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[1] Spherical cap harmonic analysis (SCHA) has become a common tool for the regional modeling of
potential fields since its introduction by Haines (1985). The fact that SCHA satisfies Laplace equation and
the possibility of representing high-frequency fields with a small number of coefficients (compared to the
global spherical harmonic analysis) made SCHA the preferred choice for the development, for example, of
magnetic field models at national scale. However, Thébault et al. (2006a) demonstrated that the traditional
SCHA presented some deficiencies, in particular related to the inversion of multilevel data sets. The
authors presented the R-SCHA technique as an alternative method in which the introduction of a new set of
basis functions and boundary conditions solved this issue. In this paper we present some numerical
comparisons between the SCHA and R-SCHA techniques applied with different synthetic vector data sets,
from near-surface main field, main difference, and crustal field data simulating a World Digital Magnetic
Anomaly Map subset. Other analyses are carried out with synthetic vector data set that mimics the
expected data distribution from a multisatellite mission like the forthcoming European Swarm mission. No
regularization, weighting, or ad hoc procedures are applied to the synthetic vector data, and a cap of 7°
aperture is considered. The numerical analyses show that SCHA is a satisfying approximation in a band-
limited spectral region that depends on the cap’s size. It does not work correctly either for main field or for
the short-scale crustal field modeling. These aspects are supported by equations illustrating why SCHA
may fail. On the contrary, R-SCHA converges more slowly than SCHA but is valid in all cases. It gives a
consistent set of regional coefficients and fits the radial variation of the field in a realistic way. At last, the
special case of data incompatibility shows that R-SCHA does not fit incompatible data while SCHA
assimilates most of them. These results should help the scientific community to evaluate the level of
approximation needed for the development of regional magnetic field models in the era of the European
Space Agency Swarm mission.
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1. Introduction

[2] Spherical cap harmonic analysis (SCHA
[Haines, 1985]) has been the most used modeling
technique for all kinds of geomagnetic studies at
regional scales during the last two decades (see
Table 1 of Torta et al. [2006] for a review). SCHA
potential Vgcry is a solution of the Laplace equa-
tion over a bounded regional cap of half-angle 0,:

Vscra = az E ( )”kﬂ

k>m m>0

. (g,;k cos(me) + h”" sin(m(p))P;'; @)

+ az Z < )nk (gm cos(me) + hy" sin(mqy))

k>m m>0

- Py (0) (1)

with gy and A, the SCHA coefficients defining
the internal and external potentials, represented by
the superscript i and e. The associated Legendre
functions P;(#) satisfy mixed boundary conditions
on 0y, giving rise to real degrees n;, where k is an
ordering index.

[3] Despite the apparently realistic results offered
by the technique and its popularization through the
publication of a software package [Haines, 1988],
there are limitations that have been brought to light
by applying the technique. These deficiencies (dis-
cussed in section 2) can all be explained by the
incompleteness of the basis functions.

[4] A variety of solutions under the homonymous
name revised spherical cap harmonic analysis (R-
SCHA) were presented to solve most of the SCHA
drawbacks. The early version proposed by
Thébault et al. [2004] requires a flux correction
to be fully efficient. Another development
[Thébault et al., 2006a] is directly suitable for
inverse problems involving multilevel data sets
[Thébault et al., 2006b]. For the case of data
available only at one surface, R-SCHA2D has been
recently proposed and should provide the best
model coefficients [Thébault, 2008].

[s] These different solutions behave diversely
depending on the chosen boundary conditions,
the amount of data and their distribution: if the
flux-corrected solution given by Thébault et al.
[2004] is particularly efficient for representing the
main magnetic field, the solution given by
Thébault et al. [2006a] is more convenient when
dealing with the lithospheric field, and R-SCHA2D

[Thébault, 2008] when solving for the secular
variation using repeat station data. However, all
solutions have the same canonical form:

Vr-scHa = az Z

k>m m>0

. (E)Wr <gn cos(me) + h’ o sm(m(p))PfZ ()

r

+ “Z Z ( ) (gnk cos(m) + k" SlH(’”‘P))

k>m m>0

+az ZRP(’")

p=0 m>0

: (g,? cos(mg) + g sin(mp) ) K7'(0) )

[6] Compared to SCHA, R-SCHA involves an
extra set of basis functions K,'(f), known as
Mehler functions, but uses only one set of Legen-
dre basis functions. p is an ordering integer index.
R, are radial functions that represent the radial
variation of the magnetic field inside the conical
domain, provided that data are available at different
altitudes. Any potential field radial function of the
form (a/r)", with n € Z can be expressed as a
Fourier expansion upon these functions. R-
SCHA2D works only for data measured at com-
parable altitudes, apart from this particular
solution, R-SCHA solutions form a complete or-
thogonal basis on the interval limited by the upper
and lower surfaces. The difference between R-
SCHA and R-SCHAZ2D lies in the choice of the
Mehler and the radial functions in equation (2).
Compared to SCHA, R-SCHA and R-SCHA2D are
mathematically complete solutions that turns to be
equivalent to global spherical harmonics when the
series expansion is infinite. SCHA does not satisfy
this equivalence, as will be seen below.

[7] However, SCHA continues to be widely used
when merging satellite and near-surface data
[Hitchman and Lewis, 2007; Kotzé et al., 2007],
and when developing models using single-surface
measurements [Gaya-Piqué et al., 2008]. Some
questions arise from these studies. Were SCHA
limits properly evaluated and what is the influence
of the modeling technique on them? Our purpose is
thus to compare SCHA and R-SCHA from a
theoretical point of view and through applied
examples. The considered case studies are close
to real cases, including data noise and realistic
configurations from near-surface to satellite alti-
tudes. The incompatibility between ground data
and satellite data is also explored. These tests are
limited to internal field vector data, and mainly
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restricted to lithospheric field as SCHA diverged
for other cases.

[8] The objective of this paper should be placed in
the context of the forthcoming European Swarm
satellite mission [Friis-Christensen et al., 2006],
foreseen for 2010, and the World Digital Magnetic
Anomaly Map project [Korhonen et al., 2007]. The
possibility of merging satellite data and near-
surface data opens a new range of opportunities
for the study of the crustal field and regional analysis
will certainly become a regular activity in the forth-
coming years. The choice of the analyzing technique
will be of crucial importance to recover the full
spectral range of the magnetic signal.

2. Known Theoretical Limits in SCHA

[v] Both SCHA and R-SCHA have limitations in
their practical applications. When looking into the
SCHA scientific literature these problems are
sometimes underestimated [7orta et al., 2006]
although it is essential to keep them in mind in
order to avoid wrong geophysical interpretations.

2.1. Long-Wavelength Representation

[10] Long-wavelength modeling, like secular vari-
ation [Korte and Haak, 2000; Korte and Holme,
2003] or solar quiet variation representation [7orta
et al., 1997; Gaya-Piqué et al., 2008] has been
carried out with SCHA. De Santis et al. [1999]
discussed the relationship between SCHA and
spherlcal harmonics (SH) A special attention was
given to the term g, a nonexisting term in SH.
Since SCHA applications empirically proved to be
more stable when this coefficient was low in
amplitude, a common procedure consists in remov-
ing a reference model before applying SCHA. The
incompleteness of SCHA basis functions is the
origin of this important preprocessing.

[11] Consider the SCHA basis functions defined by
Pyi(6p) = 0, for instance. This carries the implicit
assumption that the vertical component of the
magnetic field averages out over the spherical
cap [Thébault et al., 2006a]. Similarly, the func—
tions defined as dP’"k(Ho)/dH = 0 imply fo By
sinfode = 0 [Thébault, 2008]. Unless the consid-
ered magnetic field satisfies these conditions, none
of the basis functions by itself is sufficient to
represent the magnetic field in a general way.
The fundamental reason for merging both sets of
SCHA basis functions is to partly get rid of such
drastic individual assumptions, which does not
necessarily provide a robust and physical model.

Remaining problems are traditionally overcome by
enlarging the size of the cap [e.g., Torta et al.,
1992].

2.2. Radial Extrapolation of the Field

[12] Haines [1985] showed that SCHA models
deteriorate with altitude. At present, this has a
strong repercussion due to the increasing possibil-
ity of merging near—surface and satellite data. In
practice, the coefficients g7’ and /57" (considering
internal potential only) are found in the least
squares sense by minimizing:

X =l Vscra — Ve |I3q,

with 0§2,, the spherical cap domain defined by {0 <
0 < 6y, 0 < ¢ <27, r=>b}. The solution is [De
Santis et al., 1999; Thébault, 2003, section 5.1]:

Uk -0 ey o

Mk n=m

where g, and &, are the SH Gauss coefficients,
and m the integer degree and order, and A}"" a
transformation matrix, independent of r, equal to
identity if n;, = n. SCHA coefficients are therefore
altitude-dependent and multilevel data sets cannot
be simultaneously modeled. Similarly, a model
obtained at a given altitude can hardly be
extrapolated to other altitudes. This issue is less
prominent (although not negligible) when dealing
with larger caps because n; — n when 6, — .

2.3. Internal-External Field Separation

[13] Torta et al. [1992] found that both internal and
external coefficients improved the fit to a synthetic
internal field input data set. When studying equiv-
alent current systems over Europe, Torta and De
Santis [1996] showed that internal and external
coefficients, when used separately, were not able to
properly describe the respective contributions.
Again, an acceptable accuracy was obtained with
an artificially large cap, i.e., larger than the area
covered by the available data.

[14] An analytical illustration of these results could
be the following one: at two surfaces » = ¢ and r =
b, with b > a, the system of equations defined by
(3) has no solution unless b = a or b = co. We
therefore must consider also g to obtain a system
with two equations and two unknowns. In spite of
the internal origin of the magnetic field, both
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internal and external coefficients are necessary (but
not sufficient, as SCHA is incomplete) to fit data
obtained at different altitudes. The physical mean-
ing of internal and external coefficients is thus not
straightforward.

2.4. Compromise in the Simultaneous Fit

of Hand Z

[1s] The basis function incompleteness translates
into a theoretical impossibility to simultaneously
solve for H and Z. Torta et al. [1992] observed that
the compromise was more important for smaller
caps. We propose the following explanation to this
problem. Similarly to equation (3), but for Z, the
solution that minimizes:

X =l Zscua — Zsu |13,

1s [Thébault, 2003, section 5.3]:
AN VAT
{h;;ﬂ} —;m(l+nk+1)<?) A {hg} )

[16] Comparing equation (4) with (3) drives us to
the conclusion that solving simultaneously for H
and Z is mathematically inconsistent. In addition,
both equations diverge from each other with in-
creasing degrees n;. The situation improves for
large caps, as n-n; becomes small, but high-
resolution modeling is not permitted.

3. Known Theoretical Limits in R-SCHA

[17] R-SCHA was developed to address SCHA
shortcomings [Thébault et al., 2004]. There are,
however, two remaining fundamental difficulties
that cannot be easily solved. The first one is related
to the internal-external separation. As in SCHA,
this concept cannot simply be explored by looking
at the coefficients. This problem is more evident
since the new Mehler coefficients g, have no
trivial meaning. Each set of coefficients plays a
separate role within the cone: g;;7" coefficients are
more important in the lower part of the region,
while gy are more significant in the upper part.
By construction, g, coefficients are dominant near
the lateral edges.

[18] The second problem with R-SCHA is the
series convergence rate. It is well known that
Fourier-like series converge slowly toward the
solution; this applies to R-SCHA (as it does with
SCHA when only one set of basis functions is

considered). This is no difficulty if enough data are
available but can be a problem in case of inverse
problems involving few data points.

4. Case Studies and Performance
Comparisons

[19] Many theoretical shortcomings come along
with the traditional SCHA technique, but it is
necessary to compare SCHA to R-SCHA or R-
SCHA2D performance in realistic cases. The pur-
pose of this section is to investigate different cases
close to reality.

[20] The synthetic examples are calculated on a cap
centered at 44°N, 3°E, with 7° half-angle. Synthetic
data are computed on regular grids. In most cases,
the SH model used is POMME 3.1 model [Maus et
al., 2006], which gives an estimation of the core
and crustal field up to a maximum degree n = 90.
For some cases, a Gaussian random noise defined
by € = N(0?, 0) is added, with o =5 — 4.5 h/550 in
nT where 4 is the altitude of the data in km. 550 km
refers to the highest altitude in km of the Swarm
constellation; 4.5 nT is chosen so that the noise is
0.5 nT at 550 km altitude. For the single-surface
case, R-SCHA2D [Thébault, 2008] was used in-
stead of R-SCHA. In this study, we avoid regular-
ization [e.g., Korte and Holme, 2003; Thébault et
al., 2006a]. This allows us to concentrate on the
performance of the modeling basis functions them-
selves. For each studied case, the modeling param-
eters and RMS are given in Table 1.

4.1. Single Surface Problem
4.1.1. Fit to Main Field and Crustal Field

[21] Synthetic data are calculated from spherical
harmonic degree n = 1 to n = 90. The fit to the
main field is shown in Figure 1. As can be seen, the
SCHA model developed on the 7° cap (second
column) is not able to represent the input data and
fictitious oscillations appear all over the region.
The results were worst when going to higher
expansions but reach an acceptable accuracy for a
40° cap. The expansion was limited to K., = 10.
Both results confirm the theoretical long-wave-
length issues discussed above: fitting H and Z at
the same time is easier with larger caps (because 7y,
is closer to n) but degrades with the series expan-
sion. The best root mean square obtained (RMS)
were 5.9 nT for the X component, 7.9 nT for Y, and
9.2 nT for Z.
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Table 1. Modeling Parameters, Minimum Wavelength, and Residual Mean Squares for the Applied Comparisons
Between SCHA and R-SCHA Considering the 7° Half-Angle Cap Discussed in the Text

Method
SCHA R-SCHA
Parameters Kmax Amin (km) RMS (nT) Kmax Amin (km) RMS (nT)

Main field (noise free) 10 298 7.50 15 110 0.50
Main field differences (noise free) 15 201 0.07 6 370 0.02
Main field differences sparse data (noise free) 8 370 0.10 6 370 0.02
Crustal field (noise) 12 250 4.50 12 138 4.40
Crustal field (WDMAM noise free) 22 138 14.31 21 77 14.5
Crustal field (WDMAM noise free) 23 132 19.50 30 53 10.4
Crustal field (WDMAM noise free) 36 83 34.34 35 45 8.2

Swarm: multisurface coverage (noise free) 12 250 0.14 12 138 0.40
Swarm: multisurface coverage (noise) 12 250 1.80 12 138 1.90
Swarm: data gap (noise free) 12 250 0.14 12 138 0.40
Swarm: data gap (noise) 12 250 3.70 12 138 3.70
Swarm: incompatible data (noise) 12 250 2.10 12 138 2.50

SW 0 0

Figure 1. Modeling of POMME near-surface main field data (first column) by using SCHA (second column) and
R-SCHA (third column) techniques. (top) X, (middle) Y, and (bottom) Z components. The problems presented by the
SCHA technique apparently disappear when the size of the spherical cap is much larger than the area covered by data
(fourth column).
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45'N

40°N

45°'N

5W o 5E 10°E 5W 0 .5'E 10°E

50°'N

5E 10E 5W

SE 10E

Figure 2. POMME 3.1 and 2.5 main field difference (first column), SCHA from a regular grid (second column),
SCHA (third column), and R-SCHA2D (fourth column) from a real data distribution. Real data distribution is shown
on the bottom right (diamonds). (top) X, (middle) Y, and (bottom) Z components.

[22] The R-SCHA approach does not need any
special treatment (third column in Figure 1). For
this particular model, the RMS values with respect
to the input data are below 1.2 nT for Z and below
0.02 nT for X and Y for series expansion up to
K ax = 15 in equation (2).

4.1.2. Fit to Main Field Differences

[23] SCHA is traditionally used after a global
reference field was subtracted first from the data.
This “detrending” is reproduced considering the
difference between models POMME 3.1 [Maus et
al., 2006], centered at epoch 2003.0 and POMME
2.5 (http://www.gfz-potsdam.de/pb2/pb23/Models/
index.html), centered at epoch 2002.5. for degrees
1 to 15. It is equivalent to correcting data with a
6 months old main field model.

[24] For equally distributed data SCHA performs
well in terms of statistics (RMS = 0.07 nT) but the
model exhibits oscillations that betray the difficulty
of SCHA to simultaneously fit the three compo-
nents (Figure 2). In fact, the inverse problem is
already unstable.

[25] Ground data are usually sparsely distributed.
This case is analyzed using repeat station and
observatory data inside the cap between 1965 and
2003. The POMME models difference is used
again. Data location are obtained at the World Data
Center, Edinburgh and the series expansions are
adjusted considering the real data distribution (see
Table 1). SCHA fits well the data but the model
calculated on a regular grid is very noisy.

[26] The parameter correlation between these two
cases is 0.5. R-SCHA2D also fits well the data and
predicts correctly the field outside the data loca-
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Figure 3. Modeling of POMME near-surface crustal field noisy data (first column) by using SCHA (second
column) and R-SCHA (third column) techniques. (top) X, (middle) Y, and (bottom) Z components. Noise-free data

are shown in the fourth column.

tion. The parameter correlation between the two
cases is 0.99 for R-SCHA2D.

4.1.3. Fit to Long-Wavelength
Crustal Field

[27] This third test is carried out with noisy data
(Gaussian noise) calculated from degrees n = 15 to
n =90 of POMMES3.1. For lithospheric fields, it is
not necessary to increase the size of the spherical
cap in SCHA (Figure 3). Removing degrees n = 1
to 14 is efficient and reduces the problem of misfit
between H and Z. RMS values are 4.6, 4.7, and
4.4 nT for X, Y, and Z components, respectively.
These values are comparable to R-SCHA2D sta-
tistics (4.1, 4.2, and 3.7 nT, respectively). It can
therefore be concluded that both SCHA and R-
SCHAZ2D techniques are statistically equivalent in

the case of single-surface large wavelengths crustal
field modeling, being both able to model the input
data up to the noise level.

4.1.4. Fit to Long- and
Medium-Wavelength Crustal Field

[2s] We now use a SH model from degree n =12 to
600 representing a minimum wavelength of 67 km
at the Earth’s surface (NGDC-720, http://
www.ngdc.noaa.gov/geomag/EMM/emm.shtml).
It is based on the World Digital Magnetic Anomaly
Map [Korhonen et al., 2007]. Synthetic data are
calculated on a regular grid of 5352 points. Figure 4
shows that SCHA has difficulties to fit the vector
data. The SCHA model is limited to a spatial
resolution somewhere around 130 km (see
Table 1). Going to higher series expansion leads
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45'N

40'N

50'N

45N

40°N

50N

45'N
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Figure 4. Modeling of NGDC-720 near surface crustal field (first column). SCHA model at 138 km (second
column) and 132 km (third column) resolution. R-SCHA2D model at 45 km resolution (fourth column). (top) X,

(middle) Y, and (bottom) Z components.

to unstable SCHA (note the increase of RMS with
Kmax in Table 1). This confirms the fit problem
between the H and Z components. For high series
expansion, equations (3) and (4) diverge from each
other. SCHA is thus band limited between wave-
lengths shorter than the size of the cap but greater
than some minimum wavelength imposed by nu-
merical limitations. R-SCHA2D converges slowly
but the data are represented to their resolution.

4.2. Multisurface Problem

[20] The Swarm mission will provide the best ever
survey of the Earth’s magnetic field between 350
and 550 km altitude [e.g., Olsen et al., 2006]. In
this section we compare SCHA and R-SCHA on a
data set that mimics the multisatellite Swarm

configuration. Figure 5 shows the data distribution
with values at the mean Earth’s radius, between
350 and 450 km altitude at 20 km interval, and
between 500 and 550 km at 10 km spacing. From
now on, synthetic data are calculated from spher-
ical harmonic degree 15 to 90.

4.2.1. Swarm-Like Distribution: Complete
Multisurface Coverage

[30] Figures 6—8 present the residual between
noise-free data and SCHA (second column) or R-
SCHA (third column) for the three components at
different altitudes. SCHA performs better in this
case. R-SCHA models have edge effects due to the
poor radial data coverage. Mehler functions in
equation (2) are not very well constrained. Regu-
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Altitude (km)
200 300 400 500 600

100

Figure 5. Locations where the POMME model has been calculated for the multilevel tests with a data gap between

0 km and 350 km altitude.

larization is needed to reduce these oscillations.
Although this is a common procedure [e.g., Haines
and Torta, 1994; De Santis et al., 1996; Korte and
Holme, 2003], the purpose of this manuscript being
to objectively compare both technique, we avoided
regularization.

[31] When noise is added (Figures 9—11), both
SCHA (second column) and R-SCHA (third col-
umn) models fit the data (first column) to the noise
level (shown in the fourth column for comparison).
Only fit up to 200 km is shown since both models
look equivalent beyond that altitude. In the case of
lithospheric field noisy data R-SCHA and SCHA
are almost equivalent, even though R-SCHA con-
verges slower (see Table 1).

4.2.2. Swarm-Like Distribution: Data Gap
at the Earth’s Surface

[32] Besides the Swarm mission, other contempo-
rary initiatives are contributing to improve our
knowledge of the magnetic field. Among them,
the World Digital Magnetic Anomaly Map
(WDMAM) project is an international effort to

merge together available aeromagnetic compila-
tions and near-surface magnetic anomaly data
[Korhonen et al., 2007]. However, current compi-
lations and data do not cover all areas in the world.
In this comparison, a region devoid of data at the
surface is considered (Figure 12, bottom left).
Satellite altitudes are well covered.

[33] In the case of noise-free data (Figures 12—14),
SCHA fits the data properly and interestingly
predicts fairly well the field inside the gap region.
For the R-SCHA model (residuals shown in the
third column) fictitious oscillations appear not only
at the surface but extend up to 200 km with
important border effects. However, the fit of the
SCHA model becomes extremely bad (residuals
above 400 nT) when noise is added to the data
(Figures 15—17). SCHA estimated coefficients
show large differences between noise and noise-
free data modeling. The correlation between both
sets of coefficient is 0.60. To the contrary, the R-
SCHA model gives approximately the same results
in both cases. The correlation between the two sets
of parameters is 0.99. In a real noisy data situation,

Figure 6. Modeling of POMME multilevel crustal field data (first column). Residuals between data and SCHA
(second column) and between data and R-SCHA (third column) techniques, from 0 km (sixth row) to 500 km (first

row) at 100 km interval. X component.
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SCHA (second column) and between data and R-SCHA (third column) techniques, at (bottom) 0 km, (middle)
100 km, and (top) 200 km. The fourth column shows the added random noise. X component.
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Figure 15. Modeling of POMME multilevel crustal field data with a subregion devoid of near-surface
measurements (first column). Residuals between synthetic model with noise (first column) and SCHA (second
column) and between original synthetic model and R-SCHA (third column) techniques, at (bottom) 0 km, (middle)
100 km, and (top) 200 km. X component. The noise is shown in Figure 9.

R-SCHA converges slower than SCHA but is more
stable inside data gaps.

4.2.3. Swarm-Like Distribution:
Incompatible Surface and Satellite Data

[34] Another very likely situation is having to deal
with incompatible data. All nonlithospheric field
contributions contaminate data in very different
ways [e.g., Hamoudi et al., 2007] and long-wave-
length near-surface and satellite data are usually
incompatible [e.g., Ravat et al., 2002]. In order to
investigate this situation, ground synthetic data are
calculated with the lithospheric field model (up to
n = 150) used to carry out the End-to-End Plus
simulator of the forthcoming Swarm mission
[Olsen et al., 2007]. The synthetic Swarm model
and POMME have a spherical harmonic degree
correlation degrading with the degree.

[35] The results in Figures 18—20 are eloquent.
While R-SCHA has the correct behavior and does
not adjust to incompatible data (third column),
SCHA fits the data with an average error below
5 nT. If noise were added, this aspect of SCHA
would not have been detected. Note that if R-
SCHA residuals are higher at the lowest surface
it is because we have more satellite than near-
surface data. In a real situation residual field data
are partially incompatible as a result of different
processing techniques applied to the original meas-
urements. This shows that in the case of highly
incompatible data SCHA models have inconsistent
spatial spectral content while R-SCHA will poorly
fit the data.

5. Conclusions and Discussion

[36] Most theoretical issues discussed in this paper
are confirmed when performing synthetic inverse
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Figure 16. Same legend as in Figure 15 for Y. The noise is shown in Figure 10.

problems. SCHA and R-SCHA regional modeling
techniques have been compared by checking the
output models with different data sets and scenar-
ios. When considering near-surface main field data,
SCHA does not work correctly. When considering
a partial detrending (i.e., removing an incomplete
main field), SCHA behaves better but shows un-
realistic small scales oscillations for perfectly dis-
tributed data and it is rather unstable in a real data
distribution situation. Realistic SCHA results are
obtained within a band limited spectral domain. It
is not permitted to expand the series to very high
degree with SCHA and thus, to represent high-
resolution data. For the cap size analyzed here, the
model is stable between wavelengths A, = 2500
km and A, = 130 km considering an ideal data
distribution.

[37] Further work was carried out within this
band limited spectral region to compare SCHA
and R-SCHA using a data distribution close to
the forthcoming Swarm satellite mission. The full

illustration of the R-SCHA multilevel data perfor-
mance would have consisted in considering the
total field, a situation not permitted by SCHA. The
multilevel problem applied to noise-free data
showed that SCHA converges faster than R-SCHA.
R-SCHA requires comparatively higher series ex-
pansion. In the absence of regularization, R-SCHA
technique slightly suffers from spurious oscilla-
tion of the radial functions that are not well
constrained with the Swarm configuration. It
also comes out that R-SCHA and SCHA be-
come statistically equivalent in the case of noisy
synthetic lithospheric field data.

[33] When a gap is present in the data distribution
at the Earth’s surface, the result is more surprising.
In the case of perfect data, SCHA seems superior to
R-SCHA in terms of fit and gap prediction. This is
due to the redundancy of SCHA basis function that
increases the rate of convergence of the solution,
but at the cost of the modeling parameters present-
ing aberrant values. It is important to keep in mind
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Figure 17. Same legend as in Figure 15 for Z. The noise is shown in Figure 11.

that the inverse problem statistics does not ensure
the stability of the model. In the case of noisy data,
the prediction by SCHA is much worse than that
by R-SCHA. The SCHA basis functions being not
orthogonal, the conditioning of the inverse problem
is particularly bad in the case of data gaps. As a
result, the whole set of parameters exhibits com-
pletely new values. The convergence for R-SCHA
models is slower, but the parameter estimation is
robust and less dependent on noise or gap. Most
important was the case of incompatible data anal-
ysis. It seems that SCHA assimilates all data,
whatever their respective level of compatibility.
To the contrary, R-SCHA does not adjust to in-
compatible data. This is an important result as, in a
real situation, near-surface data are often acquired

with different platforms, at different times with
different devices. Incompatibility between satellite
and near-surface is a very common problem [e.g.,
Ravat et al., 2002]. If regional models are used to
infer hypothesis about source depth and geometry,
we should be ascertained that the technique
employed generates self-consistent models at all
wavelengths.

[39] Some very simple procedures, like the statis-
tical or physical regularization may from time to
time improve the reliability of SCHA models.
However, when evaluating a technique it is impor-
tant to consider other aspects, not discussed in
details here, like the conditioning of the inverse
problem and parameter stability. In this regard, R-

Figure 18. Modeling of incompatible data (first column) using POMME between 350 and 550 km altitude and a
Swarm synthetic model. Residuals between data and SCHA (second column) and between data and R-SCHA (third
column) techniques from 0 km (sixth row) to 500 km (first row) at 100 km interval. X component.
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SCHA is a physically well founded technique
giving rise to robust parameter estimation, while
SCHA parameter values depend on the maximum
series expansion index. All the conclusions above
have been obtained on synthetic vector data and
discussed by looking at residual maps. They have
to be interpreted in the light of the particular
characteristics of the synthetic data set used, par-
ticularly the wavelengths contained in the input
data and the aperture of the considered cap.
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