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S U M M A R Y
We present approximate formulae for the plane-wave displacement reflection/transmission
(R/T) coefficients for interfaces of arbitrary contrast, separating two homogeneous, weakly
anisotropic media. They result from boundary conditions requiring continuity of displacement
vector and traction, in which coupled S waves are considered as a single S wave and exact
quantities are replaced by first-order quantities used in first-order ray tracing. Specifically, the
phase velocities, slowness and polarization vectors of P and coupled S waves appearing in the
boundary conditions are of the first-order with respect to the deviations of anisotropy from
isotropy. Application of the derived R/T coefficients transforms the amplitude of an incident
P wave into amplitudes of reflected/transmitted P or coupled S waves. Coefficients can be
computed for any incidence angle between 0◦ and 90◦, and for any azimuth. In this paper,
we test the accuracy of the derived R/T coefficients of unconverted plane P waves. We show
that, except for critical regions, first-order coefficients approximate the exact coefficients with
accuracy comparable or better than accuracy of linearized weak-contrast coefficients, which
are, however, applicable only in subcritical regions.

Key words: Body waves; Seismic anisotropy; Wave propagation.

1 I N T RO D U C T I O N

In our previous papers, we studied the first-order ray tracing and dy-
namic ray tracing (FORT and FODRT) of seismic body P and cou-
pled S waves propagating in smoothly varying, weakly anisotropic
media without interfaces (Pšenčı́k & Farra 2005, 2007; Farra &
Pšenčı́k 2008, 2010). The FORT and FODRT equations in the ear-
lier references were derived using the perturbation theory, in which
deviations of anisotropy from isotropy were considered to be of the
first order. In such media, S waves are coupled and propagate as
one wave with frequency-dependent amplitudes computed along a
common S-wave ray. We obtained the FORT and FODRT equations
for P or coupled S waves by replacing exact P-wave eigenvalues or
the average of exact S-wave eigenvalues of the Christoffel matrix
by their first-order counterparts in the ray tracing and dynamic ray
tracing equations. In this way, the resulting equations generate first-
order rays (in case of S waves, common S-wave rays) with first-order
traveltimes, first-order slowness vectors and first-order geometrical
spreading along them.

In this paper, we concentrate on computing first-order reflec-
tion/transmission (R/T) coefficients with the goal to extend the ap-
plicability of the FORT and FODRT equations to inhomogeneous,
weakly anisotropic media with structural interfaces. As in the ex-
act problem of reflection/transmission, the incident and generated
waves satisfy boundary conditions corresponding to the given con-
figuration. In the case of two elastic, weakly anisotropic solids in

welded contact, these conditions are continuity of displacement and
traction. The quantities appearing in the boundary conditions are
first-order phase velocities, slowness and polarization vectors, with
which we work in the FORT and FODRT.

The study of the R/T problem in anisotropic media has a rather
long history. The problem of reflection/transmission of plane waves
at a planar interface between two homogeneous anisotropic half-
spaces was studied, for example, by Fedorov (1968), Musgrave
(1970), Daley & Hron (1977), Graebner (1992), Schoenberg &
Protázio (1992) and Chapman (1994, 2004). For more references see
Červený (2001). Gajewski & Pšenčı́k (1987) used the plane-wave
R/T coefficients in the ray-theory computations of seismic wave-
fields in 3-D laterally varying layered anisotropic media. Consider-
able attention has been paid to various simplifications of R/T coef-
ficients based, for example, on the assumption of a weak-contrast
interface, with anisotropy of the surrounding media of arbitrary
strength (e.g. Ursin & Haugen 1996; Klimeš 2003) or on the as-
sumption of a weak-contrast interface and weak anisotropy of the
surrounding media (e.g. Rueger 1997, 2002; Vavryčuk & Pšenčı́k
1998; Zillmer et al. 1998; Vavryčuk 1999; Jı́lek 2002).

In this paper, we make no weak-contrast interface assumption.
We only assume that the media on both sides of the interface are
weakly, but generally anisotropic. Because the coupled S wave is
considered as a single wave, the formulation of the reflec-
tion/transmission problem in this paper resembles closely the for-
mulation for isotropic media. Although the derived formulae hold
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for any type of incident wave, in numerical tests we concentrate on
incident P waves only. An incident P wave can generate two pos-
sible types of waves, P or coupled S waves. The slowness vectors
of generated waves are sought by solving numerically the corre-
sponding first-order eikonal equation, separately for each generated
wave. The corresponding R/T coefficient is determined by solving
a system of six inhomogeneous, linear, algebraic equations. For
media with anisotropy of higher symmetry, with specific orienta-
tion of symmetry elements with respect to the interface, it might
be possible to find weak-anisotropy approximations of explicit ex-
act expressions for the R/T coefficients derived by, for example
Daley & Hron (1977) and Graebner (1992). Here, however, we
consider the case of general anisotropy.

The main reason for this study is to test accuracy of approximate
R/T coefficients, which we are going to use in the FORT and FODRT
modelling in laterally varying, layered, weakly anisotropic media.
Because their use eliminates problems of exact R/T coefficients, in
which incident or generated S waves propagate in singular directions
or close to them, and because of the simpler structure of coefficients
and easier way of their evaluation, the approximate R/T coefficients
may find applications even outside FORT and FODRT. The cost of
evaluation of approximate R/T coefficients is slightly higher than
the cost of computation of exact R/T coefficients in isotropic media,
but the reduction of the cost is not our goal here. In isotropic media,
the approximate coefficients reduce to exact R/T coefficients.

In Section 2, we present first-order formulae for the displacement
vector u and traction T of a P or a coupled S wave. Besides first-
order slowness vectors, special attention is paid to the first-order
formulae specifying the polarization vector (P waves) or the polar-
ization plane (coupled S waves). These formulae are then used in
the boundary conditions in Section 3. In Section 3.1, the formulae
for and procedure of determining the first-order slowness vectors of
generated waves are described. In Section 3.2, the set of six inhomo-
geneous linear algebraic equations, from which the first-order R/T
coefficients can be determined (Section 4) is specified. In Section 5,
the accuracy of the derived formulae for the case of unconverted P
waves is studied. Together with the reflection and transmission co-
efficients, RPP and TPP, the accuracy of the first-order slowness and
polarization vectors of generated waves is tested. To make the tests
as simple and transparent as possible, two models of an isotropic
half-space over a half-space of transversely isotropic medium with
horizontal axis of symmetry (HTI) are considered. The main results
are summarized in Section 6.

The lower-case indices i , j , k, l, . . . take the values of 1,2,3,
the upper-case indices I , J , K , L , . . . take the values of 1,2. The
Einstein summation convention over repeated indices is used. The
upper index [M] is used to denote quantities related to the coupled
S wave. To distinguish quantities related to reflected and transmitted
waves, we use superscripts R and T , respectively. Quantities related
to the incident wave have no superscript. Sometimes, when we
discuss properties of all generated waves, we use the superscript G.

2 B A S I C F O R M U L A E

The boundary conditions, which must be satisfied at an interface,
involve displacement vectors u and tractions T of the incident and
generated waves. They are formally the same as in the exact case
(Section 2.1). Basic role in both of them is played by the vecto-
rial amplitude factors. In Section 2.2, we present their first-order
approximations with respect to deviations between anisotropy and
isotropy for both P and coupled S waves. They are based on formu-

lae derived by Pšenčı́k & Farra (2005, 2007) and Farra & Pšenčı́k
(2008, 2010).

2.1 First-order displacement vector and traction

The first-order approximation of the displacement vector u of an
incident or generated harmonic plane wave can be expressed as

u(x, t) = Uexp[−iω(t − p · x)] . (1)

Here i is the imaginary unit, ω is the circular frequency, p is the first-
order slowness vector and U is the first-order vectorial amplitude
factor.

The first-order slowness vector can be expressed as p = n/c(n).
Here n is a unit vector perpendicular to the wave front of the rel-
evant wave and c = c(n) is its first-order phase velocity. It can be
determined from the corresponding first-order eigenvalues of the
Christoffel matrix.

The components of traction T acting at an interface with unit
normal N are given by the expression

Ti (x, t) = τi j (x, t)N j = ρ(x)ai jkl (x)N j uk,l (x, t) . (2)

See, for example, Gajewski & Pšenčı́k (1987) and Červený (2001).
Here, τ ij are components of the stress tensor, ρ denotes the density,
aijkl the density-normalized elastic moduli and uk,l = ∂uk/∂xl. In-
serting the expression (1) for the displacement vector into eq. (2)
leads to

Ti = iωρai jkl N j Uk pl exp[−iω(t − p · x)] . (3)

The symbols Uk and pk in eq. (3) are components of the first-order
vectorial amplitude factor U and of the first-order slowness vector
p, respectively.

2.2 First-order vectorial amplitude factor U

The first-order vectorial amplitude factor U of a plane P wave
propagating in a homogeneous, weakly anisotropic medium can be
expressed in the following way:

U = Cf [3]
(
p[3]

)
. (4)

S waves in weakly anisotropic media propagate coupled. Therefore,
we deal with them here as with a single wave, which we call the
common S wave. The first-order vectorial amplitude factor U of the
common S wave propagating in a homogeneous weakly anisotropic
medium can be written as:

U = Af [1]
(
p[M]

) + Bf [2]
(
p[M]

)
. (5)

The term C in (4) is the first-order scalar P-wave amplitude factor,
the terms A and B in (5) are the first-order scalar S-wave amplitude
factors. The vectors f [i] in (4) and (5) are defined in the following
way:

f [3](p) = (c(n))2

V 2
P − V 2

S

[
B13(p)e[1](p) + B23(p)e[2](p)

] + e[3](p) (6)

and

f [K ](p) = e[K ](p) − (c(n))2

V 2
P − V 2

S

BK 3(p)e[3](p) . (7)

The vector f [3] (p[3]) in eq. (4) is the first-order P-wave polarization
vector. It is obtained from eq. (6) by specifying c = c[3] and p = p[3]

= n/c[3], where c[3] and p[3] are the first-order P-wave phase velocity
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and slowness vector, respectively. Eq. (6) follows from eq. (14) of
Pšenčı́k & Farra (2007). Vectors f [K ] = f [K ](p[M]) in eq. (5) are two
vectors, to which amplitude factors A and B are related. Vectors
f [K ](p[M]) are obtained from eq. (7) by specifying c = c[M] and p =
p[M] = n/c[M], where c[M] and p[M] are the first-order common
S-wave phase velocity and slowness vector, respectively. The first-
order S-wave polarization plane defined by vectors f [K ](p[M]) is
perpendicular to vector f [3] = f [3](p[M]). By using p[M] as an
argument in f [3](p[M]), we emphasize that f [3](p[M]) is a vector
related to the common S-wave ray and it differs from f [3] (p[3]) (see
eq. 4) related to the P-wave ray. Eq. (7) follows from eq. (13) of
Farra & Pšenčı́k (2010).

Symbols B13 and B23 in eqs (6) and (7) are elements of symmetric
matrix B (p) (p = p[3] for P waves and p = p[M] for coupled S
waves) with elements:

Bjl (p) = �ik(p)e[ j]
i e[l]

k . (8)

Terms �ik(p) are elements of the generalized Christoffel matrix
� (p):

�ik(p) = ai jkl p j pl , (9)

where aijkl are density-normalized elastic moduli. Symbols e[j]
i in

eqs (6), (7) and (8) denote the components of three mutually per-
pendicular unit vectors e[j]. Vector e[3] has been chosen so that e[3] =
n. Here n is a unit vector perpendicular to the wave front, specifying
the direction of the first-order slowness vector p (with components
pi) of the corresponding wave. The remaining two mutually per-
pendicular unit vectors e[1] and e[2] can be chosen arbitrarily in the
plane perpendicular to vector e[3] = n. Vector e[3] related to a P wave
represents the zero-order approximation of the polarization vector,
vector f [3] (p[3]) represents its first-order approximation. Vectors
e[K] related to a common S wave specify the zero-order approxima-
tion of the S-wave polarization plane, vectors f [K ](p[M]) specify its
first-order approximation. Because vectors e[j] are unit, eqs (6) and
(7) imply that vectors f [i] are generally non-unit and are different
for P waves when they depend on c[3] and p[3] and for common S
waves when they depend on c[M] and p[M].

Slowness vector p must satisfy the corresponding first-order
eikonal equation

G(p) = 1 . (10)

Symbol G represents either the first-order approximation of the
eigenvalue G[3] of the Christoffel matrix (9), corresponding to the
P wave, or an average of the first-order eigenvalues G[1] and G[2] of
the Christoffel matrix (9), corresponding to S waves. The explicit
form of the first-order eikonal equations for P and coupled S waves
can be found in Pšenčı́k & Farra (2005) and Farra & Pšenčı́k (2008).
The first-order eigenvalues G[m] are closely related to the phase
velocities of the corresponding waves

(
c[M](n)

)2 = 1

2

[
G[1](n) + G[2](n)

]
,

(
c[3](n)

)2 = G[3](n) . (11)

Symbols VP and VS in eqs (6) and (7) denote the P- and S-wave
velocities corresponding to the reference isotropic medium closely
approximating the studied weakly anisotropic medium at the point
of incidence. Farra & Pšenčı́k (2010) showed that, for coupled S
waves, the reference velocities must be chosen in the following
way:

V 2
S = (

c[M]
)2

, V 2
P = (

c[M]
)2

B33

(
p[M]

)
. (12)

We can proceed similarly for P waves and choose:

V 2
P = (

c[3]
)2

, V 2
S = 1

2

(
c[3]

)2[
B11

(
p[3]

) + B22

(
p[3]

)]
. (13)

We can then modify eq. (6) to read

f [3]
(
p[3]

) = B13

(
p[3]

)
e[1]

(
p[3]

) + B23

(
p[3]

)
e[2]

(
p[3]

)

1 − 1
2

[
B11

(
p[3]

) + B22

(
p[3]

)] + e[3]
(
p[3]

)

(14)

and eq. (7) to read

f [K ]
(
p[M]

) = e[K ]
(
p[M]

) + BK 3

(
p[M]

)

1 − B33

(
p[M]

) e[3]
(
p[M]

)
. (15)

3 B O U N DA RY C O N D I T I O N S

Let us consider two homogeneous weakly anisotropic half-spaces
in welded contact, separated by planar interface � with unit nor-
mal N pointing into the medium in which the incident plane wave
propagates. The medium in which the incident wave propagates is
specified by density ρ(1) and the density-normalized elastic moduli
a(1)

ijkl. The medium on the other side of the interface is specified by

ρ(2) and a(2)
ijkl. An incident wave generates reflected P and coupled S

waves in the half-space specified by ρ(1) and a(1)
ijkl, and transmitted

P and coupled S waves in the half-space specified by ρ(2) and a(2)
ijkl.

The incident and generated waves satisfy the boundary conditions,
which in the case of an interface separating two solid media, consist
of the requirements of continuity of displacement u and traction T
across the interface.

The boundary conditions lead to two sets of equations. The first
set, resulting from the continuity of the traveltime of all involved
waves across the interface, represents equations for determining
the slowness vectors of generated waves. The second set, resulting
from the boundary conditions themselves, represents equations for
determining the scalar amplitude factors of generated waves. In the
following, we deal successively with both sets of equations.

3.1 Transformation of slowness vectors across an interface

The continuity of traveltime along the interface � implies the con-
tinuity of the traveltime derivatives taken along the interface. This
can be expressed in the following way:

pG − (pG · N)N = p − (p · N)N . (16)

Here, p and pG are first-order slowness vectors of the incident and
generated (G) waves, N is the unit normal to interface �. Eq. (16)
represents Snell’s Law for anisotropic media. From eq. (16) we can
determine the components of the slowness vectors of the generated
waves, tangential to the interface. It remains to determine their
components along the normal N to the interface. We can express
the slowness vector of any generated wave as

pG = b + ξGN = p − (p · N)N + ξGN . (17)

In eq. (17), ξG represents the scalar component of pG parallel to N,
and b represents the vectorial component of pG, tangential to �.
Components ξG of all generated waves are the sought parameters.
They can be found from the first-order eikonal equations satisfied
by the waves generated on corresponding sides of the interface

G(b + ξGN) = 1 . (18)

Eikonal equation (18) can be rewritten into the form of a polynomial
equation of the fourth degree in ξG. It has four roots, two of which are
non-physical. They can be identified as two conjugate roots, whose
imaginary parts are larger than the imaginary parts of the remaining
two roots. Of the remaining two roots, we accept the one which
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belongs to the wave whose first-order ray-velocity vector vG(vG
i =

1
2 ∂G/∂pi , where G = G[3] for P waves, or G = 1

2 (G[1] + G[2]) for
coupled S waves) points into the medium in which the generated
wave should propagate (in the case of real roots), or which satisfies
the radiation condition (in the case of complex conjugate roots).
Explicitly this means that Niv

G
i > 0 for reflected and Niv

G
i < 0

for transmitted waves in the case of real roots, and Im ξG > 0 for
reflected and Im ξG < 0 for transmitted waves in the case of complex
conjugate roots. The waves corresponding to the real roots of the
polynomial equation are regular waves while those related to the
complex roots are evanescent waves.

The selection of roots described earlier is necessary when we use
a polynomial equation solver, which provides all four roots. We can,
however, also use alternative procedures in which we seek just the
relevant root, and the selection of roots is not necessary. In weakly
anisotropic media, it is reasonable to assume that the sought root of
eq. (18) is close to the root ξG(0) of a similar equation correspond-
ing to a reference isotropic medium. We can thus use the root from
the reference isotropic case as an initial guess of the sought root.
Jech & Pšenčı́k (1989, Section 4.3) proposed a one-step procedure
based on the first-order correction of such an initial guess ξG(0).
Recently, Vanelle & Gajewski (2009) made the procedure iterative,
successively updating the reference isotropic medium. The proce-
dure proposed and used by Dehghan et al. (2007) seems to be more
efficient. They also use ξG(0), determined for a reference isotropic
medium, as the initial value in the iterative search for the solution
of eq. (18). Rather than updating the reference medium, they use
the Newton–Raphson iterative method to update the root itself. The
iterative formula, derived from the expansion of the eigenvalue G
in eq. (18) with respect to ξG, reads

pG{ j} = b + ξG{ j}N , (19)

where j is the iteration number and

ξG{ j} = ξG{ j−1} − G
(
pG{ j−1}) − 1

Nk∂G/∂pk

(
pG{ j−1}) . (20)

The explicit expressions for G and ∂G/∂ pk for P waves in me-
dia of arbitrary anisotropy and for coupled S waves in media of
orthorhombic and TI symmetries can be found in Pšenčı́k & Farra
(2007) and Farra & Pšenčı́k (2008), respectively. The expression for
∂G/∂ pk for coupled S waves in media of arbitrary anisotropy can
be simply determined by differentiating eq. (19) of Farra & Pšenčı́k
(2008) with respect to pk .

The use of eqs (19) and (20) avoids the necessity of seeking the
best-fitting reference medium (Vanelle & Gajewski 2009). The pro-
cedure described earlier can be used even for stronger anisotropy
(within weak-anisotropy approximation) and arbitrary incidence an-
gles, including large ones as shown in the examples in Section 5. It
can also be used to seek the roots of eq. (18) for evanescent waves,
that is to seek complex-valued roots.

3.2 Transformation of amplitudes across an interface

Let us now apply the continuity conditions of the displacement
vector (1) and the traction (3) to the system of incident, reflected
and transmitted waves. The continuity of traveltime along interface
� leads to the equality of the exponential factors of displacement
vectors of incident and generated waves. Taking this into account,

we can express the boundary conditions as follows:

AR f [1]R
i +BR f [2]R

i +CR f [3]R
i −AT f [1]T

i −BT f [2]T
i −CT f [3]T

i = −Ui ,

ARX [1]R
i +BRX [2]R

i +CRX [3]R
i −ATX [1]T

i −BTX [2]T
i −CTX [3]T

i = −Xi ,

(21)

where

Xi = ρ(1)a(1)
i jkl N j Uk pl ,

X [3]R
i = ρ(1)a(1)

i jkl N j f [3]R
k p[3]R

l , X [3]T
i = ρ(2)a(2)

i jkl N j f [3]T
k p[3]T

l ,

X [N ]R
i = ρ(1)a(1)

i jkl N j f [N ]R
k p[M]R

l , X [N ]T
i =ρ(2)a(2)

i jkl N j f [N ]T
k p[M]T

l .

(22)

The symbols Xi in eqs (21) and (22) correspond to the incident
wave, symbols X [3]G

i to generated P waves and X [N]G
i , N = 1, 2, to

generated coupled S waves (the superscript G stands for R, reflected,
or T , transmitted). The slowness vectors of generated waves are
determined by the procedure described in the preceding section.
Vectors f [i]G can be determined from eqs (6) or (7) or, alternatively,
from eqs (14) or (15).

4 R / T C O E F F I C I E N T S F O R A N
I N C I D E N T P WAV E

For an incident P wave, the quantities Ui and Xi on the right-hand
side of eq. (21) follow from (4) and from the first equation in eq. (22),
in which Uk again follows from (4) and pl are the components of
the P-wave first-order slowness vector p[3].

Eq. (21) represents a set of six inhomogeneous linear algebraic
equations for six unknowns AR,BR, CR,AT ,BT and CT , the first-
order scalar amplitude factors of four waves generated by incidence
of the wave with the first-order vectorial amplitude factor U. If
we wish to compute the standard displacement R/T coefficients,
we have to modify eqs (21) and (22). It is necessary to normalize
the vectors f [3] and f [i]G in eqs (21) and (22) to unit vectors, and to
replace them by their normalized counterparts f̄ [3] and f̄ [i]G . Normal-
ized vectors f̄ [I ]G(p[M]) can be chosen arbitrarily in the plane per-
pendicular to vector f [3]G(p[M]). First-order R/T coefficients can be
then introduced as RP P = ν[3]RCR/C, TP P = ν[3]TCT /C, RP S[1] =
ν[1]RAR/C, RP S[2] = ν[2]RBR/C, TP S[1] = ν[1]TAT /C and TP S[2] =
ν[2]TBT /C, where ν[i]R = |f [i]R|/|f [3]| and ν[i]T = |f [i]T |/|f [3]|. In-
dices S[1] and S[2] indicate that the corresponding coefficients are
related to vectors f̄ [1]G or f̄ [2]G , respectively. Eqs (21) and (22) can
now be rewritten in the following form:

RP S[1] f̄ [1]R
i + RP S[2] f̄ [2]R

i + RP P f̄ [3]R
i − TP S[1] f̄ [1]T

i

− TP S[2] f̄ [2]T
i − TP P f̄ [3]T

i = − f̄ [3]
i ,

RP S[1] X̄
[1]R
i + RP S[2] X̄ [2]R

i + RP P X̄ [3]R
i − TP S[1] X̄

[1]T
i

− TP S[2] X̄
[2]T
i − TP P X̄ [3]T

i = −ρ(1)a(1)
i jkl N j f̄ [3]

k pl , (23)

where

X̄ [3]R
i = ρ(1)a(1)

i jkl N j f̄ [3]R
k p[3]R

l , X̄ [3]T
i = ρ(2)a(2)

i jkl N j f̄ [3]T
k p[3]T

l ,

X̄ [N ]R
i = ρ(1)a(1)

i jkl N j f̄ [N ]R
k p[M]R

l , X̄ [N ]T
i =ρ(2)a(2)

i jkl N j f̄ [N ]T
k p[M]T

l .

(24)

5 E X A M P L E S

In this section, the system of eqs (23) with (24) is solved numerically
to evaluate the first-order RPP and TPP coefficients. Because we are
interested in unconverted P waves, the choice of vectors f̄ [I ](p[M]) in
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First-order R/T coefficients in weak anisotropy 1447

the plane perpendicular to f [3](p[M]) can be arbitrary. We determine
them from eq. (15), in which vector e[2] is chosen to be horizontal
and all three vectors e[i] form an orthonormal right-handed vectorial
basis.

For tests of accuracy of the first-order coefficients and related
quantities, we use the two models used by Pšenčı́k & Vavryčuk
(1998). In both models, we consider an isotropic upper half-space,
in which incident and reflected waves propagate, and the lower
half-space with transversely isotropic medium with horizontal axis
of symmetry (HTI), in which transmitted waves propagate. The HTI
half-space is the same in both models. The models differ only in
the isotropic upper half-space. In the first model, Model A, the P-
and S-wave velocities and density of the upper half-space are α =
4.0 km s−1, β = 2.31 km s−1 and ρ = 2.65 g cm−3, respectively. In
the second model, Model B, these parameters are α = 3.0 km s−1,
β = 1.73 km s−1 and ρ = 2.2 g cm−3. The matrix of density-
normalized elastic moduli (in km2 s−2) specifying the HTI medium
of the lower half-space reads
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.43 3.14 3.14 0.00 0.00 0.00

15.27 4.60 0.00 0.00 0.00

15.27 0.00 0.00 0.00

5.33 0.00 0.00

4.25 0.00

4.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

The density of the HTI medium is ρ = 2.6 g cm−3. We can see
that the axis of symmetry is oriented along the x-axis of the Carte-
sian coordinate system. The vertical sections of the phase-velocity
surfaces containing the horizontal axis of symmetry are shown in
Fig. 1. The P-wave velocity section is shown in the bottom plot, the
S-wave velocity sections are shown in the top plot.

We can see that in Model A, the P- and S-wave velocities in the
upper (isotropic) half-space exceed the P- and S-wave velocities in
the lower half-space. Except in the vertical plane perpendicular to
the axis of symmetry, the velocity contrast (ratio of the absolute
value of the difference of velocities on both sides of the interface
and of their average) varies with direction. For P waves in the
vertical plane containing the axis of symmetry, the velocity contrast
increases from about 2 per cent for vertical direction (0◦) to about
26 per cent for horizontal direction (90◦). For the S1 wave (faster,
with SH-wave polarization) in the same vertical plane, the contrast
increases from about 0.05 per cent to about 11 per cent. For the S2
wave (slower), the contrast varies slightly around 11 per cent. In
Model B, the P- and S-wave velocities in the upper half-space are
lower than in the lower half-space. The contrast is generally higher
than in Model A. Its variation in the vertical plane containing the
axis of symmetry is opposite to that for Model A. For the P wave,
the contrast decreases from about 26 per cent for vertical direction
to about 2 per cent for horizontal direction. For the S1 wave, the
contrast decreases from about 29 to 17 per cent. For the S2 wave,
the contrast varies slightly around 17 per cent. As to the anisotropy
of the HTI half-space, it is about 24 per cent for the P wave and
around 11 per cent for the S1 wave.

Coefficients RPP and TPP obtained by solving the system of equa-
tions (23) may be complex valued. Therefore, we present them in
terms of their moduli and phases:

RP P = |RP P | exp(iϕR) , TP P = |TP P | exp(iϕT ) . (26)

The presented figures have the forms of maps, in which the quanti-
ties are shown as functions of the angle of incidence θ (horizontal
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Figure 1. Variation of the P-wave (bottom) and S-wave (top) phase veloci-
ties in a vertical plane containing the axis of symmetry of the HTI medium
specified in (25). The velocities vary from the vertical (0◦) to horizontal
(90◦) direction of the wave normal.

axis) and of azimuth � (vertical axis). Both angles are specified
in degrees. Azimuth � = 0◦ corresponds to the direction along the
axis of symmetry, � = 90◦ to the direction perpendicular to the axis
of symmetry. The incidence angle θ = 0◦ corresponds to normal
incidence. The angles specify direction of the first-order slowness
vector of incident wave.

For a better understanding of the behaviour of the approximate
coefficients, we first show the maps of deviations of the first-
order slowness vectors and of the first-order polarization vectors or
the first-order polarization planes of waves generated in the lower
anisotropic half-space from their exact counterparts. These devia-
tions are expressed as angles (in degrees) between the approximate
and exact vectors. We then show maps of the exact moduli and
phases of the RPP and TPP coefficients (Fedorov 1968; Gajewski &
Pšenčı́k 1987) followed by maps of differences of the moduli and
phases of the first-order R/T coefficients from the exact ones.
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Figure 2. Maps of the angular deviations (in degrees) of the approximate
from the exact slowness vectors of transmitted P (top), S1 (middle) and S2
(bottom) waves for Model A.

Fig. 2 shows the maps of angular deviations of the approxi-
mate from the exact slowness vectors of the transmitted P (top), S1
(middle) and S2 (bottom) waves for Model A. The S-wave plots
show the deviations of the first-order slowness vectors of coupled S
wave from the exact slowness vectors of S1 and S2 waves. Similar
maps for the reflected P and S waves are not shown because the
reflected waves propagate in the isotropic half-space, in which the
approximate slowness vectors coincide with the exact vectors (thus
their differences are zero for each incidence angle and azimuth).

We can see that the approximate slowness vectors of the P wave
do not deviate from the exact vectors by more than 1◦. The devi-
ations increase with increasing angle of incidence, the maximum
deviations occurring for azimuths around 50◦. Deviations are zero
and close to zero for azimuth 90◦ and azimuths close to it. The verti-
cal plane with azimuth 90◦ is perpendicular to the axis of symmetry
and thus coincides with the ‘isotropy plane’, in which directions
of approximate slowness vectors coincide with exact slowness vec-
tors. The situation is different in case of S waves (middle and bottom
plots). The deviations also increase with increasing angle of inci-
dence, being largest for azimuths around 90◦. They are slightly
larger than in the case of the P wave; they slightly exceed 2◦. For
azimuths close to 90◦, we observe non-zero deviations. This is the
consequence of studying the deviations of the first-order slowness
vectors, corresponding to the coupled S wave, from the exact slow-
ness vectors of separate S1 and S2 waves, as mentioned earlier.

We have also studied relative differences between the sizes of the
approximate and exact slowness vectors. For P waves, the relative
differences are lowest for incidence angles close to 0◦ or azimuths
close to 90◦. They are maximum (close to 1 per cent) along an ap-
proximately ellipsoidal curve connecting points with azimuth and
incidence angle (0◦, 53◦) and (35◦, 90◦). For S waves, at the point
with azimuth 0◦ and incidence angle 90◦, the relative differences
are 2.2 and −5.4 per cent for faster and slower S wave, respec-
tively. From the above point, the relative differences increase radi-
ally to 5.2 per cent for faster S wave and decrease, also radially, to
−6.2 per cent for slower S wave.

Fig. 3 shows the maps of angular deviations of the approximate
from exact polarization of transmitted P (top) and S (bottom) waves
for Model A. In the case of P waves, we show the deviation of the
first-order polarization vector f [3] (p[3]) obtained from eq. (6), from
the exact one. In the case of S waves, we show the deviation of
the normal to the first-order S-wave polarization plane, formed by
vectors f [K ](p[M]) obtained from eq. (7), from the normal to the
exact S-wave polarization plane, defined by the exact S-wave polar-
ization vectors. For the same reasons as in the case of the deviations
of slowness vectors, the maps for reflected P and S waves are not
shown. The behaviour of the polarization deviations is similar to
the behaviour of the slowness vector deviations. In the case of P
waves, the deviations of the polarization vectors are slightly larger,
slightly exceeding 1.2◦. The deviations for azimuths close to 90◦

are zero. The deviations of normals to the polarization planes of S
waves resemble deviations of slowness vectors of S waves.

In Fig. 4, we can see maps of the modulus of the exact RPP

coefficient (top) and of the differences between the moduli of the
first order and the exact RPP coefficients (bottom) for Model A.
Because of the higher velocities in the upper half-space, there is
no critical incidence. For all the azimuths and incidence angles, the
phases are 180◦ (therefore, we do not show the map of phases),
which indicates that the coefficients are negative. The first-order
coefficients also have phase 180◦, therefore the differences in phase
are zero everywhere and are not shown. Because the contrast is very
weak for small angles of incidence, the modulus of the exact RPP

coefficient is rather small for small angles. As expected, modulus
|RPP| increases, except for incidence angles close to 20◦ and az-
imuths between 0 and 40◦, with increasing incidence angle. The
slight decrease in |RPP| in the above-mentioned region is an effect
observable only in anisotropic media. From the bottom plot, we can
see that, for small incidence angles, the modulus of the approximate
RPP coefficient is less than the modulus of the exact one. Only for
large azimuths and large incidence angles, is the modulus of the ap-
proximate coefficient slightly larger than the modulus of the exact
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Figure 3. Map of the angular deviations (in degrees) of the approximate
from the exact polarization vectors of transmitted P wave (top). Map of
the angular deviations (in degrees) of the normal to the common S-wave
polarization plane from the normal to the exact S-wave polarization plane
(bottom). Both for Model A.

one. For azimuths close to 90◦ (the isotropy plane) or small angles
of incidence, the approximate RPP coefficient is very accurate. The
deviation of the modulus of the approximate RPP coefficient from
the exact one is smaller by at least one order, but for most angles of
incidence significantly less than exact modulus. The relative differ-
ence between moduli of the approximate and exact coefficients in
regions in which the exact modulus of the coefficient is about 0.1
or larger does not exceed 3 per cent. In regions, where the exact
modulus of the coefficient is very small, the relative errors are, of
course, larger. They may reach 25 per cent.

Fig. 5 shows the same as Fig. 4, but for the transmission coeffi-
cient TPP for Model A. The modulus of the TPP coefficient decreases
with increasing incidence angle. Due to the weak-contrast interface
for small angles of incidence, the modulus of the TPP coefficient
is quite large for these angles. The phase is zero for any angle of
incidence and azimuth. From the bottom plot, we can see that the
modulus of the approximate TPP coefficient is less than the exact
one for all azimuths and angles of incidence. The differences are

-0.006

-0.004

-0
.0

0
4

-0.002

-0
.0

0
2

0

0

0
.0

0
2

0
.0

0
6

0.006

0
.0

1

0

10

20

30

40

50

60

70

80

90
0 10 20 30 40 50 60 70 80 90

A
zi

m
ut

h 
(d

eg
re

es
)

0
.0

2

0
.0

2
0
.0

2

0
.0

4

0
.0

4
0
.0

4

0
.1

0
.1

0
.1

0
.2

0
.2

0
.2

0
.4

0
.4

0
.4

0
.6

0
.6

0
.6

0
.8

0
.8

0
.8

0

10

20

30

40

50

60

70

80

90
0 10 20 30 40 50 60 70 80 90

Incidence angle (degrees)

A
zi

m
ut

h 
(d

eg
re

es
)

Figure 4. Maps of the moduli of the exact RPP coefficient (top) and of the
differences between the moduli of the first-order and exact RPP coefficients
(bottom) for Model A.

smaller than the values of the modulus by around two orders of
magnitude. The maximum difference is about 0.015. The relative
errors are less than 1 per cent for most angles, slightly exceeding 3
per cent for large incidence angles.

In the following figures, we show plots corresponding to Model
B. As mentioned earlier, in this case the velocities in the isotropic
upper half-space are smaller than in the anisotropic lower half-space.
We can therefore observe critical and overcritical incidence of the P
wave. The effects of critical and overcritical incidence can already
be observed in maps of the angular deviations of approximate from
exact slowness vectors.

Angular deviations of the first-order from exact slowness vectors
of transmitted P (top), S1 (middle) and S2 (bottom) waves are shown
in Fig. 6. If we compare the top plots of Figs 2 and 6, we can see
a similar increase in deviations for increasing angles of incidence
up to certain ‘boundary’ values (angles of incidence of about 75◦

for azimuths close to 0◦, which continuously change to angles of
incidence of about 50◦ for azimuths close to 90◦). The deviations in
the upper plot of Fig. 6 grow quickly around these ‘boundary’ values
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Figure 5. Maps of the moduli of the exact TPP coefficient (top) and of the
differences between the moduli of the first-order and exact TPP coefficients
(bottom) for Model A.

of the angles of incidence. These angles of incidence indicate critical
incidence. Because the angular positions of exact and approximate
critical angles slightly differ, we can observe a narrow belt (instead
of a sharp curve), in which the angular deviations increase over
the value of about 3◦, the maximum value in the subcritical region.
In the overcritical region, the differences are zero. This is because
we are comparing the real parts of the complex-valued first-order
and exact slowness vectors in this region. The real parts are in both
cases tangent to the interface and have the same size. Thus their
differences are zero. As in Fig. 2, the differences for the azimuths
close to 90◦ are negligible. The slowness vectors of transmitted
S waves are not affected by overcritical incidence and, therefore,
the behaviour of their deviations is very similar to the behaviour
of their counterparts in Model A, shown in the middle and bottom
plots of Fig. 2. The deviations in Model B attain greater values (up
to around 3◦) as a consequence of the lower velocities in the upper
half-space than in the lower.

The relative differences between the sizes of the approximate and
exact slowness vectors have a similar character to those obtained in
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Figure 6. Maps of the angular deviations (in degrees) of the approximate
from the exact slowness vectors of transmitted P (top), S1 (middle) and S2
(bottom) waves for Model B.
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Figure 7. Map of the angular deviations (in degrees) of the approximate
from the exact polarization vectors of transmitted P wave (top). Map of
the angular deviations (in degrees) of the normal to the common S-wave
polarization plane from the normal to the exact S-wave polarization plane
(bottom). Both for Model B.

Model A. The only exception is behaviour of differences obtained
for P waves. The differences exist only in the subcritical region (like
in the upper plot of Fig. 6). They are zero in overcritical region due
to reasons described in the previous paragraph.

In the upper plot of Fig. 7, which shows the angular deviations
of the first-order from exact polarization vectors of the transmit-
ted P wave (in the overcritical region we compare real parts of
the complex-valued first-order and exact polarization vectors), we
can again observe a narrow belt of strongly increased values of
deviations, which indicates the region of critical incidence. In the
subcritical region, the differences behave in a similar way as in
the upper plot of Fig. 3, with slightly higher angular deviations of
the first-order from exact polarization vectors, which are again the
consequence of lower velocities in the upper half-space. This is also
true for any angle of incidence and azimuth for the S-wave polar-
ization differences shown in the bottom plot of Fig. 7; compare this
plot and the bottom plot of Fig. 3.
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Figure 8. Maps of the moduli of the exact RPP coefficient (top) and of the
differences between the moduli of the first-order and exact RPP coefficients
(bottom) for Model B.

Fig. 8 shows maps of the modulus of the exact RPP coefficient
(top) and of the differences between moduli of first-order and exact
RPP coefficients (bottom) for Model B. We can see that the behaviour
of the modulus of the exact coefficient is dramatically different from
the behaviour of |RPP| in Model A (see upper plot of Fig. 4). We
can clearly see the region of rapidly increasing values of |RPP|,
which indicates critical incidence. As we have already seen in the
upper plots of Figs 6 and 7, it extends from angles of incidence
of about 75◦ for azimuths around 0◦ to angles of incidence of
about 50◦ for azimuths close to 90◦. The variation of |RPP| in the
overcritical region is negligible in comparison with the variation in
the subcritical region. An interesting phenomenon can be observed
for small azimuths and angles of incidence ∼50–70◦. Along one of
the isolines in this region (not shown in the plot), the modulus of the
RPP coefficient becomes zero. The angles of incidence along this
isoline, which can be seen much better in the bottom plot of Fig. 8
(angles of incidence between 53◦ and 71◦ and azimuths between
0◦ and 16◦), represent Brewster angles, for which the reflection
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Figure 9. Maps of the phase (in degrees) of the exact RPP coefficient (top)
and of the differences between the phases of the first-order and exact RPP

coefficients (bottom) for Model B.

coefficient is zero. Except for a slight shift of isolines, the map of
the modulus of the first-order RPP coefficient (not shown) is nearly
identical with the upper plot of Fig. 8. Therefore, the differences
shown in the bottom plot of Fig. 8 are generally very small. They
only increase significantly in the vicinity of critical incidence and
also close to the above-mentioned Brewster angles. The increased
density of isolines is the consequence of the slight misposition of
the critical and Brewster angles of the approximate coefficients and
of the rapid variation of the coefficient in the mentioned regions.
Outside these narrow regions, there are no dramatic differences
between the approximate and exact coefficients.

For subcritical incidence, the phases, with the exception of the
vicinity of the Brewster angles (the isoline between angles of in-
cidence 53◦ and 71◦ and between azimuths 0◦ and 16◦), are zero.
For overcritical incidence, the phases become non-zero and vary as
shown (in degrees) in the upper plot of Fig. 9. At Brewster angles,
the phases switch from zero (outside the above-mentioned isoline)
to 180◦ (inside). The differences in phases (in degrees again) shown
in the bottom plot indicate that, except for the close vicinity of
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Figure 10. Maps of the moduli of the exact TPP coefficient (top) and of the
differences between the moduli of the first-order and exact TPP coefficients
(bottom) for Model B.

critical incidence and the Brewster angles (again caused by mis-
position of the isolines of approximate phases), the approximate
phases differ only a little from the exact.

Fig. 10 shows transmission coefficient TPP for Model B. The
modulus of the TPP coefficient (top) increases smoothly with the
incidence angle up to critical incidence. It then decreases rapidly
to zero for tangential incidence. There are no Brewster angles for
the TPP coefficient. Although the region of critical incidence in the
plot of the modulus of the TPP coefficient is difficult to identify (it
is between the isolines of 1.5), it is clearly visible in the plot of
differences between approximate and exact moduli of coefficients
(bottom). Outside the region of critical incidence, the differences
between the first-order and exact moduli are again very small.

As in the case of the reflection coefficient, the phases of the
transmission coefficients are zero for subcritical incidence. They
become non-zero for overcritical incidence (see the upper plot in
Fig. 11) where they are again shown in degrees. Outside the region
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Figure 11. Maps of the phase (in degrees) of the exact TPP coefficient (top)
and of the differences between the phases of the first-order and exact TPP

coefficients (bottom) for Model B.

of critical incidence, the differences between approximate and exact
phases are, as in Fig. 9, very small.

6 C O N C LU D I N G R E M A R K S

A characteristic and important feature of the first-order coeffi-
cients presented in this paper is their applicability to all incidence
angles and azimuths. For example, the approximate coefficients of
Vavryčuk & Pšenčı́k (1998), Zillmer et al. (1998), Jı́lek (2002),
Rueger (2002) and Klimeš (2003) are applicable only to smaller
angles of incidence; they are inapplicable for critical and overcrit-
ical reflections and/or transmissions. Another advantage of the ap-
proximate coefficients presented in this paper is their applicability
to models with arbitrary contrast. The coefficients of the above-
mentioned references are applicable only to weak-contrast models.
It is also important to emphasize that S waves in weakly anisotropic
media are considered as one coupled S wave in the described first-

order R/T coefficients. This was not the case in previous studies of
R/T coefficients. The only limitation of the presented coefficients is
their restriction to weakly anisotropic media.

The described tests of the first-order RPP and TPP coefficients and
related quantities such as slowness and polarization vectors indicate
the high accuracy of the approximate formulae. The only exceptions
are close vicinities of critical incidence and of the Brewster angles.
In applications in ray theory, the inaccuracies of R/T coefficients in
the vicinities of critical incidence are not a problem since the ray
theory itself does not work properly in these regions.

We plan further tests of more complicated situations, for exam-
ple, of incidence at an interface separating two weakly anisotropic
media, of an incident coupled S wave, etc.
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Gajewski, D. & Pšenčı́k, I., 1987. Computation of high-frequency seismic

wavefields in 3-D laterally inhomogeneous anisotropic media, Geophys.
J. R. astr. Soc., 91, 383–411.

Graebner, M., 1992. Plane-wave reflection and transmission coefficients for
a transversely isotropic solid, Geophysics, 57, 1512–1519.
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