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Abstract 33 

Sediment accumulation rates in foreland basins results from a complex interplay between 34 

surface and deep processes in both the exhumed relief domain and sedimentary basins.  The 35 

growth and decay of a mountain belt during orogenic and post-orogenic phases have been 36 

largely studied thanks to thermochronological and structural studies. The sedimentary 37 

response of the orogenic phases in the preserved sediments of the surrounding basins is well 38 

known in terms of sedimentary filling patterns and architecture, but much less better 39 

quantified. 40 

Here, we performed a measurement of the siliciclastic sediment volumes of  the Pyrenean 41 

retro-foreland basin – the Aquitaine Basin and the Bay of Biscay during Cenozoic times – for a 42 

better understanding of the erosion and the sediment transfer and deposition during the 43 

convergence (syn-orogenic) to post-convergence (post-orogenic) periods of the Pyrenees 44 

Mountain. The measurement of the compacted siliciclastic sediment is based on sediment 45 



 

 

thickness (isopach) maps of known lithologies, derived from the interpretation of 40 000 kms 46 

of seismic profiles. 47 

Thanks to the siliciclastic sediment volumes quantification and a well-known retro-foreland 48 

basin tectono-sedimentary evolution, we bring quantitative results as: 49 

(1) The amount of preserved sediments is of 51 500 ± 16 800 km3 for the Cenozoic.  50 

(2) The siliciclastic sediment rate curve during Cenozoic shows two major increase around 51 

26.0 Ma and 2.5 Ma. The 26.0 Ma increase is clearly related to the erosion of the 52 

Pyrenees of tectonic origin. The major 2.5 Ma one would be mainly related to a climatic 53 

forcing. 54 

(3) The mass balance between the Aquitaine Platform and the deepest domains change 55 

through time in favour of the deep domain. This might be explained by the ratio 56 

between subsidence that created accommodation space and the sediments feed by 57 

the mountain belt and stored in the Aquitaine Platform. 58 

 59 
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1. Introduction 74 

 75 

The growth and decay of mountain belts reliefs result from feedbacks between 76 

convergence rates, surface processes (Beaumont et al., 1992; Willett, 1999) and isostatic 77 

response (Molnar and Lyon-Caen, 1988; Watts, 2001). The topography of a mountain belt is 78 

first built by continental crust thickening during convergence, generating loading on the 79 

lithosphere and its downward deflection at the origin of the surrounding foreland basins and 80 

their vertical motion (Beaumont, 1981; Allen and Allen, 2013). Topographic evolution of the 81 

mountain belt is also influenced by climate which can modify the erosion by surface processes 82 

(e.g. Whipple, 1999). Finally, the base level variations in the foreland basins may play a 83 

dominant role, on piedmont dynamics, in preserving reliefs (base level rise with emplacement 84 

of endorheism, Babault et al., 2005) or enhancing its incision (base level fall by major capture 85 

for instance, see Burbank and Anderson, 2009) 86 

 87 

The estimation of denudation, i.e. the amount of eroded rocks, through time and its 88 

controls by lithospheric deformation and/or climate (precipitation) are of primary importance 89 

for understanding (1) the topographic growth and decay of mountain belts, but also (2) the 90 

volumes and lithologies of the sediments produced and transferred to the surrounding basins. 91 

The quantification of the denudation of a mountain belt is mainly based on low temperature 92 

chronology (e.g. fission track and (U-Th)/He on apatite and zircons – ZFT, AFT, ZHe, AHe) that 93 



 

 

provides a cooling history classically converted into exhumation with using thermal numerical 94 

models (Braun, 2003 for instance, Ketcham, 2005; Gallagher et al., 2009).  The sediment 95 

production (volumes, petrography and grain-size) was performed on several foreland basins 96 

(Molnar and England, 1990; Einsele, 2000; Najman and Garzanti, 2000; Goodbred and Kuelh, 97 

2000; Schlunegger et al., 2001; Garzanti, 2019). In the Pyrenean domain, the P. Allens’s group 98 

has carried out numerous studies on these thematic, focus on the southern side (e.g. Michael 99 

et al., 2013, 2014 a,b; Armitage et al., 2015). 100 

The quantification of the siliciclastic sediment volume (sink) in foreland basins was first 101 

performed at mountain-scale in the Alps (England, 1981, Kuhlemann, 2000; Kuhlemann et al., 102 

2002), but most of them concerns the latest deposition stages found in the ultimate sink: the 103 

passive margin laterally connected to the foreland basins. This is the case for Asian mountains 104 

(Métivier et al., 1999; Clift et al., 2006) or Rocky Mountains and the margins of the Gulf of 105 

Mexico (Galloway and Williams, 1991; Galloway et al., 2011). They all show an increase of the 106 

sedimentation rates up to today, a critical point discussed by P. Molnar (Molnar and England, 107 

1990; Molnar, 2004) that might be related to global climate cooling (e.g. Herman and 108 

Champagnac, 2016) and/or large erosion/recycling of the foreland deposits (Schlunnegger and 109 

Mosar, 2011; Leroux et al., 2017), linked frontal accretion, climate variations and drainage 110 

network reorganization. Thus, the volumes distribution (storage, transfer, recycling) between 111 

the foreland and the final sink at different stages of mountain belt evolution have not been 112 

fully explored since the synthesis of Hinderer, 2012. 113 

 114 

We propose in this study to measure the siliciclastic sediment volumes in a retro-115 

foreland basin where limited frontal accretion allows a more complete preservation of syn-116 

tectonic deposits – the Aquitaine Basin and the Bay of Biscay during Cenozoic times for a 117 



 

 

better understanding of the erosion, the sediment transfer and deposition during the 118 

convergence to post-convergence periods of the Pyrenees Mountains and discuss at the first 119 

order the tectonic and climatic control factors. The measurement of the compacted siliciclastic 120 

sediment volumes (for a solid rocks equivalence) are based on sediment thickness (isopach) 121 

maps of known lithologies, built from an extensive dataset of seismic lines interpreted using 122 

the principles of seismic stratigraphy and dated on wells (Ortiz et al., 2020). 123 

 124 

2. Geological setting 125 

 126 

The North Pyrenean retro-foreland and its lateral deep area of ultimate sediment 127 

deposition – the deep Bay of Biscay Basin – is segmented into three geographical-geological 128 

units (Fig. 1): (1) upstream, bounded westward by the Pamplona transfer zone, the Aquitaine 129 

Platform (i.e. the modern onshore Aquitaine Basin and its shelf), (2) the Landes Plateau, 130 

bounded westward by the Santander “soft” transfer zone, is a step (1000-1800 m deep) 131 

bounded by slopes and canyons (Capbreton, Cap-Ferret) and (3) the deep Bay of Biscay  (4000-132 

4500 m deep).  133 

 134 

2.1. Tectonic, relief and exhumation evolution of the Pyrenees 135 

 136 

The Pyrenees Mountains are a collisional belt bringing Eurasian lithosphere over the 137 

Iberian lithosphere (e.g. Roure et al., 1989; Muñoz, 1992). Both Pyrenees and Basque-138 

Cantabrian Mountains result from the inversion and compression of the Albian hyperextended 139 

Eurasian lithosphere (e.g. Fabriès et al., 1991, 1998; Lagabrielle et Bodinier, 2008; Jammes et 140 

al., 2009; Lagabrielle et al., 2010; Masini et al., 2014; Clerc et al., 2012, 2016; Ducoux et al., 141 



 

 

2019; Saspiturry et al., 2019; Ducoux et al., 2021, Tugend et al., 2014). The relative motion of 142 

Eurasia and Africa plates controlled the orogeny: the compression started at the time of 143 

convergence of the two plates, i.e. at the end of the Santonian (83.6 Ma, Schettino and Turco, 144 

2011) and ended around the Oligocene-Miocene boundary (chron 6c, Roest and Srivastava, 145 

1991, Macchiavelli et al., 2017). 146 

Thermochronological data also document the early mountain building with a cooling 147 

phase at  around 70 Ma (Whitchurch et al., 2011; Beamud et al., 2011; Mouthereau et al., 148 

2014; Ternois et al., 2019; Waldner et al., 2021). During Cenozoic, several studies resolve the 149 

increase of exhumation during late Eocene-Oligocene times (Fitzgerald et al., 1999; Sinclair et 150 

al., 2005; Gibson et al., 2007; Jolivet et al., 2007; Gunnel et al., 2009; Metcalf et al., 2009; 151 

Whitchurch et al., 2011; Fillon and van der Beek, 2012; Bosch et al., 2016) following an earlier 152 

uplift of the eastern range during Middle Eocene times (Maurel et al., 2008; Beamud et al., 153 

2011; Mouthereau et al., 2014; Vacherat et al., 2014; 2016; Ternois et al., 2019; Whitchurch 154 

et al., 2011; Waldner et al., 2021). Finally, a late Miocene exhumation phase is recorded in the 155 

Western Pyrenean Range by several authors (Jolivet et al., 2007; Bosch et al., 2016; Fillon et 156 

al., 2021) 157 

 158 

2.2. Stratigraphic and tectonic evolution of the Aquitaine Basin and Bay of Biscay deep Basin 159 

Several studies have been carried out on the tectono-stratigraphic evolution of the 160 

Aquitaine Basin since the late Cretaceous (Brunet, 1984; Desegaulx and Brunet, 1990; Brunet, 161 

1994; Sztrákos et al., 1998; Serrano et al., 2001; Ford et al., 2016; Sztrákos and Steurbaut, 162 

2017; Angrand et al., 2018). They identified two subsiding phases (Latest Santonian - Danian 163 

and Thanetian – Oligocene) separated by the so called “Palaeocene quiet period” 164 

characterized by a low to near zero subsidence phase (Ford et al., 2016). The first subsidence 165 



 

 

phase has been largely influenced by the post rift thermal subsidence because of the short 166 

time between the end of the rifting and the beginning of the convergence (around 10 Ma, 167 

Angrand et al., 2018). Serrano et al., (2001) differentiate two distinct phases in the Western 168 

Aquitaine Basin (1) from Palaeocene to Middle Eocene - compressional basin due to 169 

lithospheric buckling (mixed system – East-West oriented turbidites and carbonates platform) 170 

and (2) from Middle Eocene to Oligocene – foreland stage (progressive continentalization on 171 

the eastern part and deltaic progradation toward the West). 172 

Recently, through an extensive bio- and seismic stratigraphy study of both basins, Ortiz 173 

et al. (2020) identified a set of several discontinuities of tectonic origins (fig. 2). The orogenic 174 

period is subdivided into two steps (fig. 2): (1) the dominant lithosphere flexure with the 175 

formation of foredeeps up to the uppermost Lutetian and (2) the propagation of the 176 

deformation from the orogenic wedge through the basin mainly along salt-controlled thrusts 177 

and anticlines locating subbasins. From the basin record point of view, the transition between 178 

orogenic and post-orogenic periods is Chattian in age, from 27.1 to 25.2 Ma. This time interval 179 

corresponds to the end of thrusting/inversions and a modification of the sediment 180 

preservation pattern. The post-orogenic period is also subdivided into two intervals (fig. 2): 181 

(1) a sharp decrease of the subsidence rates over the Aquitaine Platform, mainly filled by 182 

continental sediments during early Miocene times (25.2-16.4 Ma) and (2)  an uplift of the 183 

Aquitaine Platform from 16.4 Ma to today characterized by a low-preservation domain up to 184 

10.6 Ma. The main uplift phase occurred at 10.6 Ma and caused a generalized by-pass on the 185 

Aquitaine Platform (Ortiz et al., 2020). 186 

 187 

3. Measurement of siliciclastic sediment volumes and rates  188 

 189 



 

 

The measurement of siliciclastic sediment (sink) volumes is based on four sediment 190 

thickness (isopach of preserved sediments) maps: Palaeocene-Eocene (66-33.9 Ma - fig. 3), 191 

Oligocene (33.9-23.03 Ma - fig. 4), Miocene (23.03-5.3 Ma - fig. 5) and Pliocene-Pleistocene 192 

(5.3-0 Ma - fig. 6). These isopach maps are the products of a seismic stratigraphic analysis of 193 

an extensive seismic line dataset (TotalEnergies, BRGM, BSS, fig. 1). This quite low time-194 

resolution is due to the absence of wells in the deep Bay of Biscay and the difficulty to extend 195 

timelines from the Aquitaine Platform where several dated wells are available (see Ortiz et al., 196 

2020). For each interval the main lithologies proportion is known in the Aquitaine platform 197 

and in the Landes Plateau (see Ortiz et al., 2020) and for the distal part of the Bay of Biscay, 198 

we used the studies available in this domain about the Cenozoic sedimentary record (Cremer, 199 

1983; Iglesias, 2009; Brocheray et al., 2014). 200 

The sediment volumes measured from the isopach maps were later decompacted and 201 

the amount of sediments produced in the basin (here mainly carbonates) was removed to get 202 

solid rock volumes. We used the protocol and code published by Guillocheau et al. (2012) that 203 

consider uncertainties or ranges for (1) time-depth conversion parameters, (2) absolute ages 204 

of the different horizons, (3) carbonate content and (4) surface porosity and e-folding depth 205 

for porosity decrease. During Cenozoic times the deep-sea Bay of Biscay fan fed through the 206 

Capbreton and Cap-Ferret Canyon by the sediments coming from the Aquitaine Basin has 207 

progressively migrated westward (Cremer, 1983; Iglesias, 2009; Brocheray et al., 2014), our 208 

calculation area is evolving accordingly (dashed line on figs, 3, 4, 5, 6). In order to compare the 209 

volumes, they will be presented through the evolution of the ratio between Aquitaine Basin 210 

volume (VOn) and Bay of Biscay volume (VOff) as follow: ROnOff = VOn/VOff. 211 

 212 

4. Isopach maps: results and interpretation  213 



 

 

 214 

4.1. Paleocene-Eocene (66-33.9 Ma) 215 

 216 

The Paleocene-Eocene (66-33.9 Ma - Fig. 3) time interval is characterized by sediment 217 

preservation along the North Pyrenean Thrust on the Aquitaine Platform, with three subsiding 218 

domains - 10-50 km large - filled by 3500 m of sediments accumulated in 32 Ma. Two less 219 

subsiding domains were located north of the previous ones and bounded by two ridges with 220 

very low accumulation. Few sediments were preserved along the Landes Plateau. In the deep 221 

Bay of Biscay, two depocenters occurred south of the South Armorican Margin and north of 222 

the Biscay Wedge Front. 223 

Interpretation: The three subsiding domains correspond to a segmented foredeep 224 

(Ortiz et al., 2020) controlled by the inherited structures from the Early Cretaceous rifts history 225 

(Angrand et al., 2018). These domains are mainly filled during the first orogenic phase (up to 226 

uppermost Lutetian) and the small depocenter in the northern part of the ridges correspond 227 

mainly to the second orogenic phase, when the deformation is propagated basinward. The 228 

two deep depocenters of the Bay of Biscay are disconnected from the Aquitaine Platform and 229 

bounded by the inverted extensional structures of the Gascogne Dome Bulge (Thinon, 1999; 230 

Thinon et al., 2001). The first depocenter located in the Armorican subbasin, was fed by 231 

sediments coming from the Loire River (fig. 1) or from the Armorican Massif (Guillocheau et 232 

al., 2003). 233 

 234 

4.2. Oligocene (33.9-23.03 Ma) 235 

 236 



 

 

The Oligocene (33.9-23.03 Ma - fig. 4) was a period of more widely distributed 237 

sediments accumulation along the three domains. In the Aquitaine Platform depocenters are 238 

located (i) on both sides of salt-related controlled thrusts forming anticlines or ridges 239 

(Maubourguet-Antin, Audignon) or (ii) along N140° faults (e.g. Téthieu Fault, location on 240 

figures 1 and 4). In the south Landes Plateau, north of the Basque-Cantabrian Mountains, a 60 241 

km-large depocenters occurred. In the deep Bay of Biscay, a NW-SE trending depocenter is 242 

located south-west of the inverted structures of the Gascogne Dome Bulge and north of the 243 

Biscay Wedge Front. 244 

Interpretation: Oligocene is a period during which (1) segmented foredeep was no 245 

longer subsident and (2) compressive deformation propagated from the orogenic wedge to 246 

the retro-foreland basin along salt decollement levels localizing little subbasins (Serrano, 247 

2001; Ortiz et al., 2020). The depocenters of the south Landes Plateau may be due to the 248 

loading effect of the inverted and thrusted Basque Cantabrian Margin starting at 37 Ma and 249 

ending at 28.5 Ma (Gomez et al., 2002). The depocenter of the deep Bay of Biscay is 250 

disconnected from the Aquitaine Platform and moderately fed by the erosional product 251 

coming from the inversion and deformation of the Cantabrian Margin and the uplift of the 252 

Cantabrian Mountains from Late Eocene to Oligocene times (Gallastegui et al., 2002; Pedreira 253 

et al., 2015; Fillon et al., 2016). 254 

 255 

4.3. Miocene (23.03-5.3 Ma) 256 

 257 

The Miocene (23.03 to 5.3 Ma – fig. 5) recorded a major change in the sediment 258 

distribution. The Aquitaine platform was henceforth a place of low sediment preservation 259 

(less than 200 m for 17.5 Ma). Most of the sediments were transferred and stored along the 260 



 

 

Landes Plateau and the deep Bay of Biscay.  Two major sediment accumulations were active 261 

in the Landes Plateau, (1) to the north, a progradational wedge (Ortiz et al., 2020) located at 262 

the transition between the southeastern part of the South Armorican shelf and the Landes 263 

High and (2) to the south, an E-W trending depocenter located north of the Capbreton canyon. 264 

The preserved sediments along the deep Bay of Biscay are organized as an E-W trending body 265 

more than 100 km-large located on the Biscay Wedge Front. It is upstream in connection with 266 

the two depocenters of the Landes Plateau. 267 

Interpretation: The Aquitaine Platform was no longer a significant subsiding domain. 268 

Most of the sediments bypassed to deepest areas: (1) through deltaic progradational wedges 269 

on the Landes Plateau, (2) through canyons and at the end of the system (3) as deep-sea fans. 270 

The depocenters located north to the Capbreton canyon correspond to the northern levee of 271 

the canyon already active at this period (Cremer, 1983; Iglesias, 2009, Ortiz et al., 2020). 272 

Progradationnal deltaic wedge accumulate at the head of the Cap-Ferret canyon (western 273 

extension of the north Landes Plateau depocenter – Cremer, 1983) and downstream (East of 274 

the deep Bay of Biscay depocenter), an erosion domain where the canyon is active. These two 275 

canyons domains fed downward, the Cap-Ferret deep-sea fan (Cremer, 1983; Iglesias, 2009) 276 

in the deep Bay of Biscay.  277 

 278 

4.4. Plio-Pleistocene (5.3-0 Ma) 279 

 280 

The Pliocene-Pleistocene (5.3-0 Ma – fig. 6) time-interval shows an accentuation of the 281 

sediment distribution pattern established during Miocene. (1) No to very few sediments were 282 

preserved on the Aquitaine Platform. (2) Two depocenters occurred on the Landes Plateau: (i) 283 

a N-S trending one north to the Landes High (progradationnal wedges – Ortiz et al., 2020) and 284 



 

 

(ii) a N-S trending one south of the Landes High. (3) The depocenters of the deep Bay of Biscay 285 

are located (i) at the base of slope of the South Armorican shelf and (ii) along the Biscay Wedge 286 

Front in connection with the northern depocenter of the Landes Plateau. 287 

Interpretation: The Aquitaine Plateau was upstream uplifted and incised by rivers 288 

(Mouchené et al., 2017; Ortiz et al., 2020). All the products of erosion are transferred to the 289 

deepest domains with by-pass to very low sedimentation along the modern Landes Forest 290 

(Dubreuilh et al., 1995). The prograding sedimentary wedge is now located at the border of 291 

the Aquitaine shelf and the two canyons (Capbreton and Cap-Ferret) alternated periods of 292 

erosion and deposition (Cremer, 1983; Iglesias, 2009).  293 

 294 

5. Measurement of the siliciclastic sediment budget: results (fig. 7) 295 

 296 

In the deep-sea plain, siliciclastic volume measurements were only performed in the 297 

south deep Bay of Biscay Basin, south of the Gascogne Dome Bulge, the sediment located 298 

northward (Armorican Subbasin) being fed from the Loire River (fig. 1) and the Armorican 299 

Massif (see 4.1). In addition, during Cenozoic times the deep-sea Bay of Biscay fan fed through 300 

the Capbreton and Cap-Ferret Canyon by the sediments coming from the Aquitaine Basin is 301 

progressively migrating westward (Cremer, 1983; Iglesias, 2009; Brocheray et al., 2014). This 302 

is the reason why, our calculation area is evolving according to the deep-sea fan location (Figs, 303 

3, 4, 5, 6). 304 

 305 

The total amount of siliciclastic sediments (Tab. 1, Fig. 7) deposited from the Aquitaine 306 

Platform to the south deep Bay of Biscay during Cenozoic times is 51 500 km3 with an 307 

uncertainty of 16 800 km3, i.e. 33%. 308 



 

 

 309 

The four-time intervals here defined, have not the same duration and therefore 310 

siliciclastic sedimentation rates had to be used for a comparison between time intervals 311 

instead of volumes (Tab. 1, fig. 7). At first order the sedimentation rates are increasing from 312 

535 km3/Myr (between 66 and 33.9 Ma) to 3150 km3/Myr (from 5.3 to 0 Ma). Oligocene and 313 

Pliocene-Pleistocene seems to be significant instants of siliciclastic sediment rates increase. 314 

 315 

The siliciclastic sediment budget comparison (Tab. 1, fig. 7) between the onshore 316 

(Aquitaine Basin) and offshore (Aquitaine shelf, Landes Plateau, south Bay of Biscay) shows a 317 

shift, trough Cenozoic times, from onshore to offshore preferential accumulation since 318 

Oligocene-Miocene boundary. The sediment ratio between onshore and offshore (ROnOff) is (i) 319 

25.3 from 66 to 33.9 Ma, (ii) 7.5 from 33.9 to 23.03 Ma, (iii) 0.18 from 23.03 to 5.3 Ma and (iv) 320 

0.01 from 5.3 to 0 Ma. 321 

 322 

6. Discussion on the siliciclastic sediment budget 323 

 324 

Volume comparison with South Pyrenean Foreland and others orogenic adjacent basins - The 325 

amount of siliciclastic sediments preserved in northern foreland is 51 500 ± 16 800 km3 for 326 

Cenozoic times. A comparison with the sediment volumes of other orogenic systems 327 

supposes to get a sediment budget for both sides of the Pyrenees, i.e. including the South 328 

Pyrenean Foreland basin. Several studies have been conducted for quantifying the preserved 329 

sediment volumes in the South Pyrenean sink (i.e. Ebro and Valencia Basins)(Nelson, 1990; 330 

Garcia-Castellanos et al., 2003; Babault et al., 2006;  Filleaudeau, 2011; Arche et al., 2010; 331 

Watts and Torné, 1992). The Ebro Basin has been under endoreic conditions since 36.2 Ma 332 



 

 

(Costa et al., 2010) and then opened towards the Mediterranean Sea between 12 Ma and 333 

7.5 Ma (Garcia-Castellanos et al., 2003; Fillon et al., 2012; Garcia-Castellanos and 334 

Larrasoana, 2015). The total amount of preserved sediments in the Ebro and Valencia Basin 335 

is 260 300 km3 since 66 Myr. For a better sediment budget on both sides of the Pyrenees, 336 

only the sediments coming from the mountain belt should be considered, i.e. the total 337 

Cenozoic preserved sediments volumes in the Ebro basin and the Neogene for the Valencia 338 

Basin. This corresponds to a range between 78 000 km3 (Filleaudeau, 2011) and 110 000 km3 339 

± 5000 km3 (Garcia-Castellanos et al., 2003) in the Ebro Basin and 92 000 km3 in the Valencia 340 

Basin (Garcia-Castellanos et al., 2003). This gives a total of preserved sediments between 341 

170 000 km3 and 202 000 km3. At the first order, this result shows a factor of four between 342 

the northern retroforeland (our study) and the South Pyrenean proforeland. 343 

The first-order estimation of total volume preserved in the Pyrenean adjacent basins 344 

(i.e. Aquitaine Basin, Bay of Biscay, Ebro Basin, Valencia Basin)  is between 220 000 km3 and 345 

250 000 km3. The total volume of siliciclastic sediments produced by the Alps since Oligocene 346 

times is of 890 000 km3 (220 000 km3 from the Eastern Alps and 670 000 km3 from the western 347 

ones- Kuhlemann et al., 2002) i.e. four times more than the Pyrenees. However, for larger 348 

orogens the order of magnitude changes with 3.35 106 km3 of sediment produced by the Rocky 349 

Mountains on its continental part and stored in the Gulf of Mexico (Galloway et al., 2011) and 350 

the 4.95 106 km3 by the western side of the Himalaya and accumulated along of the Indus 351 

Delta (Clift et al., 2006). 352 

 353 

Volume comparison with Pyrenean thermochronological data – We present here some 354 

volumes estimation for the Cenozoic period based on published themrochronology data in the 355 

Pyrenees. 356 



 

 

 - Too few data (AFT and AHe) provide Palaeocene to early Eocene ages to obtain a 357 

consistent exhumation trend across the entire Pyrenean range. 358 

- During the late Eocene/lower Oligocene (from 37 to 30 Ma), orogenic exhumation (> 359 

0.5 km/Myr) is recorded in Central and Eastern Pyrenean Massif (Maladetta, Nogueres, 360 

Canigou) according to studies from Fitzgerald et al., (1999), Gibson et al., (2007), Fillon and 361 

Van der Beek, (2012) and Gunnel et al., (2009). These authors modeled an exhumation rate of 362 

1.5 to 4 km/Myr. Considering an average of 2 km/Myr integrated over the whole area 363 

(inducing a strong assumption of a continuous constant exhumation) during the period of 35-364 

30 Ma, the eroded volume should be of 50 000 km3. This value is very high compared to what 365 

has been measured in the Aquitaine Basin during the same period (16 500 km3 from base 366 

Cenozoic to base Oligocene). This volume seems therefore to supply mainly the Ebro basin 367 

with a significant increase observed at the base of Oligocene (i.e. 33.9 Ma) (Filleaudeau, 2011). 368 

- Since middle Oligocene times, a moderate exhumation (between 0.1 and 0.5 km/Myr) 369 

is proposed by several authors in Western, Central and Eastern massifs of the Pyrenean range 370 

(DeFelipe et al., 2019; Bosch et al., 2016; Fillon et al., 2021; Fitzgerald et al., 1999; Gibson et 371 

al., 2007). An average exhumation rate of 0.25 km/Myr across the entire range provides an 372 

estimation of 17 500 km3 for the Middle to Late Oligocene period.  This volume is, like during 373 

Late Eocene/Lower Oligocene, one order of magnitude higher than what we measure in the 374 

Aquitaine Basin. This volume supply mainly the Ebro basin where the Oligocene volumes are 375 

very large (around 45 000 km3 in Filleaudeau, 2011). 376 

- Finally, the important increase of exhumation rate recorded in the Western Pyrenees 377 

(see Fillon et al., (2021) for the data synthesis and modelling)  infers a volume estimation of 378 

2 000 km3 for the late Miocene period. This quantification is low compared to the volumes of 379 

preserved sediments.  380 



 

 

We draw attention to the fact that these estimation are produces from an average of 381 

the results of modelling data done in 1D and extrapolated on a surface. These volumes based 382 

on thermochronological data are probably overestimated.  383 

 384 

 385 

6.1. Age estimation of siliciclastic sediment flux increase from interpreted seismic data 386 

 387 

As we mentioned earlier, the low stratigraphic resolution (Palaeocene-Eocene, 388 

Oligocene, Miocene and Pliocene-Pleistocene) is due to difficulties to propagate the high 389 

resolution age model (established in shallow marine setting in the Aquitaine Platform and 390 

Landes Plateau – Ortiz et al., 2020) across the whole seismic survey in the deep Bay of Biscay 391 

Basin and continental Aquitaine series. In order to be more precise about the age of the 392 

siliciclastic rate increase during the two key periods (Oligocene and Plio-Pleistocene) and their 393 

possible links to climatic or geodynamic event, we performed a 2D quantification on the cross 394 

section published in Ortiz et al., (2020). This quantification aims at comparing on three 395 

different locations (proximal Aquitaine platform – deep Bay of Biscay Basin – progradational 396 

wedges in between) the percentage of 2D surface (comprising sediment) normalized on their 397 

duration between each high-resolution timeline.  398 

The figure 8 present the results and shows a refined estimate of increase at 26.0 ± 2.0 399 

Ma for Oligocene period and 2.5 ± 0.5 Ma for Pliocene-Pleistocene period.  400 

 401 

6.2. The 26.0 ± 2.0 Ma increase 402 

 403 



 

 

The measured Late Oligocene (26.0 ± 2.0 Ma) siliciclastic rate increase could be 404 

explained by both a tectonic factor – the accretion of Pyrenees basal units – and a climatic 405 

factor – the icehouse-greenhouse transition and the late Oligocene warming (Zachos et al., 406 

2001). 407 

Tectonic - A Late Eocene to Oligocene/Miocene paroxysm of denudation (37-29 Ma 408 

central Pyrenees and 37-20 Ma western Axial Zone) is measured by the numerous 409 

thermochronological studies (see references in section 2.1) and by the dated active tectonics 410 

mainly in the Southern Pyrenees (Montsec and Sierras exteriores thrust systems associated to 411 

Orri and Rialp thrust sheets, see Munoz, 1992, Teixell, 1998, Vergés et al., 2002 and 412 

Mouthereau et al., 2014), or in the Jaca Basin cover thrust and associated Gavarnie and more 413 

frontal thrusts (Labaume et al., 2016). During late Oligocene time, the retro-foreland is 414 

affected by several truncation/erosional surfaces from 27.1 to 25.2 Ma (Ortiz et al., 2020). 415 

During this event, some syn-orogenic deposits are recycled and can be transferred to more 416 

distal sink. The observed increasing volumes and increasing export of sediment to the Bay of 417 

Biscay is thus contemporaneous with a (long) denudation paroxysm, but also with a more 418 

temporally resolved drop of preservation in the foreland which becomes less subsident and 419 

might be locally eroded and recycled. The observed modification of source to sink pattern 420 

might record combination of two processes, denudation increasing phase and cessation of 421 

subsidence in the foreland could explain the increase export toward the final sink and 422 

sedimentation rate increase observed in the western Aquitaine Platform part (fig. 4).  423 

Climate - Few palaeoclimatological data dealing with the palaeoprecipitation record 424 

are available in the Aquitaine Basin. A palaeobotanical synthesis (Dupéron-Laudoueneix and 425 

Pons, 1985) indicate a cooling expressed by a decrease of the tropical taxon from the Eocene 426 



 

 

to the Oligocene that corresponds to the Eocene-Oligocene global cooling event (Zachos et 427 

al., 2011). This event takes place at 33.9 Ma, thus well before the observed 26 Ma event. 428 

 The 26.0 ± 2.0 Ma increase event is contemporary with the Late Oligocene Warming, 429 

that correspond to a sustained ca. 6°C global warming (Zachos et al., 2001). Warming events 430 

(such as PETM) can cause sediment pulses (Foreman et al., 2012). Schlunegger and Norton, 431 

(2015) have tested this increase hypothesis in the Alpine Foreland Basin. They focus on the 432 

Napf megafan sedimentary evolution in the Alpine foothills during this period of sudden 433 

warming. As in our study the period is also a time of increasing exhumation phase in the Alpine 434 

mountain (Schmid et al., 1996).  They didn’t observe remarkable shift in the water discharge, 435 

and they ruled out the hypothesis of sediment rate increase due to the Late Oligocene 436 

warming but linked it to tectonic process. 437 

 In our case, the Late Oligocene (26.0 ± 2.0 Ma) siliciclastic rate increase is linked to the 438 

high erosion rates and lower preservation in the Aquitaine Platform controlled by the orogenic 439 

tectonic processes. This increase is also registered in the Ebro basin (Filleaudeau, 2011). 440 

 441 

6.3. The 2.5 ± 0.5 Ma increase and the long-term volume increase 442 

 443 

 The change in the rate of siliciclastic sediment supply during Plio-Pleistocene (at 2.5 ± 444 

0.5 Ma) is significant (fig. 8) and sharply accentuates the overall increasing rate trend through 445 

Cenozoic times.  This confirms for this area, the Hay’s curve (Hay et al., 1989, 1990; Wold et 446 

Hay, 1990) showing a world-scale increase of the siliciclastic fluxes up to today, interpreted by 447 

Molnar (Molnar and England, 1990; Molnar, 2004) as the consequence of the global Earth 448 

cooling during Plio-Pleistocene times. Herman et al., (2013) further suggest a Plio-Pleistocene 449 

(at around 6 Ma) increase in erosion rates and with an acceleration at around 2 Ma that they 450 



 

 

attribute to the global cooling Pliocene and Pleistocene episodes that enhanced erosion in 451 

mountainous glaciated area. 452 

Onshore, the most sensible low-temperature thermochronological data, ((U-TH)/He 453 

and Fission tracks on apatites) do not show any Pliocene increase of denudation either in the 454 

Pyrenees Mountains (e.g. Bosch et al., 2016) or in the French Massif central (T. François, 455 

personal communications). The youngest cooling episode is recorded at around 10 Ma (Late 456 

Miocene) in the western axial zone and no basin erosion > 1.5 km could be retrieved in the 457 

Aquitaine Basin for the last 20 Myrs (Fillon et al., 2021), except in easternmost Aquitaine Basin 458 

(Corbières area) Al Reda et al., (2021) althought this denudation event is temporally poorly 459 

resolved between 20 and 5 Ma, this event is attributed by the authors to early Miocene and 460 

opening of the Gulf o Lion.  461 

With these observations, several hypothesis have yet to be tested: (1) a climate effect 462 

on the intensity and pattern of erosion, with the effect of glaciations and change of the pattern 463 

of erosion, from widely distributed before 5.3 Ma to localized in valleys after with a greater 464 

climate effect from 2 Ma, which could be associated to (2) an “underestimated” significant re-465 

erosion of previously deposited sediments in the Aquitaine Basin (“cannibalization”) and (3) 466 

lateral supply of sediments from other sources in the deep-sea domain under the action of 467 

deep-sea currents (Le Danois Contourite Depositional System due to Mediterranean Outflow 468 

Water,  Van Rooij et al., 2010). Moreover, Pliocene-Pleistocene evolution of the Aquitaine 469 

Platform records a two steps evolution, the emplacement of megafans with the most striking 470 

one i.e. Lannemezan megafan starting during Messinian up to Uppermost Pliocene (Ortiz et 471 

al., 2020). This megafan mainly source by the Neste River is dissected during Late Quaternary 472 

(at or before 300 ka, Mouchené et al., 2017). This indicates a shift from a sedimentation phase 473 



 

 

to an incision phase, that takes place between 2.6 Ma and 300 ka. This supports the hypothesis 474 

of recycling by erosion of previous deposits sediments in the Aquitaine Platform. 475 

Although glaciations is well documented during Late Quaternary in the Pyrenees 476 

(Calvet et al., 2011; Delmas et al., 2008), their importance in terms of sedimentary budget is 477 

still not quantified. Identified glacial remnants are restricted to the upper part of the valleys 478 

and mostly confined in the mountains belts (Delmas et al., 2011). The preservation over large 479 

areas of preglacial flat surfaces in the high chain (Bosch et al., 2016) claim for erosion localized 480 

mainly in glacial valleys. This supports the hypothesis of a more localized erosion in the 481 

mountain valleys. 482 

 483 

 484 

6.4. Sediment budget evolution between onshore and offshore 485 

 486 

The change of the sediment ratio between onshore and offshore (ROnOff) from 25.3 (66 487 

to 33.9 Ma) to 0.01 (5.3 to 0 Ma) has to be related to the general evolution of the two basins 488 

as summarized in item 2.2. This drastic change of ratio in favour of the “ultimate sink” is in 489 

line with the synthesis of Hinderer, 2012. 490 

 The first interval (66.0-33.9 Ma) spans a long period of time and several steps of the 491 

orogeny. A first phase (66-56 Ma) of relatively quiescent with very low relief in the 492 

mountain belt and siliciclastic input, a second phase (56-33.9 Ma) that correspond to 493 

progressive mountain building with increasing relief and erosion. At around 40 Ma, 494 

deformation propagate in the foredeep and segmented the foredeep. During this entire 495 

period, accommodation space created by the flexure was large enough to trap siliciclastic 496 



 

 

sediments coming from the incipient mountain belt. This may explain the general trend 497 

between 66 and 33.9 Ma. 498 

 The second period (33.9-23.03 Ma) also spans different periods, paroxysm of denudation 499 

in the Mountain belt, while in the Aquitaine Platform, two periods are deciphered, a first 500 

period of accumulation and deformation  (up to 25.2 Ma) and a second with a decrease of 501 

subsidence and increase of export to the distal sink (since 25.2 Ma). As a consequence, 502 

since 25.2 Ma, siliciclastic supply is too important compare to the accommodation space 503 

creation and the sediments are transferred to the progradational wedges in the Aquitaine 504 

platform. This explains the trend during Oligocene and particularly since 25.2. 505 

 During the post-orogenic period, first the Aquitaine platform subsidence drastically 506 

decreased (25.2-10.6 Ma) and second this domain was partly uplifted (10.6-0 Ma). This 507 

favored the sediment export to the deep-sea domain, first poorly balanced (ROnOff at 0.18 508 

– map 23.03-5.3 Ma) and then unbalanced (ROnOff at 0.01 - map 5.3-0 Ma). 509 

 510 

7. Conclusion 511 

 512 

Our objective was to measure the siliciclastic sediment volumes and rates of a retro-513 

foreland basin and its lateral deep equivalent, during the end tectonic and topographic 514 

evolution of the Pyrenees mountain belt. 515 

 516 

(1) The amount of sediments is of 51 500 ± 16 800 km3 for the Cenozoic.  517 

(2) The siliciclastic sediment rate curve during Cenozoic shows two major increase around 518 

26.0 and 2.5 Ma. This last one is a major increase. This is in agreement with the world-519 

scale trend of Hay et al. (1989), expected of climatic origin by Molnar and England (1990). 520 



 

 

The 26.0 Ma increase is clearly related to the exhumation of the Pyrenees of tectonic 521 

origin. The discussion on the major 2.5 Ma episode is still open. 522 

(3) The mass balance between the Aquitaine Platform and the deepest domains (Landes 523 

Plateau, Bay of Biscay) change through time in favour to the deep domain. This might be 524 

explained by the ratio between subsidence created accommodation space and the 525 

produced siliciclastic sediments by the mountain belt on the platform. This confirms and 526 

quantifies the stratigraphic model of sink preservation proposed by Ortiz et al. (2020). This 527 

also suggests the sediment accumulation in the deep part of the margin is only controlled 528 

by the accommodation/sedimentation balance on the platform. 529 

 530 
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Figure 1: A: Main physiographic and structural features and available dataset of seismic 888 

reflection lines in the Aquitaine Basin, Landes Plateau and Biscay Bay deep-basin. B: Location 889 

of the studied area in Europe. 890 
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Figure 2: Synthetic chart of the main events (deformation, topography, sediment routing) of 914 

the Aquitaine Basin to deep Biscay Bay Basin sedimentary system 915 
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Figure 3:  A: Palaeocene-Eocene preserved sediment thickness (isopach, meters) map. The 939 

volume quantification western limit is according to the deep sea fan location (Cremer, 1983; 940 

Iglesias, 2009). B: interpreted cross-section from the proximal Aquitaine Basin part to the deep 941 

Bay of Biscay Basin, the considered period (isopach map) is highlighted by colour in the cross-942 

section. 943 
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 965 

Figure 4:  A: Oligocene preserved sediment thickness (isopach, meters) map. The volume 966 

quantification western limit is according to the deep sea fan location (Cremer, 1983; Iglesias, 967 

2009). B: interpreted cross-section from the proximal Aquitaine Basin part to the deep Bay of 968 

Biscay Basin, the considered period (isopach map) is highlighted by colour in the cross-section. 969 
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 992 

Figure 5:  A: Miocene preserved sediment thickness (isopach, meters) map. The volume 993 

quantification western limit is according to the deep sea fan location (Cremer, 1983; Iglesias, 994 

2009). B: interpreted cross-section from the proximal Aquitaine Basin part to the deep Bay of 995 

Biscay Basin, the considered period (isopach map) is highlighted by colour in the cross-section. 996 
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Figure 6:  A: Pliocene-Pleistocene preserved sediment thickness (isopach, meters) map. The 1021 

volume quantification western limit is according to the deep sea fan location (Cremer, 1983; 1022 

Iglesias, 2009, Brocheray et al., 2014). B: interpreted cross-section from the proximal 1023 

Aquitaine Basin part to the deep Bay of Biscay Basin, the considered period (isopach map) is 1024 

highlighted by colour in the cross-section. 1025 
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Figure 7: Siliciclastic sedimentation volumes and rates of the Aquitaine Basin and Bay of 1049 

Biscay. 1050 
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Figure 8:  In the cross sections published in Ortiz et al., (2020), some parts of the interpretation 1075 

are of higher resolution than the resolution of the calculations in this paper (i.e. Palaeocene-1076 

Eocene, Oligocene, Miocene, Pliocene-Pleistocene). For example, the figure 5 in Ortiz et al., 1077 

(2020) shows several high resolutions surfaces (thanks to orbitostratigraphy) at 32.2, 32.0, 1078 

31.3, 29.4, 27.1, 26.4, 25.2, 24.5, 24.4 Ma for the Oligocene period. This resolution on different 1079 

parts of the cross section allows us to make a precise quantification shown in the figure. This 1080 

figure is a compilation of the percentage of 2D area normalized to their duration thanks to 1081 

high resolution timeline on different cross section published in Ortiz et al., (2020) 1082 
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