the formation factor along the axis

i. For an isotropic porous medium, this length ��=�8KF�

was proposed by �16,17� as a way to determine K.

D. Random walk algorithm

As already stated, only diffusion is taken into account and
the diffusing particles are supposed to be located in a single
phase. Four choices can be made depending on the definition
of the initial volume which can be Vw, Vwt, Vot, or Vo.

Let us detail this algorithm. A large number of particles,
Np, is released in the chosen phase at time zero. The initial
distribution is uniform. During all the subsequent elementary
time steps 	t, the position of each particle i is updated by a
displacement �D of a given modulus 	D= ��D�, but of a ran-
dom direction

xi�t + 	t� = xi�t� + �D, �9�

where xi�t� is the position at time t and xi�t+	t� the position
at time t+	t.

The modulus 	D of the random jump is constant and re-
lated to the molecular diffusivity Dm by

	D
2 = 6Dm	t . �10�

In all calculations, 	D should be small when compared to the
size a of the elementary cube. However, as shown by �6�, the
following value gives satisfactory results:

	D = 0.4a . �11�

If the particle falls onto a boundary, its clock is incre-
mented by a fraction of 	t:

xi�t + 
	t� = xi�t� + 
�D, 0 � 
 � 1, �12�

which corresponds to the intersection of the path and bound-
ary. At the subsequent time step, the particle starts from this
location. Since particles close to the walls may accumulate
time delays at regular time intervals, these delayed particles
are allowed at periodic intervals to catch up with time. Note
that the boundary contains the solid phase and the elemen-
tary liquid cubes which do not belong to the initial volume as
defined at the beginning of this subsection.

Since the fluid phase through which the random walk
simulations are performed can be anisotropic, the apparent
diffusion coefficient in phase � is defined as a 3�3 tensor
�18�

D��t� =
1

2t
�x2�t�� �xy�t�� �xz�t��
�yx�t�� �y2�t�� �yz�t��
�zx�t�� �zy�t�� �z2�t��

� , �13�

where �=w ,wt ,ot ,o; the brackets are defined in a particular
manner—for instance,

�xy�t�� =
1

Np
�
n=1

Np

�xn�t� − xn�0���yn�t� − yn�0�� , �14�

where xn�t�, yn�t�, and zn�t� are the coordinates of the diffus-
ing particle n at time t. The total number of particles is Np.

This tensor has known limits for long and short times. For
long times, it is related to the macroscopic conductivity ten-

sor D̄� in phase � by

FIG. 3. The relative permeabilities of water �solid line� and oil
�dashed line� for the sample of porosity �=0.4. Data are for �a�
Sw=0.3, �b� Sw=0.5, and �c� Sw=0.7.
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lim
t→�

D��t� =
D�

�S�

, � = w,o . �15�

For short times and for isotropic porous media, �18�
showed that

D�t�
Dm

= 1 −
4

9��

S

Vp

�Dmt −
S

12Vp
� 1

R1
+

1

R2
�Dmt +

1

6


S

Vp
Dmt

+ O„�Dmt�3/2
… . �16�

This formula can be easily generalized to each phase �.

E. Numerical parameters of the simulations

The following parameters were used for the random walk
simulations.

To be specific, the autodiffusion coefficient Dm of
the fluid in the pore space was taken to be equal to
2.58�10−9 m2/s; the side a of the elementary cube used for
the discretization of the media is equal to 5 �m. Of course,
these specific values are not essential; they just provide real-
istic orders of magnitude.

The time step 	t is given by

	t =
	D

2

6Dm
. �17�

Generally speaking, Np=106 molecules were initially located
in the samples.

Calculations were performed for the three porous media
described in Sec. II A. Initial water saturation was varied
between 0.3 and 0.8 by steps of 0.1.

Various dimensionless times are used for representing
D�t�:

Ta
� =

�Dm
� t

a
, �18a�

Tl� =
4

9��

A�

V�
�Dm

� t , �18b�

T�i�
� =

Dm
� t

�i�
� , �18c�

where �=o ,ot ,wt ,w. The subscript i indicates the
direction—i.e., i=x, y, or z.

FIG. 4. The diagonal compo-
nents of the conductivity tensor

D̄ /Dm for water for the sample
�=0.3. The components x, y, and
z are represented in �a�, �b�, and
�c� for �=w ��, dotted line� and
wt ��, dashed line�. The three
components for �=wt are super-
posed in �d�: x �solid line�, y
�dashed line�, and z �dotted line�.
For the samples �=0.2 and 0.4,
the three components for �=wt
are displayed in �e� and �f�.
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When expressed in terms of the dimensionless time Tl�,
Eq. �16� becomes

Di
��Tl��

Dm
� = 1 − Tl� + O„�Tl��2

…, i = x,y,z . �19�

Since �i�
�=�8Kii

�Fii
� is a characteristic length of the porous

medium analogous to l�= �A� /V��−1, the following represen-
tation is also useful:

Di
w�T�i�

�� = 1 − CiT�i�
� + O„�T�i�

��2
…, i = x,y,z . �20�

III. NUMERICAL RESULTS

A. Macroscopic properties

The permeability and conductivity tensors K� and D�

��=w ,wt ,ot ,o� were systematically calculated. Data for D�

are summarized in Fig. 4.
Let us first note that generally speaking the nondiagonal

terms are much smaller than the diagonal ones as expected
for almost-isotropic-phase configurations. However, there are

cases where this is not true; this occurs when the diagonal
terms are significantly different—i.e., when the equilibrium
configuration is anisotropic. Such an anisotropy may have
two causes. First, the application of the pressure gradient
breaks the isotropic character of the problem. Second, when
the pressure gradient is set to zero, the configuration is
changing under the action of the interfacial tension only and
it has no reason to remain isotropic.

Results are detailed for the sample �=0.3 for conductivity
in Fig. 4. In �a�, �b�, and �c�, the three diagonal components
of the tensor are displayed for �=w and wt. In most cases,
except for Dzz

� , the differences between the two “phases” are
not significant though Dii

w�Dii
wt as expected on a physical

basis. The three components for �=wt are superposed in Fig.

FIG. 5. �i
wtAwt /Vwt along the three space directions as a

function of the saturation Sw for the three samples: �a� �i=x�, �b�
�i=y�, and �c� �i=z�. Data are for �=0.2 ���, �=0.3 ���, and
�=0.4 ���.

FIG. 6. The influence of the interfaces on the apparent diffusion
coefficient Dxx�t� along the x direction for the sample �=0.3. The
cases �=w �solid line� and �=wt �dotted line� are compared. Data
are for Sw=0.4 ���, 0.5 ���, 0.6 ���, and 0.8 ���.

FIG. 7. Evolution of the apparent diffusion coefficient along the
x direction for the sample �=0.3 for short �a� and long �b� times.
The water phase is defined by the majority rule. Data are for
Sw=0.3 ���, 0.4 ���, 0.5 ���, 0.6 ���, 0.7 ���, 0.8 ���, and 1.0 ���.
The straight line in �a� is y�Tlw�=1−Tlw. The straight lines in �b� are

obtained by the calculations defined in Sec. III A, D̄xx
w / ��SwDm

w�.
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4�d�; up to Sw=0.7, they are quite similar. This is not true
anymore for Sw=0.8, while they are almost exactly the same
for Sw=1 since the porous medium itself was designed to be
as isotropic as possible.

Results similar to Fig. 4�d� are displayed in Figs. 4�e� and
4�f� for �=0.2 and 0.4. The three components do not super-
pose well for �=0.2, and this feature is again verified
for �=0.4.

Equivalent data were obtained for permeability and com-
ments are very similar to the ones given for conductivity.

Finally, the dimensionless parameter �wtAwt /Vwt was cal-
culated for all the equilibrium configurations. Results are dis-
played in Fig. 5. As discussed by �6�, it is expected that

�wtAwt

Vwt � 2 �21�

if the electric field in the sample does not vary too much over
the pore space. The data show that this relation is less well
verified for two phases than for one phase. This quantity
oscillates between 1 and 3 and can provide a first rough order
of magnitude when needed. Otherwise there is no obvious
trend with � and Sw.

B. Apparent diffusion coefficient in the water phase

The results obtained for the apparent diffusion coefficient
are presented mostly for the sample with the intermediate
porosity �=0.3.

First, results obtained for �=w and wt for a given direc-
tion are compared for various saturations in Fig. 6. As could
be anticipated from Figs. 4�a�–4�c�, the results are very simi-
lar. Because of this comparison, calculations are restricted to
�=wt; i.e., the water phase is defined by the majority rule.
Moreover, we shall follow the main lines of the presentation
made by �6� for single phase flow.

Some results are presented for short times in Fig. 7�a�.
Because of Eq. �16�, the data are expected to have a slope
equal to −1 at t=0 when plotted in terms of Tlw �cf. Eqs.
�18��. Such a representation is seen to be very successful.
The other known asymptote is for long times where the ap-
parent diffusion coefficient should tend towards the limit ex-
pressed by Eq. �15�. This behavior is illustrated in Fig. 7�b�.
It is again well verified. Similar results were obtained for the
two other directions of space.

Finally, Valfouskaya et al. �6� showed that all the data
relative to the apparent diffusion could be superposed on a

FIG. 8. The reduced representations gi
w��lw� �i=x ,y ,z� of the

apparent diffusion coefficient along the three spatial directions for
the sample �=0.3. The water phase is defined by the majority rule.
Data are for Sw=0.3 ���, 0.4 ���, 0.5 ���, 0.6 ���, 0.7 ���, 0.8
���, and 1.0 ���. �a� gx

w��lw�, �b� gy
w��lw�, and �c� gz

w��lw�.

FIG. 9. The reduced representations hi
w���i�

w� �i=x ,y ,z� of the
apparent diffusion coefficient along the three spatial directions for
the sample �=0.3. The water phase is defined by the majority rule.
Data are for Sw=0.3 ���, 0.4 ���, 0.5 ���, 0.6 ���, 0.7 ���, 0.8
���, and 1.0 ���. �a� gx

w���x�
w�, �b� gy

w���y�
w�, and �c� gz

w���z�
w�. The

curves for which �i�
w=0 are not plotted.
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single curve for very different porous media. In this purpose,
recall the definitions

gx
w��lw� =

Dx
w��lw�

Dm
w −

1

�x
w

1 −
1

�x
w

, �22a�

where

�lw =
Tlw

1 −
1

�x
w

,

hx
w���x�

w� =

Dx
w���x�

w�

Dm
w −

1

�x
w

1 −
1

�x
w

, �22b�

where

��x�
w =

T�x�
w

1 −
1

�x
w

,

where 1/�x
w=limt→� Dx

��t� /Dm
� = D̄xx

� / ��S�Dm
�� is the limit

value of the apparent diffusion coefficient of phase � along
the x axis.

Let us consider the reduced curves gi
w��lw� and

hi
w���i�

w� , i=x ,y ,z, displayed in Figs. 8 and 9. The curves g
are reduced to a single one for g�0.5 for all three directions.
Nevertheless, for smaller values of g, the curves separate.
The curves for Sw=0.5 are above the others for all directions.
We observe also that the curves for Sw=0.4 and 0.6 are also

FIG. 10. The apparent diffusion coefficient along the three spa-
tial directions for oil defined by the majority rule for the sample
�=0.3. Data are for Sw=0.3 ���, 0.4 ���, 0.5 ���, 0.6 ���, 0.7 ���,
and 0.8 ���. �a� Dx

o�Ta
w� /Dm

o , �b� Dy
o�Ta

w� /Dm
o , and �c� Dz

o�Ta
w� /Dm

o .
The straight lines are obtained by the calculations defined in Sec.

III A: �a� D̄xx
o / ��SoDm

o �, �b� D̄yy
o / ��SoDm

o �, and �c� D̄zz
o / ��SoDm

o �.

FIG. 11. The reduced representations gi
o��lo� , i=x ,y ,z, of the

apparent diffusion coefficient along the three spatial directions for
the sample �=0.3. The oil phase is defined by the majority rule.
Data are for Sw=0.3 ���, 0.4 ���, 0.5 ���, 0.6 ���, 0.7 ���, and 0.8
���. �a� gx

o��lw�, �b� gy
o��lw�, and �c� gz

o��lw�.
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above the others along the X direction �Fig. 8�a��. Along the
Y direction, it is the curve for Sw=0.4, and along the Z di-
rection, it is the curve for Sw=0.6 �Figs. 8�b� and 8�c��.

The reduced representations h are much worse than g
along the X and Y directions �Figs. 9�a� and 9�b��. The curves
are separated almost from the very beginning. Along X, the
curves for Sw=0.4 and 0.5 are above the others. The curve
for Sw=0.3 cannot be taken into consideration since Kxx

w =0
and, therefore, �x�

w=0; T�x�
w is not defined anymore. Along

the Y direction, the curves for Sw=0.5 and 0.8 are above the
others, and for Sw=0.3,0.4,�y�

w=0. As for Z, the curves are
almost superposed for h�0.5 as for g. For h�0.5, the
curves are again separated. For Sw=0.5 and 0.6, they are
above and for Sw=0.3, �z�

w=0.
The same calculations were performed for the other

samples with very similar conclusions.

C. Apparent diffusion coefficient in the oil phase

The apparent diffusion coefficient of oil is considered
only for a sample of porosity �=0.3. The limit values of the
apparent diffusion coefficient for long times have no mono-
tonic behavior with water saturation Sw.

The oil phase is often discontinuous, and this fact is cap-
tured by the apparent diffusion coefficient which tends to
zero as illustrated in Fig. 10.

The reduced representations gi
o��lo� are shown in Fig. 11.

All the curves are well gathered for gi
o�0.5 as for water. For

larger values of the argument �lo, the curve Sw=0.8 is below
the others; for this saturation, oil does not percolate along
any direction. Otherwise, the other curves fall onto a well
defined curve.

D. Discussion

Let us now superpose the curves g obtained before for
water in Fig. 12�a�. It is seen that the superposition is excel-
lent as a rule. It is even better than the superposition made in
single phase for various classes of porous media �cf. Fig.
�15a� of �6��. Moreover, the curves g obtained for the three
directions x, y, and z for the sample �=0.3 can also be su-
perposed.

Let us now superpose the data obtained for oil to the
water data in Fig. 12�b�. They are well superposed for short
times, but the apparent diffusion coefficient is slightly
smaller for oil for long times.

Finally, all the data obtained in single phase by �6�, for
water and oil in two phases are superposed in Fig. 13. The
single-phase data are seen to fall in the middle of the two-
phase data. Such an average position is expected on a physi-
cal basis.

Therefore, the apparent diffusion coefficients are quite
close whatever the physical situation for values of g larger
than 0.5 and �36a� of �6� still holds:

gx
���l� = 0.75� = 0.5. �23�

Such a relation can again be used to derive estimates of
S� /Vp

� and of K� in the conditions discussed in this
reference.

IV. CONCLUSION

NMR diffusion experiments without relaxation have been
simulated in two phase equilibrium configurations calculated
for reconstructed media. The porosity and water saturation
parameters of these configurations were varied.

The actual fluid volumes and surface fluid-fluid and fluid-
solid areas were calculated. Permeability and conductivity
tensors as well as percolation property were determined. The
influence of the interfaces where the two phases are mixed
on these geometric and macroscopic properties has been
studied.

The apparent diffusion coefficient was determined for
each fluid. Its limit value for long times is not always mono-
tonic with water saturation parameter. The apparent diffusion

FIG. 12. The reduced representations gx
���l�� of the apparent

diffusion coefficient along the x direction for all the samples. �a�
Diffusion in water for the three samples, �b� diffusion in water
for the three samples and in oil for the sample �=0.3. Data are
for �=wt, �=0.2 ���, �=wt, �=0.3 ���, �=wt, �=0.4 ���, and
�=ot, �=0.3 ���.

FIG. 13. Superposition of the reduced representations gx
���l��.

��� water along the x direction for the samples �=0.2,0.3,0.4 for
Sw� �0.3,1�. ��� oil for the sample �=0.3 for Sw� �0.3,0.8�. ���
average gi

���l�� �i=x ,y ,z� along the three directions for single
phase for the samples of porosities �=0.2, 0.3, 0.4, and 0.5 �cf.
Valfouskaya et al. �6��.
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coefficient tends to zero for a disconnected fluid phase with
time.

The two major findings obtained for a single phase by �6�
were confirmed for two phases. First, the ratio �wtAwt /Vwt

was shown to be close to 2 whatever the porosity and satu-
ration. Second, the reduced curve g��l� gathers the data ob-
tained for both phases. This curve is very close to the one

obtained by �6� for a single phase and for the same recon-
structed unimodal porous media.

Thanks to the versatility of the random walks numerical
code, the present study can be easily extended to other real
physical situations. For instance, relaxation can be simulated
at the interfaces between each fluid and solid and between
the fluid molecules of the bulk fluid, to name a few.
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