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S U M M A R Y
We propose an approximate procedure for computing coupled S waves in inhomogeneous
weakly anisotropic media. The procedure is based on the first-order ray tracing (FORT) and
dynamic ray tracing (FODRT), which was originally developed for P waves. We use the
so-called common ray tracing concept to derive approximate ray tracing and dynamic ray
tracing equations, and an approximate solution of the transport equation for coupled S waves
propagating in laterally varying, weakly anisotropic media. In our common ray tracing, ray
equations are governed by the first-order Hamiltonian formed by the average of first-order
eigenvalues of the Christoffel matrix, corresponding to the two S-wave modes propagating
in anisotropic media. The solution of the transport equation for the coupled S waves leads
to a system of two coupled frequency-dependent, linear ordinary differential equations for
amplitude coefficients, which is evaluated along the S-wave common ray. For derivation of the
FORT and FODRT equations, we use the perturbation theory in which deviations of anisotropy
from isotropy are considered to be first-order perturbations. To derive the coupled differential
equations for S-wave amplitudes, we assume that the first-order perturbations are of order
O(ω−1), where ω is the circular frequency. This makes it possible to express the amplitude
coefficients in the coupled differential equations in terms of geometrical spreading and other
quantities related to the common ray. The proposed procedure removes problems of most
currently available ray tracers, which yield distorted results or even collapse when shear waves
propagating in weakly anisotropic media are computed. The first-order approximation leads to
simpler ray tracing and dynamic ray tracing equations than in the exact case. For anisotropic
media of higher-symmetry than monoclinic, all equations involved differ only slightly from the
corresponding equations for isotropic media. If the anisotropy vanishes, the equations reduce
to standard, exact ray tracing and dynamic ray tracing equations for S waves propagating in
isotropic media. The proposed ray tracing and dynamic ray tracing equations, corresponding
traveltimes and geometrical spreading are all given to the first order. The accuracy of the
traveltimes along S-wave first-order common rays can be increased by calculating a second-
order traveltime correction.

Key words: Body waves; Seismic anisotropy; Wave propagation.

1 I N T RO D U C T I O N

In our two recent papers, Pšenčı́k & Farra (2005, 2007), we proposed the so-called first-order ray tracing (FORT) and first-order dynamic ray

tracing (FODRT) for P waves propagating in smoothly varying weakly anisotropic media. We used the perturbation theory in which deviations

of anisotropy from isotropy were considered to be first-order perturbations. In this paper, we propose an extension of the above procedures to

coupled S waves propagating in smooth, laterally varying, weakly anisotropic structures. It removes problems of standard ray tracers, which

deal with S waves separately, and yield distorted results or even collapse. The main application of the proposed procedure will be in modelling

S-wavefields in inhomogeneous weakly anisotropic media. Further applications are expected in multicomponent seismic imaging, in Kirchhoff

migrations including S or PS waves, in tomography. In all these applications, the proposed procedure can simply substitute currently used

isotropic ray tracers.

Farra (2005) proposed FORT and FODRT equations applicable separately to each of the two S waves propagating in anisotropic media.

In inhomogeneous weakly anisotropic media, however, S waves are usually coupled. Coupling can be described by various techniques, for
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example, by the ‘connection’ formulae (Thomson et al. 1992) or by the coupling ray theory (Coates & Chapman 1990; Bulant & Klimeš

2002). In the coupling ray theory, the S waves are calculated along a common ray. There are various simplified versions of the coupling ray

theory, one of them being the quasi-isotropic (QI) approximation (Kravtsov 1968; Pšenčı́k 1998). The basic idea of the QI approximation

is to seek the asymptotic solution of the elastodynamic equation as an expansion with respect to two small parameters of the same order: a

small parameter ε1(ε1 ∼ ω−1, where ω is the circular frequency) used in the standard ray series expansion (Červený 2001) and a parameter

ε2 characterizing differences of tensors of elastic parameters of the weakly anisotropic medium and of the nearby ‘reference’ isotropic

medium. The common ray for both S waves in the QI approximation is constructed in a reference isotropic medium. Along this S-wave

common ray, coupled amplitude coefficients are calculated by integrating two coupled frequency-dependent ordinary differential equations.

The QI approach has several limitations, leading to its lower accuracy. The most important of these limitations are the common ray traced in

the isotropic reference medium (such a ray may differ considerably from the trajectory along which the energy of the two coupled S waves

propagates in the anisotropic medium), the inaccuracy of the calculated traveltime and the geometrical spreading calculated along the reference

ray in the reference isotropic medium. To reduce these limitations, Bakker (2002) proposed the use of an artificial Hamiltonian obtained as the

average of the actual Hamiltonians of the two S waves propagating in an anisotropic medium. This approach led to an S-wave common ray,

which was traced in the studied anisotropic medium. In contrast to the rays of individual S waves (obtained from their actual Hamiltonians),

tracing the S-wave common ray in an anisotropic medium does not encounter problems in S-wave singular regions. In a way, tracing an S-wave

common ray is like tracing a ray of a P wave. A detailed review and analysis of S-wave common ray tracing and dynamic ray tracing can be

found in Klimeš (2006b).

In this paper, we use Bakker’s (2002) approach to extend applicability of the QI approximation. As in the QI approximation, we consider

the two small parameters ε1 and ε2. In the first step, we construct the common S-wave ray as Bakker (2002) did, by using averaged S-wave

eigenvalues of the Christoffel matrix. Instead of exact eigenvalues used by Bakker (2002), we, however, use their first-order approximations

as in Pšenčı́k & Farra (2005, 2007). We use the perturbation theory, in which the deviation of anisotropy from isotropy is considered to be a

first-order perturbation. In this way, we derive the FORT and FODRT equations along the common rays of coupled S waves. In the second

step, we derive coupled differential equations for the amplitude coefficients along the common rays. For their derivation, we assume that both

small parameters ε1 and ε2 are of the same order, O(ω−1). Described two-step procedure leads to considerably more accurate approach than

the QI approximation, applicable to weakly anisotropic media of arbitrary symmetry. As in the case of P waves, the accuracy of the first-order

traveltime calculated along a first-order common ray can be increased by calculation of a simple second-order correction.

In Section 2, we review the basic equations of the ray theory used in the derivations in the following sections. In Section 3, an explicit

expression for the mean value of the first-order S-wave eigenvalues of the Christoffel matrix is given. The mean value is used in deriving the

first-order common-ray tracing for S waves. The formula for the second-order traveltime correction, which can be evaluated by quadratures

along the first-order common ray, is also given in Section 3. Section 4 is devoted to FODRT along the S-wave first-order common ray. It is

shown how the results of dynamic ray tracing can be used to determine the first-order relative geometrical spreading. Section 5 gives the

solution of the transport equation for a specific ansatz containing amplitude coefficients of the coupled S waves. The ansatz is very similar

to ansatzs used by Pšenčı́k (1998) and Bakker (2002). In Section 5, the basic formula of the paper, the system of two coupled ordinary

differential equations for computing the amplitude coefficients of the coupled S waves along the first-order common ray, is given. The paper

ends with a short concluding section. Appendix A contains expressions for weak-anisotropy (WA) parameters and for elements of matrix B̄,

which controls wave propagation in weakly anisotropic media. Appendix B contains expressions for averaged S-wave eigenvalues and their

derivatives for orthorhombic media and for transversely isotropic media with vertical axes of symmetry.

The lower-case indices i , j , k, l, . . . take the values of 1,2,3, the upper-case indices I , J , K , L , . . . take the values of 1, 2. The Einstein

summation convention over repeated indices is used. The index following the comma in the subscript denotes the partial derivative with

respect to the relevant Cartesian coordinate. The upper index [M] is used to denote quantities related to the S-wave common ray.

2 B A S I C E Q UAT I O N S

In the frequency domain, the homogeneous elastodynamic equation (without a source term) for an inhomogeneous anisotropic medium reads

(ci jkluk,l ), j + ρω2ui = 0. (1)

In eq. (1), cijkl = cijkl(x m) are elements of the tensor of the elastic moduli, ρ = ρ(x m) is the density and ω is the circular frequency. Symbol

ui = ui (x m , ω) denotes the components of the sought displacement vector u. The solution of the elastodynamic equation (1) is sought in the

form of the zero-order term of the ray series:

ui (xm, ω) = Ui (xm)exp[iωτ (xm)]. (2)

Here i is the imaginary unit, τ (x m) is the eikonal, which also serves as the traveltime, and U i (x m) are components of the zero-order vectorial

amplitude coefficient U(x m). By inserting (2) into (1), we arrive at

(iω)2 Ni (Un) + iωMi (Un) + Li (Un) = 0. (3)

The differential vectorial operators N, M and L are given by the relations:

Ni (Un) = ai jklUkτ,lτ, j − Ui , (4)
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First-order coupled S waves in weakly anisotropic media 981

Mi (Un) = ρ−1(ρai jklUkτ,l ), j + ai jklUk,lτ, j , (5)

Li (Un) = ρ−1(ρai jklUk,l ), j (6)

(see Červený 2001). In eqs (4)–(6), aijkl are density normalized elastic moduli,

ai jkl = ci jkl/ρ . (7)

Since eq. (3) should be satisfied for arbitrarily high frequency ω, operators N, M and L should be zero. From N = 0, we get the Christoffel

equation,

(�ik − δik)Uk = 0, (8)

where

�ik(xm, pm) = ai jkl (xm)p j pl . (9)

In eq. (9), � ik are the elements of the generalized Christoffel matrix Γ. We call it generalized because it contains components p j = τ , j = n j/c
of slowness vector p instead of components n j of unit vector n, used in the standard Christoffel matrix; c is the phase velocity. For the sake of

brevity, we call Γ(x m , pm) the Christoffel matrix in the following. Each of the three eigenvalues G(x m , pm) of the Christoffel matrix (eq. 9)

can be used in the eikonal equation G = 1 of the corresponding wave. The eikonal equation can be solved using the ray tracing equations, from

which the traveltimes of the considered wave can be determined. Equation M = 0, with M given in (5), yields the transport equation, from

which ray amplitudes along the corresponding ray can be calculated. Equations N = 0 and M = 0 are sufficient for the complete determination

of the displacement vector u in eq. (2). The magnitude of the operator L could be used to check precision of the approximate solution (2).

Below, we introduce the FORT and FODRT equations with which we can determine the S-wave common rays, the first- or second-order

common traveltime τ [M] or τ [M] + �τ [M] and the corresponding first-order relative geometrical spreading L[M], a quantity important for

determining the ray amplitudes.

3 F I R S T - O R D E R C O M M O N R AY T R A C I N G F O R S WAV E S

To calculate the S-wave first-order common rays and ray amplitudes, we use a procedure similar to that used by Pšenčı́k & Farra (2005, 2007),

who obtained the FORT and FODRT, equations for P waves. Instead of using the largest of the three first-order eigenvalues of the Christoffel

matrix (9), G[3] = G[3] (x m , pm), which refers to P waves, we use the mean value, G[M] = G[M](xm, pm), of the smaller first-order eigenvalues

G[1] and G[2] of the Christoffel matrix Γ, which refer to S waves. Farra & Pšenčı́k (2003) and Farra (2005) give expressions for the first-order

S-wave eigenvalues G[1], G[2] and P-wave eigenvalue G[3]:

G[1] = 1

2
(B11 + B22 +

√
D), G[2] = 1

2
(B11 + B22 −

√
D), G[3] = B33, (10)

where

D = (B11 − B22)2 + 4B2
12. (11)

In eqs (10) and (11), symbols B jl are elements of the symmetric matrix B(x m , pm):

Bjl (xm, pm) = �ik(xm, pm)e[ j]
i e[l]

k , (12)

(see Farra & Pšenčı́k 2003). Symbols e[ j]
i denote the components of three mutually perpendicular unit vectors e[1], e[2] and e[3]. Vector e[3] is

chosen so that e[3] = n, where n is a unit vector specifying direction of the slowness vector p. Vectors e[1] and e[2] can be chosen arbitrarily in

the plane perpendicular to n. Matrix B(x m , pm) [or B(x m , nm)] can be obtained by simple rotation,

B = RT B̄R, (13)

from matrix B̄(xm, pm) [or B̄(xm, nm)], specified explicitly in Appendix A, eqs (A3) and (A4). Rotation matrix R has the following form:

R =

⎛⎜⎜⎝
cos 	 −sin 	 0

sin 	 cos 	 0

0 0 1

⎞⎟⎟⎠ . (14)

In eq. (14), angle 	 is the acute angle between the basis vectors e[K ] introduced above and the vectors ē[K ] used in Appendix A (see eq. A5).

Matrices B and B̄ are independent of the choice of the reference velocities α and β (see Appendix A). The reference velocities α and β appear

in the matrices B̄ and B as a consequence of the use of α and β in definitions of WA parameters (see Appendix A, eq. A1). The reference

velocities can thus be chosen as arbitrary non-zero quantities. From eqs (12) to (14) it is easy to prove that terms B 11 + B 22 and B2
13 + B2

23

are independent of the choice of vectors e[1] and e[2].

Using eqs (10) and (12), we can express the S-wave first-order mean value G[M] in the following way:

G[M] = 1

2

(
G[1] + G[2]

) = 1

2
(B11 + B22) = 1

2
�ik

(
e[1]

i e[1]
k + e[2]

i e[2]
k

)
= 1

2
�ik

(
δik − e[3]

i e[3]
k

)
= 1

2

[
Tr(Γ) − G[3]

]
. (15)
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982 V. Farra and I. Pšenčı́k

The FORT equations for S-wave common rays can then be expressed as follows:

dxi

dτ
= 1

2

∂G[M]

∂pi
,

dpi

dτ
= −1

2

∂G[M]

∂xi
. (16)

Here G[M] is given by eq. (15). In eq. (16), x i = x i (τ ) are the Cartesian coordinates of the trajectory of the first-order common ray of

an S wave. Symbols pi = pi (τ ) denote components of the first-order slowness vectors, pi = ni/c[M]. Here ni are again components of

the unit vector n specifying direction of p, and c[M] = c[M](xm, nm) is the S-wave first-order common phase velocity corresponding to

G[M]; (c[M])2 = G[M](xm, nm). The parameter along the common ray, τ , is the first-order common traveltime τ [M]. At each point along the

ray, the first-order slowness vector p determined from eq. (16) should satisfy the first-order eikonal equation

G[M](xm, pm) = [
c[M](xm, nm)

]−2
G[M](xm, nm) = 1. (17)

The explicit expression for G[M] could be obtained from eq. (15), using, for example, expressions for B̄11 and B̄22 given in

Appendix A, and exploiting the fact that B11(xm, pm) + B22(xm, pm) = B̄11(xm, pm) + B̄22(xm, pm). Instead, we use the last term on the

right-hand side of eq. (15) and express the S-wave first-order mean value G[M](xm, pm) in terms of Tr(Γ) and G[3]. The explicit formula for

the trace of the Christoffel matrix Tr(Γ) reads

Tr(Γ) = α2 pi pi + 2α2
[
εx p2

1 + εy p2
2 + εz p2

3

+ (ε16 + ε26)p1 p2 + (ε15 + ε35)p1 p3 + (ε24 + ε34)p2 p3

]
+ 2β2

[
pk pk + ε45 p1 p2 + ε46 p1 p3 + ε56 p2 p3

+ γx

(
p2

2 + p2
3

) + γy

(
p2

1 + p2
3

) + γz

(
p2

1 + p2
2

)]
. (18)

The explicit formula for the first-order P-wave eigenvalue G[3] = B 33 of the Christoffel matrix (9) can be found from Appendix A. For G[M],

eq. (15) then yields

G[M] = β2
[

pi pi + ε45 p1 p2 + ε46 p1 p3 + ε56 p2 p3 + γy

(
p2

1 + p2
3

) + γx

(
p2

2 + p2
3

) + γz

(
p2

1 + p2
2

)] − α2(pi pi )
−1

[
ηx p2

2 p2
3 + ηy p2

1 p2
3

+ηz p2
1 p2

2 + (χz − ε16)p1 p2

(
p2

2 + p2
3 − p2

1

) + (χz − ε26)p1 p2

(
p2

1 + p2
3 − p2

2

) + (χx − ε24)p2 p3

(
p2

1 + p2
3 − p2

2

)
+(χy − ε15)p1 p3

(
p2

2 + p2
3 − p2

1

) + (χx − ε34)p2 p3

(
p2

1 + p2
2 − p2

3

) + (χy − ε35)p1 p3

(
p2

1 + p2
2 − p2

3

)]
. (19)

Eq. (19) holds for weak anistropy of any symmetry. The coefficients of eq. (19) contain linear combinations of the WA parameters. For the

definition of the WA parameters and parameters ηx , η y and ηz , see Appendix A. The S-wave first-order mean value G[M](xm, pm) and its

derivatives are independent of reference velocities α and β. Another interesting feature of eq. (19) is that, as in the P-wave case (see Pšenčı́k

& Farra 2005), G[M] is expressed in terms of 15 independent coefficients, which are formed by 21 WA or elastic parameters. The S-wave

coefficients differ from the P-wave coefficients. As shown by Farra & Pšenčı́k (2003), the whole set of P- and S-wave coefficients can be used

for estimation of all 21 WA parameters.

The initial conditions for the ray tracing equations (16) for τ = 0 read:

xi (0) = x0
i , pi (0) = p0

i . (20)

Here, x0
i are the coordinates of source point x0, and p0

i = n0
i /c[M]

0 are the components of the first-order slowness vector p0 at the source.

Symbol c[M]
0 denotes the first-order approximation of the S-wave common phase velocity in direction n0 at source point x0. Velocity c[M]

0 is

given by the square root of G[M](x0
m, n0

m) (see eq. 17). Vector n0 can be specified by two ray parameters, γ (J ), chosen as two take-off angles,

φ0 and δ0, so that

n0
1 = cos φ0 cos δ0, n0

2 = sin φ0 cos δ0, n0
3 = sin δ0. (21)

The explicit expressions for G[M] and their derivatives, required in equation (16), for orthorhombic and VTI media, can be found in Appe-

ndix B. If the anisotropy vanishes, equations (16) reduce to the exact ray tracing equations for an S wave in an inhomogeneous isotropic

medium.

By integrating FORT system in eq. (16), we obtain the first-order common traveltime τ [M]. The accuracy of the traveltime can be simply

enhanced by calculating the second-order traveltime correction �τ [M] along the first-order common ray (16):

�τ [M] = −1

2

∫
�0

�G[M](xm, pm) dτ. (22)

Here �0 denotes the first-order common ray of an S wave, x m are its coordinates and pm are the components of the first-order slowness

vectors along �0. Symbol �G[M] denotes the difference between the exact mean value G[M]
ex (xm, pm) and its first-order approximation

G[M](xm, pm) along �0. To estimate G[M]
ex , we use the mean of the second-order expressions for the S-wave eigenvalues. The expressions for

the second-order S-wave eigenvalues given by Farra & Pšenčı́k (2003) lead to

�G[M](xm, pm) = −1

2

[
c[M](xm, nm)

]2 B2
13(xm, pm) + B2

23(xm, pm)

V 2
P − V 2

S

. (23)

Inserting (23) into (22), we arrive at the final expression for the second-order traveltime correction:

�τ [M] = 1

4

∫
�0

[c[M](xm, nm)]2 B2
13(xm, pm) + B2

23(xm, pm)

V 2
P (xm) − V 2

S (xm)
dτ. (24)
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First-order coupled S waves in weakly anisotropic media 983

Quantities B13 and B23 in eq. (24) are elements of the symmetric matrix B (see eq. 12). Because the term B2
13 + B2

23 is independent of the

choice of vectors e[1] and e[2], we can use directly B̄2
13 + B̄2

23, where B̄13 and B̄23 are elements of matrix B̄(xm, pm) given in eq. (A3).

Symbols V P and V S in (24) denote the P- and S-wave velocities corresponding to the reference isotropic medium, closely approximating

the studied weakly anisotropic medium along ray �0. Similarly to the case of P waves, we can use V 2
S = (pkpk)−1 and V 2

P = 3V 2
S , where pk

are the components of the first-order slowness vector obtained in integrating the FORT system (eq. 16). The values of V P and V S determined

in this way vary along the ray �0. The above specification yielded the most accurate results in the case of P waves and it is expected to do the

same in the case of S waves.

Note the difference in signs between eq. (24) and the corresponding second-order correction for the P-wave traveltimes (Pšenčı́k & Farra

2005, 2007). Obviously, the S-wave common traveltime correction is always positive. It agrees with the observation of Farra & Pšenčı́k (2003)

that the first-order S-wave eigenvalues are always larger than or equal to the exact ones.

4 F I R S T - O R D E R DY N A M I C R AY T R A C I N G A L O N G T H E S - WAV E C O M M O N R AY

To calculate the amplitudes of the coupled S waves (see Section 5), we need to know the first-order relative geometrical spreading L[M](R, S)

along the first-order common ray from source S to receiver R. For the sake of brevity, we shall call L[M](R, S) the geometrical spreading

below. It is defined as

L[M](R, S) = ∣∣X(1) × X(2)
∣∣1/2

. (25)

Vectors X(I ) in eq. (25) and other important vectors Y(I ), defined below, are determined from the FODRT system with especially chosen initial

conditions, given below (see also Pšenčı́k & Teles 1996). If we denote the ray parameters specifying the S-wave common ray by γ (I ), where

γ (I ) are the initial angles, φ0 and δ0, specifying the orientation of vector n0 (see eq. 21), the components of vectors X(I ) and Y(I ) are:

X (I )
i =

[
∂xi

∂γ (I )

]
τ=const

, Y (I )
i =

[
∂pi

∂γ (I )

]
τ=const

. (26)

Quantities X (I )
i = X (I )

i (τ ) and Y (I )
i = Y (I )

i (τ ) describe the variations along the wave front of coordinates x i of the first-order common ray and

of components pi of the first-order slowness vector due to the variations of parameters γ (I ). Values of X (I )
i and Y (I )

i can be found by solving

a system of linear differential equations obtained by differentiating the FORT equations (16) with respect to γ (I ). The resulting system of

differential equations is the FODRT system along the common ray of an S wave. It can be developed in the same way as for P waves (see

Pšenčı́k & Farra 2007):

dX (I )
i

dτ
= 1

2

(
∂2G[M](xm, pm)

∂pi∂x j
X (I )

j + ∂2G[M](xm, pm)

∂pi∂p j
Y (I )

j

)
,

dY (I )
i

dτ
= −1

2

(
∂2G[M](xm, pm)

∂xi∂x j
X (I )

j + ∂2G[M](xm, pm)

∂xi∂p j
Y (I )

j

)
. (27)

Here, G[M](xm, pm) is given in eqs (15) or (19).

The explicit expressions for G[M] and its derivatives, required in eq. (27), for orthorhombic and VTI media can be found in

Appendix B. If the anisotropy vanishes, equations (27) reduce to the corresponding exact dynamic ray tracing equations for an S wave

propagating in an isotropic medium.

We obtain the quantities X (J )
i required to calculate the geometrical spreading (see eq. 25), by specifying the initial conditions for the

FODRT equations (27) for τ = 0 in the following way:

X (I )
i (0) = 0, Y (I )

i (0) = Zi I − p0
i v0

[M]
k Zk I , (28)

where

Z11 = −sin φ0, Z21 = cos φ0, Z31 = 0,

Z12 = −cos φ0 sin δ0, Z22 = −sin φ0 sin δ0, Z32 = cos δ0 (29)

(see eq. (A.5) of Pšenčı́k & Teles 1996). In eq. (28), v0
[M]
i denotes the components of the first-order ray-velocity vector of the common

S wave, v
[M]
i = dxi/dτ , at point S, at which τ = 0. Symbols φ0 and δ0 in eq. (29) again denote the take-off angles introduced in eq. (21).

Initial conditions of the FODRT equations for P waves, discussed by Pšenčı́k & Farra (2007), should be specified in the same way as the above

initial conditions for common S waves (see eqs 28 and 29).

As in the case of P waves, the solution of the FODRT equations (27) can be effectively used for two-point ray tracing. Quantities X (I )
i can

be used to estimate ray parameters γ (I ) (take-off angles φ0 and δ0) from the distance between the termination points of rays shot at a receiver

surface (surface containing receivers) and the receiver, at which the two-point ray should terminate.

5 S O L U T I O N O F T H E T R A N S P O RT E Q UAT I O N A L O N G T H E C O M M O N R AY

In this section, we make use of an ansatz similar to ansatzs used by Pšenčı́k (1998) or Bakker (2002), in which both S waves are considered

as one wave computed along the S-wave common ray. As in the mentioned papers, we require that the ansatz satisfies, asymptotically, the
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984 V. Farra and I. Pšenčı́k

elastodynamic equation (1). Throughout this section, we assume that the small parameter ε2, representing weak anisotropy perturbation,

ε2 ∼ |� aijkl|/|aijkl|, is of the same order as the small parameter ε1, that is, of the order O(ω−1). This has important consequences. The

diagonal elements of the matrix B are of the order O(1), the off-diagonal elements are of the order O(ω−1). The difference B 11 − B 22 is also

of the order O(ω−1), which implies that the deviations of the eigenvalues G[1] and G[2] of the S1 and S2 waves from their mean value G[M],

corresponding to the S-wave common ray, are of the order O(ω−1). Along the S-wave common ray, we seek the solution of the elastodynamic

equation (1) in the form of eq. (2) with

U(xm) = A(xm)e[1](xm, pm) + B(xm)e[2](xm, pm), τ (xm) = τ [M](xm). (30)

In eq. (30), A and B are scalar amplitude factors, τ [M](xm) is the first-order traveltime along the S-wave common ray, obtained by solving

FORT equations (16), x m are the coordinates along the common ray and pm are the components of the first-order slowness vector p along it.

Vectors e[1], e[2] are the two mutually perpendicular unit vectors introduced after eq. (12). Our task is to find A and B so that (2) with (30)

satisfies, asymptotically, elastodynamic equation (1).

Inserting (30) into (2), the result into (1) and neglecting the terms of order O(1), O(ω−1) and less, we arrive at:

(iω)2(Γ − I)
(
Ae[1] + Be[2]

) + iωM
(
Ae[1] + Be[2]

) = 0. (31)

In eq. (31), symbol M denotes the vectorial differential operator introduced in eq. (5), Γ denotes the Christoffel matrix, Γ = Γ (xm, pm), where

pm are the components of the first-order slowness vector.

To satisfy eq. (31), we require that the scalar product of its left-hand side with vectors e[m] is zero for any of m = 1, 2, 3. We concentrate

here only on equations resulting from scalar multiplication by e[1] and e[2]. Multiplication by e[3] yields the equation for the so-called additional

component (Pšenčı́k 1998), which we do not study here. Using Ce[K ] instead of Ae[1] +Be[2] in the term with (i ω)2 in eq. (31), and multiplying

the result by e[L], we get

(�ik − δik)Ce[K ]
i e[L]

k = C(BK L − δK L ). (32)

Symbol B KL = B KL(x m , pm) denotes again elements of matrix B (see eq. 12). Doing the same with the term with iω in (31) and taking into

account eq. (5), we get, after some algebra

Mi

(
Ce[K ]

)
e[L]

i = C
[
ρ−1

(
ρai jkl e

[K ]
k e[L]

i pl

)
, j

+ ai jkl

(
e[K ]

k,l e[L]
i p j − e[K ]

k e[L]
i, j pl

)]
+ ai jkl e

[K ]
k e[L]

i (C, j pl + C,l p j ). (33)

As terms of order O(1) and less are neglected in eq. (31), the term (32) can be calculated to O(ω−1) and the term (33) to O(1). This means

that eq. (32) can remain as it is. Eq. (33) can be, however, simplified. With accuracy to O(1), we can rewrite the terms aijkle
[K ]
k e[L]

i pl in the

following way

ai jkl e
[K ]
k e[L]

i pl = δK Lv
[M]
j . (34)

The remaining term in (33) can be simplified if we take into account that for the required accuracy it is sufficient to substitute aijkl by its

counterpart specifying isotropic reference medium:

ai jkl

(
e[K ]

k,l e[L]
i p j − e[K ]

k e[L]
i, j pl

)
= 2(1 − δK L )e[L]

i

(
de[K ]

i /dτ
)

. (35)

Multiplication of eq. (31) successively by e[1] and e[2] and consideration of eqs (32)–(35) result in the following system of coupled linear

differential equations:(
dA/dτ

dB/dτ

)
= − iω

2

(
B11 − 1 B12

B12 B22 − 1

) (
A
B

)
− 1

2

(
ρ−1div(ρv[M]) 2e[1] · de[2]/dτ

2e[2] · de[1]/dτ ρ−1div(ρv[M])

) (
A
B

)
. (36)

The first matrix term on the right-hand side of eq. (36) is responsible for frequency-dependent coupling. If this term is small, the studied

S waves tend to decouple. This can occur either for low frequencies or for the case of a medium close to isotropic, for which B11 and B22

approach 1 and B12 approaches 0. Tendency to decoupling also occurs for high frequencies and/or stronger anisotropy. Coupling is strongest

for intermediate frequencies. See more detailed discussions of these phenomena in Pšenčı́k (1998) and Bakker (2002).

The off-diagonal elements e[2] · de[1]/dτ of the second matrix term on the right-hand side of eq. (36) depend on the choice of vectors

e[K ]. We show later that the vectors e[K ] can be chosen so that e[2] · de[1]/dτ = 0. The diagonal elements ρ−1div(ρv[M]) are related to the

geometrical spreading L[M] given in (25). For details of this relation see sections 2.4.3. and 3.10.6 in Červený (2001). If we express the

amplitude factors A and B in the form common in the ray method (see also (Pšenčı́k 1998, eq. 37)):

A(τ ) = A0(τ )[
ρ(τ )c[M](τ )

]1/2L[M](τ )
, B(τ ) = B0(τ )[

ρ(τ )c[M](τ )
]1/2L[M](τ )

, (37)

the coupled equations (36) simplify to(
dA0/dτ

dB0/dτ

)
= − iω

2

(
B11 − 1 B12

B12 B22 − 1

) (
A0

B0

)
−

(
0 e[1] · de[2]/dτ

e[2] · de[1]/dτ 0

) (
A0

B0

)
. (38)

In (37), c[M] and L[M] are the phase velocity (see eq. 17) and the geometrical spreading (see eq. 25), associated with the first-order mean

value G[M] along the common ray of the S wave. We can see that coefficients A0 and B0 in (38) are frequency-dependent. To solve the coupled

system (38), it is necessary to specify its initial conditions and how to calculate vectors e[K ] along the ray.
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First-order coupled S waves in weakly anisotropic media 985

The initial conditions can be specified in the very same way as in Pšenčı́k (1998, eq. 39). Specifically, if the wavefield is generated by a

point force F acting at time τ = 0, the comparison of eq. (37) with the corresponding expressions of Pšenčı́k & Teles (1996) yields the initial

conditions for eq. (38):

A0(0) = e[1]
k (0)Fk

4π
(
ρ0c[M]

0

)1/2
, B0(0) = e[2]

k (0)Fk

4π
(
ρ0c[M]

0

)1/2
. (39)

Here c[M]
0 again denotes the first-order approximation of the S-wave common phase velocity at the source, and ρ 0 denotes the density at the

same point.

If we specify the point force at point S as a unit vector oriented successively along all coordinate axes x n , that is, F k = δkn, solve eq. (38)

with the initial conditions (39) along the common ray from point S to point R, and insert the results into eq. (37), we get frequency-dependent

coefficients An(τ ) = A(τ ) and Bn(τ ) = B(τ ). These coefficients can be used in the expression for the first-order common S-wave Green’s

function:

G[M]
in (R, S, ω) =

[
An(τ )e[1]

i (τ ) + Bn(τ )e[2]
i (τ )

]
exp

[
iT G(R, S) + iωτ [M](R, S)

]
. (40)

Here T G(R, S) denotes the complete phase shift due to the caustics along the S-wave common ray from S to R. All other quantities have been

defined above. To increase accuracy of the traveltime τ [M], we can substitute it by τ [M] + �τ [M] (see eq. 24).

There are several possibilities how to calculate vectors e[K ]; vector e[3] = n is calculated automatically along the common ray. One

possibility how to calculate e[K ] is to specify them as the vectorial basis of the so-called wave front orthonormal coordinate system (see

Červený 2001, section 4.2.2; Klimeš 2006a). Červený (2001, eq. 4.2.17) gives differential equations, which in our notation read

de[K ]
i

dτ
= −(c[M])2

(
e[K ]

k

dpk

dτ

)
pi . (41)

Solution of eq. (41) along a selected ray yields vectors e[K ] at any point of the ray. Note that vectors e[K ] are perpendicular to the first-order

slowness vector p, and not to the ray as in the QI approximation of Pšenčı́k (1998). Note also that vectors e[K ] are calculated along an S-wave

common ray in the studied weakly anisotropic medium and not in a reference isotropic medium as in the QI approximation.

The use of the basis vectors of the wave front orthonormal coordinate system (41) yields e[K ] · de[L]/dτ = 0 for K �= L and it thus leads

to the coupled system of differential equations whose form reminds form of the QI coupled equations of Pšenčı́k (1998, eq. 38):(
dA0/dτ

dB0/dτ

)
= − iω

2

(
B11 − 1 B12

B12 B22 − 1

) (
A0

B0

)
. (42)

Matrix B(x m , pm) used in (42) can be obtained by rotation (13) from matrix B̄(xm, pm) given in Appendix A.

Vectors e[K ] define zero-order polarization plane of the common S wave. For greater accuracy of the formula (40), we can substitute them

by their first-order counterparts f [K ],

f[K ] = e[K ] − BK 3(xm, nm)

V 2
P − V 2

S

e[3]. (43)

Vectors f[K ] are situated in the plane perpendicular to the first-order P-wave eigenvector f [3]. Vector f[3] is given by (see Farra & Pšenčı́k

2003):

f[3] = B13(xm, nm)

V 2
P − V 2

S

e[1] + B23(xm, nm)

V 2
P − V 2

S

e[2] + e[3]. (44)

Symbols V P and V S in eqs (43) and (44) have exactly the same meaning as in eq. (24). Elements B13 and B23 of the matrix B (x m , nm) can

be obtained by rotation (13) from B̄13 and B̄23 given in (A4). Since B K 3 are O(ω−1), the differences between vectors f[k] and vectors e[k] are

O(ω−1) too.

6 D I S C U S S I O N A N D C O N C L U S I O N S

The preceding sections describe an approximate procedure for computing S waves in inhomogeneous weakly anisotropic media. In such media,

the two S waves are coupled and must, therefore, be calculated together. We have used common ray tracing and dynamic ray tracing (Bakker

2002; Klimeš 2006a) with the common ray situated in the studied weakly anisotropic medium. We have combined the S-wave common ray

tracing with the perturbation approach, which we applied recently to P waves (Pšenčı́k & Farra 2005, 2007) and obtained an approximate

procedure, which has similar advantages as FORT and FODRT for P waves and differs significantly from the standard QI approach (Kravtsov

1968; Pšenčı́k 1998). The most important differences from the QI approach are:

(1) The common ray is traced in the studied inhomogeneous, weakly anisotropic medium, not in a reference isotropic medium.

(2) The wave front orthonormal basis related to the common ray in the studied inhomogeneous, weakly anisotropic medium is used instead

of the basis related to the common ray in the reference isotropic medium.

(3) The accuracy of traveltimes can be increased by considering the second-order traveltime correction.

C© 2008 The Authors, GJI, 173, 979–989

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/3/979/739309 by C

N
R

S - ISTO
 user on 10 M

arch 2022



986 V. Farra and I. Pšenčı́k

(4) The common geometrical spreading is calculated along the common ray in the studied inhomogeneous, weakly anisotropic medium,

not along the common ray in the reference isotropic medium.

The most interesting features and advantages of the first-order common ray and dynamic ray tracing of coupled S waves in inhomogeneous

weakly anisotropic media are:

(1) The FORT and FODRT equations are expressed in terms of the WA parameters, which represent a more natural description of a weakly

anisotropic medium than standard elastic moduli.

(2) The proposed S-wave common ray tracing procedure is regular everywhere. It avoids problems in S-wave singular regions, known from

tracing separate S waves in anisotropic media.

(3) The FORT and FODRT equations have a simpler structure than the exact ones, which leads to a reduction in the number of algebraic

operations involved.

(4) In the most general case, the FORT and FODRT equations for S waves depend only on 15 independent coefficients (which differ from

the coefficients of P waves).

(5) The FORT and FODRT equations allow S waves to be treated separately from P waves, as in isotropic media.

(6) The accuracy of the traveltimes calculated along S-wave common rays can be easily increased by introducing the second-order traveltime

correction (eq. 24).

(7) The procedure is applicable to inhomogeneous, weakly anisotropic media of arbitrary symmetry.

(8) The FORT and FODRT equations derived in this paper are applicable to inhomogeneous isotropic as well as anisotropic media. In

isotropic media they yield exact rays and exact dynamic ray tracing results for S waves; in anisotropic media, first-order approximations along

S-wave common rays.

(9) The procedure described above can be simply generalized for laterally varying, layered, weakly anisotropic structures.

(10) FORT and FODRT for inhomogeneous weakly anisotropic media of higher symmetry (orthorhombic, TI) represent a natural substitute

for ray tracing and dynamic ray tracing procedures in routine processing codes.
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A P P E N D I X A : WA PA R A M E T E R S A N D E L E M E N T S O F M AT R I X B

If we denote by α and β the P- and S-wave velocities of a reference isotropic medium, we can introduce 21 WA parameters in a way slightly

different from that of Farra & Pšenčı́k (2003):

εx = A11 − α2

2α2
, εy = A22 − α2

2α2
, εz = A33 − α2

2α2
,

δx = A23 + 2A44 − α2

α2
, δy = A13 + 2A55 − α2

α2
, δz = A12 + 2A66 − α2

α2
,
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First-order coupled S waves in weakly anisotropic media 987

χx = A14 + 2A56

α2
, χy = A25 + 2A46

α2
, χz = A36 + 2A45

α2
,

ε15 = A15

α2
, ε16 = A16

α2
, ε24 = A24

α2
, ε26 = A26

α2
, ε34 = A34

α2
, ε35 = A35

α2
,

ε46 = A46

β2
, ε56 = A56

β2
, ε45 = A45

β2
, γx = A44 − β2

2β2
, γy = A55 − β2

2β2
, γz = A66 − β2

2β2
. (A1)

Please, note that parameters δ x , δ y and γ x , γ y are defined here differently from Farra & Pšenčı́k (2003) and Pšenčı́k & Farra (2005,

2007). In the text, the following variables are also used.

ηx = δx − εy − εz, ηy = δy − εx − εz, ηz = δz − εx − εy . (A2)

The matrix B̄(xm, pm) used in eq. (13) is related to the matrix B̄(xm, nm) by the relation

B̄(xm, pm) = (
c[M]

)−2
B̄(xm, nm). (A3)

The elements of B̄(xm, nm) read:

B̄11 = β2 + 2α2 D−2
{
n3

3

[
(ε15 − ε35)n3

1 + (ε24 − ε34)n3
2 + (χx − ε34)n2

1n2 + (χy − ε35)n1n2
2

]
+ n2

3

[
(ηz − ηx − ηy)n2

1n2
2 − ηyn4

1 − ηx n4
2 + 2(ε16 − χz)n3

1n2 + 2(ε26 − χz)n1n3
2

]
+ n3

[
(ε35 − ε15)n5

1 + (ε34 − ε24)n5
2 + (ε34 − χx )n4

1n2 + (ε35 − χy)n1n4
2

+ (2ε35 − χy − ε15)n3
1n2

2 + (2ε34 − χx − ε24)n2
1n3

2

]} + 2β2 D−2
(
γx n2

2 + γyn2
1 + ε45n1n2

)
,

B̄12 = α2 D−2
{
n2

3

[
(χx − ε34)n3

1 − (χy − ε35)n3
2 + (ε35 + χy − 2ε15)n2

1n2 + (2ε24 − χx − ε34)n1n2
2

]
+ n3

[
(ε16 − χz)n4

1 − (ε26 − χz)n4
2 + (ηy − ηx + ηz)n3

1n2 + (ηy − ηx − ηz)n1n3
2 + 3(ε26 − ε16)n2

1n2
2

]
+ (ε15 − χy)n4

1n2 + (χx − ε24)n1n4
2 + (ε15 − χy)n2

1n3
2 + (χx − ε24)n3

1n2
2

}
+ β2 D−2

{
n3

[
2(γx − γy)n1n2 + ε45n2

1 − ε45n2
2

] + ε46n3
2 − ε56n3

1 + ε46n2
1n2 − ε56n1n2

2

}
,

B̄22 = β2 + 2β2 D−2
[
n2

3

(
γx n2

1 + γyn2
2 − ε45n1n2

) + n3

(
ε46n3

1 + ε56n3
2 + ε56n2

1n2 + ε46n1n2
2

)]
+ 2α2 D−2

{
n3

[
(ε24 − χx )n2

1n2 + (ε15 − χy)n1n2
2

] − ηzn2
1n2

2 + (ε26 − ε16)n3
1n2 − (ε26 − ε16)n1n3

2

} + 2β2γz

(
n2

1 + n2
2

)
,

B̄13 = α2 D−1
{
n4

3(ε34n2 + ε35n1) + n3
3

(
ηyn2

1 + ηx n2
2 + 2χzn1n2

)
+ n2

3

[
(4χx − 3ε34)n2

1n2 + (4χy − 3ε35)n1n2
2 + (4ε15 − 3ε35)n3

1 + (4ε24 − 3ε34)n3
2

]
+ n3

[
(2ηz − ηx − ηy)n2

1n2
2 + 2(2ε16 − χz)n3

1n2 + 2(2ε26 − χz)n1n3
2

− ηyn4
1 − ηx n4

2 + (εx − εz)n2
1 + (εy − εz)n2

2

] − χx n2
1n2 − χyn1n2

2 − ε15n3
1 − ε24n3

2

}
,

B̄23 = α2 D−1
{
n3

3(ε34n1 − ε35n2) + n2
3

[
(ηx − ηy)n1n2 + χzn2

1 − χzn2
2

] + n3

[
(2χy − 3ε15)n2

1n2 − (2χx − 3ε24)n1n2
2 + χx n3

1 − χyn3
2

]
+ ηzn3

1n2 − ηzn1n3
2 + 3(ε26 − ε16)n2

1n2
2 + ε16n4

1 − ε26n4
2 + (εy − εx )n1n2

}
,

B̄33 = α2 + 2α2
[
2n3

3(ε34n2 + ε35n1) + n2
3(ηyn2

1 + ηx n2
2 + 2χzn1n2 + εz)

+ 2n3

(
χx n2

1n2 + χyn1n2
2 + ε15n3

1 + ε24n3
2

) + εx n2
1 + εyn2

2 + ηzn2
1n2

2 + 2ε16n3
1n2 + 2ε26n1n3

2

]
. (A4)

The expressions in eq. (A4) correspond to the following choice of vectors e[i]:

ē[1] ≡ D−1
(
n1n3, n2n3, n2

3 − 1
)
, ē[2] ≡ D−1(−n2, n1, 0), ē[3] = n ≡ (n1, n2, n3), (A5)

where

D = (
n2

1 + n2
2

)1/2
, n2

1 + n2
2 + n2

3 = 1. (A6)

Symbols ni denote the components of unit vector n specifying direction of the slowness vector.

A P P E N D I X B : E X P R E S S I O N S F O R G[M] A N D I T S F I R S T - A N D S E C O N D - O R D E R

D E R I VAT I V E S I N O RT H O R H O M B I C A N D V T I M E D I A

The formulae for the ray tracing and dynamic ray tracing along an S-wave common ray simplify considerably in media with higher symmetry

anisotropy. Below we present formulae for the S-wave first-order mean value G[M] and its first- and second-order derivatives, which are the

basic elements on the right-hand sides of the ray tracing (16) and dynamic ray tracing (27) equations. We present them for the two most

frequently used types of media, media of orthorhombic and VTI symmetry. We use the following notations,

p12 = p2
1 + p2

2, p13 = p2
1 + p2

3, p23 = p2
2 + p2

3 . (B1)
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988 V. Farra and I. Pšenčı́k

B.1 Orthorhombic symmetry

In a medium of orthorhombic symmetry that has planes of symmetry coinciding with the coordinate planes, we have

χx = χy = χz = ε15 = ε16 = ε24 = ε26 = ε34 = ε35 = ε45 = ε46 = ε56 = 0. (B2)

Formula (19) for the first-order eigenvalue G[M] then reduces to

G[M] = β2(pi pi + γx p23 + γy p13 + γz p12) − α2(pk pk)−1
(
ηx p2

2 p2
3 + ηy p2

1 p2
3 + ηz p2

1 p2
2

)
. (B3)

The formulae for the first derivatives of G[M], which appear on the right-hand sides of eq. (16), read:

∂G[M]

∂p1

= 2p1

{
β2(1 + γy + γz) − α2(pk pk)−2

[
p23

(
ηy p2

3 + ηz p2
2

) − ηx p2
2 p2

3

]}
,

∂G[M]

∂p2

= 2p2

{
β2(1 + γx + γz) − α2(pk pk)−2

[
p13

(
ηx p2

3 + ηz p2
1

) − ηy p2
1 p2

3

]}
,

∂G[M]

∂p3

= 2p3

{
β2(1 + γx + γy) − α2(pk pk)−2

[
p12

(
ηx p2

2 + ηy p2
1

) − ηz p2
1 p2

2

]}
,

∂G[M]

∂xi
= β2

[
(γx,i + γz,i )p2

2 + (γy,i + γz,i )p2
1 + (γx,i + γy,i )p2

3

] − α2(pk pk)−1
(
ηx,i p2

2 p2
3 + ηy,i p2

1 p2
3 + ηz,i p2

1 p2
2

)
. (B4)

The formulae for the second derivatives of G[M], which appear on the right-hand sides of eq. (27), read:

∂2G[M]

∂p2
1

= 2β2(1 + γy + γz) − 2α2(pk pk)−3
[(

ηy p2
3 + ηz p2

2

)
p23 − ηx p2

2 p2
3

](
p23 − 3p2

1

)
,

∂2G[M]

∂p1∂p2

= −4α2 p1 p2(pk pk)−3
[
ηz

(
p23 p13 + p2

1 p2
2

) + ηx p2
3

(
p2

2 − p13

) + ηy p2
3

(
p2

1 − p23

)]
,

∂2G[M]

∂p1∂p3

= −4α2 p1 p3(pk pk)−3
[
ηy

(
p23 p12 + p2

1 p2
3

) + ηx p2
2

(
p2

3 − p12

) + ηz p2
2

(
p2

1 − p23

)]
,

∂2G[M]

∂p2
2

= 2β2(1 + γx + γz) − 2α2(pk pk)−3
[(

ηx p2
3 + ηz p2

1

)
p13 − ηy p2

1 p2
3

](
p13 − 3p2

2

)
,

∂2G[M]

∂p2∂p3

= −4α2 p2 p3(pk pk)−3
[
ηx

(
p13 p12 + p2

2 p2
3

) + ηy p2
1

(
p2

3 − p12

) + ηz p2
1

(
p2

2 − p13

)]
,

∂2G[M]

∂p2
3

= 2β2(1 + γx + γy) − 2α2(pk pk)−3
[(

ηx p2
2 + ηy p2

1

)
p12 − ηz p2

1 p2
2

](
p12 − 3p2

3

)
,

∂2G[M]

∂xi∂p1

= 2p1

{
β2(γy,i + γz,i ) − α2(pk pk)−2

[(
ηy,i p2

3 + ηz,i p2
2

)
p23 − ηx,i p2

2 p2
3

]}
,

∂2G[M]

∂xi∂p2

= 2p2

{
β2(γx,i + γz,i ) − α2(pk pk)−2

[(
ηx,i p2

3 + ηz,i p2
1

)
p13 − ηy,i p2

1 p2
3

]}
,

∂2G[M]

∂xi∂p3

= 2p3

{
β2(γx,i + γy,i ) − α2(pk pk)−2

[(
ηy,i p2

1 + ηx,i p2
2

)
p12 − ηz,i p2

1 p2
2

]}
,

∂2G[M]

∂xi∂x j
= β2(γx,i j p23 + γy,i j p13 + γz,i j p12) − α2(pk pk)−1

(
ηx,i j p2

2 p2
3 + ηy,i j p2

1 p2
3 + ηz,i j p2

1 p2
2

)
. (B5)

The initial conditions for ray-tracing equations (16) and dynamic ray-tracing equations (27) are given by eqs (20) and (28). The square

of the first-order S-wave common phase velocity c[M] appearing in the initial conditions reads:(
c[M]

)2 = β2
[
1 + γx

(
n2

2 + n2
3

) + γy

(
n2

1 + n2
3

) + γz

(
n2

1 + n2
2

)] − α2
(
ηx n2

2n2
3 + ηyn2

1n2
3 + ηzn

2
1n2

2

)
. (B6)

B.2 VTI symmetry

In a medium of a hexagonal symmetry with a vertical axis of symmetry, we have, in addition to conditions (B1),

εx = εy = 1

2
δz, δx = δy, ηx = ηy, ηz = 0, γx = γy . (B7)

Formula (19) for the first-order eigenvalue G[M] reads in this case:

G[M] = β2
[

pi pi + (γx + γz)p12 + 2γx p2
3

] − α2(pk pk)−1ηx p12 p2
3 . (B8)

C© 2008 The Authors, GJI, 173, 979–989

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/3/979/739309 by C

N
R

S - ISTO
 user on 10 M

arch 2022



First-order coupled S waves in weakly anisotropic media 989

The formulae for the first derivatives of G[M], which appear on the right-hand sides of eq. (16), simplify to:

∂G[M]

∂p1

= 2p1

[
β2(1 + γx + γz) − α2(pk pk)−2ηx p4

3

]
,

∂G[M]

∂p2

= 2p2

[
β2(1 + γx + γz) − α2(pk pk)−2ηx p4

3

]
,

∂G[M]

∂p3

= 2p3

[
β2(1 + 2γx ) − α2(pk pk)−2ηx p2

12

]
,

∂G[M]

∂xi
= β2

[
(γx,i + γz,i )p12 + 2γx,i p2

3

] − α2(pk pk)−1ηx,i p12 p2
3 . (B9)

The formulae for the second derivatives of G[M], which appear on the right-hand sides of eq. (27), read:

∂2G[M]

∂p2
1

= 2β2(1 + γx + γz) − 2α2(pk pk)−3ηx p4
3

(
p23 − 3p2

1

)
,

∂2G[M]

∂p1∂p2

= 8α2ηx p1 p2 p4
3(pk pk)−3,

∂2G[M]

∂p1∂p3

= −8α2ηx p1 p3
3(pk pk)−3 p12,

∂2G[M]

∂p2
2

= 2β2(1 + γx + γz) − 2α2(pk pk)−3ηx p4
3

(
p13 − 3p2

2

)
,

∂2G[M]

∂p2∂p3

= −8α2ηx p2 p3
3(pk pk)−3 p12,

∂2G[M]

∂p2
3

= 2β2(1 + 2γx ) − 2α2(pk pk)−3ηx p2
12

(
p12 − 3p2

3

)
,

∂2G[M]

∂xi∂p1

= 2p1

[
β2(γx,i + γz,i ) − α2(pk pk)−2ηx,i p4

3

]
,

∂2G[M]

∂xi∂p2

= 2p2

[
β2(γx,i + γz,i ) − α2(pk pk)−2ηx,i p4

3

]
,

∂2G[M]

∂xi∂p3

= 2p3

[
2β2γx,i − α2(pk pk)−2ηx,i p2

12

]
,

∂2G[M]

∂xi∂x j
= β2

[
(γx,i j + γz,i j )p12 + 2γx,i j p2

3

] − α2(pk pk)−1ηx,i j p12 p2
3 . (B10)

The initial conditions for ray-tracing equations (16) and dynamic ray-tracing equations (27) are again given by eqs (20) and (28). The

square of the first-order S-wave common phase velocity c[M], appearing in the initial conditions, now has the following simple form:(
c[M]

)2 = β2
[
1 + (γx + γz)

(
n2

1 + n2
2

) + 2γx n2
3

] − α2ηx

(
n2

1 + n2
2

)
n2

3. (B11)
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