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[1] We show that a simple, modified version of the
Magnetorotational Instability (MRI) can develop in the
outer liquid core of the Earth, in the presence of a background
shear. It requires either thermal wind, or a primary instability,
such as convection, to drive a weak differential rotation
within the core. The force balance in the Earth’s core is very
unlike classical astrophysical applications of the MRI (such
as gaseous disks around stars). Here, the weak differential
rotation in the Earth core yields an instability by its
constructive interaction with the planet’s much larger
rotation rate. The resulting destabilising mechanism is
just strong enough to counteract stabilizing resistive
effects, and produce growth on geophysically interesting
timescales. We give a simple physical explanation of the
instability, and show that it relies on a force balance
appropriate to the Earth’s core, known as magnetostrophic
balance. Citation: Petitdemange, L., E. Dormy, and S. A.

Balbus (2008), Magnetostrophic MRI in the Earth’s outer core,

Geophys. Res. Lett., 35, L15305, doi:10.1029/2008GL034395.

1. Introduction

[2] The Magnetorotational Instability (MRI) is important
for differentially rotating astrophysical objects such as
gaseous disks, because it forces a breakdown of laminar
flow into turbulence, producing the enhanced dissipation
and transfer of angular momentum necessary for accretion
of matter onto the central massive object [Balbus and
Hawley, 1991]. Disk investigators began with purely hy-
drodynamical candidate mechanisms, but now the center of
interest is squarely upon magnetohydrodynamics. Interest in
the Earth’s core, by contrast, has been magnetic almost from
the start. The principal problem, of course, has been to
understand how fluid motions in the core generate a
magnetic field. This is often approached via kinematic
processes in which a hydrodynamically turbulent fluid
exponentially amplifies a very weak seed magnetic field.
Here, we argue that a version of the MRI, dynamically
coupling both the velocity and the magnetic field, can also
provide a mechanism for linear instability in the Earth’s
core. While this mechanism is not meant to serve as the
primary dynamo process, it could be an important source of
secondary instabilities and magnetic secular variation.
[3] We are hardly the first authors to study the effects

of differential rotation on the dynamical stability of the

geodynamo [see, e.g., Acheson, 1983; Ogden and Fearn,
1995; Fearn et al., 1997]. But in previous calculations
the emphasis has been upon purely azimuthal fields,
nonaxisymmetric disturbances, and magnetic instabilities.
In this work, the dynamical focus is much different. Here
the magnetic coupling is to the poloidal field components,
axisymmetric disturbances are front and center, and the
instability, while relying on the presence of a magnetic
field, has its seat of free energy entirely in differential
rotation. The MRI is a somewhat novel concept in this
context, and is worthy of study in isolation. Fortunately,
it can be understood in very direct and simple physical
terms.
[4] The Earth’s core is, by comparison to accretion disks,

a relatively small object, in which resistive effects are on an
equal footing with dynamical processes. The rotation prop-
erties of the Earth also significantly differ from those of an
accretion disk. To leading order, they correspond to solid
body rotation, with only a weak differential rotation. At first
sight, it is far from obvious that the Earth’s core is a venue
for the MRI.
[5] The purpose of this letter is to show that, despite its

weak differential rotation and significant resistive effects,
the Earth’s core can in fact host the MRI. We derive a WKB
dispersion relation relevant to this asymptotic regime (i.e.
magnetostrophic balance), and demonstrate excellent agree-
ment between this local description and global numerical
simulations in spherical geometry. The final section spec-
ulates on potential applications of our results.

2. Modeling

[6] The physical parameter regime relevant to the Earth’s
outer core dynamics is relatively well constrained. In order
to investigate the MRI in a conducting fluid, it is also
necessary to provide a reasonable approximation to the
basis flow profile over which the instability may develop.
Apart from very restricted components of the velocity field,
imaging of the core flow is limited to surface flows [e.g.,
Bloxham and Jackson, 1991; Pais and Hulot, 2000; Amit
and Olson, 2004; Eymin and Hulot, 2005]. Asymptotic
studies early identified the essential role of the zonal shear
in the geodynamo [Taylor, 1964], and this has remained
central to our understanding of outer core dynamics. Nu-
merical models of convection in rotating spheres [e.g.,
Christensen, 2002] or in convectively driven dynamos
[e.g., Aubert, 2005], also observed the presence of a strong
zonal shear. Besides surface flow reconstructions, the only
(indirect) observational evidence for such shear is inferred
from seismological data that have been interpreted as
rotation of the solid inner core at a rate of about 0.15� per
year relative to the mantle [Vidale et al., 2000; see also
Dumberry, 2007]. There are no observational constraints on
the way the corresponding jump in angular velocity is

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15305, doi:10.1029/2008GL034395, 2008

1Laboratoire de Radioastronomie, Département de Physique, Ecole
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actually accommodated by the flow (spread across the
whole core radius or localised in a narrow shear layer).

3. Magnetostrophic-MRI Local Description

[7] Consider the stability of a differentially rotating fluid,
with angular velocity W a function of s and z in a standard
cylindrical coordinate system (s, f, z). The density r,
pressure P, magnetic field B are functions of s and z in
the equilibrium state, and of course depend on time t as well
when the equilibrium is perturbed. The fluid is characterized
by a kinematic viscosity n and resistivity h. We work in the
WKB limit, assuming that all linearized perturbations have
the space-time dependence

Q / exp ikssþ ikzzþ stð Þ ð1Þ

where Q is an infinitesimal (Eulerian) disturbance in a fluid
quantity. Our starting point is the general dispersion relation
of a constant density fluid adapted fromMenou et al. [2004]:

k2

k2z
~s4
hn � ~s2

hh
1

s3
D s4W2
� �� �

� 4W2 k � VAð Þ2¼ 0; ð2Þ

where

D ¼ ks

kz

@

@z
� @

@s

� �
; ð3Þ

and

~s2
hn ¼ s þ hk2

� �
s þ nk2
� �

þ k � VAð Þ2
h i

; ð4Þ

~s2
hh ¼ s þ hk2

� �2 þ k � VAð Þ2
h i

: ð5Þ

The Alfvén velocity VA is defined as VA= B/
ffiffiffiffiffiffi
mr

p
, where m is

the magnetic permittivity. Finally, we note that W is the full
angular velocity, i.e. ifW0 denotes the Earth rotation rate, and
V the velocity in the rotating frame, then W = W0 + Vf/s.
[8] To see whether the unstable MRI modes can be

present in a very simple model, we consider the case of
an initial poloidal magnetic field which is locally vertical
and W is a function only of s. (We stress here that we use a
vertical magnetic field for the sake of simplicity of the
presentation, but that the overall conclusion can be easily
extended to the case of more general applied fields.) Then

D s4W2
� �

¼ � 4W2 þ s
dW2

ds

� �

 �k2: ð6Þ

For the current application, the shear gradient is very small
compared with 4W2, and k, which is known as the ‘‘epicyclic
frequency’’ in the astrophysical literature, is very nearly 2W.
With these assumptions, the dispersion relation becomes

k2

k2z
s þ hk2
� �

s þ nk2
� �

þ k � VAð Þ2
h i2

þ 4W2 s þ hk2
� �2

þ k � VAð Þ2s dW
2

ds
¼ 0: ð7Þ

This is the form that we have used (see below) for
comparison with numerical simulations.
[9] In geodynamo applications, the viscosity is very

small compared with the resistivity (the ratio is 10�5–
10�6) and it may be dropped. The instability of interest
arises from the final term of this dispersion relation, if the
angular velocity decreases outwards. This is a small term in
the sense that W is regarded as large, and we expect that the
growth rate s will itself be very small compared with W. We
may therefore drop all s terms from our dispersion relation,
except for those which are multiplied by W2 (This procedure
may be formalized by normalizing s with respect to js dW/
dsj and then treating

e 
 s

W
dW
ds

� 10�6;

as a vanishingly small expansion parameter.) We obtain

k2

k2z
k � VAð Þ4 þ 4W2 s þ hk2

� �2 þ k � VAð Þ2s dW
2

ds
¼ 0: ð8Þ

[10] This relatively simple dispersion relation has a
correspondingly simple physical interpretation. Consider
magnetostrophic balance with an axial wave number (k =
k mboxez),

2W
 V ¼ �rrPþ 1

mr
B � rrÞB;ð ð9Þ

where P includes the material and magnetic pressures as
well as the centrifugal potential, along with the full
induction equation

@

@t
þ V � rr

� �
B ¼ B � rrð ÞV þ hr2B: ð10Þ

The equilibrium profile is to leading order Vf = s[W0 + (s �
s0) dW/ds], and B = Bez. Consider linear velocity
perturbations vs and vf, and magnetic field perturbations
bs and bf of the form exp(st + ikz). In magnetostrophic
balance, the radial and azimuthal linearized equations are
respectively

�2Wvf ¼ ikB0

m0r
bs; ð11Þ

2Wvs ¼
ikB0

m0r
bf: ð12Þ

The same components of the induction equation are

s þ hk2
� �

bs ¼ ikB0vs; ð13Þ

s þ hk2
� �

bf ¼ ikB0vf þ s
dW
ds

bs: ð14Þ
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Combining (13) and (12) leads to

s þ hk2
� �

bs ¼ � 1

2W
kVAð Þ2bf; ð15Þ

whereas (14) and (11) imply

s þ hk2
� �

bf ¼ kVAð Þ2

2W
þ s

dW
ds

" #
bs: ð16Þ

Notice the absence of pressure-like perturbations for axial
wave numbers. The last two equations combine to give

kVAð Þ4 þ 4W2 s þ hk2
� �2 þ kVAð Þ2s dW

2

ds
¼ 0; ð17Þ

which is just equation (8) for axial wave numbers.
[11] By restricting the perturbations exclusively to the

magnetic field components, equations (15) and (16) produce
a clear picture of the instability with no ’’out-of-phase’’
terms. Consider an outward radial displacement and its
associated radial magnetic field. If kVA is not too large,
the radial field is significantly sheared by the differential
rotation to produce a negative azimuthal elongation of the
field line following equation (16). This results in a positive
azimuthal magnetic tension force, which must be balanced
in the magnetostrophic regime with an opposing Coriolis
force, hence with a yet greater radially outward displace-
ment and magnetic field (15). An instability is at hand. This
mechanism is illustrated in Figure 1, and seen through a
direct simulation in Figure 2.
[12] The growing solution for s is

s ¼ k � VAj j
2W

s
dW2

ds

����
����� k2

k2z
k � VAð Þ2

� �1=2
� hk2: ð18Þ

[13] We wish to find the maximum growth rate of the
instability, which will be associated with a particular
wave vector k. The easiest way to proceed is to use
the variables

X ¼ k � VA; Y ¼ k2

k2z
; ð19Þ

with the understanding that X > 0, and the parameters

L ¼ V 2
A

2hW0

¼ B2
0

2m0rhW0

; a ¼ s
dW2

ds

����
���� ð20Þ

L is the Elsasser number, which is typically of order unity
for the Earth’s core. Then

2Ws ¼ X a� X 2Y
� �1=2 � X 2Y=L: ð21Þ

This is a decreasing function of Y everywhere, with a
maximum at the lower boundary Y = 1. This means that the
most rapidly growing wave number kz lies along the rotation
axis. Thus

2Ws maxð Þ ¼ X a� X 2
� �1=2 � X 2=L: ð22Þ

Requiring the partial derivative @/@X to vanish leads to the
polynomial

X 4 � aX 2 þ a2

4 1þ L�2
� � ¼ 0: ð23Þ

The physically meaningful wave number solution is

X 2 
 kzVAð Þ2¼ W s
dW
ds

����
���� 1� 1þ L2

� ��1=2
h i

; ð24Þ

Figure 1. Development of the magnetostrophic MRI. (a) Unperturbed field line. (b) Field line is distorted by a radially
outward displacement, and subject to velocity shear. (c) Field line develops azimuthal tension which is immediately
compensated by the Coriolis force. This compensating force requires a further displacement in the same sense of the initial
outward radial extension, and the instability proceeds.
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and corresponds to a growth rate of

s ¼ s
dW
ds

����
���� L=2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

p : ð25Þ

[14] It is of interest to examine the range of kz in which
instability exists. For the case k = kz, the dispersion relation
(8) admits growing solutions for values of kz

2 less than

k2z ¼
sdW2=ds
�� ��

V 2
A þ 4W2h2=V 2

A

: ð26Þ

Notice that when VA is very large, kz is very small because
large kz perturbations are stabilized by magnetic tension
forces. Conversely, when VA is tiny, resistivity damps large
wave number perturbations. The maximum value of kz
allowing the greatest range of unstable wave numbers
corresponds to L = 1. Hence, Elsasser numbers of order
unity naturally emerge in an MRI-influenced dynamo.
[15] At this point it is helpful to have some explicit

numbers. We take W = 7.27 
 10�5 s�1 and sdW/ds ’
10�10 s�1, the latter corresponding to a lower bound for the
angular velocity gradient in which the characteristic length
scale associated with shear in the core is the outer core
radius itself (worse case MRI scenario). With L = 1 and
h ’ 1 m2 s�1, the Alfvén velocity is 0.012 m s�1. From
equation (24), we find

kVA ’ 4:6
 10�8s�1

which translates to a wavelength of some 1600 km. The
characteristic growth time from equation (25) is then
about 1500 years. If, on the other hand, we assume that a
similar jump in angular velocity is accommodated across
a narrow shear layer, such as the Stewartson layer
[Stewartson, 1966], and assuming that the WKB
approximation remains valid, then the characteristic
growth time could be as short as a year.

[16] What is the relationship between the unstable mode
considered here and the maintenance of the classical Taylor
constraint? It is well known that in the magnetostrophic
limit, the geostrophic component of the flow must adjust to
ensure Taylor’s constraint [Taylor, 1964]. A modification of
the non-geostrophic flow similar to the one envisioned here
could in principle rapidly alter the zonal shear on which the
instability itself relies. However, in the particular config-
uration investigated, the wave number is axial. Thus, at least
in the linear phase of the disturbance, the Taylor constraint
remains unaffected.

4. Direct Numerical Simulations

[17] To demonstrate numerically the above mechanism,
we base our study on a very idealized model of the Earth
core, chosen for illustrative purposes. We consider simple
spherical Couette flow driven by enforcing differential
rotation between the inner core and the mantle. The applied
magnetic field B0 is vertical and uniform. In the simpler
hydrodynamical case, a strong shear layer will develop on
the cylinder tangent to the inner core [Proudman, 1956;
Stewartson, 1966]. With the particular choice of a vertical
applied field, this shear is only slightly modified by MHD
effects (see however Dormy et al. [1998]).
[18] In what follows, we will work in time units of

(2W0)
�1 and space units of ro, the radius of the outer

sphere. It is also convenient to introduce the dimensionless
velocity

UO ¼ VO

2roW0

; ð27Þ

where VO is the unperturbed velocity measured in the frame
rotating at W0. As before, the linear perturbed velocity is v.
For the perturbed velocity v and magnetic field b, we
introduce dimensionless variables v0 and b0:

v0 ¼ v= 2roW0ð Þ; b0 ¼ b=B0: ð28Þ

Figure 2. Snapshot of the most unstable mode in a direct simulation with E = 5 
 10�7, L = 3 and Pm = 0.5. The physical
mechanism of the magnetostrophic–MRI can be traced in the phase shifts between vs, bs and bf: bs is a quarter-period
ahead of vs, while bf is exactly out of phase by half a period with bs.
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[19] The governing fluid equations may then be written

@v0

@t
þ UO � rrð Þv0 þ v0 � rrð ÞUO ¼ �rrpþ EDv0

þ EL
Pm

rr
 b0ð Þ 
 ez � ez 
 v0; ð29Þ

@b0

@t
¼ rrrrr
 v0 
 ez þ UO 
 b0ð Þ þ E

Pm
Db0; ð30Þ

rrrrr � v0 ¼ rrrrr � b0 ¼ 0: ð31Þ

In addition to the Elsasser number L, we have introduced
the standard Ekman and magnetic Prandtl numbers, which
are respectively:

E ¼ n= 2W0r
2
o

� �
Pm ¼ n=h; ð32Þ

and p is the perturbed value of the dimensionless pressure.
[20] As a model for the Earth’s core, we investigate a

spherical shell. The angular velocity W0 is defined by the
outer sphere. In this reference frame, the inner sphere rotates
with angular velocity Wi > 0, in order for the differential
rotation to decrease outward. We define the Rossby number
as

Ro ¼ Wi=W0: ð33Þ

[21] Let us now compare the local WKB analysis (7) with
the global growth rate obtained numerically. We first need
to compute the dimensionless steady velocity profile UO. If
the magnetic field is weak enough, this can be obtained as a
solution of the hydrodynamic problem. The results are

displayed in Table 1. If the Elsasser number (20) becomes
large, the field obviously affects the steady solution, and we
then perform simulations with the steady MHD state as
initial configuration; see Table 2.
[22] To best illustrate the above theoretical analysis, we

use numerical values as close as feasible to the regime
described. Simulations use Pm = 0.5, the differential rota-
tion is weak compared to the planet rotation (Ro � 1), and
the Ekman number is decreased to small values. To
accommodate small Ekman numbers, we have implemented
an antisymmetric version of the Parody code (Dormy et al.
[1998], Christensen et al. [2001], and later collaborative
developments) with radial resolution ranging from 500 to
1000 points in radius and between 200 and 500 harmonics.
[23] Our results are summarized in Table 1. In agreement

with theoretical expectations, the radial wave vector ks
varies approximately in proportion to the dominant shear,
i.e. E1/4. The value of ks is taken from numerical simulations
by computing the width of the unstable mode at mid-
intensity, and the value of kz is obtained by direct fourier
transform. It is found that the most unstable mode’s half
wavelength generally occupies the full radial extent of the
sheared region. The inner core and the associated equatorial
singularity of the Ekman layer are the natural modal
boundaries; the equatorial singularity divides the tangent
cylinder into independent domains. Finally, to limit the
stabilizing effect of diffusion, we must use E much less than
unity.
[24] The induced azimuthal magnetic field clearly repro-

duces the mechanism of the magnetostrophic MRI (see
Figure 1), despite the presence of finite inertial and diffusive
effects (which were neglected in the theoretical calculation),
and the complications associated with a bounded spherical
domain (also neglected).
[25] Some of these cases involve large values of the

Elsasser number, one may then worry that they are not
fully self consistent. To check this, we show, in Table 2, the
instability parameters of such strong field profiles, which
now also have a (weak) dependence on L. For the field
geometry used here, however, both the rotation profile and
the applied field require relatively little adjustment. Agree-
ment with the local description is also obtained for such
configurations.

5. Conclusions and Discussion

[26] At the very least, the magnetostrophic MRI dis-
cussed here seems to be an efficient regulatory mechanism
in the outer core, providing a back reaction against the build
up of angular velocity at smaller radii.

Table 1. Results Obtained for the Most Unstable Mode in a Direct

Integration of the Governing Equationsa

2E Ro 2L sth snum p/ks p/kz
2 
 10�6 0.005 1.0 6 
 10�4 6.4 
 10�4 0.17 0.25

25 1.0 
 10�3 1.09 
 10�3 0.17 0.6
10�6 0.01 5 8.8 
 10�3 1.16 
 10�2 0.14 0.15

0.01 25 1.0 
 10�2 1.0 
 10�2 0.14 0.33
0.005 25 3.6 
 10�3 3.6 
 10�3 0.14 0.4
0.005 5 4.2 
 10�3 4.8 
 10�3 0.14 0.1
0.0025 25 2.0 
 10�4 2.3 
 10�4 0.14 0.6

5 
 10�7 0.005 50 4.0 
 10�3 4.4 
 10�3 0.11 0.25
0.005 25 6.0 
 10�3 6.4 
 10�3 0.11 0.14

15 7.0 
 10�3 6.2 
 10�3 0.11 0.125
10 7.1 
 10�3 7.6 
 10�3 0.11 0.1
5 6.0 
 10�3 6.4 
 10�3 0.1 0.071
2 3.0 
 10�3 4.8 
 10�3 0.1 0.067
1 2.24 
 10�3 3.0 
 10�3 0.1 0.058
0.5 1.16 
 10�3 1.36 
 10�3 0.11 0.11

0.005 0.3 6.96 
 10�4 2.03 
 10�4 0.1 0.14
0.0025 25 2.0 
 10�3 1.93 
 10�3 0.1 0.25
0.0075 25 6.2 
 10�3 6.6 
 10�3 0.1 0.2

2.5 
 10�7 0.0025 25 2.0 
 10�3 3.2 
 10�3 0.08 0.15
10�7 0.0025 1 3.0 
 10�4 2.2 
 10�4 0.06 0.04

25 4.0 
 10�3 4.8 
 10�3 0.06 0.083
aWe list the growth rate (snum) and the wave number (ks and kz). We also

list the growth rate (sth) obtained directly from the local dispersion relation
(7) with these wave number values. The variables E, Ro, and L are defined
in equations (20), (32) and (33). The numerical agreement is excellent.

Table 2. Results Obtained Using the Steady MHD State as Initial

Configurationa

2L sth snum p/kr p/kz
3 5.06 
 10�3 5.70 
 10�3 0.92 0.056
1 2.06 
 10�3 1.84 
 10�3 0.95 0.056
0.3 8.44 
 10�4 2.76 
 10�4 0.10 0.11

aComputations are performed with Ro = 5 
 10�3, Pm = 0.5 and E =
2.5 
 10�7. As for Table 1, both the numerical parameters of the most
unstable mode and the corresponding theoretical growth rate are reported.
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[27] More interestingly, might there be traces of the
magnetostrophic MRI in geomagnetic observations? Be-
cause of the severe limitations in our knowledge of differ-
ential rotation within the Earth’s core, it is not possible to
offer any kind of definitive treatment. It is, however,
interesting to note that some axial variation in the zonal
flow is required to account for changes in the length of the a
day over millennial timescales [Dumberry and Bloxham,
2006]. In that respect, it is interesting that axial wave
number disturbances grow particularly rapidly in the model
studied here.
[28] Another tentative application is based on the obser-

vation that the growth rate in question is directly propor-
tional to the shear, which as noted could be highly localized.
In this case, growth times considerably shorter than 1500
years are possible: in principle, shear times of order years
could be produced. This suggests a possible connection with
the observations of rapid events of internal origin, known as
‘‘geomagnetic jerks’’ or ‘‘geomagnetic impulses’’. These
rapid changes in the secular variation were detected and
characterized from observatory data [Courtillot et al., 1978;
Le Mouël et al., 1982] and found to correspond to localised
patches of rapid field variation at the surface of the core
[Dormy and Mandea, 2005]. We reemphasize, however,
that the establishment of a compelling link between MRI
unstable configurations in the Earth core and geomagnetic
impulses will require considerably more effort. Never-
theless, the MRI offers for consideration a novel magneto-
hydrodynamic mechanism that is able to induce significant
field variations over a range of observationally interesting
timescales.
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from the French Ministry of Higher Education and Région Ile de France.
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