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S U M M A R Y
Rapid progress in imaging deep Earth structures using seismic tomography and in studies of
physical and chemical properties of mantle rocks facilitates research in assimilation of data
related to mantle dynamics. In this paper, we present a new numerical approach for data assimi-
lation, which allows for incorporating observations (at present) and unknown initial conditions
(in the past) for mantle temperature and flow into a 3-D dynamic model in order to determine
the initial conditions. The dynamic model is described by the backward heat, motion and con-
tinuity equations. The use of the quasi-reversibility (QRV) method implies the introduction
into the backward heat equation of the additional term involving the product of a small reg-
ularization parameter and a higher order temperature derivative. The data assimilation in this
case is based on a search of the best fit between the forecast model state and the observations
by minimizing the regularization parameter. We apply the QRV data assimilation method to
restore the evolution of (i) mantle plumes (a synthetic case study) and (ii) the lithospheric
slab imaged by teleseismic body-wave tomography in the southeastern Carpathians. For both
models the present temperature and mantle flow are assimilated to the geological past, and the
prominent features of mantle structures are recovered. We then model the evolution of the man-
tle structures forward in time starting from the restored state to the present state and estimate
the accuracy of the model predictions. The results of the QRV data assimilation are compared
to that obtained by the variational (VAR) and backward advection data assimilation. Although
the accuracy of the QRV data assimilation is lower than that of the VAR data assimilation,
the QRV method does not require any additional smoothing of the input data or filtering of
temperature noise as the VAR method does. Based on the results and the comparison of the
methods, we consider the QRV method to be a highly promising approach to assimilation of
data related to mantle dynamics.

Key words: finite-difference method, finite-element method, inverse problem, lithospheric
slab, mantle convection, plume.

1 I N T RO D U C T I O N

Many geophysical (geodynamic) problems can be described by
mathematical models, that is, by a set of partial differential equa-
tions and boundary and/or initial conditions defined in a specific
domain. A mathematical model links the causal characteristics of
a geodynamic process with its effects. The causal characteristics
of the process include, for example, parameters of the initial and
boundary conditions, coefficients of the differential equations, and
geometrical parameters of a model domain. The aim of the direct

mathematical problem is to determine the relationship between the
causes and effects of the geophysical process and hence to find a so-
lution to the mathematical problem for a given set of parameters and
coefficients. An inverse problem is the opposite of a direct problem.
An inverse problem is considered when there is a lack of informa-
tion on the causal characteristics (but information on the effects
of the geophysical process exists). Inverse problems can be subdi-
vided into time-reverse problems (e.g. to restore the development
of a geodynamic process), coefficient problems (e.g. to determine
the coefficients of the model equations and/or boundary conditions),
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1382 A. Ismail-Zadeh et al.

geometrical problems (e.g. to determine the location of heat sources
in a model domain or the geometry of the model boundary) and some
others.

The mantle is heated from the core and from inside due to decay
of radioactive elements. Since mantle convection is described by
heat advection and diffusion, one can ask: is it possible to tell, from
the present temperature estimations of the Earth, something about
the Earth’s temperature in the geological past? Even though heat dif-
fusion is irreversible in the physical sense, it is possible to predict
accurately the heat transfer backwards in time using data assimi-
lation techniques without contradicting the basic thermodynamic
laws (e.g. Ismail-Zadeh et al. 2004a).

In this paper, we consider inverse (time-reverse) problems of ther-
mal convection in the Earth’s mantle with the aim of restoring mantle
dynamics in the geological past. In other words, the present observa-
tions (mantle temperature and velocity) can be assimilated into the
past to constrain the initial conditions for the mantle temperature
and velocity. Data assimilation can be defined as the incorpora-
tion of present (observations) and past data (initial conditions) in
an explicit dynamic model to provide time continuity and coupling
among the physical fields (e.g. velocity and temperature). The basic
principle of data assimilation is to consider the initial condition as
a control variable and to optimize the initial condition in order to
minimize the discrepancy between the observations and the solution
of the model.

Inverse problems are often ill-posed. Jacques Hadamard intro-
duced the idea of well- (and ill-)posed problems in the theory of par-
tial differential equations (Hadamard 1902). A mathematical model
for a geophysical problem has to be well posed in the sense that it
has to have the properties of existence, uniqueness and stability of
a solution to the problem. Problems for which at least one of these
properties does not hold are called ill posed. The requirement of sta-
bility is the most important one. If a problem lacks the property of
stability then its solution is almost impossible to compute because
computations are polluted by unavoidable errors. If the solution of
a problem does not depend continuously on the initial data, then, in
general, the computed solution may have nothing to do with the true
solution.

The inverse problem of thermal convection in the mantle is an ill-
posed problem, since the backward heat problem, describing both
heat advection and conduction through the mantle backwards in
time, possesses the properties of ill-posedness (Kirsch 1996). In
particular, the solution to the problem does not depend continuously
on the initial data. This means that small changes in the present-day
temperature field may result in large changes of predicted mantle
temperatures in the past (e.g. see Appendix A, Ismail-Zadeh et al.
2004a).

Despite the fact that many inverse problems are ill-posed, there
are methods for solving the problems. Andrei Tikhonov introduced
the idea of conditionally well-posed problems and the regulariza-
tion method (Tikhonov 1963). According to Tikhonov, a class of
admissible solutions to conditionally ill-posed problems should be
selected to satisfy the following conditions: (i) a solution exists in
this class, (ii) the solution is unique in the same class and (iii) the
solution depends continuously on the input data. The Tikhonov reg-
ularization is essentially a trade-off between fitting the observations
and reducing a norm of the solution to the mathematical model of a
geophysical problem.

Three principal techniques are currently employed to assimi-
late data related to a thermoconvective mantle flow: (i) backward
advection, (ii) sequential filtering and (iii) variational (adjoint)
method.

If heat diffusion is neglected, the present mantle temperature and
flow can be assimilated using the backward advection (BAD) into
the geological past. A numerical approach to the solution of the in-
verse problem of the Rayleigh-Taylor instability was proposed by
Ismail-Zadeh (1999) and was developed later for a dynamic restora-
tion of diapiric structures to their earlier stages (Ismail-Zadeh et al.
2001a; Kaus & Podladchikov 2001; Korotkii et al. 2002; Ismail-
Zadeh et al. 2004b). Steinberger & O’Connell (1998) and Conrad
& Gurnis (2003) modelled the mantle flow backwards in time from
present-day mantle density heterogeneities inferred from seismic
observations. Both direct (forward in time) and inverse (backward
in time) problems of the heat (density) advection are well posed. This
is because the time-dependent advection equation has the same form
of characteristics for the direct and inverse velocity field (the vector
velocity reverses its direction, when time is reversed). Therefore,
numerical algorithms used to solve the direct problem of the grav-
itational instability can also be used in studies of the time-reverse
problems by replacing positive time steps with negative ones.

In sequential filtering a numerical model is computed forward in
time for the interval for which observations have been made, updat-
ing the model each time where observations are available. Bunge
et al. (1998, 2002) used this approach to compute mantle circula-
tion models. Despite sequential data assimilation well adapted to
mantle circulation studies, each individual observation influences
the model state at later times. Information propagates from the ge-
ological past into the future, although our knowledge of the Earth’s
mantle at earlier times is much poor than at present.

The variational (VAR) data assimilation method has been pio-
neered by meteorologists and used very successfully to improve
operational weather forecasts (e.g. Kalnay 2003). The use of VAR
data assimilation in models of mantle dynamics (to estimate mantle
temperature and flow in the geological past) has been put forward
by Bunge et al. (2003) and Ismail-Zadeh et al. (2003a,b). The ma-
jor differences between the two approaches are that Bunge et al.
(2003) applied the VAR method to the coupled Stokes, continu-
ity and heat equations (generalized inverse), whereas Ismail-Zadeh
et al. (2003a) applied the VAR method to the heat equation only. The
VAR approach by Ismail-Zadeh et al. (2003a) is computationally
less expensive, because it does not involve the Stokes equation into
the iterations between the direct and adjoint problems. Moreover,
this approach admits the use of temperature-dependent viscosity.

The VAR data assimilation algorithm was employed for numerical
restoration of models of present prominent mantle plumes to their
past stages (Ismail-Zadeh et al. 2004a; Hier-Majumder et al. 2005).
Effects of thermal diffusion and temperature-dependent viscosity on
the evolution of mantle plumes was studied by Ismail-Zadeh et al.
(2006) to recover the structure of mantle plumes prominent in the
past from that of present plumes weakened by thermal diffusion.
Ismail-Zadeh et al. (2006) showed also that smoothness of the input
data (present mantle temperature) is a primary factor affecting the
accuracy of the VAR data assimilation. An insignificant perturba-
tion of the initial temperature can result in a large increase of the
amplitude of the perturbation with time. Smoothing filters are re-
quired to reduce the noise (e.g. Samarskii et al. 1997), although the
employment of such filters decreases the efficiency of the VAR data
assimilation algorithm (computations become time consuming in
3-D cases). Another way to reduce the noise is to employ high-order
adjoint techniques (Alekseev & Navon 2001).

In this paper, we present a new approach to assimilation of mantle
related data based on a quasi-reversibility (QRV) method (Lattes &
Lions 1969). We describe the QRV method in Section 2, present
the mathematical statement of the direct and inverse problems of
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thermal convection in the mantle in Section 3 and a numerical ap-
proach to the QRV data assimilation in Section 4. Numerical results
are presented in Section 5 for two models of mantle dynamics:
evolution of (i) mantle plumes (a synthetic case study) and (ii) a
lithospheric slab imaged by the teleseismic body-wave tomography.
In Section 6, we discuss the efficiency of the proposed numerical ap-
proach comparing it with that based on the VAR and BAD methods,
and finally derive our conclusion.

2 Q UA S I - R E V E R S I B I L I T Y M E T H O D

The principal idea of the QRV method is based on the transformation
of an ill-posed problem into a well-posed problem (Lattes & Lions
1969). In the case of the backward heat equation, this implies an
introduction of an additional term into the equation, which involves
the product of a small regularization parameter and higher order tem-
perature derivative. The additional term should be sufficiently small
compared to other terms of the heat equation and allow for simple
additional boundary conditions. The data assimilation in this case is
based on a search of the best fit between the forecast model state and
the observations by minimizing the regularization parameter. The
QRV method is proven to be well suited for smooth and non-smooth
input data (Lattes & Lions 1969; Samarskii & Vabishchevich 2004).

To explain the transformation of the problem, we consider the fol-
lowing boundary-value problem for the 1-D heat conduction prob-
lem

∂T (t, x)

∂t
= ∂2T (t, x)

∂x2
, 0 ≤ x ≤ π, 0 ≤ t ≤ t∗, (1)

T (t, x = 0) = T (t, x = π ) = 0, 0 ≤ t ≤ t∗, (2)

T (t = 0, x) = 1

4n + 1
sin[(4n + 1)x], 0 ≤ x ≤ π. (3)

The analytical solution to (1)–(3) can be obtained in the following
form

T (t, x) = 1

4n + 1
exp[−(4n + 1)2t] sin[(4n + 1)x]. (4)

Fig. 1 presents the solution (red solid curves) for time interval 0 ≤
t ≤ t∗ = 0.14 and n = 1.

It is known that the backward heat conduction problem is ill
posed (e.g. Kirsh 1996). To transform the problem into a well-posed
problem, we introduce a term in eq. (1) involving the product of a
small parameter β > 0 and higher order temperature derivative:

∂Tβ (t, x)

∂t
= ∂2Tβ (t, x)

∂x2

−β
∂4

∂x4

[
∂Tβ (t, x)

∂t

]
, 0 ≤ x ≤ π, 0 ≤ t ≤ t∗,(5)

Tβ (t, x = 0) = Tβ (t, x = π ) = 0, 0 ≤ t ≤ t∗, (6)

∂2Tβ (t, x = 0)

∂x2
= ∂2Tβ (t, x = π )

∂x2
= 0, 0 ≤ t ≤ t∗, (7)

Tβ (t = t∗, x) = 1

4n + 1

× exp[−(4n + 1)2t∗] sin[(4n + 1)x], 0 ≤ x ≤ π. (8)

Here the initial condition is assumed to be the solution (4) to the heat
conduction problem (1)–(3) at t = t∗. The subscript β at T β is used to
emphasize the dependence of the solution to problem (5)–(8) on the
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Figure 1. Comparison of the exact solutions to the heat conduction problem
(red curves; a and b) and to the regularized backward heat conduction prob-
lem (a: β = 10−3 and b: β = 10−7; blue dashed curves). The temperature
residual between two solutions is presented in panel (c) at various values of
the regularization parameter β and x ∈ [0, π/5].

regularization parameter. The analytical solution to the regularized
backward heat conduction problem (5)–(8) is represented as:

Tβ (t, x) = An exp

[ −(4n + 1)2t

1 + β(4n + 1)4

]
sin[(4n + 1)x],

An = 1

4n + 1
exp[−(4n + 1)2t∗] exp−1

[ −(4n + 1)2t∗

1 + β(4n + 1)4

]
,

(9)
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and the solution approaches the initial condition for the problem
(1)–(3) at t = 0 and β → 0. Figs 1(a) and (b) illustrates the solution
to the regularized problem at two values of β (blue dashed curves)
and n = 1. The temperature residual (Fig. 1c) indicates that the
solution (9) approaches the solution (4) with β → 0.

Samarskii & Vabischevich (2004) estimated the stability of the
solution to problem (5)–(7) with respect to the initial condition ex-
pressed in the form T β (t = t∗, x) = T ∗

β :

‖Tβ (t, x)‖ + β‖∂Tβ (t, x)/∂x‖
≤ C(

∥∥T ∗
β

∥∥ + β
∥∥∂T ∗

β /∂x
∥∥) exp[(t∗ − t)β−1/2],

(10)

where C is a constant, and showed that the natural logarithm of
errors will increase in a direct proportion to time and inversely to
the root square of the regularization parameter.

The transformation to the regularized backward heat problem is
not only a mathematical approach to solving ill-posed backward
heat problems, but has some physical meaning: it can be explained
on the basis of the concept of relaxing heat flux for heat conduction
(e.g. Vernotte 1958). The classical Fourier heat conduction theory
provides the infinite velocity of heat propagation in a region. The
instantaneous heat propagation is unrealistic, because the heat is a
result of the vibration of atoms and the vibration propagates in a finite
speed (Morse & Feshbach 1953). To accommodate the finite velocity
of heat propagation, a modified heat flux model was proposed by
Vernotte (1958) and Cattaneo (1958).

The modified Fourier constitutive equation is expressed as �Q =
−k∇T −τ∂2 �Q/∂t2, where �Q is the heat flux, and k is the coefficient
of thermal conductivity. The thermal relaxation time τ = k/(ρcpv

2)
is usually recognized to be a small parameter (Yu et al. 2004), where
ρ is the density, cp is the specific heat and v is the heat propagation
velocity. The situation for τ → 0 leads to instantaneous diffusion
at infinite propagation speed, which coincides with the classical
thermal diffusion theory. The heat conduction equation ∂T /∂t =
∇2T + τ∂2T /∂t2 based on non-Fourier heat flux can be considered
as a regularized heat equation. If the Fourier law is modified further
by an addition of the second derivative of heat flux, for example,
�Q = −k∇T + β ∂2 �Q

∂t2 , where small β is the relaxation parameter of
heat flux (Bubnov 1976, 1981), the heat conduction equation can be
transformed into a higher order regularized heat equation similar to
eq. (5).

3 M AT H E M AT I C A L S TAT E M E N T O F
T H E P RO B L E M

We consider a model of thermoconvective mantle flow in the 3-D
domain � = [0, x 1 = l 1] × [0, x 2 = l 2] × [0, x 3 = l 3 = h],
where x = (x1, x2, x3) are the Cartesian coordinates. We assume
that the mantle behaves as a Newtonian incompressible fluid with a
temperature-dependent viscosity and infinite Prandtl number. Ris-
ing mantle plumes (subducting lithosphere) are modelled as a hot
(cold) viscous fluid ascending (descending) into the relatively cold
(hot) ambient viscous fluid heated from below. The mantle flow is
described by heat, motion and continuity equations (Chandrasekhar
1961). To simplify the governing equations, we make the Boussinesq
approximation (Boussinesq 1903) keeping the density constant ev-
erywhere except for the buoyancy term in the equation of motion. We
note that a temperature-dependent density, internal heating, phase
transformations in the mantle and other physical complications can
be also considered in the modelling of thermoconvective mantle cir-
culation (e.g. Schubert et al. 2001; Ismail-Zadeh et al. 2003b). In

the Boussinesq approximation the motion of a viscous fluid is de-
scribed by the following dimensionless formulation: the boundary
value problem for the flow velocity (it includes the Stokes equa-
tion, the incompressibility equation subject to appropriate boundary
conditions)

∇ P = div (η(T )E) + RaT e, x ∈ �, (11)

divu = 0, x ∈ �, (12)

u · n = 0, x ∈ ∂�, (13)

∂uτ /∂n = 0, x ∈ ∂�, (14)

and the initial-boundary value problem for temperature (it includes
the heat equation subject to appropriate boundary and initial condi-
tions)

∂T/∂t + u · ∇T = ∇2T + f, t ∈ [0, ϑ], x ∈ �, (15)

σ1T + σ2∂T/∂n = T∗, t ∈ [0, ϑ], x ∈ ∂�, (16)

T (0, x) = T0(x), x ∈ �. (17)

Here T , t, u, P and η are dimensionless temperature, time, veloc-
ity, pressure and viscosity, respectively; E = eij(u) = {∂ui/∂xj +
∂uj/∂xi} is the strain rate tensor; ui are the velocity components;
e = (0, 0, 1) is the unit vector; ∇ is the gradient operator; div is
the divergence operator; f is the heat source; n is the outward unit
normal vector at a point on the model boundary; uτ is the projection
of the velocity vector onto the tangent plane at the same point on
the model boundary; [t = 0, t = ϑ] is the model time interval; σ 1

and σ 2 are some piecewise smooth functions or constants such that
σ 2

1 + σ 2
2 �= 0.

We consider the impermeability condition with perfect slip on
∂�. Choosing σ 1, σ 2 and T ∗ in a proper way we can specify tem-
perature or heat flux at the model boundaries. By �u = {x : (x ∈
∂�) ∩ (x 3 = l 3)}, � l = {x : (x ∈ ∂�) ∩ (x 3 = 0)}, and
�v = ∪

i=1,2
{x : (x ∈ �) ∩ (xi = 0)} ∪ {x : (x ∈ �) ∩ (xi = li )}, we

denote the parts of the model boundary that �u ∪ � l ∪ �v = ∂�.
We assume the constant temperature at the horizontal boundaries
and zero heat flux at vertical boundaries of the model domain: σ 1(t ,
x) = 1, σ 2(t , x) = 0 and T ∗(t , x) = 0 at (t , x) ∈ [0, ϑ] × �u ;σ 1(t ,
x) = 1, σ 2(t , x) = 0 and T ∗(t , x) = 1 at (t , x) ∈ [0, ϑ] × � l ; and
σ 1(t , x) = 0, σ 2(t , x) = 1 and T ∗(t , x) = 0 at (t , x) ∈ [0, ϑ ] × �v .

The Rayleigh number is defined as Ra = αgρ ref�Th3η−1
ref κ

−1,
where α is the thermal expansivity, g is the acceleration due to
gravity, ρ ref and ηref are the reference typical density and viscosity,
respectively; �T is the temperature contrast between the lower and
upper boundaries of the model domain; and κ is the thermal diffu-
sivity. Length, temperature and time are normalized by h, �T and
h2κ−1, respectively. The physical parameters of the fluid (tempera-
ture, velocity, pressure, viscosity and density) are assumed to depend
on time and on space coordinates. The viscosity (specified later) and
density depend on temperature as well.

The direct problem of thermoconvective flow is formulated as
follows: find the velocity u = u(t, x), the pressure P = P(t,
x) and the temperature T = T(t, x) satisfying boundary value
problem (11)–(14) and initial-boundary value problem (15)–(17).
We can formulate the inverse problem in this case as follows: find
the velocity, pressure and temperature satisfying boundary value
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problem (11)–(14) and the final-boundary value problem which in-
cludes eqs (15) and (16) and the final condition:

T (ϑ, x) = Tϑ (x), x ∈ �, (18)

where T ϑ is the temperature at time t = ϑ .
To solve the inverse problem by the QRV method we consider

the following regularized backward heat problem to define temper-
ature in the past from the known temperature T ϑ (x) at present time
t = ϑ :

∂Tβ/∂t − uβ · ∇Tβ

= ∇2Tβ + f − β�(∂Tβ/∂t), t ∈ [0, ϑ], x ∈ �, (19)

σ1Tβ + σ2∂Tβ/∂n = T∗, t ∈ (0, ϑ), x ∈ ∂�, (20)

σ1∂
2Tβ/∂n2 + σ2∂

3Tβ/∂n3 = 0, t ∈ (0, ϑ), x ∈ ∂�, (21)

Tβ (ϑ, x) = Tϑ (x), x ∈ �, (22)

where �(T ) = ∂4T /∂x4
1 + ∂4T /∂x4

2 + ∂4T /∂x4
3, and the boundary

value problem to determine the fluid flow:

∇ Pβ = −div[η(Tβ )E(uβ )] + RaTβe, x ∈ �, (23)

divuβ = 0, x ∈ �, (24)

uβ · n = 0, x ∈ ∂�, (25)

∂(uβ )τ /∂n = 0, x ∈ ∂�, (26)

where the sign of the velocity field is changed (uβ by −uβ ) in eqs
(19) and (23) to simplify the application of the total variation di-
minishing method for solving (19)–(22) (see Section A2 of Appe-
ndix A). Hereinafter, we refer to temperature T ϑ as the input temper-
ature for the problem (19)–(26). The core of the transformation of
the heat equation is the addition of a high order differential expres-
sion � (∂T β/∂t) multiplied by a small parameter β > 0. Note that
eq. (21) is added to the boundary conditions to properly define the
regularized backward heat problem. Parameters σ 1 and σ 2 in (20)
and (21) are the same as in (16). The solution to the regularized back-
ward heat problem is stable for β > 0, and the approximate solution
to (19)–(26) converges to the solution of (11)–(16), and (18) in some
spaces, where the conditions of well posedness are met (Samarskii
& Vabischevich 2004). Thus, the inverse problem of thermocon-
vective mantle flow is reduced to determination of the velocity
uβ = uβ (t , x), the pressure P β = P β (t , x) and the temperature
T β = T β (t , x) satisfying (19)–(26).

4 N U M E R I C A L A P P ROA C H

4.1 Numerical methods

To solve the heat problem (15)–(17) and the regularized backward
heat problem (19)–(22), finite differences are used to derive discrete
equations. We employ (i) the characteristic-based semi-Lagrangian
(CBSL) method (Courant 1952; Staniforth & Coté 1991) to calculate
the derivatives of the convective term in the heat eq. (15); (ii) the total
variation diminishing (TVD) method (Harten 1983) to calculate the
derivatives of the convective term in the regularized backward heat
eq. (19); (iii) central differences to approximate the derivatives of
the diffusion and regularizing terms in (15) and (19), respectively
and (iv) the two-layered additively averaged scheme to represent
the 3-D spatial discrete operators associated with the diffusion and

regularizing terms as 1-D discrete operators, and the componentwise
splitting method to solve the set of the discrete equations (Samarskii
& Vabishevich 1995). We describe the numerical methods in detail in
Section A1 (for the heat problem) and Section A2 (for the regularized
backward heat problem).

The Eulerian finite-element method is employed to solve the
Stokes problems (11)–(14) and (23)–(26). The numerical approach
is based on the representation of the flow velocity by a two-
component vector potential (Ismail-Zadeh et al. 2001b) eliminat-
ing the incompressibility equation from the relevant boundary value
problems. This potential is approximated by tri-cubic splines, which
allows one to efficiently interpolate the velocity field (Ismail-Zadeh
et al. 1998). Such a procedure results in a set of linear algebraic
equations with a symmetric positive-definite banded matrix. We
solve the set of discrete equations by the conjugate gradient method
(Fletcher & Reeves 1964) using parallel processors. A description
of this approach can be found in Ismail-Zadeh et al. (2004b).

4.2 Optimization problem

We seek a maximum of the following functional with respect to the
regularization parameter β:

δ − ‖T (t = ϑ, ·; Tβk (t = 0, ·)) − ϕ(·)‖ → max
k

, (27)

βk = β0qk−1, k = 1, 2, . . . , �, (28)

where sign ‖·‖ denotes the norm in the space L 2(�), the Hilbert
space with the norm defined as ‖y‖ = [

∫
�

y2(x)dx]1/2. Since in
what follows the dependence of solutions on initial temperature
data is important, we introduce these data explicitly into the math-
ematical representation of temperature. Here Tk = Tβk (t = 0, ·) is
the solution to the regularized backward heat problem (19)–(22) at
t = 0; T (t = ϑ , ·; Tk) is the solution to the heat problem (15)–(17) at
the initial condition T (t = 0, ·) = Tk at time t = ϑ ; ϕ is the known
temperature at t = ϑ (the input data on the present temperature);
small parameters β 0 > 0 and 0 < q < 1 are defined below and δ >

0 is a given accuracy. When q tends to unity, the computational cost
becomes large; and when q tends to zero, the optimal solution can
be missed.

The prescribed accuracy δ is composed from the accuracy of the
initial data and the accuracy of computations. When the input noise
decreases and the accuracy of computations increases, the regular-
ization parameter is expected to decrease. However, estimates of the
initial data errors are usually inaccurate. Estimates of the computa-
tion accuracy are not always known, and when they are available, the
estimates are coarse. In practical computations, it is more convenient
to minimize the following functional with respect to (28)∥∥Tβk+1 (t = 0, ·) − Tβk (t = 0, ·)∥∥ → min

k
, (29)

where misfit between temperatures obtained at two adjacent itera-
tions must be compared. To implement the minimization of temper-
ature residual (27), the inverse problem (19)–(26) must be solved
on the entire time interval as well as the direct problem (11)–(17) on
the same time interval. This at least doubles the amount of computa-
tions. The minimization of functional (29) has a lower computational
cost, but it does not rely on a priori information.

4.3 Numerical algorithm for QRV data assimilation

In this section we describe the numerical algorithm for solving the
inverse problem of thermoconvective mantle flow using the QRV
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1386 A. Ismail-Zadeh et al.

method. For simplicity consider a uniform temporal partition tn =
ϑ − τn, and n successively takes integer values from 0 to some
natural number N = ϑ/τ . We prescribe some values to parameters
β 0, q and � (e.g. β 0 = 10−3, q = 0.1 and � = 10). According to (28)
we define a sequence of the values of the regularization parameter
{β k}. For each value β = β k model temperature and velocity are
determined in the following way.

Step 1: Given the temperature T β = T β (t , ·) at t = tn, the velocity
uβ =uβ (tn, ·) is found by solving problem (23)–(26). This velocity
is assumed to be constant on the time interval [tn+ 1, tn].

Step 2: Given the velocity uβ =uβ (tn, ·), the new temperature
T β = T β (t , ·) at t = tn+ 1 is found on the time interval [tn+ 1, tn]
subject to the final condition T β = T β (tn, ·) by solving prob-
lem (19)–(22) according to the numerical method described in
Section A2.

Step 3: Upon the completion of steps 1 and 2 for all n = 0, 1, . . . ,
N , the temperature T β = T β (tn, ·) and the velocity uβ =uβ (tn, ·)
are obtained at each t = tn. Based on the computed solution we can
find the temperature and flow velocity at each point of time interval
[0, ϑ ] using interpolation.

Step 4a: The direct problem (15)–(17) is solved assuming that
the initial temperature is given as T β = T β (t = 0, ·), and the tem-
perature residual (27) is found. If the residual does not exceed the
pre-defined accuracy, the calculations are terminated, and the results
obtained at step 3 are considered as the final ones. Otherwise, param-
eters β 0, q and � entering eq. (28) are modified, and the calculations
are continued from step 1 for new set {β k}.

Step 4b: The functional (29) is calculated. If the residual between
the solutions obtained for two adjacent regularization parameters
satisfies a pre-defined criterion (the criterion should be defined by a
user, because no a priori data are used at this step), the calculation
is terminated, and the results obtained at step 3 are considered as the
final ones. Otherwise, parameters β 0, q and � entering eq. (28) are
modified, and the calculations are continued from step 1 for new set
{β k}.

In a particular implementation, either step 4a or step 4b is used
to terminate the computation. This algorithm allows (i) organizing
a certain number of independent computational modules for var-
ious values of the regularized parameter β k that find the solution
to the regularized problem using steps 1–3 and (ii) determining a
posteriori an acceptable result according to step 4a or 4b.

5 M E T H O D ’ S A P P L I C AT I O N

The reconstruction of mantle plumes and lithospheric slabs to ear-
lier stages of their evolution is a major challenge in geodynamics.
High-resolution global and regional seismic tomographic studies
open possibilities for detailed observations of present-day mantle
structures (e.g. Montelli et al. 2004; Martin et al. 2006) and for
derivations of mantle temperature from seismic velocities or veloc-
ity anomalies (e.g. Goes et al. 2000; Ismail-Zadeh et al. 2005a). An
accurate reconstruction would allow the test of geodynamic mod-
els by simulating the evolution of plumes or slabs starting from the
restored state and comparing the derived forward state to observa-
tions.

We present the numerical results for the restoration of mantle
plume evolution (synthetic case study) in Section 5.1 and for the
assimilation of a present temperature model associated with a de-
scending lithospheric slab imaged by high-resolution regional seis-
mic tomography in Section 5.2.

5.1 Mantle plumes

Thermal plumes in the Earth’s mantle plausibly originate near ei-
ther the core–mantle boundary or the upper mantle–lower mantle
transition due to instabilities in the hot thermal boundary layers that
could exist at these locations. Although some mantle plumes appear
to last for more than 150 Myr, they are nonetheless transient features
(Schubert et al. 2001).

Mantle plumes evolve in three distinguishing stages: (i) imma-
ture, that is, an origin and initial rise of the plumes; (ii) mature, that
is, plume-lithosphere interaction, gravity spreading of plume head
and development of overhangs beneath the bottom of the lithosphere,
and partial melting of the plume material (e.g. Ribe & Christensen
1994; Moore et al. 1998) and (iii) overmature, that is, slowing-down
of the plume rise and fading of the mantle plumes due to thermal
diffusion (Davaille & Vatteville 2005; Ismail-Zadeh et al. 2006).
The ascent and evolution of mantle plumes depend on the proper-
ties of the source region (i.e., the thermal boundary layer) and the
viscosity and thermal diffusivity of the ambient mantle. The proper-
ties of the source region determine temperature and viscosity of the
mantle plumes. Structure, flow rate and heat flux of the plumes are
controlled by the properties of the mantle through which the plumes
rise. While properties of the lower mantle (e.g. viscosity and ther-
mal conductivity) are relatively constant during the approximately
150 Myr lifetime of most plumes, source region properties can vary
substantially with time as the thermal basal boundary layer feeding
the plume is depleted of hot material. Complete local depletion of
this boundary layer cuts the plume off from its source.

We start our simulations by computing a forward model of the
evolution of the thermal plumes and then we restore the evolved
plumes to their earlier stages. To compare the numerical results
obtained by the QRV method with that obtained by the VAR and
BAD methods, we develop the same forward model for mantle plume
evolution as presented by Ismail-Zadeh et al. (2006).

The evolution of mantle plumes originating at the core–mantle
boundary is modelled through numerical experiments of 3-D ther-
mal convection in a bottom heated box. The mantle behaves as
a Newtonian fluid on geological timescales, and a dimensionless
temperature-dependent viscosity law (Busse et al. 1993)

η(T ) = exp[M(T + G)−1 − M(0.5 + G)−1] (30)

is used in the modelling, where M = [225/ln(r)] − 0.25 ln(r), G =
[15/ln(r)] − 0.5 and r is the viscosity ratio between the upper and
lower boundaries of the model domain. We model the evolution of
mantle plumes for three viscosity profiles: r = 20, 200 and 1000. The
temperature-dependent viscosity profiles have their minimum at the
core–mantle boundary. A more realistic viscosity profile (e.g. Forte
& Mitrovica 2001) will influence the evolution of mantle plumes,
though it will not influence the restoration of the plumes. A math-
ematical model of mantle plume dynamics is described by a set of
eqs (11)–(17), where many complications are omitted, for example
a viscosity increase from the upper to the lower mantle, adiabatic
heating/cooling, internal heating (we use f = 0 in the modelling),
phase transformations in the mantle and others. Inclusion of these
complications would refine the model.

With α = 3 × 10−5 K−1, ρ ref = 4000 kg m−3, �T = 3000 K,
h = 2800 km, ηref = 8 × 1022 Pa s and κ = 10−6 m2 s−1, the initial
Rayleigh number is Ra = 9.5 × 105. While plumes evolve in the
convecting heterogeneous mantle, at the initial time we assume that
the plumes develop in a laterally homogeneous temperature field and
hence consider that the mantle temperature in the model increases
linearly with depth. The model domain is divided into 38 × 38 ×
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QRV method for data assimilation 1387

Figure 2. Model of mantle plume evolution forward in time at successive times: (a–d) from 265 Myr ago to the present state of the plumes (r = 20). Assimilation
of the mantle temperature and flow from the present state back to the geological past using the QRV (d–g; β = 10−7) and BAD (d, e1–g1) methods. Verification
of the QRV assimilation accuracy: Forward model of the plume evolution starting from the initial (restored) state of the plumes (g) to their present state (i).
Temperature residuals between the initial temperature for the forward model and the temperature assimilated to the same age using the QRV and BAD methods
are presented in panels (h) and (h1), respectively.

30 rectangular finite elements to approximate the vector velocity
potential by tricubic splines, and a uniform grid 112 × 112 × 88 is
employed for approximation of temperature, velocity and viscosity.
We employed 36 processors to solve the problem. Each time step
for the restoration took less than 1 min, and about 200 time steps
were performed.

Figs 2(a)–(d) illustrate the evolution of mantle plumes in the for-
ward model. Mantle plumes are generated by random temperature
perturbations at the top of the thermal source layer associated with
the core–mantle boundary. The mantle material in the basal source
layer flows horizontally toward the plumes. The reduced viscosity
in this basal layer promotes the flow of the material to the plumes.
Vertical upwelling of hot mantle material is concentrated in low vis-
cosity conduits near the centrelines of the emerging plumes (Figs 2b
and c). The plumes move upward through the model domain, grad-
ually forming structures with well-developed heads and tails. The
plumes diminish in size with time, and the plume tails are diffused
before the plume heads (Fig. 2d).

The state of the plumes at the ‘present’ time (Fig. 2d) obtained by
solving the direct problem was used as the input temperature for the
inverse problem (an assimilation of the ‘present’ temperature to the
past). Note that this initial state (input temperature) is given with an
error introduced by the numerical algorithm used to solve the direct
problem. Fig. 2 illustrates the states of the plumes restored by the
QRV method (panels e–g) and the residual (panel h)

δT (x1, x2) =
{∫ h

0
[T (x1, x2, x3) − T̃ (x1, x2, x3)]2 dx3

}1/2

(31)

between the initial temperature for the forward model (Fig. 2a) and
the temperature T̃ (x) assimilated to the same age (Fig. 2g). To check
the stability of the algorithm, we run a forward model of the restored
plumes using the solution to the inverse problem at the time of 265
Myr ago (Fig. 2g) as the initial state for the forward model. The
result of this run is shown in Fig. 2(i).

To compare the accuracy of the data assimilation methods we
develop a restoration model from the ‘present’ time (Fig. 2d) to the
time of 265 Myr ago using the BAD method. Fig. 2 shows the model
results (panels e1–g1) together with the temperature residual (panel
h1) between the initial temperature (panel a) and the temperature
assimilated to the same age (panel g1). According to our experi-
ence (Ismail-Zadeh et al. 2004, 2006) the VAR method cannot be
used to assimilate data within the time interval of more than about
100 Myr (for Ra ≈ 106) without proper filtering of the increasing
noise due to non-smoothness of the input data and solution. Hence
we do not apply the VAR method to assimilate the synthetic data for
265 Myr.

Fig. 3(a) presents the residual J1(β) = ‖T0(·) − Tβ (t = t0, ·; Tϑ )‖
between the initial temperature T 0 at t 0 = 265 Myr ago and the re-
stored temperature (to the same time) obtained by solving the inverse
problem with the input temperature T ϑ . The optimal accuracy is at-
tained at β∗ = arg min {J1(β) : β = βk, k = 1, 2, . . . , 10} ≈ 10−7

in the case of r = 20, and at β∗ ≈ 10−6 and β∗ ≈ 10−5.5 in the
cases of r = 200 and 1000, respectively. Fig. 3(b) illustrates the
residual J2(β) = ‖Tβ (t0, ·; Tϑ ) − T�

β
(t0, ·; Tϑ )‖ between the recon-

structed temperature at t 0 = 265 Myr ago obtained for various

values of β in the range 10−9 ≤ β ≤ 10−3 and
�

β = β/2. These
results show the choice of the optimal value of the regularization
parameter using step 4b of the numerical algorithm for the QRV
data assimilation (Section 4.3). In the case of r = 20 the parameter
β∗ = arg min{J2(β) : β = βk, k = 1, 2, . . . , 12} ≈ 10−8 provides
the optimal accuracy for the solution; in the cases of r = 200 and
1000 the optimal accuracy is achieved at β∗ ≈ 10−7 and β∗ ≈ 10−6.5,
respectively. Comparison of the temperature residuals for three val-
ues of the viscosity ratio r indicates that the residuals become
larger as the viscosity ratio increases (see Fig. 3). The numerical
experiments show that the algorithm for solving the inverse prob-
lem performs well when the regularization parameter is in the range
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Figure 3. Temperature misfit (a) J 1 and (b) J 2 as functions of the regu-
larization parameter β. The minimum of the temperature misfit is achieved
at β∗, an optimal regularization parameter. Solid curves: r = 20; dashed
curves: r = 200; and dash–dotted curves: r = 1000.

10−8 ≤ β ≤ 10−6. For greater values, the solution of the inverse
problem retains the stability but is less accurate. For β < 10−9 the
numerical procedure becomes unstable, and the computations must
be stopped.

Both laboratory (Davaille & Vatteville 2005) and numerical ex-
periments forward in time (Ismail-Zadeh et al. 2006) show that
thermal plumes start disappearing from bottom up due to a week
feeding of mantle plumes by the hot material from the boundary
layer. To compare how three techniques for data assimilation can
restore the prominent state of the thermal plumes in the past from
their ‘present’ weak state, we develop initially a forward model from
the prominent state of the plumes (Fig. 4a) to their diffusive state in
100 Myr (Fig. 4b) using 50 × 50 × 50 finite rectangular elements
to approximate the vector velocity potential and a finite difference
grid 148 × 148 × 148 for approximation of temperature, velocity
and viscosity. All other parameters of the model are the same as
described in Section 5.1.

We apply the QRV, VAR and BAD methods to restore the plumes
from their weak state and present the results of the restoration and
temperature residuals in Fig. 4. The VAR method (Figs 4d and g)
provides the best performance for the diffused plume restoration.
The BAD method (Figs 4e and h) cannot restore the diffused parts
of the plumes, because temperature is only advected backward in
time. The QRV method (Figs 4c and f) restores the diffused thermal
plumes, meanwhile the restoration results are not so perfect as in
the case of VAR method (compare temperature residuals in Figs 4f
and g). Although the accuracy of the QRV data assimilation is lower
compared to the VAR data assimilation, the QRV method does not
require any additional smoothing of the input data and filtering of
temperature noise as the VAR method does.

5.2 Descending lithosphere

In this section, we present the results of the assimilation of a present
temperature model for the southeastern Carpathians to the geologi-
cal past. To develop the temperature model we use the most recent
high-resolution teleseismic body-wave tomography image (map of
the anomalies of P-wave seismic velocities) of the lithosphere and
asthenosphere in the region (Martin et al. 2006). Smearing from
strong crustal velocity anomalies into the upper mantle is success-
fully suppressed by traveltime corrections with an a priori 3-D re-
gional crustal velocity model (Martin et al. 2005). The image shows
a high velocity body beneath the Vrancea region and the Moesian
platform interpreted by Martin et al. (2006) as the subducted litho-
spheric slab. The NE-part of the slab hosts the intermediate-depth
earthquakes and is known as the Vrancea region. The model of
present temperature developed by Ismail-Zadeh et al. (2005a) is
based on the previous seismic-tomographic model by Martin et al.
(2001), where variations in the crustal thickness were not considered
in traveltime calculations.

The seismic tomographic model of the region consists of eight
vertical layers of different thickness (15–70 km) starting from the
depth of 35 km down to 440 km. Each layer is subdivided hori-
zontally into 16 × 16 km2 blocks (Martin et al. 2006). To restrict
numerical errors in our data assimilation we smooth the velocity
anomaly data between the blocks and the layers using a spline in-
terpolation. To convert the P-wave seismic velocity anomalies into
temperature we use the approach described by Goes et al. (2000)
and Ismail-Zadeh et al. (2005a).

Fig. 5(a) (left column) illustrates depth slices of the present tem-
perature model derived from the seismic tomography data. The mod-
elled low mantle temperatures are associated with the high-velocity
body beneath the Vrancea region (VRA) and the East European
platform (EEP). High temperatures are predicted beneath the Tran-
sylvanian Basin (TRB) at about 70–110 km depth. Two other high
temperature regions are found at 110–150 km depth below the Moe-
sian platform (MOP) and deeper than 200 km under the EEP and
the Dobrogea orogen (DOB), which might be correlated with the
regional lithosphere/asthenosphere boundary.

We assimilate the present temperature data into the geological past
to restore the prominent thermal features of the lithospheric slab at
shallow depths in the region. We use the following parameters in the
modelling: h = 670 km, the aspect ratio (ratio between horizontal
and vertical dimensions of the model) is 1.5, r = 1000, �T =
1700 K, ρ ref = 3400 kg m−3, ηref = 1021 Pa s and Ra = 5.2 ×
105. The present temperature above 440 km depth is derived from
the seismic velocity anomalies. We use the adiabatic geotherm for
potential temperature 1750 K (Katsura et al. 2004) to define the
present temperature below 440 km (where seismic tomography data
have not been not available). Fig. 5(b) (central column) shows the
temperature restored to 22 Myr ago. We assimilate present mantle
temperature and flow to the Miocene time, because the post-Miocene
descent of the slab is believed to be induced mainly by gravity forces
(Csontos et al. 1992). The evolution of the southeastern Carpathian
region earlier than Miocene, when active subduction of oceanic (or
continental) lithosphere was likely to be active, is less clear. The
regional horizontal movements are indeed poorly known, and hence
the implementation of the poor knowledge into the assimilation
model could result in incorrect scenarios of mantle and lithosphere
dynamics in the region. Therefore, we have avoided the assimilation
of the data beyond the Miocene time.

Early Miocene subduction beneath the Carpathian arc and sub-
sequent gentle continental collision transported cold and dense
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QRV method for data assimilation 1389

Figure 4. Model of mantle plume diffusion forward in time (a and b; r = 20). Assimilation of the mantle temperature and flow to the time of 100 Myr ago and
temperature residuals between the present temperature model (b) and the temperature assimilated to the same age, using the QRV (c and f; β = 10−7), VAR (d
and g) and BAD (e and h) methods, respectively.

lithospheric material into the hotter mantle. The cold (blue to dark
green) region seen at the depths of 40–220 km (see Fig. 5b) can be
interpreted as the earlier evolutionary stage of the lithospheric slab.
The slab is almost invisible at the shallow depths in the model of
the present temperature (see relevant temperature slices in Fig. 5a).
Since active subduction of the lithospheric slab in the region has
ended in late Miocene times, we argue that the cold slab, descend-
ing slowly at these depths due to gravity, has been warmed up, and
its thermal shape has faded away due to heat diffusion. Thermal
conduction in the shallow Earth (where viscosity is high) plays a
significant part in heat transfer compared to thermal convection.
The deeper we look into the region, the larger are effects of ther-
mal advection compared to diffusion: the lithosphere has moved
upwards to the place where it had been in the Miocene times. At
280 km depth and down to 340 km depth the thermal shape of
the slab is clearly visible at the slices of the present temperature
model and nearly invisible at the slices of the restored tempera-
ture model, because the slab did not reach these depths 22 Myr
ago.

The geometry of the restored slab (based on the temperature of
about 900 K) shows clearly two portions of the sinking body. One of

them has NW–SE orientation, its location coincides with the bound-
ary between the EEP and Scythian platform (SCP), and this portion
of sinking body may be a relic of eastward travelled cold lithosphere.
Another portion has a NE–SW orientation and is associated with the
present descending slab. The geometry shows that the restored slab
is laterally thin compared to the present thick slab at depths below
90 km. This can be explained by the fact that a slab descending
gravitationally into the mantle thickens with depth and develops a
sheath of lithospheric material with time (e.g. Ismail-Zadeh et al.
2005b).

An interesting geometrical feature of the restored slab is its curva-
ture beneath the SE-Carpathians (Vrancea). The slab has a concave
surface, which follows the curvature of the Carpathian arc down to
the depths of about 60 km, but at greater depth it changes its shape to
that of a convex surface and splits into two parts at a depth of about
200 km. Although such a change in the slab curvature is visible
neither in the model of the present temperature nor in the seismic
tomography image most likely because of the slab warming and heat
diffusion, we suppose that the convex shape of the slab is preserved
at the present time. We argue that this abrupt change in the geom-
etry of the descending slab can cause stress localization due to the
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1390 A. Ismail-Zadeh et al.

Figure 5. Mantle temperatures (at horizontal slices at depths from 40 to 340 km) for the model of the descending lithospheric slab beneath the southeastern
Carpathians. Left panel (a): Present temperature derived from the P-wave velocity anomalies imaged by seismic tomography (Martin et al. 2006). Central panel
(b): Temperature obtained by assimilation of the present temperature to the Miocene time (22 Myr ago) using the QRV method (β = 10−6). Right panel (c):
Temperature obtained by the backward advection of the present temperature to the same Miocene time using the BAD method. DOB, Dobrogea orogen; EEP,
Eastern European platform; MOP, Moesian platform; SCP, Scythian platform; TRB, Transylvanian basin and VRA, Vrancea.

slab bending and subsequent stress release resulting in earthquakes,
which occur at the depths of 70–180 km in the region. Moreover
the results of the assimilation of the present temperature model to
the Miocene time provide a plausible explanation for the change in

the spatial orientation of the slab from NE–SW to NS beneath 200
km observed in the seismic tomography image (Martin et al. 2006).
The origin of the slab bending is not clear, but it might be related
to a complex interaction between two portions of the sinking body
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Figure 5. (Continued.)

and the surrounding mantle. The sinking body displaces the mantle,
which, in its turn, forces the slab to deform due to a corner (toroidal)
flow different within each of two subregions (to NW and to SE from
the present descending slab). Also the curvature of the descending
slab can be influenced by the slab heterogeneities due to variations
in its thickness and viscosity (Morra et al. 2006).

Low velocity anomalies NW of the present slab between 70 and
110 km depth (see the temperature slice at the depth of 90 km)
are interpreted by Martin et al. (2006) as a shallow asthenospheric
upwelling associated with possible slab rollback. Also they men-
tion partial melting as an additional contribution to the reduction
of seismic velocities at these depths. The results of our assimilation
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Figure 6. Temperature misfit in the model of the descending lithospheric
slab beneath the southeastern Carpathians. The misfit is defined as an integral
difference between the temperature assimilated to any time t ∈ [present, 22
Myr ago] and that predicted by the forward model (11)–(17) to the same time
assuming the assimilated temperature 22 Myr ago as the initial condition for
the forward model. Solid and dashed curves present the misfits for the cases
of temperature assimilation using the QRV and BAD methods, respectively.

show that the descending slab is surrounded by a narrow border
of hotter rocks at depths of 70–110 km (the temperature difference
between slab and its surroundings is up to 500 K). Although we do
not consider the effects of slab dehydration or partial melting in the
modelling, the numerical results obtained support the hypothesis of
dehydration of the descending lithosphere and its partial melting
as the primary source of reduction of seismic velocities at these
depths and probably deeper (see temperature slices at the depths
of 130–220 km). Some areas of high temperature at depths below
280 km can be associated with present mantle upwelling in the
region. The areas are not visible in the slides of the restored tem-
peratures, because the upwelling was likely not active 22 Myr ago.

To test the accuracy of the QRV data assimilation, we employ
the temperature and mantle flow restored to the time of 22 Myr ago
as the initial condition for a model of the slab evolution forward
in time (eqs 11–17), run the model to the present, and analyse the
temperature residual (the difference between the temperatures as-
similated and those predicted by the forward model). Fig. 6 (solid
curve) presents the integral temperature residual as a function of
time. The maximum temperature residual is about 30◦, which is
an evidence of rather accurate data assimilation based on the QRV
method.

We compare the numerical results with that obtained by the back-
ward advection of temperature (using the BAD method). The diffu-
sion term in the heat equation is neglected. Fig. 5(c) (right column)
presents slices of the temperature restored to 22 Myr ago. It is dif-
ficult (if even possible) to observe a slab-like feature in the slices
at depths of 40–130 km. The cold (green, ca. 1000 K) slab was ad-
vected (with no diffusion) from the deeper mantle (340 km deep) to
shallow levels (where temperature is about 900–1000 K), and there-
fore, the shape of the slab is indistinguishable in the shallow mantle.
The shape of the slab is seen at depths of 170 and 220 km, where heat

advection becomes stronger than diffusion. Fig. 6 (dashed curve)
shows that the maximum temperature residual is about 360◦. There-
fore, we have demonstrated here that the neglect of heat diffusion
leads to an inaccurate restoration of mantle temperature, especially
in the areas of low temperature and high viscosity in our model. The
similar results for the BAD data assimilation have been obtained
in the synthetic case study (see Figs 4e and h). The VAR method
was not employed to assimilate the present temperature, because
computations in this case become quite time-consuming due to the
unavoidable need to smooth the solution and to filter temperature
noise.

6 D I S C U S S I O N A N D C O N C L U S I O N

The computational approach to assimilation of mantle related data
proposed in the paper is based on the QRV method by Lattes & Lions
(1969) and on the introduction into the backward heat equation of an
additional term involving the product of a small regularization pa-
rameter and higher order temperature derivative. The QRV method
is an alternative method for assimilation of data related to mantle
dynamics. The method allows employing more sophisticated mathe-
matical models (because it does not require derivation of an adjoint
problem as in the VAR data assimilation) and hence expands the
scope for applications in geodynamics (e.g. thermochemical con-
vection, phase transformations in the mantle). It does not require
that the desired accuracy of computations be directly related to the
parameters of the numerical algorithm. However, the regularizing
operators usually used in the QRV method enhance the order of the
system of differential equations to be solved.

We compare the QRV method with the VAR and BAD methods
in terms of solution stability, convergence and accuracy, time in-
terval for data assimilation, analytical and algorithmic works, and
computer performance (see Tables 1–3). The VAR data assimila-
tion assumes that the direct and adjoint problems are constructed
and solved iteratively forward in time. The structure of the adjoint
problem is identical to the structure of the original problem, which
considerably simplifies the numerical implementation. However,
the VAR method imposes some requirements for the mathemati-
cal model (i.e. a derivation of the adjoint problem). Moreover, for
an efficient numerical implementation of the VAR method, the error
level of the computations must be adjusted to the parameters of the
algorithm, and this complicates computations.

The BAD is the simplest method for data assimilation in mod-
els of mantle dynamics, because it does not require any additional
work (neither analytical nor computational). The major difference
between the BAD method and two other methods (VAR and QRV
methods) is that the BAD method is by design expected to work
(and hence can be used) only in advection-dominated heat flow. In
the regions of high temperature/low mantle viscosity, where heat is
transferred mainly by convective flow, the use of the BAD method
is justified, and the results of numerical reconstructions can be con-
sidered to be satisfactory. Otherwise, in the regions of conduction-
dominated heat flow (due to either high mantle viscosity or high
conductivity of mantle rocks), the use of the BAD method cannot
even guarantee any similarity of reconstructed structures. If mantle
structures are diffused significantly, the remaining features of the
structures can be only backward advected with the flow. We sum-
marize the comparison between the methods for data assimilation
in terms of a quality of numerical results in Table 2. The quality
of the results is defined here as a relative (not absolute) measure of
their accuracy. The results are good, satisfactory or poor compared
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Table 1. Comparison of methods for data assimilation in models of mantle dynamics.

QRV method VAR method BAD method

Method Solving the regularized
backward heat problem
with respect to parameter β

Iterative sequential solving of
the direct and adjoint heat
problems

Solving of heat advection
equation backward in time

Solution’s stability Stable for parameter β to
numerical errors (see text;
also ina) and conditionally
stable for parameter β to
arbitrarily assigned initial
conditions (numericallyb)

Conditionally stable to
numerical errors depending
on the number of iterations
(theoreticallyc) and
unstable to arbitrarily
assigned initial conditions
(numericallyd)

Stable theoretically
and numerically

Solution’s
convergence

Numerical solution to the
regularized backward heat
problem converges to the
solution of the backward
heat problem in the special
class of admissible
solutionse

Numerical solution converges
to the exact solution in the
Hilbert spacef

Not applied

Solution’s accuracyg Acceptable accuracy for both
synthetic and geophysical
data

High accuracy for synthetic
data.

Low accuracy for both
synthetic and geophysical
data in
conduction-dominated
mantle flow

Time interval for data
assimilationh

Limited by the characteristic
thermal diffusion time

Limited by the characteristic
thermal diffusion time and
the accuracy of the
numerical solution

No specific time limitation;
depends on mantle flow
intensity

Analytical work Choice of the regularizing
operator

Derivation of the adjoint
problem

No additional analytical work

Algorithmic work New solver for the
regularized equation
should be developed

No new solver should be
developed

No new solver should be
developed

aLattes & Lions 1969; bSee Fig. 3 and relevant text in the paper; cIsmail-Zadeh et al. 2004a; dIsmail-Zadeh et al. 2006; eTikhonov & Arsenin, 1977;
f Tikhonov & Samarskii 1990; gSee Table 2; hSee text for details.

Table 2. Quality of the numerical results obtained by different methods for data assimilation.

Quality Synthetic data Geophysical data

Advection-dominated Diffusion-dominated Advection-dominated Diffusion-dominated
regime region regime region

Good VAR VAR – –
Satisfactory QRV, BAD QRV QRV, BAD QRV
Poor – BAD – BAD

to other methods for data assimilation considered in this study.
The numerical results of the reconstructions for both synthetic (see
Figs 2–4) and geophysical case studies (Figs 5 and 6) show the
comparison quantitatively.

There is a physical limitation of the restoration of mantle struc-
tures. If a thermal feature created, let us say, a several hundred million

Table 3. Performance of data assimilation methods.

CPU time (circa, in s)

Solving the Stokes problem Solving the backward heat
using 50 × 50 × 50 finite problem using 148 × 148 × 148

Method elements finite difference mesh Total

BAD 180 2.5 182.5
QRV 100–180 3 103–183
VAR 360 1.5 n 360 + 1.5 n

years ago has completely diffused away by the present, it is impossi-
ble to restore the feature, which was more prominent in the past. The
time to which a present thermal structure in the upper mantle can
be restored should be restricted by the characteristic thermal diffu-
sion time, the time when the temperatures of the evolved structure
and the ambient mantle are nearly indistinguishable. In fact, the time

C© 2007 The Authors, GJI, 170, 1381–1398

Journal compilation C© 2007 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/170/3/1381/2042767 by guest on 09 M

arch 2022



1394 A. Ismail-Zadeh et al.

duration for which data assimilation methods can provide reasonable
results is much shorter than the characteristic thermal diffusion time
interval. The time interval for the VAR data assimilation depends
strongly on smoothness of the input data and the solution. The time
interval for the BAD data assimilation depends on the intensity of
mantle convection: it is short for conduction-dominated heat trans-
fer and becomes longer for advection-dominated heat flow. We note
that in the absence of thermal diffusion the backwards advection
of a low-density fluid in the gravity field will finally yield a uni-
formly stratified, inverted density structure, where the low-density
fluid overlain by a dense fluid spreads across the lower boundary
of the model domain to form a horizontal layer. Once the layer is
formed, information about the evolution of the low-density fluid will
be lost, and hence any forward modelling will be useless, because
no information on initial conditions will be available (Ismail-Zadeh
et al. 2001; Kaus and Podladchikov 2001).

The QRV method can provide stable results within the character-
istic thermal diffusion time interval. However, the length of the time
interval for QRV data assimilation depends on several factors. Let
us explain this by the example of heat conduction eq. (1). Assume
that the solution to the backward heat conduction equation with the
boundary conditions (2) and the initial condition T (t = t∗, x) =
T ∗(x) satisfies the inequality ‖∂4T/∂x4‖ ≤ Ld at any time t. This
strong additional requirement can be considered as the requirement
of sufficient smoothness of the solution and initial data. Considering
the regularized backward heat conduction eq. (5) with the boundary
conditions (6)–(7) and the input temperature T β (t = t∗, x) = T ∗

β (x)
and assuming that ‖T ∗

β − T ∗‖ ≤ δ, Samarskii & Vabishchevich
(2004) estimated the temperature misfit between the solution
T (t , x) to the backward heat conduction problem and the so-
lution T β (t , x) to the regularized backward heat conduction
equation:

‖T (t, x) − Tβ (t, x)‖ ≤ C̃δ exp[β−1/2(t∗ − t)] + βLd t, 0 ≤ t ≤ t∗,

where constant C̃ is determined from the a priori known parame-
ters of the backward heat conduction problem. For the given reg-
ularization parameter β, errors in the input data δ and smoothness
parameter Ld , it is possible to evaluate the time interval 0 ≤ t ≤
t∗ of data assimilation for which the temperature misfit would not
exceed a prescribed value.

Computer performance of the data assimilation methods can be
estimated by a comparison of CPU times for solving the inverse
problem of thermal convection. Table 3 lists the CPU times required
to perform one time step computations on 16 processors. The CPU
time for the case of the QRV method is presented for a given regu-
larization parameter β; in general, the total CPU time increases by
a factor of �, where � is the number of runs required to determine
the optimal regularization parameter β∗. The numerical solution of
the Stokes problem (by the conjugate gradient method) is the most
time consuming calculation: it takes about 180 s to reach a high
accuracy in computations of the velocity potential. The reduction
in the CPU time for the QRV method is attained by employing the
velocity potential computed at β i as an initial guess function for
the conjugate gradient method to compute the vector potential at
β i+1. An application of the VAR method requires to compute the
Stokes problem twice to determine the ‘advected’ and ‘true’ veloci-
ties (Ismail-Zadeh et al. 2004a). The CPU time required to compute
the backward heat problem using the TVD solver (Section A2) is
about 3 s in the case of the QRV method and 2.5 s in the case of the
BAD method. For the VAR case, the CPU time required to solve the
direct and adjoint heat problems by the semi-Lagrangian method is

1.5 × n, where n is the number of iterations in the gradient method
used to minimize the cost functional (see eq. 5 in Ismail-Zadeh et al.
2004a).

Apart from the errors associated with the numerical modelling
(model, discretization and iteration errors), there are at least two
sources of errors in data assimilation: (i) data misfit associated with
the uncertainties in the present temperature distribution and/or in
the surface movements and (ii) errors associated with the uncer-
tainties in initial and boundary conditions. Since there are no direct
measurements of mantle temperatures, the temperatures can be es-
timated indirectly from either seismic wave (and their anomalies),
geochemical analysis or through the extrapolation of surface heat
flow observations. Many models of mantle temperature are based on
the conversion of seismic tomography data into temperature. Mean-
while, a seismic tomography image of the Earth’s mantle is a model
indeed and incorporates its own model errors. Another sources of
uncertainty comes from the choice of mantle compositions in the
modelling of mantle temperature from the seismic velocities and
from the geodetic measurements of horizontal and vertical move-
ments. Therefore, if the present mantle temperature (and movement)
models are biased, the information can be improperly propagated to
the geological past.

The conditions at the boundaries of the model domain we used in
data assimilation are, of course, an approximation to the real temper-
ature, heat flux and movements, which are practically unknown and,
what is more important, may change over time at these boundaries.
The results of data assimilation will hence depend on the model
boundary conditions. Moreover, errors associated with the knowl-
edge of the temperature (or heat flux) evolution at the core–mantle
boundary or of the regional horizontal surface movements are an-
other essential component of errors, which can be propagated into
the past during the data assimilation.

Sensitivity analysis assists in understanding the stability of the
model solution to small perturbations in input variables or parame-
ters (Cacuci 2003). For instance, if we consider mantle temperature
in the past as a solution to the backward model, what will be its
variation if there is some perturbation in the inputs of the model
(e.g. present temperature data)? Despite the theoretical proof of the
stability of the solution to the regularized backward heat equation
(Samarskii & Vabischevich 2004), we have performed a few tests for
stability of the numerical results with respect to small perturbations
in the initial data. Namely, the initial temperature has been perturbed
randomly by 0.5–2 per cent and then assimilated to the past. The
misfit between the restored temperatures related to the disturbed and
undisturbed initial temperature is limited, and hence the solution of
the problem is stable. Therefore, the proposed numerical approach
for assimilation of data related to thermoconvective movements in
the mantle, which is based on the QRV method, shows stability of
the numerical results with respect to errors in the initial data. This
method allows reconstructing the thermal state and dynamics of the
mantle in the past given its state and dynamics at the present time.

We have applied the QRV data assimilation to two models of
mantle dynamics: mantle plumes and lithospheric slab evolution.
For both models the present temperature and mantle flow have been
assimilated to the geological past, and the prominent features of
mantle structures have been recovered. The results of the data as-
similation have been compared to that obtained by the VAR and
BAD methods. Based on the numerical results and the comparison
of the numerical methods, we arrive at the conclusion that the QRV
method is a highly promising approach to assimilation of geophys-
ical data related to mantle dynamics.
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A P P E N D I X A : N U M E R I C A L M E T H O D S
E M P L OY E D

In the model domain � we assume a uniform spatial partition xmi
i =

mi hi with the gridpoints ωm1m2m3 = (xm1
1 , xm2

2 , xm2
3 ), where mi =

0, 1, 2, . . . , ni, hi = li/ni and i = 1, 2, 3. The spatial partition
defines the computational grid. The diameter of the partition of the
time interval is τ . Let Tn

ijk denote the value of the corresponding
grid function at the gridpoint ω ijk at the time tn ∈ [0, ϑ], where the
lower case subscripts ijk denote the gridpoints and the upper case
superscript n indicates the time step.

A1. The numerical method for solving the heat problem

The characteristic-based semi-Lagrangian method (Courant 1952;
Staniforth & Coté 1991) is used to calculate the convective deriva-
tives of the heat eq. (15). It accounts for the Lagrangian nature of
the advection process but, at the same time, it allows computations
on a fixed grid. We rewrite the heat equation in the following form

DT/Dt = ∇2T + f, DT/Dt = ∂T/∂t + u · ∇T . (A1)

The aim of such a splitting is to solve the first equation on the
characteristics of the second equation. This method has been used
in advection-diffusion systems due to two useful properties of the
approximations: (i) a relatively large time step may be used in a
numerical simulation, and (ii) it is stable and accurate for arbitrary
relations between the time and space steps (e.g. Ewing & Wang
2001). Moreover, the implementation of this method with a high-
order interpolation of the space variables yields a minimum error in
the variance. In particular, such an approach is used in meteorology,
where the time step must be large to ensure computational efficiency
(e.g. Staniforth & Coté 1991).

Eqs (A1) are approximated by finite differences in the following
form

T n+1
i jk − T n

d

τ
= ∇2

T n+1
i jk + T n

i jk

2
+ f n+1

i jk + f n
i jk

2
, (A2)

Dz/Dt = u(t, z), z(tn+1) = za, (A3)

where T n
d is the temperature at the point zd . The point zd is obtained

by solving eq. (A3) backward in time with the final condition za ,
which should coincide with the corresponding gridpoint ω ijk at t =
t n+1. A solution to (A3) can be obtained by solving the following
system of non-linear equations by an implicit method (the number
of equations is equal to the number of gridpoints):

zd = za − yk, yk+1 = τu(tn, za − 0.5yk),

y0 = τu(tn, za), k = 0, 1, 2, . . . . (A4)

It can also be solved using the explicit predictor–corrector method

z∗ = za − τu(tn, za), zd = za − τu(tn, z∗). (A5)

The point z∗ does not necessarily coincide with a gridpoint, and the
velocity at this point can be obtained by using the interpolation of
the velocities at the adjacent gridpoints. The value of T n

d at the time
t = tn and at the point zd can also be obtained by interpolation.

The total error of the method is estimated to be O(τ 2 + h2 + τ s +
τ−1h1+q ) and is not monotonic with respect to the time step τ , where
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s is the order of integration of eq. (A3) backward in time, and q is
the interpolation order (McDonald & Bates 1987; Falcone & Ferretti
1998). For example, s = 2 for the predictor–corrector method (A5),
and s = 4 for the Runge-Kutta method. If cubic polynomials are
used for interpolation, then q = 3; for linear interpolation q = 1.

A solution to (A4) can be obtained in 3–4 iterations, if Newton’s
method is used to solve the set of the non-linear equations and
the Courant–Friedrichs–Lewy condition τ ‖∂u/∂x‖ < 1 is satisfied
(Courant et al. 1928). This condition guarantees that the trajectories
of the characteristics do not intersect at one time step. The procedure
of solving the characteristic equation forward and backward in time
is unconditionally stable. Method (A5) is easier to implement, but
it is inferior to method (A4) in terms of accuracy.

The 3-D spatial discrete operator associated with the diffusion
term in eq. (A2) is split into 1-D operators as ∇2 ≈ �1 + �2 + �3,
and the latter operators are approximated by the central differences:

�1T n
i jk = T n

i+1 jk − 2T n
i jk + T n

i−1 jk

h2
1

, i = 1, 2, . . . , n1 − 1. (A6)

At the boundary gridpoints i = 0 and i = n1, an approximation for
�1 is obtained from (A6) with regard for the boundary conditions
(16). Expressions for �2 and �3 are determined similarly. The set
of difference equations for the approximation of the heat eq. (15)
on a uniform rectangular grid has the form:

T +
i jk = T [tn, ωi jk − τu(tn, zd )], (A7)

T ∗
i jk = T +

i jk + 1.5τ�1

(
T ∗

i jk + T +
i jk

) + 1.5τ
(

f n+1
i jk + f n

i jk

)
, (A8)

T ∗∗
i jk = T +

i jk + 1.5τ�2

(
T ∗∗

i jk + T +
i jk

)
, (A9)

T ∗∗∗
i jk = T +

i jk + 1.5τ�3

(
T ∗∗∗

i jk + T +
i jk

)
, (A10)

T n+1
i jk = (

T ∗
i jk + T ∗∗

i jk + T ∗∗∗
i jk

)
/3. (A11)

In the numerical implementation of this scheme, 3(n1n2n3) eqs (A4)
or (A5) and 3(n1n2 +n1n3+ n2n3) independent sets of linear alge-
braic eqs (A8)–(A10) with tridiagonal (diagonally dominant) matri-
ces should be solved. To determine T +

ijk the velocity and temperature
should be interpolated at the point zd . Equations (A8)–(A10) can
be solved independently, and hence the numerical code is designed
for multiprocessor computer using the method of tridiagonal matrix
factorization (e.g. Axelsson 1996).

A2. The numerical method for solving the regularized
backward heat problem

We employ the total variation diminishing (TVD) method (Harten
1983) to solve the regularized backward heat problem (19)–(22).
Notice that when oscillations (e.g. due to non-smoothness of the so-
lution or jumps in physical parameters) arise, the numerical solution
will have larger total variation of temperature (that is, the sum of
the variations of temperature over the whole computational domain
TVn = ∑

i |T n
i+1 jk − T n

i jk |+
∑

j |T n
i j+1k − T n

i jk |+
∑

k |T n
i jk+1 − T n

i jk |
will increase with oscillations). The TVD method is designed to
yield well-resolved, non-oscillatory discontinuities by enforcing that
the numerical schemes generate solutions with non-increasing total
variations of temperature in time (that is TVn+1 ≤ T Vn), thus no spu-
rious numerical oscillations are generated (Ewing & Wang 2001).
The TVD method can describe convection problems with large tem-
perature gradients very well, because it is at most first-order accurate

at local temperature extrema (Wang & Hutter 2001). Note that the
characteristic-based semi-Lagrangian method described in Section
A1 can be also used to solve the problem.

Consider initially an approximation of the advection term of Eq.
(19):

�1 = u1β∂T/∂x1 ≈ (
F+

x1
− F−

x1

)
/h1, (A12)

F+
x1

= 0.5u1β,i jk

(
T +

i+1/2 jk + T −
i+1/2 jk

)
− 0.5

∣∣u1β,i jk

∣∣ (T +
i+1/2 jk − T −

i+1/2 jk

)
, (A13)

F−
x1

= 0.5u1β,i jk

(
T +

i−1/2 jk + T −
i−1/2 jk

)
− 0.5

∣∣u1β,i jk

∣∣ (T +
i−1/2 jk − T −

i−1/2 jk

)
, (A14)

T −
i+1/2 jk = Ti jk + 0.5ϒ(ξi )(Ti+1 jk − Ti jk),

T +
i+1/2 jk = Ti+1 jk − 0.5ϒ(ξi+1)(Ti+2 jk − Ti+1 jk), (A15)

T −
i−1/2 jk = Ti−1 jk + 0.5ϒ(ξi−1)(Ti jk − Ti−1 jk),

T +
i−1/2 jk = Ti jk − 0.5ϒ(ξi )(Ti+1 jk − Ti jk), (A16)

ξi = (Ti jk − Ti−1 jk)/(Ti+1 jk − Ti jk),

ϒ(ξ ) = max {0, min {1, 2ξ} , min {ξ, 2}} , (A17)

where ϒ (ξ ) is a ‘superbee’ limiter (Sweby 1984). Expressions
for �2 and �3 are determined similarly. The solution based on
the TVD method gives a second-order accurate solution (Wang &
Hutter 2001). Since the formula (A17) can generate logical difficul-
ties in the case of Tijk = T i−1 jk = T i+1 jk , the following alternative
representation of (A17) is used in our computations:

ϒ(ξi )(A) = L(A, B) = ϒ(1/ξi )(B),

A = Ti+1 jk − Ti jk, B = Ti jk − Ti−1 jk,
(A18)

L(A, B) = 0.5(sign(A)

+ sign(B)) max{min{2|A|, |B|}, min{|A|, 2|B|}}.
(A19)

This representation of the limiter ϒ has an explicit symmetric
form compared to (A15)–(A17). The TVD numerical scheme was
tested using known solutions to simple advection equations and
also compared to another TVD numerical scheme by Samarskii &
Vabishchevich (1998).

The 3-D spatial discrete operator associated with the diffusion
term in Eq. (19) is split into 1-D operators as ∇2 ≈ �1 + �2 + �3,
and the latter operators are approximated by the central differences
(A6) as described in Section A1. The regularization term in Eq. (19)
is approximated by the differences � ≈ �1 + �2 + �3 and

�1(Ti jk) =
Ti+2 jk − 4Ti+1 jk + 6Ti jk − 4Ti−1 jk + Ti−2 jk

h4
1

, i = 2, 3, ..., n1 − 2.

(A20)
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The difference function �1 is approximated with regard for the
boundary conditions (20) and (21) at the gridpoints i = 0, 1 and i =
n1 – 1, n1. The expressions for �2 and �3 are determined similarly.

The system of difference equations for the approximation of the
regularized backward heat equation on a uniform rectangular grid
has the form

T ∗
i jk − T n

i jk

3τ
+ β

�1(T ∗
i jk − T n

i jk)

3τ
= �1T n

i jk − �1T n
i jk, (A21)

T ∗∗
i jk − T n

i jk

3τ
+ β

�2(T ∗∗
i jk − T n

i jk)

3τ
= �2T n

i jk − �2T n
i jk − f n

i jk, (A22)

T ∗∗∗
i jk − T n

i jk

3τ
+ β

�3(T ∗∗∗
i jk − T n

i jk)

3τ
= �3T n

i jk − �3T n
i jk, (A23)

T n+1
i jk = (T ∗

i jk + T ∗∗
i jk + T ∗∗∗

i jk )/3. (A24)

The total error of the numerical method is O(τ + h2), and the it-
erations are stable at β > τ 2/16. Considering the independence of
eqs (A21)–(A23), they can be solved on a parallel computer us-
ing the method of five-diagonal matrix factorization (e.g. Axelsson
1996).
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