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[1] The prediction of the runout length L of large dry
debris flows has long been the subject of a considerable
research effort, primarily due to the obvious concern caused
by their destructive power. One seemingly well established
feature is the increase of the mobility M of a rock
avalanche, defined as the ratio of the runout distance to the
fall height, with its volume V. The physical nature of this
lubrication mechanism remains however controversial. In
this paper, we analyse field data and discrete numerical
simulations of granular flows and demonstrate the
geometrical origin of the apparent enhancement of the
mobility with the volume. We evidence the intertwined role
of volume and topography and show the existence of two
contributions in the runout, defining two flow regimes: one
dominated by sliding, in which the runout is independent of
¥V, and another dominated by spreading, in which the runout
is strongly dependent on V. In the light of these results, the
search of a volume dependent lubrication mechanism
appears to be an ill-posed problem. Citation: Staron, L.,
and E. Lajeunesse (2009), Understanding how volume affects the
mobility of dry debris flows, Geophys. Res. Lett., 36, L12402,
doi:10.1029/2009GL038229.

[2] On the night of April 29, 1903, 30 million cubic
meters of limestone collapsed from the east face of Turtle
Mountain (Alberta, Canada) killing an estimated 70 people
in the nearby town of Frank (Figure la). The resulting
deposit covered approximately 3 km? of the valley floor and
dammed the Crowsnest River, leading to the formation of a
small lake which covered 2 km of the Canadian Pacific
Railway. Such catastrophic events are not rare: hundreds of
rock avalanche deposits larger than one million cubic meters
in volume have been identified in the past several decades
on Earth [Hewitt et al., 2008], on Mars [Quantin et al.,
2004] and even on the moon [Howard, 1973]. Beside an
obvious concern for hazard assessment, rock avalanches are
also efficient agents of erosion in active orogens, capable of
moving large masses of material over kilometre-scale dis-
tances instantaneously [Hovius and Stark, 2006; Korup et
al., 2007]. In spite of the sustained interest these dramatic
natural events have raised in the scientific community, they
still escape physical understanding [Iverson, 1997, 2003].

[3] Among the various issues raised by these flows, the
prediction of their runout length L (see Figure 2a, insert)
keeps a first rank position, primarily due to the obvious
concern caused by their destructive power. Surprisingly,
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they can travel over distances several times larger than the
height H of the source topography [Dade and Huppert,
1998]. One seemingly established feature is the increase of
the mobility M = L/H with the volume ¥ of rock mobilized
by the avalanche (Figure 2a). This positive correlation was
first noted by Heim [1932]. Yet, the identification of
lubrication mechanisms enhanced by volume remains a
persisting and challenging issue [Legros, 2002, and refer-
ences therein]. In this paper, we analyse both field data and
discrete numerical simulations of granular flows, and show
that the increase of M with V reflects a purely geometrical
correlation. In the light of these results, the search for a
volume dependent lubrication mechanism appears to be an
ill-posed problem.

[4] The conventional analysis of the dissipative proper-
ties of geological granular flows relies on the hypothesis,
first put forward by Heim [1932] and prompted by an
analogy with solid friction, that the whole of the initial
potential energy of the mass is dissipated by the work of
friction forces along the topography. Neglecting centripetal
acceleration induced by the topography, and any other
energy transfers in the system, we obtain:

1
mgH = p,mglL and therefore M = — (1)

He

where f, is an effective friction coefficient quantifying the
average macroscopic dissipative properties of the flow.
Within the frame of this analysis, M appears as the inverse
of u., and Figure 2a is interpreted as the signature of a
decrease of the effective friction coefficient p, with the
increase of the volume of the avalanche.

[s] Many mechanisms have been invoked to account for
this volume-induced lubrication. High pressure at the base
of the flow can lead to a local melting and a drop of
resistance to shear [Erismann, 1979]. Ground vibrations can
restitute energy to the spreading flow [Melosh, 1979].
Trapped air may minimize energy dissipation at the base
of the flow [Kent, 1966; Shreve, 1968]. Yet none of these
scenari has so far established its universality. Beside, as
argued by Davies [1982], it is enough to suppose that the
spreading of the flow controls its runout to give the volume
a first order role. In other words, Heim’s correlation could
be purely geometrical.

[6] Misgivings concerning the physical meaning of M
arise from the fact that L varies over a much wider range
than H, so that the latter could possibly add nothing more
than scattering to the dependence of L on V [Davies, 1982].

[7] In the case of the data sets plotted in Figure 2a,
V varies over 7 orders of magnitude, L over 4 orders of
magnitude, and H covers only 1 order of magnitude. While
Figure 2a demonstrates a positive correlation between M
and V (though different for terrestrial and Martian slides) a
much better correlation is achieved when simply plotting
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Figure 1. (a) Frank slide deposit (Photo 2002-581 by Réjean
Couture reproduced with permission of Natural Resources
Canada, courtesy of the Geological Survey of Canada). (b)
Scheme of the numerical setup: the topography is composed of
an inclined of slope 6, and height H,, followed by a circular
ramp connecting eventually with the horizontal plane. The
initial vertical position of the center of mass is H, its final
horizontal position is Lg, and L is the runout distance.

the runout distance L as a function of the volume, as in
Figure 2b. In particular, the gap between the terrestrial and
the martian data is considerably reduced. Interestingly, a
purely geometrical power-law relation L o ¥''® matches the
trend shown by the data. Similarly, a fit of L as a function of
the inundated area A reveals that L o< 4" (Figure 2D, insert)
[lverson et al., 1998; Dade and Huppert, 1998]. These
two power-laws are easily derived from a straightforward
dimensional analysis. We conclude that the positive corre-
lation observed in Figure 2a reflects the fact that landslide
deposits have a common shape. In other words, field data
strongly suggest that the correlation between mobility and
volume of landslide is purely geometrical, and does not
contain any information about the dynamics of the flow.

[8] In order to assess the generality of this conclusion, we
have performed discrete numerical simulations of granular
flows. Despite their apparent simplicity, granular materials,
such as sand or glass beads, exhibit non-trivial behaviors
bringing new insights in the problem of debris flows
dynamics [Savage, 1989; Campbell, 1990; Straub, 1997;
Davies and McSaveney, 1999; Lube et al., 2004; Lajeunesse
et al., 2004, 2005, 2006]. Discrete numerical simulations of
ideally simple granular flows have proven able to reproduce
a realistic ability to flow, deform and spread, with a
minimum number of assumptions on the flow rheology
[Cleary and Campbell, 1993; Campbell et al., 1995; Linares-
Guerrero et al., 2007; Staron, 2008].

[¢] The numerical method applied is the Contact Dynam-
ics [Moreau, 1994; Staron and Hinch, 2005]. The grains are
strictly rigid, and they interact at contacts through a Cou-
lomb friction law and elastic restitution. Accordingly, ener-
gy is dissipated when collisions and sliding occur between
grains. In what follows, friction and elastic restitution at
contacts are constant; their value was set to allow the
granular mass to spread following a dense flow regime.
The numerical procedure consists in building a 2D rounded
mass of circular grains of mean diameter d. This granular
mass of volume Vis released from the top of a topography
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over which it flows. The topography is composed of an
incline of slope 6, and initial height H,, followed by a
circular ramp connecting eventually with the horizontal
plane (see Figure 1, and Staron [2008] for full details).
The topography is made rough by gluing grains on it. The
initial height of the gravity center of the granular mass is
denoted Hg. After the mass has flowed down the topogra-
phy and come to a rest, the runout distance L and the
distance L travelled by the center of mass of the avalanche
are measured (Figure 1). Note that the evaluation of L takes
into account the coherent mass of touching grains only: the
rare particles moving independently ahead of the main flow
are excluded.

[10] Series of simulations were performed varying the
volume V of the flowing mass from 300 grains to 12300
grains, the initial height H, from 4 to 16 m (ie 80 < Hy/d <
320), and the initial slope 6, was alternatively set to 40 or
60 degrees. A total of 64 independent runs was carried out.

[11] One obvious difference between numerical simula-
tions and real flows is that the first are 2D. This difference
of geometry is easily accounted for by redimensionalizing
the volume, considering VP (m) (with D = 2 for the
numerics and D = 3 for data), instead of the volume V (m°).
Implicitly, we suppose that 3D effects such as lateral
spreading play a marginal role in the issue discussed here.
Once the volume redimensionalized, numerical simulations
exhibit the same behavior as real rock avalanches in terms

Martian (MacEwen 1989)

Martian (Quantin 2004)

Terrestrial volcanic (compiled in Legros 2002)
Terrestrial non-volcanic (compiled in Legros 2002)
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Figure 2. (a) Flow mobility M = L/H for series of
terrestrial and martian data sets (see legend). Insert: sketch
of the runout length L and the fallen height A of a dry debris
flow. (b) Runout distance L as a function of V for the same
data sets. Insert: Runout distance L as a function of the
inundated area A.
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Figure 3. (a) Flow mobility M = L/H and (b) runout
distance L as a function of VP for real flow data and
numerical simulations.

of mobility: L/H, plotted against V'"?, follows a power-law
like trend similar to that shown by terrestrial and martian
data (Figure 3a).

[12] Importantly, a plot of L as a function of shows a
remarkable correlation merging along one single trend the
numerical data and the natural data (Figure 3b). This
suggests that the same mechanism works in both simula-
tions and real flows, and stresses the first order role of
geometrical spreading in the apparent volume-induced lu-
brication of large rock flows.

[13] This issue can be clarified in more general terms.
The runout of a gravity-driven granular flow can be decom-
posed in two contributions: sliding along the topography
and spreading of the unconsolidated mass:

Vl /D

L= leidmg + Lspreading‘

By analogy with solid friction, the sliding contribution is
expected to be independent of the volume V involved (as
expressed in equation (1)). By contrast, the spreadmg
contribution should grow at first order as V"2, where D is
the space dimension. The role of volume in the flow
dynamics and runout should be posed in terms of a
competition between these two contributions. Intuitively,
one understands that when the volume of the flow is small
compared to the size of the topography, sliding will
dominate in the final runout. By contrast if the volume is
large compared to the topography, then spreading will
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Figure 4. Respective contribution of sliding and spreading
to the final runout depending on the volume of the flowing
material with respect to the topography.

dominate (Figure 4). Hence, it seems that a relevant
description should involve the volume of the mass and the
topography geometry rather than the volume alone.

[14] Plotting the final position of the center of mass
(normalised by H,) against the normalised volume V'%/
(Hgsinfy) for the 64 independent simulations with varying
V, Hy and 6, allows for a collapse of the points on a single
master curve (Figure 5). In other words, the relevant
variable is the ratio of the two following quantities: the
projection of the length scale related to the mass involved
following the vertical direction V'?/sind,, and its initial
height Hg. If this ratio is small compared to 1, sliding
dominates, whereas if it is large compared to 1, spreading
dominates. Two regimes emerge: one in Wthh L /H,
remains constant irrespective of ¥’ "/(Hgsinby) and doml-
nated by sliding, and another in which L,/H, rapidly
increases with V/(Hgsinf,) and dominated by spreading.
The fact that Coulomb-like models fails for flows of volume
greater than 10° m® is in favor of this analysis [/verson,

2003].
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Figure 5. Normalized final position of the center of mass
Lo/Hy as a function of the normalized volume V" /(H
sinfy) for all simulation series. Inset igraph shows runout L
as a function of normalized volume V'*/H for terrestrial and
Martian data.
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[15] Hence, it appears that addressing the issue of
volume-induced lubrication of flows on the basis of the
volume alone is irrelevant. Rather, two regimes accounting
for both volume and topography are evidenced. The simi-
larity of behaviors of numerical and natural data on Figure 3
makes it likely that our conclusion applies to natural flows.
The challenge now is to determine to which regime they
belong. This is made difficult by the fact that no data on the
position of the center of mass are available. Nevertheless,
for the terrestrial and Martian data sets discussed in this
paper, we can estimate V'*/(Hgsinf) assuming (arbitrarily)
0y = 45°, and Hg; = H: data seem to span the two regimes
(Figure 5, insert).

[16] From these results, we conclude that understanding
the physics and dynamics of dry natural flows implies the
understanding of the intertwined role of volume and topog-
raphy, and the way both control the respective contribution
of sliding, as modeled by Heim, and spreading, of which
friction models fail to give account. Particularly, the exis-
tence of two regimes demonstrated by the simulations, one
dominated by sliding and the other dominated by spreading,
open new prospects in our apprehension of debris flows
behavior. Creating a reliable corpus of topographic features
as a systematic description of flow deposits seems an
essential step towards these improvements, as suggested
by Lajeunesse et al. [2006] and Staron [2008]. By all
means, considering the role of the volume of the flow as
an isolated factor appears to be irrelevant. In the same way,
our results show that invoking complex physical mecha-
nisms (such as melting, acoustic energy exchanges, trapped
air pressure. ..) is unnecessary to tackle the effect of large
volumes. From both data and simulations analysis, geom-
etry emerges as the first order factor, and the only universal
candidate to explain the apparent volume-induced lubrica-
tion exhibited by dry debris flows.

[17] Acknowledgments. We thank Niels Hovius for interesting com-
ments and critical reading of this paper.
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