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The satellite era brings new challenges in the development and the implementation of potential field models.
Major aspects are, therefore, the exploitation of existing space- and ground-based gravity and magnetic data for
the long-term. Moreover, a continuous and near real-time global monitoring of the Earth system, allows for a
consistent integration and assimilation of these data into complex models of the Earth’s gravity and magnetic
fields, which have to consider the constantly increasing amount of available data. In this paper we propose
how to speed up the computation of the normal equation in potential filed modeling by using local multi-polar
approximations of the modeling functions. The basic idea is to take advantage of the rather smooth behavior of
the internal fields at the satellite altitude and to replace the full available gravity or magnetic data by a collection
of local moments. We also investigate what are the optimal values for the free parameters of our method. Results
from numerical experiments with spherical harmonic models based on both scalar gravity potential and magnetic
vector data are presented and discussed. The new developed method clearly shows that very large datasets can be
used in potential field modeling in a fast and more economic manner.
Key words: Potential fields (gravity, geomagnetism), inverse problem, spherical harmonics, satellite data, size
reduction.

1. Introduction
Our knowledge of the Earth’s system is far from being

complete, and therefore gaining deeper insight into global
processes and their interactions is one of the most urgent
challenges in geo-sciences. The development of accurate
and reliable global models must go hand in hand with the
continuous global monitoring of the gravity and magnetic
field, and their changes occurring at regional to global spa-
tial scales, and over timescales ranging from extremely
short duration events to long duration ones. The long time
series of geodetic, geodynamic, and magnetic parameters
obtained from such an observing system provide crucial in-
formation about the Earth system, i.e. about the shape and
deformation of the Earth, its internal structure and material
composition, the behavior of the hydrosphere, cryosphere
and atmosphere, the Earth’s variable rotation, the static and
time-variable gravity and magnetic fields. Moreover, nowa-
days, a dense global Earth’s observing system, aiming to
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high temporal and spatial resolution and accuracy, has to
integrate and combine the required large variety of comple-
mentary ground- and space-based observational data. The
new satellite epoch for gravity and magnetic observation
has brought us a new dimension in the modeling process—
the amount of data to be considered.

Indeed, the launch of the Danish satellite Ørsted in
February 1999 has initiated a new era for geopotential
field research, known as International decade of geopo-
tential fields. Ørsted satellite was followed by other grav-
ity and/or magnetic missions, as CHAMP, SAC-C and
GRACE, launched in July 2000, November 2000 and March
2002, respectively. These satellites have provided a large
amount of gravity and/or magnetic data.

In a first step of processing, selection criteria are ap-
plied to remove measurements with insufficient accuracy.
In gravity field modeling, data are flagged according to their
quality, which depends on the phase breaks of the measure-
ment system, the filling of data gaps, the quality of applied
corrections (e.g. clock corrections), etc. Only the most valid
data are selected, with a high enough signal-to-noise ratio.

Considering the magnetic field modeling, identical pro-
cedures are used. Several selection criteria (geomagnetic
activity indices, local time—see Chambodut et al. (2003)
for details) are usually applied to the initial datasets.

Although ignoring observations with insufficient accu-
racy can change the number of measurements used in the
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model, after this selection step, the overall size of the
datasets is still very large. In addition, not only the satel-
lite data, but also surface data should be considered. High
resolution field modeling, at global or regional scales, in-
deed requires to combine the ‘medium’ resolution satellite
measurements with very dense surface datasets compris-
ing ground-based, altimetric, airborne and marine measure-
ments. This increases considerably the size of the datasets
from which the potential fields models are computed. For
such high resolution modeling, and for global modeling
as well, localized basis functions like spherical wavelets
or radial basis functions may be used (see for instance
Holschneider et al., 2003; Chambodut et al., 2005; Panet
et al., 2006; Lesur et al., 2007) and the availability of fast
algorithms is crucial.

In this context, modeling the potential fields of the Earth
becomes a challenging task with higher and higher demands
of computing memory and time. The number of data to be
modeled is huge and in order to be able to fully benefit from
the wealth of information contained in those measurement
flows, we should aim at treating them as they are, as much
as we can.

To cope with the large number of satellite measurements,
and in particular with the future 100 millions and 300 mil-
lions of measurements, respectively from the forthcoming
20 months-GOCE (gravity) and 4 years-Swarm (magnetic)
missions, methods have been developed to avoid the storage
of large normal matrices involving a large number of spheri-
cal harmonics. Those methods are based on the iterative ap-
proach (see for instance Kusche, 2000; Schuh, 2000; Keller,
2001; Nakajima, 2001; Reubelt et al., 2004). They make
use of a matrix that is representative of the normal system,
but easier to compute. Such matrix allows to compute an
approximate solution of the normal system, that is itera-
tively refined. It can also be used as a pre-conditioner of
the normal system, allowing to speed-up convergence rates
of iterative solvers (conjugate gradient, ...). For instance, a
block-diagonal approximation of the normal system may be
obtained when processing gravity data in a time-wise or in
a space-wise manner. In the time-wise approach, the mea-
surements are treated as time-series along the orbit and the
gravity potential is represented using inclination functions
related to the spherical harmonics. In this case, the nor-
mal matrix exhibits a block-diagonal structure for a circu-
lar, repeat orbit with constant inclination and no data gaps
(Colombo, 1984). The approximation of the real orbit with
a circular one thus leads to an approximative block-diagonal
solver that may be used within an iterative method. This al-
lows important computational savings (see for instance the
paper by Klees et al. (2000)). However, by nature such
methods do not lead to a reduction of the size of the underly-
ing problem. Moreover, they cannot be applied to localized
basis functions.

In the space-wise approach, the measurement positions
are directly treated as points in the 3D space, and the mod-
eling functions (spherical harmonics, wavelets, ...) are ex-
pressed as functions of positions. Then, a widely used ap-
proach to reduce the size of the datasets to a numerically
reasonable size is to project them onto a grid. This pre-
processing may be applied to both satellite and surface data.

The measurements are often down-sampled, and then inter-
polated on a regular spherical grid at average satellite or sur-
face altitudes. Note that such a regular gridding can also be
used to build a pre-conditioner of the normal system in an
iterative resolution framework (Schuh, 2000), since it leads
to a block-diagonal approximation of the normals. The data
gridding is implemented locally, cell by cell, from the orig-
inal data, using least-squares collocation and a-priori co-
variance functions (Moritz, 1980; Langel and Hinze, 1998).
Both, area-mean or point values can be obtained. A spheri-
cal harmonics model then can be computed from this grid-
ded dataset using quadrature formula for the spherical har-
monics on the grid or a least-squares adjustment or col-
location (Colombo, 1981; Sanso and Tscherning, 2003).
Migliaccio et al. (2004, 2006), applied this method to re-
cover the gravity field from synthetic GOCE data. Another
example is the computation of the EGM96 model, complete
up to degree and order 360, and constrained with satellite
and surface measurements. Lemoine et al. (1998), used
30′ mean surface gravity anomalies instead of the original
surface measurements: more than 30 millions of terrestrial
point gravity anomalies over the continents, in addition to
the dense satellite altimetric coverage of the oceans! Re-
cently, under the World Digital Magnetic Anomaly Map
Project, an international effort has been made to integrate
all available near-surface and satellite magnetic anomaly
data into a global map database. In Maus et al. (2007),
the authors use a least-square collocation method to com-
bine different surveys of near-surface data and then merged
the obtained grid with marine and aeromagnetic line-leveled
tracks. For both gravity and magnetic applications, the main
drawback of the gridding approach, is that the local inter-
polations and reduction to a sphere modify the stochastic
properties of the data in a complex way and lead to a loss
of information. Consequently, it is not clear whether the
subsequent possible inversion will lead to the optimal es-
timator in the least-squares sense. This is the reason why,
in our approach, we stick closely to the original data. We
propose to approximate the modeling functions used in the
representation of the potential field, but not the observation
data itself. Base on this approximations we construct an it-
erative method of stationary type, which under curtain con-
ditions (see Section 3), always converges to the solution of
the underlying inverse problem. Thus, there is no risk of
changing the stochastic properties of the original data set.
Similar technique was also used by Ditmar et al. (2003),
where the authors have developed an interpolation method-
ology implemented within an iterative solver, which allows
to approximate the normal system in such a way that the
interpolation error is kept under control. The exact values
of the spherical harmonics are computed on the vertices of
a 3D spherical mesh (this step can be very fast for a conve-
nient mesh geometry), and the values of the spherical har-
monics at the measurement points are approximated by in-
terpolation using the closest vertices. Another example is
Han (2004), who make use of Taylor series approximations
of the Legendre functions in latitudinal bands to speed-up
the computation of the normal system in a conjugate gradi-
ent approach.

In this paper, we propose a new method for modeling
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Fig. 1. Space discretization based on the icosahedron. Projection of the icosahedron vertexes onto a sphere (left); Shell discretization at satellite altitude
(unity-volumes) (right).

large amounts of data, which takes advantage of the rather
smooth behavior of the potential fields. Very often, the mea-
surements strongly oversample the smooth modeling func-
tions, which locally behave as low degree polynomials. We
design our method based on two main requirements: (i) the
data should be pre-processed in a compact and reasonable
way; (ii) the inversion scheme should allow fast and local
computations.

In this context, we develop local multipole approxima-
tions of the modeling functions at satellite altitude. We first
design a 3D tiling of the measurement space. Next, we re-
placed each model function by a power series of local multi-
polar expansion, around a defined point inside each volume
of the discretized space. In this way, we obtain a piecewise
decomposition of the potential field at the altitude of the
measurements. The coefficients of each local expansion are
used to precondition the underlying inverse problem, which
is then solved by an iterative method. The speed of con-
vergence and the precision of the inversion process are con-
trolled by a set of free parameters. Changing the relation
between the accuracy of the approximation of the modeling
functions and the size of the space discretization provides
the freedom to compute a fast, quick-look solution or a very
high quality model. The specificity of our approach is that
these piecewise approximations of the modeling functions
are equivalent to a reduction of the original dataset to a set
of local moments in the unity-volumes.

The paper also presents two applications, one for the
gravity field modeling and one for the magnetic field mod-
eling. It is shown that our proposed method makes it pos-
sible: (i) to reduce the amount of data for computational
and memory reason; (ii) to get precomputed datasets; (iii)
to make available standardized data for databases. All these
improvements are obtained without losing the quality of the
final obtained model.

2. Space Discretization
A starting point in our considerations is tiling the dataset

into smaller subsets, such that inside each one, the data

can be replaced by a suitably agglomerated derived quanti-
ties. Our space discretization is strongly related to the data
distribution. We use an adaptive algorithm, which decom-
poses the space-domain, i.e. the shell at the satellite altitude,
where the satellite revolves, into a sum of geometrical 3D-
bodies—curvilinear triangular prisms (see Fig. 1). The shell
is divided into J unity-volumes Q j , { j = 0, . . . , J − 1},
where J is the number of facets of an icosahedron centered
at the Earth’s center (see Chambodut et al., 2005).

We note here, that a discretization based on subdivisions
of the icosahedron does not provide optimal configuration,
with respect to several relevant metrics (Katanforoush and
Shahshahani, 2003). In this aspect other alternative distri-
butions, such as the one based on polar coordinates, can
be considered. On the other hand, for the purpose of our
method, we do not need nearly perfect “even distribution”
of the shell segments. We just need a practical way to split
the data onto smaller subsets. Each unity-volume, assim-
ilable to triangular prisms with two curved opposed faces,
contains a certain amount of measurement points. If the size
of a given prism is small enough, the data points inside are
located in the vicinity of one another and the measured field
appears smooth. Every shell segment Q j is defined such
that it obtains the property of compact geometry: its thick-
ness is chosen to be compatible with the size of the icosahe-
dron edges at the satellite altitude. If the shell defined by the
data is large, another layer of unity volumes is added in to
the radial direction. The aim is to obtain unity-volumes with
reasonable shapes, neither too flat and thin, nor too long and
thin. For a given dataset, a balance between the number of
prisms J (directly related to their size), the number of data
per prism D j and the order of multipole expansion used in-
side it should be determined. For example, in case of a few
data in a large unity-volume, this configuration may allow
to recover large wavelengths potential field, and thus leads
to the use of low degree polynomials. Contrary, in case of
a large number of data in a small unity-volume, this config-
uration may allow to recover small wavelengths potential
field, and thus leads to the use of higher degree polyno-
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mials. Finally, there is a trade-off to find between a good
approximation of the functions, that requests small enough
cells, and a large enough number of observations within one
cell. Indeed, the larger the number of observations in one
prism is, the smaller the bias created by the approximation
is.

Inside each prism, we define a special point called center
of mass. We consider the following two definitions of such
points:

- Case 1: Data independent—the definition is given by
the geometrical center of the prism. Depending on the
data distribution this case can lead to residuals with spatial
structure linked to the altitude of the measurements.

- Case 2: Data dependent—the definition of the center
of mass is given as the mean value of all the points inside.
The advantage of this definition is related to a better spatial
distribution of the residuals, the disadvantage comes from
the fact that the local coefficient matrix (see next section)
can not be precomputed independently from the dataset
used in the model.

3. General Development into Local Multi-polar
Expansions

We consider the following kind of linear model, where an
arbitrary function, s(x) is expanded into a family of model-
ing functions gn , with coefficients γn , n = 0, . . . , N − 1,

s(x) =
N−1∑
n=0

γn gn(x). (1)

In practice the gn are typically spherical harmonics or
wavelets.

We suppose that the measurements fk , k = 0, . . . , K −1,
at the observational points xk , are the “true” values mk of the
measured physical quantity to which some errors ek (noise
due to instrumental errors and/or errors of positioning) are
added:

fk = mk + ek, (2)

where ek are Gaussian random variables with covariance
matrix ��� = (�k,k ′) of size K × K .

We also suppose a known a priori information about the
model, expressed through a given quadratic form �. The
entries of the N × N square matrix ��� are then defined as
�n,n′ = �(gn, gn′). This regularization matrix is used when
the condition number of the normal, unregularized system
is big. It can be suppressed for a well-conditioned system.

The coefficient vector γγγ = (γ0, γ1, . . . , γN−1)
T of the

function s(x) from (1), which minimizes the quadratic form
� under the constraint that the error has the supposed known
covariance, can be computed as the solution of the follow-
ing normal equation:

(
F∗���−1F + λ���

)
γγγ = F∗���−1 f, (3)

where F = (Fk,n) = (gn(xk)) is the K × N system ma-
trix of the modeling functions evaluated at the measurement
points, f = ( f0, f1, . . . , fK−1)

T is the observation vector
and λ ∈ R is a Lagrange multiplier. In other words we

compute the coefficient vector γγγ by solving a classical regu-
larized weighted least-squares problem, with regularization
parameter λ.

Often, since the modeling functions are smooth and the
measurement points are dense, the functions gn are over-
sampled by the high number of measurement points. We
take advantage of the intrinsic correlations between the
columns of the system matrix of Eq. (3) and replace it by
a numerically equivalent system. The central idea is to re-
place the information contained in the fk observation by a
suitably agglomerated derived quantities, which from nu-
merical point of view will have the same properties as the
original data. In this way, we achieve a speed up in the
computation of the normal equation.

In detail, we proceed as follows. Suppose that each func-
tion gn can be approximated, around a given point at satel-
lite altitude, by a linear combination of simpler functions
h
, 
 = 0, . . . , L − 1, where L � K is a free parame-
ter, which we discuss later. Such a representation is always
possible. One can think of a local expansion into spheri-
cal harmonics, i.e. a linear combination of harmonic poly-
nomials up to a certain degree, restricted to some suitably
defined volumes at the satellite altitude. Inside each unity-
volume, we approximate the values of all modeling func-
tions gn , around the center of mass point x0, by the formula

gn(x) 	
L−1∑

=0

Cn,
(x0) h
(x − x0). (4)

Each local coefficient Cn,
(x0) depends on the type of the
modeling functions used in the model, the order of the lo-
cal approximation and the tiling of the measurement space.
Explicit formulas for the local functions h
 and the corre-
sponding local coefficients Cn,
, when real and complex
spherical harmonics are used as modeling functions, are
given in Appendix A. Similar type of local approxima-
tions were also used, in a slightly different context, by
Strykowski (2006) to speed-up the computation of the grav-
ity field generated by an arbitrary distribution of mass, in
forward gravity field modeling.

If the difference between the left and the right-hand side
of Eq. (4) is a fraction of the measurement noise, a model
based on the functions from the right-hand side cannot be
distinguished from a model based on the functions from the
left-hand side. The representation (4) allows us to factorize
the system matrix F as follows:

F 	 H C, (5)

where H = (Hk,
) = (h
(xk − x0)) is a block diagonal
K × J L system matrix of local functions evaluated at the
measurement points, C is a J L × N matrix of local coef-
ficients and J is the total number of volumes used in the
space discretization (see Section 2). Based on the above
factorization, the normal equations (3) can be rewritten as:

(
C∗�̃��

−1
C + λ���

)
γ̃γγ = C∗�̃��

−1
f̃, (6)

where �̃��
−1 = H∗���−1H is a J L × J L matrix and f̃ =

�̃��H∗���−1f is a vector of local moments of size J L .
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The exact solution γγγ of Eq. (3) can be computed from
the solution of (6) by using an iterative method of station-
ary type (see Section 4.1). The advantage of such an ap-
proach is that we can interpret the matrix in the left hand
side of Eq. (6) as a preconditioner to the original problem.
In this sense it is not unusual to chose an approximation
to the matrix of the underlying problem and use it to con-
struct an iterative method. As long as the spectral radios
of the approximation matrix is smaller than 1, the itera-
tive method will convergence to the exact solution of the
original problem. Clearly, the quality of the approxima-
tion, controlled by the free parameters: size of the prisms
and degree of the local approximations, from one side and
the speed of convergence of the method from other side are
closely related. The better the quality of the approximation
is the higher the speed of convergence should be. In the
same time, since the original normal equation is usually not
a well posted problem, using an approximation, which is
not that precise will actually have the effect of an additional
regularization. In Section 4, we have demonstrated numer-
ically that 2-nd and 3-rd degree polynomial approximation
of the basis function, together with the space discretization
introduced in Section 2, provide satisfactory results for all
considered examples. These choices are just one possibil-
ity, which proofs the applicability of our method. Clearly,
better combinations might be possible. The optimal choice
for all free parameters, which we have introduced in our
method is currently under investigation.
3.1 Operation count

What do we gain by using the above factorization? To
answer this question, let us first suppose that all local func-
tions are restrictions to some spherical prisms Q j , j =
0, . . . , J − 1 of spherical harmonics of low degree and let
Q j (n) denotes the support of Hn . The maximal number of
hn that share the same support, we denote by E

E j = #{n : support hn = Q j }, E = max{E j }. (7)

Let us also denote by D j the maximal number of data points
inside a given prism Q j

D j = #{k : xk ∈ Q j }, D = max
j

{D j }. (8)

The following relations are obviously satisfied

D ≤ K ≤ D J, and E ≤ L ≤ E J. (9)

Note that, since a matrix multiplication of an A × B matrix
with a B × C matrix takes O(ABC) operations in general,
for a full matrix ���, the total number of operations needed
to compute the normal matrix by means of factorization (5)
may actually increase. However, if the errors are not cor-
related between different Qi (or only between neighboring
Q j ), we may gain in computation time. In this case, the
direct computation of the normal matrix requires

opcount1 = K N (N + 1)/2 (10)

operations.
On the other hand, we can take advantage from the spe-

cial block diagonal structure of the matrix H (see Ap-
pendix A) and first compute the matrix X = H∗���−1H,

followed by the computation of the matrices Y = XC and
C∗Y = C∗H∗���−1HC. This process takes at most

opcount2 ≤ D J L(L + 1)/2 + J L2 N + J L N (N + 1)/2.

(11)

Clearly, the opcount2 is dominated by the largest of its first
and last terms. We can conclude that, in order to achieve
computational savings, the choice of the parameters L and
J should be done such that R � K , where: R = J L , is the
total number of local coefficients used in the approximation
(5), or in other words the rows number in C. Since neither
L nor J depends on K , the last requirement can be fulfilled
by simply increasing the number of measurements used in
the model.
3.2 Data storage

Additionally to the computational speed-up, achieved
by using local multi-polar approximations of the modeling
functions, the proposed approach leads to memory savings.
This is due to the fact that instead of solving the original in-
verse problem with system matrix F, we solve an equivalent
problem with system matrix C, which for R � K has much
smaller dimensionality. In practice, this allows to either in-
crease the number of observations used in the model, or to
increase the number of the modeling functions. We also
note, that since the entries of the matrix C depend only on
the number of the local functions used in the approximation
and the total number of the modeling functions, for a space
discretization (which uses a measurement independent def-
inition of the center of mass, see Section 2), the matrix C
can be precomputed once and for all. This fact can lead
to additional computational savings, when the size of the
unity-volumes used in the space discretization is small and
the number of data inside each is large. Further more, one
can also compute and store the SVD (or the QR) decompo-
sition of the matrix C and then use it to find the least-squares
solution of the original inverse problem. This is in fact the
approach used in our numerical experiments.

4. Applications for Geopotential Field Modeling
In this section we test the proposed local multi-polar ex-

pansion approach for modeling the Earth’s gravity (Sec-
tion 4.1) and magnetic (Section 4.2) potential fields. As
modeling functions, we use spherical harmonics and their
approximations by local harmonic polynomials up to degree
2, L = 9 (see Appendix A). The space discretization is
based on generation of six subdivisions of the icosahedron,
with 20480 total number of facets at the Earth’s surface.

An important question regarding the use of the multi-
polar expansion technique is: Depending on the size of
the considered dataset, how should we choose the size of
the unity-volumes (the number of data per unity-volume)
and the maximal order of the local harmonic polynomials,
in order to obtain optimal performance? It is clear that
the higher the resolution of the space discretization is, the
better the approximation will be. On the other hand, the
maximal reduction of the size of the underlying problem, is
obtained for the lowest possible resolution. Therefore, we
need to find a balance between the resolution of the space
discretization and the degree of the local expansion used in
the model.
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Fig. 2. Ratio in % between the sizes of the original and the approximated
problems versus the approximation relative error for L = 4, 9, 16, 25.

Figure 2, shows the maximum relative error between all
spherical harmonics up to degree 30 and their correspond-
ing local multi-polar approximations, versus the ratio (in
%) between the sizes of the underlying and the approx-
imated problems (size reduction), for the dataset used in
Section 4.2. For small and moderate size datasets, low
orders local approximations, of first (L = 4) and second
(L = 9) orders, are preferable. Higher order approxima-
tions would be beneficial, when the dataset is large enough,
so the number of local coefficients per unity-volume can be
compensated by the amount of data approximated in each
cell. In this case we can benefit from the better quality of
the higher order approximation.

The inversion codes, for the direct and the approximated
problems, have been implemented in two programming lan-
guages: Fortran 90, for the scalar gravity model, and C++,
for the vector magnetic model. The tests have been per-
formed on a Intel XeonTM 2 × 3.8 GHz CPU workstation,
with 8 GB main memory and on a Intel XeonTM 3.4 GHz
CPU workstation, with 4 GB main memory, respectively.
4.1 Gravity field model

We first show an example of application of the method for
gravity field modeling from GRACE. We consider the case
of a monthly gravity field recovery up to degree 50 from
GRACE simulated data sampled at 5 seconds intervals. It
is indeed difficult to recover higher degrees from only one
month of measurements, and consequently, the monthly
geoid routinely provided by different teams are truncated
at degree 50 or 60 (Biancale et al., 2007; Bettadpur, 2008).
In order to control the various sources of error and clearly
show the performances of the multipolar approximations,
we set up a simulation with very high accuracy require-
ments, closer to GRACE target accuracy than GRACE real
accuracy. Moreover, our aim here is not to produce a grav-
ity field from real datasets, that can be made available for
users, but to show how the presented method works.

Our simulation data are inter-satellite potential differ-
ences as provided by the energy balance approach from
the GRACE inter-satellite range rate (KBR) observables
(Jekeli, 1999; Rowlands et al., 2002; Han et al., 2003).
A realistic noise was added, taking into account the noise

in the KBR measurements, and errors arising from ocean
tides mismodelling and from the continental hydrology sig-
nal, considered as a noise in this simulation. For that,
we first generated one month of GRACE satellites orbits
using the GINS software developed by GRGS (Toulouse,
France). The GINS simulated measurements consist of
GPS positions and velocicites of the GRACE satellites,
accelerometer records accounting for the effects of non-
conservative forces, and KBR satellite-to-satellite tracking
measurements. The orbits are based on the EIGEN-GL04S
static reference field up to degree 50 (Biancale et al., 2007).
The errors were introduced in the GINS simulated measure-
ments as follows. First, an error on the intersatellites KBR
range-rate measurements is introduced, using an empirical
parameterization of the K-Band ranging system data at the
period of revolution (i.e., 15 bias per day plus sinusoidal
terms). The impact of this error on intersatellite potential
differences (in rms) is about 0.001 m2/s2. Second, a dy-
namical error was introduced, reflecting a mismodelling of
the oceanic tides components of the time-varying gravity
field and a continental hydrology loading. The ocean tide
mismodelling error is taken as one tenth of the potential
differences between the GOT2007 and FES2004 ocean tide
models. It leads to an increase of the KBR errors by a fac-
tor of 2. The continental hydrology loading corresponds
to the August 2003 total water contents from the WGHM
model by Döll et al. (2003). We then simulate along the or-
bits the perturbations on the inter-satellite potential differ-
ences associated with these sources of noise by applying the
time-integrated energy balance approach (see Jekeli, 1999;
Rowlands et al., 2002; Han et al., 2003). The contribution
of the static disturbing gravity potential from the EIGEN-
GL04S model was directly sampled along the orbit. Fig-
ure 3 (left) shows the obtained 518400 synthetic data, and
Fig. 3 (right) illustrates the synthetic noise. The noise rms is
0.0022 m2/s2, corresponding to about 0.2 mm on the geoid.

From the least-squares adjustment of this synthetic
dataset, we computed a spherical harmonics model of the
gravity potential up to degrees 50, without applying a stabi-
lization. Note that we do not use any a-priori gravity model
(that is to say, our first guess of the solution is zero). We
first perform an exact least-squares adjustment of the sys-
tem. The map of residuals with respect to the synthetic data
is represented on Fig. 4 (left), and corresponds to the KBR
data noise and the tide model error. The rms of residuals
amounts 0.002 m2/s2, a little less since part of our synthetic
noise has aliased into the solution. Figure 4 (right) shows
the difference between the recovered spherical harmonics
coefficients and the EIGEN-GL04S coefficients. The rms of
residuals amounts 0.0023 m2/s2, at the level of the synthetic
noise. These residuals are clearly structured, reflecting the
structure of the noise.

We then solved the normal system for different levels
of approximation. Note that, in the case of inter-satellite
potential differences, the entries of the system matrix are
given by the difference between the bases functions at the
two satellites positions for a given time t , namely (Fk,n) =
(gn(xGrace A

k (t))−gn(xGrace B
k (t))). This leads to a band block

diagonal �̃��
−1

matrix.
To solve the approximated system, we apply an itera-
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Fig. 3. Map of the simulated GRACE inter-satellite potential differences up to degree 50. Total disturbing gravity potential differences (left); Simulated
noise (KBR measurements noise, error on the tide model and continental hydrology variations) (right).

Fig. 4. Map of the residuals between the reconstructed spherical harmonics model up to degree 50 and the original dataset (left); Differences between
the reconstructed spherical harmonics coefficients and the EIGEN-GL04S spherical harmonics coefficients (right). No size reduction is applied.

tive approach for two reasons. The first one is that itera-
tive solvers are often considered for gravity field recovery
from satellite measurements, starting from a first guess of
the solution. In such context, exact inversions may be effi-
ciently replaced with approximate ones. The second reason
is that, by a single inversion, we may not be able to reach
the required level of accuracy, for a reasonable compres-
sion rate. However, using the set of spherical harmonics
coefficients obtained as the solution of the system, we may
build a first guess of the potential, and remove it from the
synthetic dataset. The residuals are then treated as input
data and adjusted during a second iteration, involving the
same approximated normal matrix and a new reduced data
vector f̃. Since at each step the approximated normal ma-
trix is unchanged, the extra computational cost involved,
for re-computing the vector f̃ and the new solution of the
normal equation (6), is kept low. This process can be it-
erated until the desired level of precision is reached. Such
iterative approach allows to keep the approximation error
under control, and to ensure that it is smaller than the noise
level. Moreover, it provides a great flexibility, since both
quick-look solutions may be computed with high compres-

sion rates and few iterations, and precise solutions may be
obtained with lower compression rates and/or a larger num-
ber of iterations.

The approximation parameters are summarized in Ta-
ble 1. We consider local multi-polar expansions of spher-
ical harmonics of local orders 1—84% size reduction, and
2—64% size reduction—on a space discretization involving
one layer of 20480 prismatic cells centered at the average
data altitude.

Figure 5 (left) shows the spatial map of residuals in the
64% reduction case, after 4 iterations. The rms of the resid-
uals is equal to 0.002 m2/s2, and the residuals look very sim-
ilar to the ones obtained without any approximation. The
histograms of residuals for different levels of approxima-
tion are represented on Fig. 7, and one cannot distinguish
between the result of an exact solution and the result of
this approximated solution. Figure 5 (right) shows the dif-
ference between the recovered spherical harmonics coeffi-
cients and the ones obtained from the exact inversion. The
rms of residuals amounts 0.0003 m2/s2, and the discrep-
ancies are mainly observed on the highest degrees spheri-
cal harmonics coefficients degrees (above 30), which make
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Table 1. Local approximations applied in gravity modelling tests. A subdivision of space with one layer with total of 20480 prisms, all of which are
filled, is used.

Expansion order 1 2

Number of reduced data/prism 4 9

Average number of original data/prism 23 23

Total number of reduced data 81920 184320

Total number of original data 518400 518400

Reduction in the size of the underlying problem 84% 64%

Nb of reduced data/SH coefficient (deg. 50) 31 71

Fig. 5. Map of the residuals between the reconstructed spherical harmonics model up to degree 50 and the original dataset (left); Differences between
the reconstructed spherical harmonics coefficients and the spherical harmonics coefficients obtained from the exact inversion (right). A 64% size
reduction is applied, and 4 iterations have been performed.

Fig. 6. Map of the residuals between the reconstructed spherical harmonics model up to degree 50 and the original dataset (left); Differences between
the reconstructed spherical harmonics coefficients and the spherical harmonics coefficients obtained from the exact inversion (right). A 84% size
reduction is applied, and 9 iterations have been performed.

sense since the lower degrees spherical harmonics are bet-
ter approximated for a given size of the cells and local mul-
tipolar development order. The spherical harmonics com-
ponents for the degrees lower than 30, that contain a lot

of signal, are almost perfectly recovered. Finally, this fig-
ure also shows that the multipolar approximation error after
four iterations is lower than the noise level. If we continued
iterating, the solution of the approximated system would
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Fig. 7. Histograms of the spatial residuals between the simulated data and the reconstructed data in the 3 cases: exact inversion, 64% size reduction and
4 iterations, 84% size reduction and 9 iterations.
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Fig. 8. Evolution of the rms of the spatial residuals between the simulated data and the reconstructed data as a function of the iteration number in the
cases: 64% size reduction, 84% size reduction, no size reduction.

converge towards the exact solution.
If we degrade the quality of approximation of the nor-

mal system, a larger number of iterations are requested to
meet the same accuracy requirements. Thus, in the 84%
reduction case, 9 iterations are necessary to reach the syn-
thetic noise level. Figure 6 (left) shows the spatial map of
residuals; the rms of the residuals is equal to 0.0027 m2/s2.
There is a very slight difference between this solution and
the previous ones, as shown on the histogram plot of Fig. 7.
Accordingly, the difference between the recovered spherical
harmonics coefficients and the ones obtained from the exact
inversion is slightly larger, but still at the level of synthetic
noise, as shown on Fig. 6 (right). Again the largest discrep-
ancies are observed for the highest degrees. Note that the
recovery of the spherical harmonics coefficients for degrees
lower than 30 is again near perfect, even for a larger com-
pression rate. After adding 4 more iterations, the difference

between the recovered coefficients and the ones obtained
from the exact inversion falls below the noise level. Iter-
ating allows to introduce higher size reduction rates, while
keeping the quality of the approximation.

Finally, Fig. 8 shows how the rms of the spatial residuals
changes during the iterative resolution process. Our accu-
racy demands in this simulation were very high, but inter-
satellite potential differences that can be built from the real
GRACE data are known to have a lower accuracy, at the
level of 0.01 m2/s2 (Shum et al., 2004). Figure 8 shows that
we reach this accuracy at the second iteration step for the
64% reduction case, and at the third iteration step only for
the 84% reduction case. In addition, we did not use any
apriori guess of the spherical harmonics coefficients from a
background model in our simulations, contrary to what is
often done, especially when the system equations have to
be linearized (Bettadpur, 2007). Using a non-zero a-priori
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Table 2. Local approximations applied in magnetic modelling tests. A subdivision of space with one layer with total of 20480 prisms, of which 7652
filled, is used.

Expansion order 0 1

Number of reduced data/prism 1 8

Number of original data/prism 9 9

Total number of reduced data 7652 22956

Total number of original data 70511 70511

Reduction in the size of the underlying problem 89% 68%

Nb of reduced data/SH coefficient (deg. 30) 8 24

Nb of reduced data/SH coefficient (deg. 60) 2 6
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Fig. 9. Histograms of the residuals between the reconstructed spherical harmonics model and the original dataset after the second iteration step. Degree
30 model (left); degree 60 model (right). From top to bottom: X , Y and Z components of the geomagnetic field.

on the solution, the perturbation on the spherical harmonics
coefficients to be estimated would be much smaller and it is
very likely that it could be performed at the level of GRACE
present-day accuracy within one iteration only.

4.2 Magnetic field model
In the following, we present tests on the ability of the

considered local multi-polar approximation technique to
model the Earth’s magnetic field. We built two different
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Fig. 10. Maps of the residuals between the reconstructed spherical harmonics model up to degree 30 and the original dataset after the second iteration
step. 89% size reduction (left); 68% size reduction (right). From top to bottom: X , Y and Z components of the geomagnetic field.

sets of vector synthetic data at real positions of the CHAMP
satellite for January 2007. Values of three components of
the magnetic vector field were computed by using the spher-
ical harmonics POMME 3.1 model (Maus et al., 2006) up
to degrees 30 and 60, respectively. In addition a Gaussian
synthetic noise, with a standard deviation of 2 nT, for the
degree 30, and 3 nT, for the degree 60 model was added to
each of the field components. Due to the vector nature of
the magnetic potential, the size of the synthetic dataset is
taken smaller than the one used in the previous example. In
order to keep the size reduction in approximately the same
levels, as before, we considered constant (L = 1) and linear
(L = 4) local harmonic polynomials approximations of the
basis functions. Table 2 details the main parameters of the
computations for the magnetic field model.

The results obtained from the least-squares fitting of the
two synthetic datasets are based on the same orders of ap-

proximations for both magnetic datasets. The space dis-
cretization evolves on a layer of 20480 prismatic cells, of
which only 7652 are filled. The center of mass of each
prism is taken by averaging the data inside. The solution
of the normal equation is found by using the iterative tech-
nique described in Section 4.1.

Figures 9 (left) and 10 show the histograms and the maps
of the residuals between the reconstructed spherical har-
monics model up to degree 30 and the original dataset, for
X (northern), Y (eastern), Z (down vertical) components
of the magnetic field. The results from the approximation
models are obtained after two iteration steps. For compar-
ison, the residuals computed by direct inversion, without
using approximations of the modeling functions, are also
given in Fig. 11. The fit obtained with the 68% size reduc-
tion of the underlying equation is at the level of the added
synthetic noise, for all three components of the vector field.
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Fig. 11. Maps of the residuals between the reconstructed spherical har-
monics model up to degree 30 and the original dataset. No size reduc-
tion is applied. From top to bottom: X , Y and Z components of the
geomagnetic field.

When the size of the normal equation is reduced by 89%,
the residuals are slightly larger from the introduced noise
level.

Results for the three different components of the mag-
netic field, obtained from a degree 60 spherical harmonics
model are shown in Figs. 9 (right) and 12. For the 68%
reduction case, we reach the level of the applied synthetic
noise, while for the 89% reduction case, we are above it.
An other iteration step is required to improve the residuals
in this case. The spatial distribution of the residuals is again
related to the data distribution around the centers of mass
of each prism. The errors in the approximated values of the
spherical harmonics of high degrees (above 30) are more
strongly related to the distance between the data points and
the center of mass.

Finally, we comment the fact that the histograms for var-

ious compression rates of the magnetic field look more sim-
ilar to each other, than those for the gravity field. This can
be explained with the smoother nature of the magnetic field
in comparison with that for the gravity field.

5. Conclusion and Prospects
In this paper, we have developed and tested a new

method, which allows to compute gravity and magnetic
field models from very large datasets in a fast and economic
way. Our method uses a 3D tiling of the space and it is
based on local harmonic polynomial approximations of the
modeling functions inside each space segment. Introduc-
ing such local approximations is shown to be equivalent on
replacing the original dataset with a set of local moments
of various orders. The proposed approach allows to repre-
sent the original system matrix as a product of two smaller
matrices: a local coefficient matrix and a matrix of local
functions. Thus, the size of the resulting inverse problem
can be significantly reduced. The local coefficient matrix C
can be computed and stored for later uses before solving the
least-squares problem. Due to the block-diagonal structure
of the system matrix of local functions H, the computation

of the modified covariance matrix �̃��
−1

and the vector of lo-
cal moments f̃ requires little computational effort and can be
performed relatively fast. The considered approach gener-
alizes the standard averaging technique and introduces the
use of higher order local moments in potential field mod-
eling. Depending on the chosen precision of the approxi-
mation, we can control the speed and the quality of the in-
version. We may thus compute fast quick-look solutions or
highly precise models with a great deal of flexibility. The
tests performed in this paper show that we can practically
control the amount of errors introduced by the approxima-
tions in the model. Distortions are small, and become neg-
ligible when the process is iterated. Our method is very
general: it can be applied to any kind of modeling func-
tions like wavelets or other radial basis functions. The local
moments of the original data are computed around the cen-
ters of the data clusters inside the unity-volumes, but one
may imagine in the future to design tilings of the space that
could be more closely related to the data distribution in-
stead of a fixed, uniform one. One may also consider local
refinements of the tilings, in areas where a higher preci-
sion is requested, for instance because of the presence of
important small scale features. This may be of primary
interest for local modeling using wavelets, to increase the
resolution, where needed. Finally, this paper opens broad
ways in potential fields modeling from large and various
datasets, at both global and local scales. The method can
already be applied to the processing of the currently oper-
ating satellite missions such as the GRACE mission. In the
future, we would like to apply this method to process larger
datasets from several satellites, and/or include surface mea-
surements. The method should be of primary interest for
the forthcoming GOCE and Swarm data assimilation, us-
ing spherical harmonics or wavelets as modeling functions.
In the case of the GOCE mission, the measurements will
be less smooth, but the noise level will be larger, requiring
an appropriate tuning of the approximation parameters and
number of iterations. A major challenge is the treatment
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Fig. 12. Maps of the residuals between the reconstructed spherical harmonics model up to degree 60 and the original dataset after the second iteration
step. 89% size reduction (left); 68% size reduction (right). From top to bottom: X , Y and Z components of the geomagnetic field.

of the coloured noise in the gradiometer measurements, es-
pecially in the space-wise approach. A possible way to
implement our method would be to pre-filter the measure-
ments before performing the space-wise inversion, similarly
to the approach proposed by Migliaccio et al. (2004), where
a Wiener filtering of the observation is performed along-
track before computing the gravity model. However, there
is a risk that the pre-filtering step affects not only the noise,
but also the signal, so it is necessary to assess the quality
of the filtering step based on the results of the gravity field
inversion, by comparing the a-priori and a-posteriori spec-
tra of both signal and noise, and iterate the process. A full
study of these aspects should be the topic of further work.
Finally, we indeed intend to apply this method for wavelet
modeling of potential fields, at both global and local scales.
Coupled with iterative resolution techniques for large sys-
tems, such as domain decomposition methods, the method

will lead to fast and accurate solvers. We may also think of
introducing a time-dependency in the local approximations,
in view of 4D-potential fields modeling. To conclude with,
the obtained models, constrained with the largest possible
amount of data at various altitude within a fully consistent
framework, will provide us with a high quality image of the
Earth’s potential fields. When jointly analyzed with other
geophysical observables, those models will contribute to a
better understanding of the structure and dynamics of our
planet.
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Appendix A. Local Multi-polar Expansions of
Spherical Harmonics

Here we give explicit formulas for the complex and the
real local multi-polar expansions of a spherical harmonic
function in terms of harmonic polynomial. The real case
formulas have been used in our numerical experiments. The
following notations are used (see Fig. A.1): �x0, j is the
centre of mass of the j-th unity-volume; �xi, j is the i-th

measurement point in the j-th unity-volume; �xi, j − �x0, j

gives the local coordinates of the point �xi, j with respect to
the coordinate system centred at the point �x0, j . Obviously,
for all unity-volumes the following relation holds ‖�x0, j‖ >

‖�xi, j − �x0, j‖.
A.1 Complex case

The value of each complex spherical harmonic at the
point �xi, j ∈ Q j is given by the following local multi-polar
expansion around the point �x0, j (Epton and Dembart, 1995)

Om

 (�xi, j ) =
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′∑
m ′=−
′

I m ′

′

(�xi, j − �x0, j
)
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with (r, θ, φ) and (r0, θ0, φ0) being the spherical coordi-
nates of the points �xi, j and �x0, j , respectively.

Equation (A.1) can also be written in the following more
explicit form
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where (h, α, β) are the spherical coordinates of the point
�xi, j − �x0, j . The vector case formulas, used in Section 4.2,
are obtained by computing the gradient of Eq. (A.5).
A.2 Real case

Here we give an equivalent formulation of the local
multi-polar expansion (A.5), which uses only real arith-
metics. We denote by �m


 the real spherical harmonics of
degree 
 and order m defined as
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(A.6)

Before we present how a real spherical harmonic can be
approximated, up to an arbitrary given order L

(
L = (L +

Fig. A.1. Position vectors in global (X, Y, Z) and local (X ′, Y ′, Z ′)
coordinate systems.

1)2
)
, in terms of local harmonic polynomials, we introduce

the following notations. For each spherical harmonic �m



and for each 
′ = 0, 1, . . . , L and m ′ = − 
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′, we
define the coefficients
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where (r0, θ0, φ0) are the spherical coordinates of the centre
of mass �x0, j , RE is the radius of the Earth and ε is defined
as

ε =

⎧⎪⎪⎨
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m; |m ′| > |m| mm ′ > 0,
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(A.8)

The exponent ν is equal to 0 for m = 0 and to 1
2 for all other

m. We also introduce the related coefficients
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We are now ready to express the value of a real spheri-
cal harmonic at any given point �xi, j , with spherical coor-
dinates (r, θ, φ), as a linear combination of real local har-
monic polynomials. The following approximation is ob-
tained from (A.5) by taking into account the definition (A.6)

�m

 (θ, φ)(
r

RE

)
+1 = Am



∞∑

′=0


′∑
m ′=−
′

Cm,m ′

,
′ (r0, θ0, φ0) H m ′


′ (h, α, β),

(A.10)

where Am

 is defined as

Am

 = (−1)m

√
(
 − m)!(
 + m)!

, (A.11)
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and coefficients Cm,m ′

,
′ are given by

Cm,m ′

,
′ (r0, θ0, φ0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ACm,m ′

,
′ + ACm,−m ′


,
′ ; m ′ > 0,

ACm,0

,
′ ; m ′ = 0, m ≥ 0,

ASm,m ′

,
′ − ASm,−m ′


,
′ ; m ′ < 0,

−ASm,m ′

,
′ − ASm,−m ′


,
′ ; m ′ > 0,

−ASm,0

,
′ ; m ′ = 0, m < 0.

ACm,m ′

,
′ − ACm,−m ′


,
′ ; m ′ < 0,

(A.12)

The local harmonic functions H m ′

′ are

H m ′

′ (h, α, β) = h
′

P |m ′|

′ (cos α)

{
cos

(
m ′β

)
m ′ ≥ 0,

sin
(−m ′β

)
m ′ < 0,

(A.13)

with (h, α, β) being the local spherical coordinates of the
point �xi, j with respect to the origin �x0, j .

From (A.10) it is clear that the total number of coeffi-
cients used in a real multi-polar approximation is equal to
the product of the number of all local functions times the
number of all unity-volumes i.e. equal to R = L J .

The elements of the coefficient matrix C and the values of
the local functions, which enter in the matrix H from (5) can
be computed directly from (A.12) and (A.13) respectably.
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