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S U M M A R Y
First-order ray tracing equations and paraxial ray tracing system are derived for quasi-shear
waves propagating in a smooth inhomogeneous weakly anisotropic medium. The first-order
equations are based on explicit formulae in terms of slowness vector and elastic parameters.
They only depend on 15 independent combinations of elastic parameters. For isotropic media,
they reduce to exact equations. The behaviour of the approximate equations is studied in the
vicinity of singularities. Ray tracing equations behave properly if the wave mode is changed
when the ray crosses the conical or the intersection singularity, but the paraxial ray tracing
system may be singular. A second-order correction of the traveltime is obtained by integration
along the approximate rays. Comparison of the exact and approximate traveltimes in trans-
versely isotropic and orthorhombic homogeneous media shows small relative errors except in
the close vicinity of cusps.

Key words: anisotropy, perturbation method, qS waves, ray tracing, second-order traveltime.

1 I N T RO D U C T I O N

Perturbation theory is a useful tool for approximate study of wave properties in weakly anisotropic media. It gives approximate but very simple
and transparent expressions for physical quantities such as the phase velocity and the polarization vector of individual waves (see, among
others, Mensch & Rasolofosaon 1997; Pšenčı́k & Gajewski 1998; Farra 2001; Farra & Pšenčı́k 2003). Such approximations are important as
they offer physical insight into the dependence of wave attributes on the elastic parameters of the medium. In anisotropic media of arbitrary
symmetry, exact expressions depend on all 21 elastic parameters. In weakly anisotropic media, the individual seismic waves only depend
on a limited set of their combinations, the so-called weak anisotropy parameters (see Farra & Pšenčı́k 2003). The combinations of elastic
parameters corresponding to the qP wave are different from combinations for the qS waves. Standard ray tracing equations for anisotropic
media do not reflect this fact since they appear identical for all three types of wave. Moreover, the standard ray equations are quite complicated.
The right-hand sides of the ray tracing equations contain up to 81 terms consisting of individual elastic parameters. Many of these terms are
mutually dependent and the calculation of the right-hand sides of the ray tracing equations requires many unnecessary operations.

In this paper, approximate ray tracing equations are presented for the qS waves. The approximation is of the first order with respect to
the size of deviation of the medium from isotropy. A similar approach is used for qP wave in Pšenčı́k & Farra (2004). The application of the
standard ray method (Červený 1972) to the propagation of the qS waves in inhomogeneous anisotropic media is more complicated than for the
qP wave, because of difficulties related to singularities. Singularities can cause breakdowns of the ray tracing algorithms (Shearer & Chapman
1989; Gajewski & Pšenčı́k 1990; Vavryčuk 2001). Singularities often appear with triplications of the wave front. Triplications complicate the
geometry of the wave front but do not pose complications for ray tracing equations. Moreover, in the vicinity of shear wave singularities, the
two qS waves do not propagate independently but are mutually coupled (see, for example, Chapman & Shearer 1989).

In Sections 2 and 3, basic equations and standard (exact) ray equations are reviewed. In Section 4, the matrix B, whose elements control
various attributes of elastic waves, is introduced and first-order approximations for phase velocities are obtained. In Sections 5 and 6, first-
order ray tracing (FORT) equations and paraxial ray tracing systems are derived for qS waves. These equations are based on explicit formulae
which make the dependence on parameters of the medium transparent. Their behaviour in the vicinity of singularities is studied analytically.
In Section 7, a second-order traveltime correction to be evaluated along the first-order rays is derived. In Section 8, explicit expressions
are given for transverse isotropic (TI) media. The accuracy of approximate traveltime formulae is illustrated with numerical examples in
Section 9.

In the following, all the lowercase indices range over the values 1, 2 and 3 and the uppercase indices range over the values 1 and 2. The
subscript with brackets [m] characterizes the wave mode, m = 1, 2 for the qS waves and m = 3 for the qP wave. The superscript in parenthesis
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310 V. Farra

indicates the approximation order of the quantity. Voigt notation Aαβ for density-normalized elastic parameters, with α and β running from 1
to 6, is used in parallel with the tensor notation aijkl. The Einstein summation convention is used for the repeated subscripts.

2 G E N E R A L E X P R E S S I O N S

Let us introduce the generalized Christoffel matrix Γ(p), whose elements are dependent on a vector p and are given by:

� jk = pi plai jkl . (1)

The matrix Γ(p) is called the generalized Christoffel matrix in contrast to the standard Christoffel matrix in the definition of which the
vector p is defined as a unit vector. The parameters aijkl = cijkl/ρ are the density-normalized elastic parameters and pi are the components of
the vector p. The matrix Γ(p) is a symmetric 3 × 3 matrix with three positive eigenvalues G [m](p) and corresponding eigenvectors g[m](p).
Since the elements of matrix Γ are homogeneous functions of the second degree in p, G [m](p) and g[m](p) are homogeneous functions of
degree two and zero, respectively (see Červený 2001).

Three wave modes (the quasi-P wave and two quasi-S waves) can propagate in the anisotropic solid defined by the density-normalized
elastic parameters aijkl. Each wave mode is associated with one of the eigenvalues G [m]. For each of the wave modes, the corresponding
slowness vector, denoted p[m], satisfies the eikonal equation which can be written in the following form (Červený 1972):

G[m]

(
p[m]

) = 1. (2)

The slowness vector p[m] = n/V [m](n) is related to the phase velocity V [m](n) in the wave normal direction defined by the unit vector n.
Since G [m](p) is a homogeneous function of degree 2 with respect to p, it can be deduced from eq. (2) that the phase velocity squared is given
by:

V 2
[m](n) = G[m](n). (3)

The polarization vector of the wave is identical with the corresponding eigenvector g[m].
In the following sections, the eigenvalues G [m] are ordered as follows: G [2] ≤ G [1] ≤ G [3]. The eigenvalues G [M], M = 1, 2, correspond

to the qSM waves, the q S1 wave being defined as the faster quasi-shear wave in terms of phase velocity; the remaining eigenvalue G [3] belongs
to the qP wave. The three phase-velocity sheets can be separated, but they can also come into contact along so-called singularity directions.

Singularities are very common in all kinds of anisotropy. They are defined as directions where two waves have coincident phase velocities
(or eigenvalues G [m]). For most geological materials, the waves with a coincident phase velocity are the quasi-shear waves. We will assume
that only shear wave singularities are present in the medium. Three types of singularities can be distinguished: the kiss, the intersection and the
conical singularity (see, for example, Crampin & Yedlin 1981). All these singularities can appear in weakly as well as in strongly anisotropic
media. In singular directions, it is not possible to specify uniquely the polarization vectors g[M] of the qSM waves. It is only possible to find
the plane in which the polarization vectors g[M] are situated, i.e. the plane perpendicular to the third polarization vector g[3].

3 R AY E Q UAT I O N S

The ray equations discussed in the following sections can be used for any 3-D continuous distributions of the elastic parameters. The Christoffel
matrix Γ, the eigenvalues G [m] and the eigenvectors g[m] are functions of the position vector x.

The ray equations can be written in a compact way by using the Hamiltonian formulation. Let us introduce the Hamiltonian:

H (x, p) = 1

2
(G(x, p) − 1), (4)

where the symbol G denotes one of three eigenvalues of the Christoffel matrix. In the following sections the subscript [m], which characterizes
the wave mode, will be omitted for simplification in the ray equations.

The ray tracing equations in inhomogeneous anisotropic media can be written as:

dxi

dτ
= ∂ H

∂pi
= 1

2

∂G

∂pi
,

dpi

dτ
= −∂ H

∂xi
= −1

2

∂G

∂xi
, (5)

(see, for example, Červený 1989; Farra 1989). Here xi are coordinates of the trajectory of the ray and pi are components of the slowness vector
at corresponding points of the ray. The variable τ is a parameter along the ray, which has the meaning of propagation time. Let us mention
that the group velocity is given by the first set of eqs (5).

At each point of a ray, the slowness vector satisfies the eikonal equation

H (x, p) = 0, (6)

which yields (2). As H is constant along any solution of (5), it is sufficient to satisfy the eikonal equation (6) at the source in order to satisfy
it along the whole ray.
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First-order ray tracing for qS waves 311

Ray tracing equations (5) have been expressed compactly in terms of partial derivatives of the Christoffel matrix with respect to xi and
pi and the polarization vector g of the considered wave mode (Červený 1972; Gajewski & Pšenčı́k 1987, 1990):

dxi

dτ
= 1

2
gT ∂Γ

∂pi
g,

dpi

dτ
= −1

2
gT ∂Γ

∂xi
g (7)

where the superscript T is used to denote the transposed vector. This requires the computation of many terms at each step of integration of the
ray equations, including the 21 elastic parameters and their spatial derivatives. The right-hand side of the ray tracing equations (7) contains up
to 81 terms consisting of individual elastic parameters. Many of these terms are mutually dependent, so that the calculation of the right-hand
side of ray tracing equations often requires many unnecessary operations, which may even increase numerical errors.

Let us describe a ray by the position vector x(τ ) and the slowness vector p(τ ). The traveltime between x(τ 0) and x(τ ) is obtained by
integration along the ray

T =
∫ τ

τ0

(
p · dx

dτ
− H (x, p)

)
dτ. (8)

The ray satisfies the eikonal equation (6); thus the second term in (8) is zero. Moreover, since the eigenvalue G is a homogeneous function of
degree 2 in p, it can be shown that:

p · dx

dτ
= 1

2
pi

∂G

∂pi
= 1, (9)

so that (8) can be simply written as:

T = τ − τ0. (10)

Along the ray (x(τ ), p(τ )), we can compute the paraxial propagator matrix P(τ, τ0). The paraxial propagator matrix is the propagator
matrix of the paraxial ray tracing system:

dP

dτ
= D(τ )P, (11)

where

D(τ ) =
(

S T

−R −S
T

)
(12)

is a 6 × 6 matrix computed on the reference ray at τ . The elements of the 3 × 3 matrices R, S and T are defined by:

Ri j = ∂2 H

∂xi∂x j
= 1

2

∂2G

∂xi∂x j
, Si j = ∂2 H

∂pi∂x j
= 1

2

∂2G

∂pi∂x j
, Ti j = ∂2 H

∂pi∂p j
= 1

2

∂2G

∂pi∂p j
. (13)

The propagator matrix P(τ, τ0) is the 6 × 6 matrix with initial condition P(τ0, τ0) = I6 (I6 is the 6 × 6 identity matrix). The propagator
matrix of the paraxial system (11) has many applications, for example in the computation of the paraxial rays around the reference ray, the
second derivatives of the traveltime and the ray theoretical amplitude, in the two-point ray tracing as well as in ray tracing in perturbed media
(see, among others, Červený et al. 1988; Červený 1989; Farra & Madariaga 1987; Farra 1993).

The second partial derivatives of G in (13) can be written as (see eq. 20 in Gajewski & Pšenčı́k 1990):

∂2G[m]

∂zi∂z j
= gT

[m]

∂2Γ
∂zi∂z j

g[m] +
m′=3,m′ �=m∑

m′=1

2

G[m] − G[m′]

(
gT

[m]

∂Γ
∂zi

g[m′]

) (
gT

[m]

∂Γ
∂z j

g[m′]

)
, (14)

where zi may be either xi or pi.
The ray tracing equations (7) and the paraxial ray tracing system (11–13) are identical in general form for all three wave modes propagating

in inhomogeneous anisotropic media. The type of wave has to be specified by the initial conditions and does not change along a ray in a smooth
anisotropic medium (however, it may change at interfaces); the only exception is related to the rays of q S1 and q S2 waves passing through
shear-wave singularities. It may happen when integrating eqs (7) that the ray crosses a singularity, i.e. the direction of the local slowness vector
p(τ ) is a singularity direction for the medium at x(τ ). For the qSM waves, the polarization vector cannot be determined uniquely at that point
and the right-hand side of the ray equations (7) cannot be evaluated. Moreover, the paraxial ray tracing system (11–13) is singular since (14)
is infinite when G [1] = G [2]. Singularities cause difficulties in tracing rays in inhomogeneous anisotropic media (Shearer & Chapman 1989;
Gajewski & Pšenčı́k 1990; Vavryčuk 2001).

4 A P P RO X I M AT E E X P R E S S I O N S F O R T H E P H A S E V E L O C I T Y I N W E A K LY
A N I S O T RO P I C M E D I A

In the following sections, we assume that the medium is weakly anisotropic, so that the parameters aijkl can be expressed as follows:

ai jkl = a(0)
i jkl + �ai jkl = a(0)

i jkl + εbi jkl . (15)
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312 V. Farra

The a(0)
ijkl are the density-normalized elastic parameters in a reference isotropic medium:

a(0)
i jkl = (α2 − 2β2)δi jδkl + β2(δikδ jl + δilδ jk) (16)

and �aijkl = εbijkl are their perturbations. ε is a quantity measuring the size of the deviation of the anisotropic medium from the isotropic
reference medium. In (16), α and β denote P- and S-wave velocities of the reference isotropic medium and δ i j is the Kronecker delta.

Assuming ε to be a small quantity, Farra (2001) and Farra & Pšenčı́k (2003) used a perturbation approach to derive approximations of
the phase velocities and polarization vectors for weakly anisotropic media. We briefly review some of their results which are needed in the
following sections.

Let us write the vector p as p = pn, where n is a unit vector and p is the length of vector p. We introduce three mutually perpendicular unit
vectors e[k](n), k = 1, 2, 3, where e[3] = n. The vectors e[1] and e[2], situated in the plane perpendicular to n, can be chosen arbitrarily but they
should vary smoothly with variation of n. Moreover, we state that e[k](p) = e[k](n), so that the components of vectors e[k] are homogeneous
functions of degree 0 with respect to p.

Farra & Pšenčı́k (2003) use the vectors e[k] to define the symmetric 3 × 3 matrix B(p) whose elements are

Bkl = eT
[k]Γe[l], k = 1, 2, 3, l = 1, 2, 3. (17)

The elements of Γ and the components of the vectors e[k] being homogeneous functions of degree 2 and 0, respectively, with respect to p, it
is easy to show that the elements Bij are homogeneous functions of degree 2.

In isotropic media, the matrix B(p) is diagonal with diagonal terms B 11(p) = B 22(p) = β2 p2 and B 33(p) = α2 p2, where α and β denote
P- and S-wave velocities of the isotropic medium. In weakly anisotropic media, the first-order approximation of the phase velocity depends
on elements of the matrix B (Farra & Pšenčı́k 2003). The matrix B is independent of the choice of the reference isotropic medium. It can be
shown that the quantity B 11 − B 22 and the off-diagonal elements of the matrix B are of first order in the parameter ε (Farra & Pšenčı́k 2003).

The first-order approximations G(1)
[m](p) of the eigenvalues of the Christoffel matrix can be written in terms of the elements Bij(p), see

Farra (2001):

G(1)
[1] = 1

2

(
B11 + B22 +

√
(B11 − B22)2 + 4B2

12

)
, G(1)

[2] = 1

2

(
B11 + B22 −

√
(B11 − B22)2 + 4B2

12

)
, G(1)

[3] = B33. (18)

The approximate formulae (18) are valid to first order in ε. One can notice that G(1)
[1](p) ≥ G(1)

[2](p).

Since the elements of the matrix B are independent of the velocities α and β of the reference isotropic media, G(1)
[m] in (18) are independent

of them, too. As the elements Bij, G(1)
[m] are homogeneous functions of degree 2 with respect to p.

In the wave normal direction defined by the unit vector n, the first-order approximation of the phase velocity squared, denoted V (1)2
[m] , is

given by

V (1)2
[m] (n) = G(1)

[m](n), m = 1, 2, 3. (19)

In the first-order approximation, the singularity directions are characterized by coincident first-order phase velocities, so that G(1)
[1] = G(1)

[2], and
therefore,

B12 = 0, B11 = B22 (20)

(see eq. 18). Let us remark that the first-order singularity directions may deviate from the exact singularity directions (see Farra & Pšenčı́k
2003).

In the following, we frequently use two specifications of the vectors e[k] and, thus, of the matrix B. In one, we use the vectors e[k], denoted
ê[k], with ê[3] = n and ê[K ] chosen so that the corresponding B matrix, denoted B̂, satisfies the conditions

B̂12 = 0, B̂11 > B̂22. (21)

The second condition excludes singularity directions from our consideration (see eq. 20). For singularity directions, the vectors ê[1] and ê[2]

cannot be specified uniquely.
The diagonal elements of the matrix B̂(p) specify the first-order approximations G(1)

[m](p) of the eigenvalues of the Christoffel matrix
(Farra 2001) (see eqs 18 and 21):

G(1)
[m] = B̂mm = êT

[m]Γê[m], m = 1, 2, 3. (22)

The vectors ê[1] and ê[2] specify the zero-order polarization vectors g(0)
[1] and g(0)

[2] of the qS waves.
In the other specification we use the vectors e[k], denoted ē[k] and defined in Appendix A. We denote the corresponding matrix by a bar: B̄.

For orthorhombic media, explicit expressions for the elements of the matrix B̄(n) can be found in Appendix A. Though the equations written
in the following sections are obtained for arbitrary vectors e[K ], K = 1, 2, we use the vectors ē[K ] and the matrix B̄ for practical applications.

Elements of a matrix B specified for arbitrarily chosen vectors e[k] are related to elements of B̂ by simple relations. If we denote by

(0)(p), 0 ≤ 
(0) < π , the angle between the vectors e[1](p) and ê[1](p), the vectors ê[1] and ê[2] can be expressed in terms of unit vectors e[K ]

in the following way:

ê[1] = e[1] cos 
(0) + e[2] sin 
(0), ê[2] = −e[1] sin 
(0) + e[2] cos 
(0). (23)
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First-order ray tracing for qS waves 313

The elements BIJ transform into B̂I J in the following way (see eqs 17 and 23):

B̂11 = B11 cos2 
(0) + 2B12 cos 
(0) sin 
(0) + B22 sin2 
(0),

B̂22 = B11 sin2 
(0) − 2B12 cos 
(0) sin 
(0) + B22 cos2 
(0),

B̂12 = (B22 − B11) cos 
(0) sin 
(0) + B12(cos2 
(0) − sin2 
(0)). (24)

The angle 
(0) can be determined from the equation:

tan 2
(0) = 2B12

B11 − B22
. (25)

Eq. (25) follows from the first condition in (21), taking into account the relation for B̂12 in (24). Two solutions 
(0), 0 ≤ 
(0) < π , differing
by π/2, satisfy (25). The second condition in (21) guarantees unique determination of the angle 
(0).

The components of the zero-order polarization vectors g(0)
[M] = ê[M] in the basis e[k] are denoted as follows (see eq. 23):

g(0)
[1] =

 cos 
(0)

sin 
(0)

0

 , g(0)
[2] =

 −sin 
(0)

cos 
(0)

0

 . (26)

Thus, from (22) and (24), one can write for M = 1, 2:

G(1)
[M] = g(0)T

[M] Bg(0)
[M]. (27)

Moreover, the following relation can be deduced from the first condition in (21), taking into account the relation for B̂12 in (24):

g(0)T
[1] Bg(0)

[2] = B̂12 = 0. (28)

5 F I R S T - O R D E R R AY T R A C I N G E Q UAT I O N S

In the following, we derive an approximate, first-order ray tracing (FORT) for the qS waves propagating in a smooth inhomogeneous weakly
anisotropic medium. The matrix B, the approximate eigenvalues G(1)

[M], the angle 
(0) and the vectors g(0)
[M] are functions of the position

vector x.
Instead of the exact eigenvalue G, we use the approximate expression (18) and insert it into the Hamiltonian (4):

H (1)(x, p) = 1

2

(
G(1)(x, p) − 1

)
. (29)

The approximate rays (x(1)(τ ), p(1)(τ )) are solutions of the approximate ray tracing equations:

dx (1)
i

dτ
= ∂ H (1)

∂pi
= 1

2

∂G(1)

∂pi
,

dp(1)
i

dτ
= −∂ H (1)

∂xi
= −1

2

∂G(1)

∂xi
. (30)

Let us mention that the first set of eqs (30) corresponds to the first-order group velocity (Farra 2004).
At each point of the ray, the approximate slowness vector satisfies the approximate eikonal equation:

H (1)
(
x(1), p(1)

) = 0. (31)

As H (1) is constant along any solution of (30), i.e.

d H (1)

dτ
= ∂ H (1)

∂xi

dx (1)
i

dτ
+ ∂ H (1)

∂pi

dp(1)
i

dτ
= 0, (32)

it is sufficient to satisfy the eikonal equation (31) at some initial value τ 0 in order to satisfy it along the whole ray.
The application of expression (30) for the qS waves is more complicated than for the qP wave because of singularities. Using the

expression (27) for G(1)
[M], M = 1, 2, one can write (30) as:

dx (1)
i

dτ
= 1

2
g(0)T ∂B

∂pi
g(0), (33)

dp(1)
i

dτ
= −1

2
g(0)T ∂B

∂xi
g(0). (34)

In order to obtain (33) and (34), we use the property (28) and the following relations deduced from (26):

∂g(0)
[1]

∂zi
= g(0)

[2]

∂
(0)

∂zi
,

∂g(0)
[2]

∂zi
= −g(0)

[1]

∂
(0)

∂zi
, (35)

where zi may be either xi or pi, so that

g(0)T
[M] B

∂g(0)
[M]

∂zi
= 0. (36)
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314 V. Farra

In (33) and (34), the partial derivatives of the elements of matrix B are calculated at (x(1), p(1)). The partial derivatives ∂Bjk/∂ pi can be
expressed in terms of the spherical coordinates (p, θ , φ) of vector p (see Appendix B). The partial derivatives ∂Bjk/∂xi can be determined
from the expression of Bjk(x, p), keeping in mind that the only spatially dependent parameters are the elastic parameters.

Eqs (33) and (34) can be compared with the exact ray tracing equations (7). The Christoffel matrix Γ and the exact polarization vector
g[M] of the qSM wave are substituted by the matrix B and the zero-order polarization vector g(0)

[M] whose components are expressed in the basis

e[k]. Noticing that g(0)
[M]3 = 0 (see eq. 26), one can see that the first-order ray tracing equations (33) and (34) for qS waves are related to the

three elements B 11, B 12 and B 22 of matrix B and their partial derivatives with respect to xi and pi. Therefore, they are only controlled by
15 combinations of density-normalized elastic parameters (see Farra & Pšenčı́k 2003). These combinations are the following: A44, A55, A66,
2A12 − A11 − A22, 2A13 − A11 − A33, 2A23 − A22 − A33, A14 − A24, A14 − A34, A15 − A25, A15 − A35, A16 − A26, A16 − A36, A45, A46,
A56. Note that they are different from combinations for the qP wave. The integration of the FORT equations should be faster, and perhaps
with fewer numerical errors, than the integration of the exact equations which depend on the 21 elastic parameters.

It may happen when integrating eqs (33) and (34) that the approximate ray crosses a singularity, i.e. the direction of the local slowness
vector p(1)(τ ) is a first-order singularity direction for the medium at x(1)(τ ). The eigenvalue should be changed (G(1)

[1] by G(1)
[2] or G(1)

[2] by G(1)
[1])

when the ray crosses the conical or the intersection singularity so that the zero-order polarization vector g(0) and therefore the first-order group
velocity change smoothly along the ray (see Appendix C). This change is required otherwise the ray tracing can produce an unphysical abrupt
change of the ray direction when crossing the singularity (see Vavryčuk 2001). Therefore, the wave mode can be q S1 on some parts of the ray
and q S2 on some other parts. The presence of the first-order singularity can be detected by looking at the behaviour of B 11 − B 22 and B 12

along the ray (see eq. 20), the type of the singularity being determined from the partial derivatives of the BJK (see Appendix C).

6 F I R S T - O R D E R PA R A X I A L R AY T R A C I N G S Y S T E M

In the first-order approximation, we can compute the propagator matrix P
(1) of the approximate paraxial ray tracing system calculated along

the approximate ray (x(1)(τ ), p(1)(τ )):

dP
(1)

dτ
= D

(1)(τ )P(1)
, (37)

where D(1) is given by the expressions (12) and (13) with the Hamiltonian H substituted by H (1) (see eq. 29).
The elements of the matrix D(1) are simply related through expressions similar to (13) to the second partial derivatives of G(1). From

expressions (27), (28) and (35), one can write the second partial derivatives of G(1)
[M] as:

∂2G(1)
[M]

∂zi∂z j
= g(0)T

[M]

∂2B

∂zi∂z j
g(0)

[M] +
M ′=2,M ′ �=M∑

M ′=1

2

G(1)
[M] − G(1)

[M ′]

(
g(0)T

[M]

∂B

∂zi
g(0)

[M ′]

) (
g(0)T

[M]

∂B

∂z j
g(0)

[M ′]

)
, (38)

where zi may be either xi or pi. In order to obtain (38), we use the following relation:(
G(1)

[1] − G(1)
[2]

) ∂
(0)

∂zi
= g(0)T

[1]

∂B

∂zi
g(0)

[2], i = 1, 2, 3, (39)

derived from (28). In (38), all the quantities are calculated at (x(1)(τ ), p(1)(τ )).
Expression (38) can be compared with the second partial derivatives of the exact eigenvalue (see eq. 14). The Christoffel matrix Γ and

the exact polarization vectors g[m] of the three wave modes are substituted by the matrix B and the zero-order polarization vectors of the two
qS waves whose components are expressed in the basis e[k]. This should reduce the number of operations necessary for the evaluation of the
right-hand side of the paraxial ray tracing system.

The right-hand side of (38) is singular wherever G(1)
[1] = G(1)

[2], i.e. when the approximate ray (x(1), p(1)) crosses a first-order singularity.

The behaviour of the second partial derivatives of G(1)
[M] with respect to p components can be studied in the vicinity of singularities (see

Appendix C). For the kiss and intersection singularities, the last term in (38) has a finite limit when the wave normal direction approaches the
singularity direction. For the conical singularity, this term tends to infinity. The other second partial derivatives of G(1)

[M] can tend to infinity at
singularities depending on the evolution of the singularity direction with position. The first-order equations have the same behaviour as the
exact equations in the vicinity of singularities. The first-order formulae being explicit, their behaviour can be studied analytically.

Noticing that g(0)
[1]3 = g(0)

[2]3 = 0 (see eq. 26), one can see that, as for the first-order ray tracing equations (33) and (34), the first-order
paraxial ray tracing system (37) is related to the three elements B 11, B 12 and B 22 of matrix B and their partial derivatives with respect to xi

and pi. Therefore, it only depends on 15 combinations of density-normalized elastic parameters.

7 S E C O N D - O R D E R T R AV E LT I M E

Let us introduce �H = H − H (1) the difference between the exact Hamiltonian H and its approximation (29). Farra & Le Bégat (1995) show
that an approximate traveltime can be obtained by integration of the term �H along an approximate trajectory. Using the FORT ray (x(1), p(1))
as the approximate trajectory, one can write the approximate traveltime, denoted T (2), between x(1)(τ 0) and x(1)(τ ) as:

T (2) = T (1) −
∫ τ

τ0

�H
(
x(1), p(1)

)
dτ, (40)
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where T (1) is the traveltime along the FORT ray:

T (1) =
∫ τ

τ0

(
p(1) · dx(1)

dτ
− H (1)

(
x(1), p(1)

))
dτ. (41)

The FORT ray being the first-order approximation of a ray, the traveltime (41) is of the first order and the approximation (40) is of the second
order.

The FORT ray satisfies the approximate eikonal (31); thus the second term in (41) is zero. Moreover, the eigenvalue G(1) being a
homogeneous function of degree 2 in p, it can be shown that:

p(1) · dx(1)

dτ
= 1

2
p(1)

i

∂G(1)

∂pi
= 1, (42)

so that expression (41) can be simply written as:

T (1) = τ − τ0. (43)

Therefore, T (1) is obtained by solving the FORT equations.
An estimation of �H = 1

2 (G − G(1)) can be obtained from the second-order approximation G(2) of the eigenvalues of the qS-waves, i.e.
�H = 1

2 (G(2) − G(1)) in (40). The second-order approximation of the eigenvalues of the qS waves can be written as (Farra 2001; Farra &
Pšenčı́k 2003):

G(2) = g(1)TM g(1). (44)

The elements of the matrix M specified for the basis e[k] are given by:

MI J (x, p) = BI J (x, p) + BI 3(x, p)BJ3(x, p)

(β2(x) − α2(x))p2
, (45)

where α and β are the P and S velocities of the reference isotropic medium. The P and S velocities of the so-called isotropic replacement
medium (IRM) (see e.g. Mensch & Rasolofosaon 1997) can be used for α and β.

In (44), the vector g(1) is specified by its components in the basis e[k]:

g(1) =

 cos 
(1)

sin 
(1)

0

 , (46)

where the angle 
(1), 0 ≤ 
(1) < π , is determined from the equation:

tan 2
(1) = 2M12

M11 − M22
. (47)

Let us remark that the second-order approximation (44) of the eigenvalues of the qS waves is similar to the first-order approximation (27)
with matrix B substituted by matrix M and vector g(0) by vector g(1). Each of the two solutions 
(1), 0 ≤ 
(1) < π , of eq. (47) is associated
with one of the qS waves, the vector g(1) being the projection of the first-order polarization vector in the plane perpendicular to n (see Farra
& Pšenčı́k 2003). Among the two solutions of eq. (47), the angle 
(1) should be chosen so that the vector g(1) used in (44) is the closest to
g(0). This guarantees that we are dealing with first- and second-order wave-surface elements which are close to each other. This criterion is
important in the neighbourhood of singularities.

8 F O RT F O R V T I M E D I A

We now specialize to a transversely isotropic medium with symmetry axis along the x 3-axis (VTI medium). The phase velocity surface of
the qS waves can be separated in two regular sheets in terms of polarizations: the qSV wave is associated with polarization vector g[SV ]

(polarization vector within the incident vertical plane) and the qSH wave with polarization vector g[SH ] = ē[2] (polarization vector normal to
the incident vertical plane). The separation in terms of polarizations is impossible for general anisotropy.

In a VTI medium, the elements B̄i j are given by:

B̄11(x, p) = A44 p2 − 2 Â13

(
p2

1 + p2
2

)
p2

3

p2
,

B̄22(x, p) = A66

(
p2

1 + p2
2

) + A44 p2
3,

B̄13(x, p) = p3

√
p2

1 + p2
2

(
Â13

p2
3 − (

p2
1 + p2

2

)
p2

+ 1

2
(A11 − A33)

)
,

B̄12(x, p) = B̄23(x, p) = 0
(48)

(see Appendix A).
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316 V. Farra

The angles 
(0) and 
(1) are equal to 00 or 900 (see eqs 25 and 47); it yields ē[1] for the qSV -wave zero-order polarization vector and
ē[2] for the qSH wave. The first-order phase velocities squared of the two qS waves are V (1)2

[SV ](x, n) = B̄11(x, n) and V (1)2
[SH ](x, n) = B̄22(x, n),

respectively.
The first-order Hamiltonians (29) can be written as:

H (1)
[SV ](x, p) = 1

2

(
A44 p2 − 2 Â13

(
p2

1 + p2
2

)
p2

3

p2
− 1

)
,

H (1)
[SH ](x, p) = 1

2

[
A66

(
p2

1 + p2
2

) + A44 p2
3 − 1

]
. (49)

The FORT equations can be obtained from (30). For the qSH wave, the polarization vector in the zero-order approximation coincides
with the exact one. Thus, the FORT equations are exact and can be written as

dx1

dτ
= A66 p1,

dx2

dτ
= A66 p2,

dx3

dτ
= A44 p3,

dpi

dτ
= −1

2

(
∂ A66

∂xi

(
p2

1 + p2
2

) + ∂ A44

∂xi
p2

3

)
. (50)

Moreover, as �H [SH] = 0, the traveltime along the ray can be determined directly from (43).
For the qSV wave, the FORT equations can be written as

dx1

dτ
=

(
A44 − 2 Â13

p4
3

p4

)
p1,

dx2

dτ
=

(
A44 − 2 Â13

p4
3

p4

)
p2,

dx3

dτ
=

(
A44 − 2 Â13

(
p2

1 + p2
2

)2

p4

)
p3,

dpi

dτ
= −1

2

(
∂ A44

∂xi
p2 − 2

∂ Â13

∂xi

(
p2

1 + p2
2

)
p2

3

p2

)
.

(51)

The traveltime can be obtained to second order from (40) with the Hamiltonian perturbation given by

�H[SV ](x, p) = 1

2

p2
3

(
p2

1 + p2
2

)
(β2 − α2)p2

(
Â13

p2
3 − (

p2
1 + p2

2

)
p2

+ 1

2
(A11 − A33)

)2

. (52)

In the isotropic case, the phase velocities of the two shear-waves are equal and do not depend on the wave normal direction:

V 2
[1] = V 2

[2] = A44. (53)

The first-order Hamiltonian is given by H (x, p) = 1
2 (A44 p2 − 1) and the FORT equations reduce to:

dxi

dτ
= A44 pi ,

dpi

dτ
= − p2

2

∂ A44

∂xi
. (54)

The above equations are standard ray tracing equations for isotropic media with S-wave velocity
√

A44.

9 N U M E R I C A L E X A M P L E S

In order to illustrate the performance of the second-order traveltime formula we consider the simple case of a homogeneous transversely
isotropic medium with symmetry axis along the x 3-axis (VTI medium). The model is characterized by the parameters Aij, in (km/s)2, with
values A11 = A22 = 20.16, A33 = 19.63, A12 = 7.40, A13 = A23 = 7.26, A44 = A55 = 3.48, A66 = 6.38. This model corresponds to model B
in Pšenčı́k & Vavryčuk (2002) and Farra (2004). Anisotropy of this model is about 30 per cent for qS waves. Due to the axial symmetry of the
medium, it is sufficient to investigate just a quadrant of a vertical plane containing the axis of symmetry. Fig. 1 shows the phase velocities of
the two qS waves as a function of angle θ . The angle θ specifies the direction of the wave normal, θ = 0◦ corresponds to the direction along
the axis of symmetry and θ = 90◦ corresponds to the direction perpendicular to it. The phase velocity is shown by circles for the q S1 wave
and by crosses for the q S2 wave. The q S1 wave is qSV for θ < 59◦ and qSH for θ > 59◦.
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Figure 1. Phase velocity section of qS waves for the TI medium specified in the text. θ is the angle of the wave normal with the axis of symmetry. The q S1

wave is shown by circles, the q S2 wave by crosses.
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Figure 2. Normalized traveltimes of qS waves as functions of the ray angle with the symmetry axis. The normalized traveltime residual �T /T i = (T −
T i)/T i is computed with respect to the traveltime T i obtained in the isotropic medium with S velocity VS = 1.87 km s−1. T e (black lines) is the exact traveltime
of the qSV and qSH waves in the homogeneous TI medium specified in the text. The residuals corresponding to first- and second-order traveltimes T 1 and T 2

are shown by blue and red crosses, respectively.

In homogeneous anisotropic media, dp(1)
i /dτ = 0 in (34) and thus the solution of the first-order ray tracing equations can be obtained

analytically. Let us introduce the normalized traveltime residual �T = (T − T i)/T i with respect to the traveltime T i calculated in the isotropic
medium with S velocity VS = 1.87 km s−1. We denote by T e the exact traveltime and T 1 and T 2 the first- and second-order approximations
of the traveltime (see eqs 43 and 40). The traveltimes are calculated for the two qS waves, the exact and approximate rays being computed
for regularly specified wave-normal angles θ . In expression (40) for the second-order traveltime, the P and S velocities of the IRM medium
were used. In Fig. 2, the three quantities (T e − T i)/T i, (T 1 − T i)/Ti and (T 2 − T i)/T i are plotted as functions of the ray angle with the
symmetry axis. In homogeneous media, these quantities are independent of the distance between the source and the station. The variability of
(T e − T i)/T i with the ray direction is only due to anisotropy. One can see the triplication of the qSV wave which is due to the anisotropy. The
second-order traveltime approximates very well the exact traveltime except in the close vicinity of the cusps. There is a mispositioning of the
cusps due to the first-order approximation of the ray direction. One can notice that the first-order and second-order traveltimes corresponding
to the qSH wave are identical to the exact traveltimes.

Let us now consider a more complicated anisotropy, the orthorhombic medium used by Crampin (1991). The model is specified by
the density-normalized elastic parameters Aij, in (km/s)2, with values A11 = 16.26, A22 = 16.36, A33 = 13.61, A12 = 4.41, A13 = 3.61,
A23 = 3.63, A44 = 5.15, A55 = 4.10, A66 = 4.73. Fig. 3 shows the map of relative differences (in per cent) of q S1 and q S2 phase velocities as
function of polar angle θ and azimuth φ specifying the wave normal. Because the orthorhombic symmetry has three mutually perpendicular
planes of symmetry, all the calculations are made in the octant defined by 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 90◦. This model has four singularities
in the map shown: two singularities for φ = 0◦, θ = 26◦ and θ = 66◦, one at θ = 90◦ and φ = 73◦, and another one for θ = 52◦ and φ = 52◦.
The singularities often appear with triplications of the wave front. The surface of the q S1 wave has a triplication in the vicinity of the Ox1x 3

propagation plane (φ = 0◦) for the ray direction polar angle around 45◦. The q S2-wave surface has two triplications: the one crossing most
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Figure 3. Map of relative difference (in per cent) of q S1 and q S2 wave phase velocities as function of azimuth φ and polar angle θ of the wave normal for
the orthorhombic medium specified in the text.

of the octant is related to the pinch connecting three of the singularities in Fig. 3, the other triplication is related to the singularity at θ = 66◦

and φ = 0◦ (see Fig. 4 in Crampin 1991).
In Fig. 4, the exact and second-order quantities (T e − T i)/T i and (T 2 − T i)/T i are plotted as functions of the ray angle θ g with the

x 3-axis for three wave normal azimuths (0◦, 45◦ and 90◦). The normalized traveltime residuals are computed with respect to the traveltime
T i calculated in the isotropic medium with S velocity VS = 2.27 km s−1. The traveltimes were calculated for the two qS waves, the exact
and approximate rays being computed for regularly specified wave normal angles θ . In expression (40) for the second-order traveltime, the P
and S velocities of the IRM medium were used. Let us remark that for the wave-normal azimuth φ = 45◦, the rays are not contained in the
same vertical plane. The loop seen on the corresponding panel is related to one of the q S2 wave triplications. The second-order traveltime
approximates very well the exact traveltime except in the close vicinity of the q S1 cusp in the 0◦ azimuth.

1 0 C O N C L U S I O N

The first-order ray tracing equations and paraxial ray tracing system are obtained for qS waves propagating in inhomogeneous weakly
anisotropic media. The equations are written using the Hamiltonian formulation with the first-order Hamiltonian substituting the exact one.
A second-order approximation of the traveltime is obtained by integration of a correcting term along the approximate rays. In contrast to
other methods used to compute approximate rays (Farra 1989; Nowack & Pšenčı́k 1991; Mensch & Farra 1999), the proposed approach does
not require the calculation of reference rays in a reference medium. The FORT rays are obtained directly by solving the FORT equations. A
reference medium is only required for the calculation of the second-order traveltime.

In the perturbation formulae, an important role is played by the matrix B whose elements control various attributes of elastic waves (see
Farra & Pšenčı́k 2003). The first-order ray equations for qS waves depend on three elements B 11, B 12 and B 22 of the matrix B and their partial
derivatives. They are based on explicit formulae which make the dependence on parameters transparent. The equations are only controlled
by 15 independent combinations of the elastic parameters. This reduces number of operations necessary for their evaluation. For isotropic
media, the first-order equations reduce to standard exact ray equations.

The first-order formulae being explicit, their behaviour can be studied analytically in the vicinity of shear wave singularities. The presence
of a singularity along the ray can be detected from the quantities B 11 − B 22 and B 12. Ray tracing equations behave properly if the wave mode
is changed (q S1 into q S2 or vice versa) when the ray crosses a conical or intersection singularity. However, the paraxial ray tracing system may
be singular at singularities. Ray theory and its extensions, such as the Gaussian beam method (Červený et al. 1982) and Maslov asymptotic
theory (Chapman & Drummond 1982), should meet difficulties for the computation of synthetic seismograms, as they need to compute the
paraxial quantities.

As shown by tests made in homogeneous TI and orthorhombic media, the use of the FORT rays together with the second-order traveltime
correction gives negligible errors except in the vicinity of cusps. For TI anisotropy of about 30 per cent, the relative errors of the second-order
traveltimes are under 0.3 per cent.

The next step in this study is the generalization of the approach to layered media. This will allow calculation of synthetic seismograms in
laterally varying layered weakly anisotropic media. For qS waves, it will be then necessary to address the problem of the qS-wave coupling.
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Figure 4. Normalized traveltimes for qS waves as functions of the ray angle θ g with the x 3-axis. Each panel corresponds to a constant wave normal azimuth.
The normalized traveltime residual �T /T i = (T − Ti)/T i is computed with respect to the traveltime T i obtained in the isotropic medium with S velocity
VS = 2.27 km s−1. T e (black crosses) is the exact traveltime of the qS waves in the homogeneous orthorhombic medium specified in the text. The residuals
corresponding to second-order traveltimes T 2 are shown by red circles.
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A P P E N D I X A : E X P R E S S I O N S F O R T H E E L E M E N T S O F T H E M AT R I X B̄ I N
O RT H O R H O M B I C , T I A N D I S O T RO P I C M E D I A

In this appendix we restrict ourselves to orthorhombic media. An orthorhombic medium is defined by nine independent density-normalized
elastic parameters AIJ and three mutually perpendicular planes of symmetry.

In the ‘crystal’ coordinate system, the elastic matrix is given by:

A =



A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66


. (A1)

We introduce the following parameters (Mensch & Farra 1999):

Â12 = A12 − A11 + A22

2
+ 2A66, Â13 = A13 − A11 + A33

2
+ 2A55, Â23 = A23 − A22 + A33

2
+ 2A44. (A2)

Let n be the unit wave vector. We define three mutually perpendicular unit vectors ē[1], ē[2] and ē[3] = n in the following way:

ē[1] = 1

nr

 n1n3

n2n3

−n2
r

 , ē[2] = 1

nr

 −n2

n1

0

 , (A3)

with nr =
√

n2
1 + n2

2.
Denoting θ and φ, the polar angle and the azimuth specifying the vector n, the components of the wave normal are n1 = sin θ cos φ, n2 =

sin θ sin φ and n3 = cos θ . Moreover, we introduce the notation B̄kl (x, θ, φ) = B̄kl (x, n).

C© 2005 RAS, GJI, 161, 309–324

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/161/2/309/557441 by C

N
R

S - ISTO
 user on 08 M

arch 2022



First-order ray tracing for qS waves 321

In orthorhombic media, the elements of the symmetric matrix B̄(x, θ, φ) can be written as:

B̄11 = 2
(

Â12C2
φ S2

φ − Â13C2
φ − Â23 S2

φ

)
S2

θ C2
θ + A55C2

φ + A44 S2
φ,

B̄12 = −Cφ SφCθ

{[
Â23 − Â13 − Â12

(
C2

φ − S2
φ

)]
S2

θ + A55 − A44

}
,

B̄22 = (
A44C2

φ + A55 S2
φ

)
C2

θ + (
A66 − 2 Â12C2

φ S2
φ

)
S2

θ ,

B̄13 = Cθ Sθ

[
2 Â12C2

φ S2
φ S2

θ + (
Â13C2

φ + Â23 S2
φ

) (
C2

θ − S2
θ

) + 1

2
(A11 − A33) C2

φ + 1

2
(A22 − A33) S2

φ

]
,

B̄23 = Sθ Cφ Sφ

[
Â12(C2

φ − S2
φ)S2

θ + ( Â23 − Â13)C2
θ + 1

2
(A22 − A11)

]
,

B̄33 = (
A11C2

φ + A22 S2
φ

)
S2

θ + A33C2
θ + 2 Â12C2

φ S2
φ S4

θ + 2
(

Â13C2
φ + Â23 S2

φ

)
S2

θ C2
θ ,

(A4)

where C θ , S θ , C φ and Sφ mean cos θ , sin θ , cos φ and sin φ, respectively.
Since the elements B̄kl are homogeneous functions of degree 2 with respect to p, one can use the relation B̄kl (x, p) = p2B̄kl (x, θ, φ) to

obtain their expressions from (A4).
In a VTI medium, one has A11 = A22, Â12 = 0, Â13 = Â23 and A44 = A55. The elements B̄i j only depend on the angle θ and are given

by:

B̄11 = A44 − 2 Â13 S2
θ C2

θ ,

B̄22 = A66 S2
θ + A44C2

θ ,

B̄13 = Cθ Sθ

[
Â13

(
C2

θ − S2
θ

) + 1

2
(A11 − A33)

]
,

B̄12 = B̄23 = 0,

B̄33 = A11 S2
θ + A33C2

θ + 2 Â13 S2
θ C2

θ .
(A5)

In isotropic media, Â12 = Â13 = Â23 = 0, A44 = A55 = A66 and A11 = A22 = A33. The corresponding elements B̄i j are given by:

B̄11 = B̄22 = A44, B̄33 = A33, B̄12 = B̄13 = B̄23 = 0. (A6)

A P P E N D I X B : E X P R E S S I O N S F O R T H E PA RT I A L D E R I VAT I V E S O F E L E M E N T S O F
M AT R I X B

Because the elements of matrix B are homogeneous functions of degree 2 with respect to p, their partial derivatives with respect to pi can be
expressed in a simple way by using the spherical coordinates (p, θ , φ) of vector p.

Let us introduce the notation Bkl (x, θ, φ) = Bkl (x, n). The elements Bkl satisfy the relation Bkl (x, p) = p2Bkl (x, θ, φ). The first partial
derivatives of element Bkl are given by:

∂ Bkl

∂pi
(x, p) = p

(
2Bklni + ∂Bkl

∂θ
ē[1]i + 1

sin θ

∂Bkl

∂φ
ē[2]i

)
,

∂ Bkl

∂xi
(x, p) = p2 ∂Bkl

∂xi
, i = 1, 2, 3, (B1)

where the vectors ē[K ] are defined in Appendix A.
The second partial derivatives of element Bkl are given by:

∂2 Bkl

∂xi∂x j
(x, p) = p2 ∂2Bkl

∂xi∂x j
,

∂2 Bkl

∂pi∂x j
(x, p) = p

(
2
∂Bkl

∂x j
ni + ∂2Bkl

∂x j∂θ
ē[1]i + 1

sin θ

∂2Bkl

∂x j∂φ
ē[2]i

)
,

∂2 Bkl

∂pi∂p j
(x, p) = 2Bklδi j + ∂2Bkl

∂θ2
ē[1]i ē[1] j + 1

sin θ

(
∂2Bkl

∂θ∂φ
− cos θ

sin θ

∂Bkl

∂φ

)(
ē[1]i ē[2] j + ē[2]i ē[1] j

)
+ ∂Bkl

∂θ

(
ē[1]i n j + ni ē[1] j

) + 1

sin θ

(
1

sin θ

∂2Bkl

∂φ2
+ cos θ

∂Bkl

∂θ

)
ē[2]i ē[2] j

+ 1

sin θ

∂Bkl

∂φ

(
ē[2]i n j + ni ē[2] j

)
. (B2)
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A P P E N D I X C : B E H AV I O U R O F T H E F I R S T - O R D E R G RO U P V E L O C I T I E S
A N D A N G L E Φ(0) I N T H E N E I G H B O U R H O O D O F A S I N G U L A R I T Y

In order to study the behaviour of the first-order group velocities in the vicinity of singularities, we follow a similar approach to that used by
Shuvalov (1998) (see also Vavryčuk 2003 for the exact expressions).

We shall use the following vectors q(p), r(p) and s(p) defined by their components:

qi = 1

2

(
∂ B11

∂pi
+ ∂ B22

∂pi

)
, ri = 1

2

(
∂ B11

∂pi
− ∂ B22

∂pi

)
, si = ∂ B12

∂pi
, (C1)

and the 3 × 3 matrices F(p) and G(p) whose elements are:

Fi j = 1

4

(
∂2 B11

∂pi∂p j
− ∂2 B22

∂pi∂p j

)
, Gi j = 1

2

∂2 B12

∂pi∂p j
. (C2)

The components qi, ri, si and the matrix elements Fij and Gij are continuous functions of p. Let us remark that the vector q is independent of
the choice of the vectors e[K ] used to define the elements BKL, but r and s depend on it.

The first-order group velocities v(1)
[M] defined by (33) and the quantity g(0)T

[1]
∂B
∂pi

g(0)
[2] needed in the evaluation of the second partial derivatives

of G(1)
[M] (see eq. 38), can be written in terms of the angle 
(0) and the vectors q, r and s:

v(1)
[M](n) = 1

2V (1)
[M](n)

[
q(n) − (−1)M

(
cos 2
(0)(n)r(n) + sin 2
(0)(n)s(n)

)]
, M = 1, 2, (C3)

and

g(0)T
[1]

∂B

∂pi
g(0)

[2] = −sin 2
(0)ri + cos 2
(0)si , i = 1, 2, 3. (C4)

Let us denote by n0 the unit vector specifying the first-order singularity direction. In the direction n0, the eqs (20) are satisfied. Denoting
q0 = q(n0), r0 = r(n0) and s0 = s(n0) the vectors calculated at n0, one can show from (20) and (B1) that:

r0 · n0 = s0 · n0 = 0, (C5)

so that the vectors r0 and s0 lie in the same plane orthogonal to n0.
Let us consider a close neighbourhood of the first-order singularity direction defined by the vector n0. The deviation �n = n − n0 of

the wave normal with respect to the singularity direction n0 is approximated by the relation:

�n = ψeψ − ψ2

2
n0, (C6)

where ψ is the angle between n and n0 and eψ is the unit vector orthogonal to n0 specifying the direction from which the singularity is
approached.

In the vicinity of the first-order singularity direction, one can write the following approximations:

B11(n) − B22(n) ≈ 2ψ
(
r0 · eψ + ψeT

ψ F0eψ

)
,

B12(n) ≈ ψ
(
s0 · eψ + ψeT

ψ G0eψ

)
,

r(n) ≈ r0 + 2ψ F0eψ,

s(n) ≈ s0 + 2ψG0eψ, (C7)

where the matrices F0 and G 0 are calculated at n0. Moreover we denote by V (1)
S the common first-order phase velocity at the singularity.

Conical singularity

A first-order conical singularity is defined as a direction in which the two first-order slowness sheets of the qS waves touch through the vertices
of cone-shaped surfaces. The condition for such a singularity can be written as follows:

r0 × s0 �= 0. (C8)

In the vicinity of the singularity, one can write the following approximations from (25), (27) and (C7):

tan 2
(0)(n) ≈ s0 · eψ

r0 · eψ

,

G(1)
[1](n) − G(1)

[2](n) ≈ 2ψ
r0 · eψ

cos 2
(0)
,

r(n) ≈ r0,

s(n) ≈ s0.
(C9)
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From (C9), one can see that the angle 
(0) depends on the direction of approach eψ and changes by ±π/2 when the wave normal crosses the
singularity. In order to demonstrate it, one should remember that G(1)

[1](n) ≥ G(1)
[2](n) (see eq. 18); therefore cos 2
(0) changes its sign as ψ does

when the wave normal crosses the singularity.
For n approaching n0, the first-order group-velocity vectors v(1)

[M] tend to the vectors

1

2V (1)
S

[
q0 − (−1)M

(
cos 2
(0)r0 + sin 2
(0)s0

)]
, M = 1, 2, (C10)

which envelop a cone (the so-called cone of internal refraction) with the elliptical lid lying in the plane orthogonal to n0. The q S1 and the q S2

waves exchange their first-order group velocity (because 
(0) changes by ±π/2) when the wave normal crosses the singularity. Moreover, in
the vicinity of the conical singularity, the quantity(

g(0)T
[1]

∂B

∂pi
g(0)

[2]

)(
g(0)T

[1]

∂B

∂p j
g(0)

[2]

) (
G(1)

[1] − G(1)
[2]

)−1
, i, j = 1, 2, 3, (C11)

behaves like 1/ψ (see C4 and C9), and is therefore singular at the singularity.

Kiss singularity

A first-order kiss singularity (or tangential singularity) corresponds to a direction in which the first-order slowness sheets of the qS waves
touch tangentially at an isolated point. Such a singularity corresponds to the following condition:

r0 = s0 = 0. (C12)

In the vicinity of the singularity, one can write the following approximations from (25), (27) and (C7):

tan 2
(0)(n) ≈ eT
ψ G0eψ

eT
ψ F0eψ

,

G(1)
[1](n) − G(1)

[2](n) ≈ 2ψ2
eT

ψ F0eψ

cos 2
(0)
,

r(n) ≈ 2ψ F0eψ,

s(n) ≈ 2ψG0eψ . (C13)

From (C13), one can see that the angle 
(0) depends on the direction of approach eψ but is continuous when the wave normal crosses the
singularity.

For n approaching n0, the first-order group-velocity vectors v(1)
[M] tend to the same vector, see (C3) and (C12):

1

2V (1)
S

q0, (C14)

whatever the wave mode M and the direction of approach eψ .
In the vicinity of the kiss singularity, the quantity(

g(0)T
[1]

∂B

∂pi
g(0)

[2]

) (
g(0)T

[1]

∂ B

∂p j
g(0)

[2]

) (
G(1)

[1] − G(1)
[2]

)−1
, i, j = 1, 2, 3, (C15)

has a finite limit at the singularity, see (C4) and (C13).

Intersection singularity

An intersection singularity occurs when the first-order slowness sheets of the two qS waves intersect along a line. Such a singularity corresponds
to the following condition:

s0 = ηr0, r0 �= 0. (C16)

In the vicinity of the singularity, one can write the following approximations from (25), (27) and (C7):

tan 2
(0)(n) ≈ η,

G(1)
[1](n) − G(1)

[2](n) ≈ 2ψ
r0 · eψ

cos 2
(0)
,

r(n) ≈ r0 + 2ψF0eψ,

s(n) ≈ s0 + 2ψG0eψ .
(C17)

From eqs (C17), one can see that the angle 
(0) changes by ± π/2 when the wave normal crosses the singularity.
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For n approaching n0, the first-order group-velocity vectors v(1)
[M] tend to the vectors

1

2V (1)
S

(
q0 − (−1)M

cos 2
(0)
r0

)
. (C18)

The q S1 and the q S2 waves exchange their group velocity (because 
(0) changes by ±π/2) when the wave normal crosses the singularity.
In the vicinity of the intersection singularity, we can write the following approximation of the quantity g(0)T

[1]
∂B
∂pi

g(0)
[2]:

g(0)T
[1]

∂B

∂pi
g(0)

[2] ≈ 2ψ
(−sin 2
(0)F0eψ + cos 2
(0)G0eψ

)
i
, (C19)

(see C4 and C17), so that(
g(0)T

[1]

∂B

∂pi
g(0)

[2]

) (
g(0)T

[1]

∂B

∂p j
g(0)

[2]

)(
G(1)

[1] − G(1)
[2]

)−1
, i, j = 1, 2, 3, (C20)

has a finite limit at the singularity.

Conclusion

Except for the kiss singularity, the angle 
(0) is discontinuous when the wave normal crosses the first-order singularity and the zero-order
polarization vector g(0)

[M] of the qSM wave changes abruptly. Indeed, the angle 
(0) changes by ±π/2 when the singularity is crossed, so that
the q S1 and q S2 waves exchange the direction of their zero-order polarization vectors and therefore exchange their group velocity. In order to
have a continuous variation of the first-order group velocity, when the wave normal crosses a conical or intersection singularity, the eigenvalue
should be changed (G(1)

[1] to G(1)
[2] or vice versa). Moreover, in the case of the conical singularity, the second partial derivatives of the eigenvalues

G(1)
[M] with respect to p components are infinite and the paraxial ray tracing system is singular.
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