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There are two categories of helical line defects in Sm-A phases: screw dislocations of small Burgers vectors
and double helices �DHs�, whose macroscopic configuration constitutes a mode of splitting of screw disloca-
tions of giant Burgers vectors. Their counterparts in Sm-A�’s �Sm-A’s with chiral molecules� show a number of
differences with the former and are investigated theoretically on the basis of recent observations �C. Meyer et
al., Liq. Cryst. 37, 1047 �2010��. The first part of the paper is a short review of the main features of helical
defects in Sm-A’s proper. In Sm-A�’s, small Burgers vector screw dislocations with the same chirality as the
high-temperature N� phase are favored over the opposite ones, a result that is related to the defect core
singularity. This is also true for the macroscopic DH�s for a more subtle reason; we advance that the DH�

nucleation at the N�→Sm-A� transition stems from a peculiar texture of the cybotactic groups, akin in the ideal
case to a set of two twisted � disclinations in the N� phase, linked by a stacking fault of continuous disclina-
tions. This stacking fault vanishes in the Sm-A� phase, and one recovers a DH� much similar to a DH but with
the appropriate chirality. Cases that differ from ideality are described: they involve small Burgers vector screw
dislocations and can be evoked to explain the numerous observed distorted double helices �the Darboux
condition is not obeyed� and twisted ribbons. The case when the N�→Sm-A� transition is type II �presence of
a twist grain boundary phase in between� is briefly discussed.

DOI: 10.1103/PhysRevE.82.031704 PACS number�s�: 61.30.Jf, 64.70.M�

I. INTRODUCTION

Disclination double helices �DHs� were first observed by
Williams �2� in the smectic-A �Sm-A� phase of cyano benzil-
idene octyl oxyanilin �CBOOA� and readily interpreted as
screw dislocations with a giant Burgers vector, in the frame
of a model which also inspired the interpretation of several
other observations �in the B7 phase of bent-core liquid crys-
tals, in some chromosomes, etc.� later recalled in this paper.
Some textures recently observed in smectic-A phases of chi-
ral molecules �Sm-A��, which look at first sight of a much
similar nature as DHs in Sm-A’s �1�—which we shall denote
by DH�—but in fact exhibit striking differences, have led us
to set the question of the screw dislocations with a giant
Burgers vector from another point of view; isometric defor-
mations, chirality, focal conic domains �FCDs�, and screw
dislocation modalities precisely when the Burgers vector is
giant, according to whether the sample is chiral or not, are
the key topics of this investigation.

We call isometric defects �3� the defects that preserve the
layer parallelism, thereby their equidistance in some domain
�generically of a finite size�. Ideal FCDs are macroscopic
domains of that type. A FCD involves a considerable number
of layers related to two singular lines, namely, two cofocal

conics, an ellipse, and a hyperbola �in special cases degen-
erated into a circle and a straight line�. The molecules extend
along straight segments joining any pair of points, one of the
ellipses, and the other on the hyperbola. The domain thus
geometrically related to the two conics is made of equidis-
tant layers; the compression energy is minimized at the ex-
pense of curvature energy. The total energy is rather small;
the layers take in this domain the shape of Dupin cyclides,
generally limited to a portion of negative Gaussian curvature,
such that the domain is of finite extent; cf. �4� and references
therein. We shall loosely call such a domain a macroscopic
defect, although the singularities of the domain are line de-
fects whose core size is generically microscopic.

Macroscopic Sm-A defects are not always ideally isomet-
ric; one finds the following:

�1� Local imperfections along the conics, called kinks, to
which dislocations are attached. These kinks can be micro-
scopic objects, but they often gather along macroscopic im-
perfections, to which a large density of dislocations is at-
tached, or a dislocation with a unique giant Burgers vector
�5�. On the whole, one still observes FCDs, but with pairs of
singular lines that are conics with analyzable irregularities,

�2� Apart from ideal and imperfect FCDs, more global
distortions that can be described as a family of portions of
FCDs attached along incomplete conics, as pointed out in
�2�. This results in a unique pair of linear singularities, which
are intertwisted and thus take the shape of a double helix,
right or left twisted according to the case. Similarly to the
FCDs they appear as a response to the deformation of smec-
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tic layers under the requirement of isometry, although isom-
etry is eventually not fully satisfied.

The topic of FCDs and of their kinks is fairly well cov-
ered in the literature �see �4� for a recent review�. A part of
this paper is devoted to a detailed description of DHs. We
shall argue that they constitute a modality of screw disloca-
tions with giant Burgers vectors.

DHs are the only helical defects that are currently visible
in Sm-A’s with achiral molecules. Their ideal characteristics
and their occurrences in observations are reviewed in Secs.
III and IV. There are more modalities of screw dislocations
with large Burgers vectors in smectics with chiral molecules
�Sm-A�’s�. The rest of this paper explores results about these
classes of helical defects, in particular: �a� which factors de-
termine the sign of the twist and �b� how the DH� structure
differs from the DH, and how it is related to the molecular
configuration.

We refer the reader to �1� for detailed observations of all
these helical defects and their modes of disappearance when
approaching the high-temperature transition, in the com-
pounds of cholesteryl nonanoate �C9, also called cholesteryl
pelargonate� and cholesteryl tetradecanoate �C14, also called
cholesteryl myristate�.1

Section II is a quick review of the elastic properties of
Sm-A’s �and Sm-A�’s�, in which we stress the isometric
properties of FCDs. Except if specifically stated, the notation
DH will refer to the common properties of DH and DH�s; the
notion of ideal DH applies to a DH�.

II. ELASTIC PROPERTIES AT A MACROSCOPIC SCALE:
ISOMETRY

As a rule, the geometry of macroscopic smectic defects
results from the trend toward isometry, in contrast to defects
like dislocations of small Burgers vectors, whose �meta�sta-
bility results from a competition between two
contributions—strain elasticity, i.e., the compressibility of
the layers, and curvature elasticity, i.e., the curvature of the
layers—that have different ranges of action. Let indeed R be
the typical size of a domain affected by the presence of some
defect, submitted to some compression or tension: the strain
energy scales as Fstrain=�fstrain�BR3, and the curvature en-
ergy scales as Fcurv=�fcurv�K1R. B and K1 are the classical
moduli of the free-energy density

f =
1

2
K1�div n�2 +

1

2
B�1 −

d

d0
�2

+ K̄�1�2

+
1

2
K2�q + n · curl n�2, �1�

where n�x ,y ,z� is the director, d0 is the thickness of the
undeformed layer, d�x ,y ,z��0 is the thickness of the de-
formed layer, and �1 ,�2 are the radii of curvatures of the

layer at the point x ,y ,z. The term K̄�1�2 is integrable to a

surface term and should be considered whenever the topol-
ogy of layers is altered �e.g., FCDs and DHs, which cannot
transform smoothly one into the other�. When comparing
different geometric realizations having the same topology
�determined by the nature of the defects�, we can forget the
role of this term. A twist term f twist=1 /2K2�q+n · curl n�2 has
been introduced on purpose, where q measures the molecular
chirality. The relation

n · curl n = 0 �2�

is a necessary and sufficient condition for a vector field n to
be orthogonal to a set of surfaces; thereby, this relation is
obeyed in a smectic phase, except possibly where the order
parameter is broken, i.e., at a singularity. Thus, generically,
we have not to take the f twist term into account.

The ratio Fstrain /Fcurve= �R /�1�2 , �1
2=K1 /B is much

larger than unity as soon as R��1.2 Therefore, the dominant
distortion visible at a macroscopic scale should be a curva-
ture with vanishing strain: the layers are parallel, i.e., mac-
roscopic defects are likely to be isometric, at least in some
limited domain; the singularities are the focal sheets �the
locus of the centers of curvature� of the parallel layers. On
the other hand, at small scales, the strain energy and the
curvature energy can balance. A FCD is a macroscopic de-
fect; it is the only perfectly isometric solution with focal
surfaces degenerated to line defects. Because of the finite-
ness of the domain, nonisometric deformations necessarily
occur in the vicinity of FCDs. The embedding of FCDs is
another problem, not discussed here �see �4��. Let us just
retain that one can find textures where the director field var-
ies continuously at the contact between the FCD and the
Sm-A matrix.

III. DH DOMAINS

Their construction is as follows. In a first step consider a
ruled helicoid, i.e., a surface generated by a straight line �
rotating helically with an invariable pitch p along a straight
axis �. This is a minimal surface: div n= � ��1+�2�=0,
where n is the unit normal to the helicoid. At a distance from
the axis large compared to 	p	, the successive layer turns of
the helicoid are practically parallel, with a repeat distance
measured along the axis equal to 	p	. This is precisely the
geometry expected for a screw dislocation of Burgers vector
	b	= 	p	=2d0.3 The energy is small: the curvature energy van-
ishes since the layer takes the shape of a minimal surface,
and the strain energy density is of a small order �it scales as
r−4, where r is the radial distance to the axis�; see Figs. 26�a�
and 26�b� and a discussion in �6�. Ruled-helical layers in a

Sm-A are the more favored as K̄ is more positive since in a
helicoid �1�2	0 �Eq. �1��.

1Of course C9 and C14 both have a N� phase above the Sm-A�

phase; C9 exhibits a TGBA phase between Sm-A� and N�, in a
small range of temperature �cf. �1�, and references therein�.

2�1 is a material length which cannot be much different from d0,
the thickness of an unperturbed layer.

3The factor of 2 stems from the fact that � here is an infinite
straight line, as in Fig. 1; p is a unit Burgers vector if � is restricted
to half a straight line limited to the axis �. This point is discussed
in Sec. VI A.

MEYER, NASTISHIN, AND KLEMAN PHYSICAL REVIEW E 82, 031704 �2010�

031704-2



Assume that the pitch is giant: 	p	
d0. Then, by piling up
a family of helicoids on the central ruled helicoid, parallel to
it, with a repeat distance d0, all with pitch 	p	, one gets a
dislocation with a giant Burgers vector b= p=2nd0 , n�Z.4

Such a stacking of parallel layers brings a new feature.
These parallel layers have two focal sheets along which the
layers have an infinite curvature. The singularity is surface-
like, not linelike as for FCDs; furthermore, these focal sheets
intersect an infinite number of times. Whereas this construc-
tion yields a very small energy of curvature in the region
devoid of the presence of the focal sheets �since it vanishes
on the central layer�, it would yield a considerable energy in
the region where the sheets appear. The region devoid of
focal sheets is the interior of a cylinder C of radius 	p	 /2�
centered on the axis of the helicoids, on which cylinder the
two focal sheets abut along two helices of pitch 	p	, with the
same chirality as the helicoids, shifted one with respect to the
other by a distance 	p	 /2 along the axis, constituting the cus-
pidal lines of the two focal surfaces of the helical set. The
layers about the two helices are deployed along two k=1 /2
disclinations �see Fig. 1�. This geometry results rigorously
from the parallel stacking on a ruled helicoid; however, be-
cause the region outside cannot be of the kind suggested by
the focal sheet configuration—the focal surfaces vanish, just
remain their cuspidal lines, the two helices—and the con-
figuration along C is perturbed, the observed configurations
of the double helices are much distorted compared to the
ideal DH. Here are some examples.

IV. SOME PHYSICAL REALIZATIONS OF DOUBLE
HELICAL GEOMETRIES

It is in the B7 phase, made of bent-core molecules �3�,
that we find the best empirical realization of an ideal arrange-
ment of a double helical singularity with perfectly parallel
smectic layers inside C. The dominant mode of stability of
these layers, parallelism and helicity,5 is perfectly satisfied
inside, as illustrated Fig. 1. The layers are completely de-
stroyed outside C, where the B7 order parameter is broken to
an isotropic phase.

The ideal construction inside C is a commonplace tem-
plate not only for very different systems such as the B7
phase and Sm-A’s, but also for biological objects among
which the chromosomes of dinoflagellate �7�. On the other
hand, the DHs that are observed in smectics, while forming a
configuration topologically equivalent to this model, suffer
considerable distortions that bring them far from the ideal
helical ribbons. Outside C, the layer stacking is quasi-
isometric, with an orientation globally orthogonal to the axis
of the double helix �see Fig. 2�.

In the CBOOA Sm-A phase of Ref. �2�, the sample is
confined between two slides with a planar alignment, and the
helical axis is parallel to the slides. This obtains by cooling
the sample from its nematic state to the smectic state; as a
result any half-integer disclination line k=1 /2 parallel to the
slides is the source of a set of double helical lines, whose
disclination nature is thereby corroborated by this origin.

Figure 3 shows how DHs appear in an 8CB compound.
The DH nucleates from a single helix that is the Sm-A trans-

4We give the same sign to the Burgers vector and to the pitch of
the dislocation layers �the convention of sign is discussed in Appen-
dix A�.

5The helicity we are alluding to relates to the inner structure of the
layers, which can be figured out, geometrically, as a set of parallel
columns. These columns suffer a twist from one layer to the next.
The helical texture is compatible altogether with the requirement of
parallelism of the layers and chirality of the intralayer columns; see
�3� for a detailed account.

FIG. 1. �Color online� Parallel helicoidal surfaces inside C and
their two cuspidal lines modeling an arrangement of smectic layers
with two helical disclinations, for a giant Burgers vector dislocation
in its split mode; p=2nd0. For clarity one of the disclinations
�yellow/light gray� is shown thicker than the other one �red/gray
dark�.
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formation of the k=1 /2 line in the nematic phase, orthogo-
nally to this twisted line.

It is easy to observe DHs in other nematogenic materials
such as 8CB and 9CB, as well as in the Sm-A phase of chiral
materials exhibiting a N�–Sm-A� transition, but they are
much different from DHs in Sm-A’s. Smectic phases in chi-
ral materials and achiral materials are not structurally equiva-
lent. It has been recommended �9� to distinguish the
smectic-A phase in chiral materials—denoting it with a star
�Sm-A��—from the nonchiral phase �Sm-A�. The point group
of a nonchiral Sm-A is � /mm �or D�h in other notation�,
whereas the symmetry group of the Sm-A� in chiral materials
is � ·2 �or D��. The difference in the symmetry implies a
difference in some physical properties. The electroclinic ef-
fect, possible in a Sm-A� and forbidden in a Sm-A, is an
example �10�. The nature of helical macroscopic defects is
another one.

V. DHs AND FCDs, COMPARED: THE DARBOUX
CONDITION

Ideal FCDs, in Sm-A’s and Sm-A�’s, exhibit a remarkable
feature, namely, that the projections of the cofocal conics
intersect at right angles. This is a consequence of the follow-
ing theorem ��11�, Sec. IV, Chap. 12�: consider a congruence
of straight lines orthogonal to a set of parallel surfaces; in
short, with a congruence of normals, and any one of these
normals, say S, the two planes P1 and P2 tangent to the focal
sheets at the points of contact M1 and M2 of S cross at right
angles. For an observer who looks in the direction of S, the
focal sheets seem to be orthogonal �call this the Darboux
condition, in brief DC�. If the focal sheets are degenerated to
lines, as in FCDs—whose integral lines of the director field
form such a congruence of normals—these lines look or-
thogonal in projection along any line of sight, i.e., any line
joining any point on the ellipse to any point on the hyper-
bola. Reciprocally, if this optical property is satisfied, one
expects that the lines of sight belong to a congruence of
normals.

DC is also satisfied for ideal DHs in Sm-A’s, in which
DHs are made of a congruence of normals to a central ruled
helicoid. However, empirically, only the cuspidal edges of
the focal sheets are visible, and the only normals of the con-
gruence that intersect the two helices are along diameters of
the cylinder centered on the DH axis, intersecting this axis at
right angles. These are the only lines of sight empirically
useful, so that DC is observed, rather approximately, when
the DH is in the plane of the sample, i.e., approximately
perpendicular to the axis of the microscope �see Fig. 4�,
when the lines of sight are practically orthogonal to the DH
axis.

The tangents to the two helical cusp lines traced on the
focal sheets—the DH disclination lines—at the points of
contact M1 and M2 of S, belong together with S to the planes
P1 and P2 tangent to these focal sheets. Most surprisingly,
DC is still satisfied �with practically the same degree of
uncertainty—or of perfection—one can observe in the prac-
tically ideal case of the DHs in the B7 phase� even when the
DH is much distorted about the average helical axis, as it is
the case in all the Sm-A samples that have been observed.

FIG. 2. Sketch of the smectic layers �thin lines� inside and out-
side C and double helical disclinations �thick lines� in a DH. In
reality, the double helix is much distorted in a Sm-A, but the topol-
ogy is the same. Isometry is globally preserved, as explained in Sec.
V.

(b)(a)

FIG. 3. �a� k=1 /2 wedge disclination line in the Sm-A phase of
8CB, with the shape of a single helix. This disclination arises from
a wedge line in the N phase. The mean director orientations in the
regions above and below the helix are the same as the orientations
in the N phase. The DHs nucleate orthogonally to the disclination
line, to which clusters of screw dislocations are attached—
orthogonal to the layers, visible at the bottom right of the picture.
This attachment demonstrates the screw character of the nucleating
DHs; �b� illustration of the nucleation and growth of a DH in a
direction orthogonal to the wedge disclination �adapted from Kle-
man �8�, Chap. 5�. The dashed lines figure out the attached screw
dislocations. This mechanism, which has been observed by Will-
iams �2�, is not visible on the photograph in �a�.

FIG. 4. Darboux’s condition obeyed for a DH in Sm-A of
8CB.
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This tells in favor of the existence of a congruence of nor-
mals, thereby of parallel layers, and of the persisting validity
of the condition of isometry, notwithstanding the distortion of
the double helix. Let us now recall that screw dislocations do
not modify much the parallelism of the layers they cross.
One can infer from this remark that the large-scale distortion
of the DH in Sm-A’s is controlled by sets of screw disloca-
tion segments orthogonal to the layers inside the domain
bounded by the helical strands; these dislocations have to
emerge outside this domain due to the conservation of the
Burgers vector or to terminate on kinks on the helical discli-
nations. They contribute to the relaxation of the elastic de-
formation due to the misfit between the layers inside and the
layers outside.

While DC is practically the rule in Sm-A’s, it is far from
being obeyed in Sm-A�’s. We therefore conclude that the
layers are not parallel in the domain interested by the singu-
larities: isometry is not satisfied in DH�s. The associated
stresses can be relaxed by edge dislocations �see �8�, Chap.
6�. This is in strong contrast with screw dislocations �of mi-
croscopic Burgers vector� which, as stated above, do not re-
lax imperfections of parallelism.

VI. SCREW DISLOCATIONS IN Sm-A’s AND Sm-A�’s,
COMPARED

The FCDs present in a Sm-A� phase differ in no respect
from those of achiral smectics; the molecular chirality plays
no role in their �meta�stability. This is not so for textures that
involve screw dislocations. Screw dislocations of opposite
Burgers vectors are not equivalent in a Sm-A� phase. We
show this for small Burgers vectors, first, and then discuss of
the consequences for large �giant� Burgers vectors.

A. Screw dislocations of small Burgers vectors

The condition n · curl n=0 is strictly obeyed in a layered
medium; it constitutes a necessary and sufficient condition of
integration of a vector field n. In the presence of a screw
dislocation that exhibits a core singularity this condition is
changed to

n · curl n = − b�x��y� , �3�

where b is the Burgers vector in the ẑ direction, and the
directions x̂ and ŷ are orthogonal directions in the plane or-
thogonal to the dislocation line �see Appendix A�.

Consider the chiral term in the free-energy density

f twist = 1
2K2�q + n · curl n�2. �4�

Here, q=2� / p, where p is a measure of the rotating power
of the medium in the Sm-A� phase. This term plays no role if
n · curl n
0 since its presence then amounts to a constant
shift of the free energy. But in the presence of a screw dis-
location one has to take two terms into account. The first one
1
2K2�n · curl n�2 does not depend on the sign of the Burgers
vector and furthermore does not involve the presence or ab-
sence of chirality. The second one K2qn · curl n
=−K2qb�x��y� vanishes identically in a Sm-A, but takes
opposite values for dislocations of opposite Burgers vectors

in a Sm-A�. When integrated over the plane x̂ŷ it yields a
chiral contribution per unit length of line to the core energy
of the dislocation:

Fc,twist = − K2qb , �5�

which depends on the sign of the Burgers vector: it is nega-
tive if the dislocation and the molecular chirality have the
same sign. In the Sm-A� phase, dislocations of opposite signs
behave quite differently; the screw dislocations of the same
chirality as the molecular chirality are favored.

For a dislocation of Burgers vector 	b	=d0, which is topo-
logically equivalent to a half-ruled helicoid ��6�, Fig. 26�a��,
the core singularity, whose size rc�d0, has an energy Fc
��Bd0

2+K1−K2qb. All together,

Fb=�d0
�

Bb4

128�3rc
2 + �Bb2 + K1 − K2qb

�
Bd0

2

128�3 + �Bd0
2 + K1 − K2qb . �6�

Based on Eq. �6�, a very simplified model of the stability
of the twist grain boundary �TGB� phase may go as follows
�cf. also �12�, Chap. 9�. Compare Fc,twist=−K2qb and the rest
of the core contributions—which we restrict to Fc,splay �K1,
justified since Fc,splay �Fc,strain. One gets 	Fc,twist	 /Fc,splay
��K2 /K1�	q	d0, with b= �d0 ,bq�0. The stability of the
TGBA phase would then require

� = 1 − 	q	d0
K2

K1
	 0. �7�

The condition �	0, which also reads

�2 =
K2

K1
	q	d0 =

�2
2

�1
2 	q	d0 � 1, �8�

plays the role, in this simplified theory of the TGBA stability,
of the more sophisticated Ginzburg-Landau condition �2
=�2 /��2−1/2, with �2 being the twist penetration length and
� the coherence length �13�. According to �14�, q−1�K2
��	T−Tc	 /Tc�−�; � is the exponent of the coherence length.
Thus �2, like �2, is little dependent on T.

For a dislocation of Burgers vector 	b	=2d0, which has the
topology of a complete ruled helicoid, the splay contribution
Fc,splay is on the same order of magnitude as for Fb=�d0
above, and the main contribution to the line energy in the
core is due to the strain, Fc,strain�4�Bd0

2. All together,

Fb=�2d0
�

Bd0
4

8�3rc
2 + 4�Bd0

2 − K2qb

�
Bd0

2

32�3 + 4�Bd0
2 + K1 − K2qb , �9�

where the first term is the energy outside the core, rc�2d0.
The core contribution is prevailing.

Let us compare F2=Fb=�2d0
and F1=Fb=�d0

when qb
�0, i.e., when the twist core energy is stabilizing. One gets
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F2 − F1

K1
� 3�

d0
2

�1
2 − �2.

Because of the large factor 3�, the quantity F2−F1 is posi-
tive in most cases, except possibly when the TGBA phase is
stable and �2 is very large �cf. Eq. �8��. We assume in the
sequel that the b= �d0 dislocations have a smaller energy
than the b= �2d0 dislocations.

B. Interplay of screw dislocations of small and large Burgers
vectors

In a DH, the layers �the inner helicoids and their outer
prolongations� are well defined even in the vicinity of the
disclinations; thereby, the integrability condition n · curl n
=0 is satisfied everywhere: there is no contribution of the
twist K2 to the energy. Within the frame of a simplified
analysis of the energy of a DH, one assumes that the splay
energy of the inner part is negligible since it is vanishing in
the ideal case on the central layer. Therefore, as already no-
ticed in �3�, the main contribution to the splay energy comes
from the two helical disclinations whose length is 	b	2 per
turn, L2 per length L measured along the axis of the DH.6

We thus expect a bulk energy on the order of FDH,splay

��2K1 ln�n /4� , n�0 per unit length of helical axis.7 To
this quantity has to be added a core energy, which we esti-
mate as usual as FDH,c�2K1. Now, the contact between the
inner ideal configuration and the outer configuration of par-
allel layers at a distance cannot be in perfect register, so that
one expects a source of strain energy on a cylinder of radius
R= 	b	 /2�, in a region of thickness d0; hence, FDH,strain
�B�2�Rd0�=nBd0

2. A part of this energy is relaxed by the
distortion of the DH, as claimed above. However, FDH,strain
gives a plausible dependence on n of this strain contribution,
so that we keep this expression for the sake of simplicity.
Therefore, the total line energy can be written as

FDH � 2K1� ln� en

4
� + nBd0

2. �10�

Achiral case q=0: Comparing FDH to F	b	=d0
, a DH of

Burgers vector �nd0 is favored over a bundle of n unit dis-
locations b= �d0 for nBd0

2	Bn4d0
2 / �128�3rc

2�, i.e., for
n3�128�3 , →n�16.

Chiral case q�0: In order to compare the expression in
Eq. �10� to that one of a favored dislocation F	b	=d0

,bq�0,
we consider the quantity

�F = FDH − nF	b	=d0

� K1��2 ln� en

4
� − n�1 −

d0
2

�1
2 − 	q	d0

K2

K1
��

= K1��2 ln� en

4
� − n� + n

d0
2

�1
2� . �11�

The logarithmic term can be neglected in Eq. �11�. Then
two opposite situations might occur in the Sm-A� phase:

��d0
2 /�1

2→�F	0: DH�s are preferred over bundles of
unit Burgers vector dislocations. Since ��0, the transition is
type I �N�→Sm-A�, the analog of a transition from a normal
metal to a superconductor�.

�	d0
2 /�1

2→�F�0: the transition is either type I when
��0 or type II �N�→TGBA→Sm-A�� when �	0. Then
the DH�s tolerate numerous imperfections, in particular
bundles of unit screw dislocations of the appropriate sign.

C. General comments on DH�s

This classification in function of � suggests that there are
three types of relationships between macroscopic helical de-
fects and microscopic screw dislocations, depending on
whether �i� �	0, �ii� 0	�	d0

2 /�1
2, or �iii� ��d0

2 /�1
2. Only

the first case is of type II. It obeys the condition �F�0,
which is also true for case �ii�. Thus, one expects very simi-
lar microdefect-macrodefect interactions for type II speci-
mens and type I �case �ii��. We shall loosely speak of type I
helical defects—or type I DH�s—in case �iii� and type II
helical defects—or type II DH�s—in case �i�.

In Sec. VII we argue that the differences between type I
DH�s and type II DH�s are �1� the frequent occurrence in
type II DH�s of ribbons stretched between the helical singu-
larities �the notion of “inner cylinder” used previously in our
description of DHs is no longer valid� and �2� the presence of
striations transverse to these ribbons, which we attribute to
the gathering in bundles of unit screw dislocations originat-
ing from the TGBs and linking the two DH� disclinations
�see Fig. 9 below�. In type I, 0	�	d0

2 /�1
2 case, the screw

dislocations should stem from the condensation of the twist
of the director in the N� phase in the form of screw disloca-
tions.

Differences between DH�s and DHs are easy to assess. A
DH ideal geometry is compatible with the topology of a
Sm-A� phase, but it is not what is observed. The most con-
spicuous differences are the following:

DC is mostly generally not obeyed in DH�s �see Figs. 5
and 6�—the usually well obeyed Kirchhoff’s relations at the
nodes ��ibi=0, easily checked because each bi is propor-
tional to the width of an ideal DH� where several DHs merge
are not satisfied at all �both types of discrepancies can be
explained by the distance between the helical singularities
not being ideal and the layer packing being not isometric.
These possibilities easily follow from the analysis �Sec.
VII�—ribbons are visible all over the samples that have been
studied.

6The dependence in b has disappeared.
7Figure 4 appearing in the logarithm relates to the number of

layers that are involved about a disclination: it is 	b	 /2d0=n /2 �see
Fig. 2, where n=12�. There are two disclinations, hence the nonap-
pearance of the usual factor of 1/2 in this expression.

FIG. 5. �Color online� DH� in a C14 sample; the Darboux con-
dition is not obeyed.
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We shall argue that all aspects peculiar to the helical de-
fects in chiral phases are related to their generation, being
remnants of the geometry of cybotactic groups in the N�

phase. On the other hand, we have yet no direct observations
that clearly identify differences between the three DH� cases.
Therefore, our presentation will be partly speculative. Of
course, the DH�s, in their vast majority, appear to have the
same chirality as the high-temperature N� phase—this is a
direct consequence of the foregoing developments.

VII. NUCLEATION OF HELICAL DEFECTS IN A Sm-A�

PHASE

We propose a geometric model of the precursory forma-
tion in the N� phase of Sm-A� helical defects.

A. Cybotactic textures of the N� phase

A perfectly aligned N� phase can be partitioned into a
family of ruled helicoids as follows: let ��0� denote some
straight line orthogonal to the molecules in a cholesteric
plane P�0� at z=0. Rotate ��0� helically about the choles-
teric axis at some point A���0�, with a pitch p equal to the
cholesteric pitch. This results in a ruled helicoid H�A� whose
straight generators ��z� are, everywhere in the N� phase,
orthogonal to the molecules of the cholesteric plane P�z� into
which ��0� has been transported by the helical translation.
Take now a straight line � in P�0�, orthogonal to ��0� at A,
and associate to any point Ai�� a helicoid H�Ai� con-
structed in the same way as H�A�, with generator in P�0�
being a line �i�0� parallel to ��0�. One gets a family of
nonintersecting congruent ruled helicoids, which are dense in
some domain of the N� phase defined by the extension of �.

Conjecture: This partitioning provides a model for the
transition from N� to Sm-A�. Consider a family of H�Ai�’s
made of ruled helicoids at distances d0 apart along �, belong-
ing to a domain D soon to be defined; as the temperature is
decreased, these helicoids smoothly transform to smectic
layers, to which the director field smoothly becomes or-
thogonal. We conjecture that this is the topology of a cy-
botactic group in N� �12�, turning to a Sm-A� phase domain
with helical layers at the transition. Since ruled helicoids are

minimal surfaces, their curvature energy is extremely small.
Surely, they are not planar and do not reproduce the Sm-A�

ground state; their helical torsion has inherited the twist q
=2� / p of the N� phase, but stricto sensu they are not twisted
�the condition n · curl n=0 is now satisfied�.

Size of D: The equation of H for a point A chosen with-
out loss of generality at the origin of the coordinates can be
written as

H 
 �r cos �,r sin �,���, � � R, r � R+, �12�

where �= p /2�=q−1; the normal � to H at a point M with
coordinates r ,� ,z��=qz� and the tangent �r to the helix H�r�
at r=const on the helicoid H can be written as

� =
1

N
�− � sin qz,� cos qz,− r� , �13�

�r =
1

N
�− r sin qz,r cos qz,�� ,

where N2=�2+r2 , � ·�r=0. The director in the cholesteric
plane z is n= �−sin qz , cos qz ,0�; the angles � and � of n
with � and �r are

cos � = � · n =
�

N
, cos � = �r · n =

r

N
�=sin �� . �14�

Here, � tends to � /2 when qr is large, and is thus unaccept-
able in a Sm-A� phase—this would yield a director n parallel
to the supposed layer—but has a small value when qr	1,
��qr. Hence, the acceptable domain D is the inner part of a
cylinder of radius rD��; in D the director n of the choles-
teric phase is almost orthogonal to H, and � appears as the
coherence length at the N�→Sm-A� transition. Thus, one
expects that by small, smooth, and cooperative modifications
of �a� the direction of n �n rotating toward the directions of
the normals � of the helical “layers” H, i.e., �→0� and �b�
the shape of the H�Ai�’s, the family of ruled helicoids is
transformed to a family of layers orthogonal to the director
field, thereby exhibiting a smectic order parameter. The pitch
p of the N� phase diverges near the transition; thus, the size
of D, rD= p /2�, depends on the kinetics of the transition and
can in principle be quite large if the N� phase is perfect on a
large scale and the temperature decreases slowly.

The screw dislocation ideal texture of a cybotactic group
in the N� phase: One can expect that as a result of the coop-
erative deformation just described, the layers H��� tend to
become parallel—they are thereby no longer ruled, except
possibly H�0�—where � denotes the signed distance to this
central helicoid. Eventually, by a focalization of their nor-
mals, the parallel layers yield two disclinations of strength
k=1 /2, located at a distance b /2��rD at the boundary of
D. Thus, in an ideal case, the cybotactic group D takes at the
N�→Sm-A� transition the geometry of a screw dislocation of
Burgers vector b= p, i.e., a DH� domain.

But as long as the director field n is not orthogonal to a
family of layers �i.e., as long as the condition n · curl n=0 is
not fulfilled�, the cybotactic group should better be consid-
ered as a deformed cholesteric: the director n is almost or-
thogonal to the helices H�r ,�� and rotates locally about the

FIG. 6. �Color online� DH� in a C9 sample; the Darboux con-
dition is not obeyed.
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tangent ��r ,�� with a pitch almost equal to p; hence, the
H�r ,�� helices are deformed � cholesteric axes. In particular,
the k=1 /2 disclinations of the DH� derive from twisted �
disclinations of the N� phase, which pre-exist in the cybotac-
tic group, where they have the same chirality as the N�

phase.8

B. Twisted � disclinations in a N� cybotactic group:
Transverse screw dislocation densities

The achiral Sm-A DHs often stem at the N→Sm-A tran-
sition from disclinations of strength k=1 /2 pre-existing in
the N phase; see Sec. IV and Fig. 3. A similar process may
take place in a Sm-A�; a DH� may stem from a � disclination
L of strength k=1 /2, but in a somewhat more subtle fashion.
The mechanism proposed here applies directly to a type I
transition; there are some complications for the type II tran-
sition, which we have not analyzed in detail �but see Sec.
VII D�.

We assume—in line with the conjecture made
previously—that a � wedge disclination L sitting along a
straight cholesteric axis takes a helical shape of pitch p such
that the new disclination line �call it H� now sits along a
twisted cholesteric axis belonging to a cybotactic group. In
this operation the rotation vector � has been rotated toward
the tangent �H at any point of H and is now variable in
direction. When eventually the transition to the Sm-A� takes
place, H transforms to a DH� helical singularity, either by
coupling with another line H� or by emitting DH�s in the
manner of Fig. 3. We analyze this process.

In the N� phase a � disclination of strength k=m /2, m
�Z is equivalent to a dislocation of Burgers vector b=kp,
and can take any shape as long as the rotation vector � is
constant in direction �6�. This flexibility can be expressed in
terms of dislocation densities attached to the line L, with
Burgers vectors b� orthogonal to �; these b�’s are continu-
ous translational symmetries of the N� phase, so that the
related dislocation densities can relax viscously to vanishing
dislocation defects b�→0. Thus, they do not bring any
significant energy contribution to the line energy of L. We
refer the interested reader to �15� for a thorough discussion
of these points. The essential result to retain is that the flex-
ibility of the disclination line is related to the viscous relax-
ation of symmetry-allowed continuous dislocations that are
attached to the line.

H, which is a disclination line with a variable rotation
vector ��P� along �H�r ,��, is different: its flexibility still
requires the presence of attached defect densities, but these
do not carry continuous symmetries of the N� phase. There-
fore, there is no possible viscous relaxation and the defect
densities �disclination densities here� make a contribution to
the line energy FH of H. Again, we shall content ourselves
with qualitative results; a detailed calculation of these con-
tinuous disclinations, based on the theory of Ref. �15�, is
given in Appendix B, as well as a discussion of the coupling
of two H lines.

Consider two lines H and H� with parallel axes of oppo-
site rotations �+��=0 or such that �+�� is a multiple of
2�. They carry attached disclination densities of opposite
signs which cancel outside the ribbon bordered by H and
H�—the stacking fault—if the densities are conveniently
coupled, as in Fig. 7. If �=��=�, the pair H+H� is equiva-
lent at a distance to a k=1 � disclination �equivalently a
screw dislocation of Burgers vector b= p�. This result does
not depend on the distance between H and H�; therefore, a
DH� whose width is not ideal is feasible.

C. Longitudinal screw dislocation densities

In Fig. 7, the disclination density is 	d�P / ��2

+�2�1/2d�	=2� / ��2+�2� �Appendix B� and reaches its
maximum 1 /� for �=�. This density vanishes in the Sm-A�

phase. Indeed, d�P is along the local director at the attach-
ment of these densities along the k=1 /2 lines, and such a
rotation is an allowed continuous symmetry in the Sm-A�

phase; the energy of the stacking fault proper can be vis-
cously relaxed in the Sm-A� phase.

An ideal DH� is such that �=�, precisely the value for
which the disclination density—and thereby the stacking
fault energy in the N� cybotactic group—is the highest. Con-
versely, one expects that in the N� phase the pair H+H� tends
to be apart at a distance �	� ��=0 at equilibrium if the
dominant term is the stacking fault energy; a complete solu-
tion would require solving the Ginzburg-Landau equations�.
The observed DH�s are most often “thin,” indicating �	�.
This also manifests in DC not being fulfilled �see Fig. 5�.
The associated stresses can be relaxed by edge dislocations
�cf. Sec. V�.

In the N� phase, the canceling out outside the stacking
fault of the disclination densities d�P ,d�P� requires rH
=rH�=� /2 �H ,H� must have a common helical axis, the
same pitch, and opposite strengths d�P+d�P�=0�. If rH
�rH�, either each of the two helices produces in the Sm-A�

phase single helical strands, of Burgers vectors p /2, p� /2, or
both adjust their distances by emitting or absorbing screw
dislocations in order to equalize their pitches to some value
p�—in which case they eventually associate in a DH� of

8The rotation vector � of a � disclination is locally along the
cholesteric axis � �6�, here a twisted line.

FIG. 7. �a� Disclination densities of rotation vectors d�P in the
N� phase, attached between P and Q= P+dP on H, P�, and Q�
= P�+dP on H�; they form a stacking fault between H and H�. The
helices H and H� are at the same constant distance �=rH=rH� of the
central axis. The rotation vectors �P ,�P� ,�Q , . . . tangent to H and
H� are not represented. �b� Cancellation outside the stacking fault of
infinitesimal disclination lines attached to PQ and P�Q� at opposite
points on H and H�; these disclinations have the same orientation,
but opposite rotation vectors.
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Burgers vector b= p�. Although p , p� are macroscopic, the
differences p− p� , p�− p�, can be resolved into microscopic
dislocation lines orthogonal to the layers either outside the
DH� cylinder or inside a ribbon �see below�. The mechanism
can be quite complicated, e.g., these dislocations can be at-
tached by kinks to H and H�; the H+H� complete coupling
would then be effective only along the helical segments of
the same level whose pitches are both equal to p�.

The edge and screw dislocations introduced in this para-
graph are quantized symmetry-allowed dislocations. Thus,
they cannot relax viscously, as continuous defects can.

Association of helical ribbons with other disclinations:
We report on a quite frequent observation that might be re-
lated to a mechanism of production of screw dislocations as
above. In Fig. 8, a long helical ribbon is interacting with a
disclination belonging to a quasiparabolic FCD �PFCD�:
both constitutive conics have an eccentricity of �1. The he-
lical ribbon follows one of the parabolas, jumps over the
region common to the two parabola apices �the helical defect
is no longer fully visible�, and then follows the other pa-
rabola.

This interaction explains if the ribbon is made of screw
dislocations parallel on average to the helical axis. The stress
field of the PFCD where the helical ribbon gathers is at the
origin of the formation of the bundle: in effect the Sm-A�

layers are quasiorthogonal to the parabolic disclination in its
vicinity, thereby orthogonal to the ribbon �a screw disloca-
tion geometry�, except in the region common to the two api-
ces where precisely the ribbon is less visible; it is there cer-
tainly possible to parse it into its native dislocations. The
interaction of screw dislocations all along FCD hyperbolas
has already been documented �cf. �5�, and references
therein�. The question of the helicity of screw dislocation
bundles is new; it may be searched in the helical structure of
the originative cybotactic group.

D. Comments on type II helical defect nucleation

A TGBA phase is made of a sequence of smectic slabs
�thickness denoted �b� separated by twist grain boundaries
�TGBs� that produce a rotation �=const between two con-
secutive slabs �13�. The axis of rotation is parallel to the

smectic layers; the pitch along this axis is p= �2� /���b. The
rotation angle is related to the screw dislocation content of
the TGB; let �d be the distance between dislocations in a
slab, b=d0, then 2 sin�� /2�=d0 /�d.9 The approximation �
�d0 /�d is usually justified. Hence,

� =
p

2�
=

�d�b

d0
. �15�

Let us assume that these microscopic dislocations in the
Sm-A� phase cover transversely and uniformly the ribbon
which is bordered by H ,H�, between which they are
stretched. We show below—using the theory developed in
�15�, which yields Eq. �16�—that the maximum density of
screw dislocations compatible with the size of their attach-
ment to H ,H� �this size is not vanishingly small� is 2 /d0
measured along these disclinations. But it happens that this is
also the maximum value allowed by the density of TGB
screw dislocations in the TGBA phase. The demonstration
requires two assumptions: �1� that the pitch does not vary at
the transition and �2� that rH=rH�=�.10 In all other cases
�rH�rH�� the density is smaller.

Because they proceed from TGBs formerly orthogonal to
the DH� axis, the number of dislocations is 2� /�d per TGB
area enclosed in the cylinder of radius �=�. The slabs of
thickness �b are orthogonal to the � axis of the N� phase,
which as in Sec. VII B we suppose to be transformed to H
and H�; thus, 2� / ��d�b�=2 /d0 per unit length of helical dis-
clination. This is a maximum value of the screw dislocation
density: the pitch has certainly increased at the transition,
and a certain number of dislocations may have canceled by
interacting with dislocations of opposite signs.

Each dislocation is attached to H ,H� at kinks AB� ,A�B�� .
Consider the H kink AB� = �u ,v ,w�; it is such that �15�

2 sin
�

2
��H ∧ AB� = d0��,�,�� , �16�

where ��H= 1
N �−� sin � ,� cos � ,�� is tangent to H, �� ,� ,��

is a unit vector along the Burgers vector of the screw dislo-
cation, and N=�2+�2=2�. Without loss of generality,
we assume that �=0,2� , . . .; then the Burgers vector is along
the x axis, �=1, �=�=0. Hence, with �=�, one gets �

=�=0→u=0, �=1→ 2
N��w−v�=d0. The kink AB� is of ex-

tremal length when ��H ·AB� =��v+w�=0. Eventually,

u = 0, v = −
d0

4�
N = −

d0

22
, w =

d0

4�
N =

d0

22
. �17�

Such a dislocation is of screw character all along the straight
segment that links two opposite kinks AB� and A�B�� at � and
��=�+�; it is indeed normal to the layers since the layers
are parallel, and since it is normal to one of them at r=0.

9The Burgers vector of the TGB screw dislocations is d0, not 2d0,
because the screw dislocations of the appropriate sign have a nega-
tive K2 contribution to the core energy; see Sec. VI A.

10We take rH=rH�=� for simplicity. We know from Sec. VII C
that any deviation to this condition can be plastically relaxed by
edge dislocations.

FIG. 8. �Color online� Helical ribbon associated with a parabolic
FCD. Type II specimen, C9.
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Notice that the length of the kink is 	AB� 	= 	A�B�� 	=d0 /2,
which is the minimal expected value if all the screw dislo-
cations of the TGBs are preserved at the transition from the
TGBA phase to the Sm-A� phase.

There are thus two extreme situations resulting from the
presence of the TGB screw dislocations in the DH�s of the
Sm-A� phase. In a first case these dislocations cover a
twisted uniform ribbon bordered by the disclinations H and
H�. In a second case the dislocations are far from their maxi-
mum allowed density and then gather into bundles between
which the DH� recovers a geometry comparable to an ideal
DH. This is observed in Fig. 9, which illustrates the type II
C9 phase. Figure 10 shows a quite similar observation, but
made in C14, which is type I; this might be illustrative of
case �ii� in Sec. VI C.

VIII. CONCLUSION

This paper contains two parts that are quite distinct:
�i� The first one is an extended review of the notion of

double helical defect in Sm-A compounds, with stress put on
the concept of isometry �parallelism of the layers—in that
sense DHs belong to the same family as focal conic domains
�FCDs�, except that the locus of the centers of curvature of

the parallel surfaces is made of two surfaces, not two conics�.
Isometry relates to the Darboux condition, the application of
a theorem of surface geometry theory which gives clues for
deciding through mere optical observation that the layers are
parallel.

�ii� The second one is a detailed investigation of the par-
ent defects DH�s in Sm-A� compounds, i.e., thermodynami-
cal phases with chiral molecules orthogonal to a family of
layers. We compare them fully with DHs—at experimental
and theoretical levels; a key feature is that isometry is no
longer satisfied—and also between them according to the
nature of the transition, depending on whether it is type I
�N�→Sm-A�� or type II �N�→TGBA→Sm-A��—at a theo-
retical level.

Although there are no topological obstructions to finding
with Sm-A�’s the exact analogs of DHs, and although in light
microscopy investigations DH�s look at first sight much
similar to DHs—in both cases one observes two coupled
helical defects—the differences are considerable. They origi-
nate from the generation process of these DH�s in the N�

phase. It is indeed our conjecture that the geometry of DH�s
reproduces the topology of cybotactic groups of the N�

phase, which for that purpose are studied from a geometric
point of view.

Another element central in our investigation is the differ-
ence in free energy of screw dislocations of opposite chirali-
ties. The preferred chirality is the same as that of the N�

phase; this is also the chirality of the cybotactic group,
thereby the preferred chirality of the DH�s. This result ap-
pears as a clear experimental result.

Whereas the theoretically foreseen differences between
types I and II DH�s are not easily empirically reachable, the
DH�s exhibit a number of common characters, which enter
their theoretical description and differentiate them from DHs.
Among them is the fact that the Darboux condition and the
Kirchhoff relation at nodes are not satisfied. Furthermore,
DH�s most generally form ribbons, bordered by the helical
defects, and covered with screw dislocations of microscopic
Burgers vectors either uniformly—these dislocations can be
transverse to the ribbon or longitudinal—or forming bundles
of screw dislocation segments attached to the helical defects.
The present state of the analysis suggests that the theory
should be extended by taking into account the fluctuations, at
least in mean-field theory, and the experiments completed
with freeze-fracture microscopy investigations.
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APPENDIX A: NYE’S DISLOCATION DENSITIES

The density tensor of a discrete dislocation L of Burgers
vector bi , i=1,2 ,3 can be written as

FIG. 9. �Color online� Helical ribbon in cholesteryl nonanoate
�C9� with its axis parallel to the polarizer. The dark background
indicates that outside the helical ribbon the smectic layers are per-
pendicular to the axis of the helical ribbon.

FIG. 10. �Color online� Probable screw dislocation bundles
�shown by arrows� linking two helical disclinations observed in
C14.
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�ij =  j�L�bi.

This quantity measures the plastic strains �16�; �ij can be
also expressed in terms of the contortion tensor Kij, which
measures the associated plastic rotations �17�:

�ij = ijK − Kji, K = K11 + K22 + K33.

This expression is valid insofar as the strains eij vanish iden-
tically, a condition that can be achieved in a liquid crystal. It
is indeed the condition of isometry in a layered or columnar
liquid crystal phase.

One can show �8� that for any unit vector that has con-
stant coordinates in the rotating frame �the normal n to the
layers is such a vector�, one has

n · curl n = �
ij

Kijninj − K .

For a screw dislocation the only nonvanishing component of
the dislocation density tensor is �33=3�L�b3. Hence, after a
simple calculation, one gets, with ni= �i3 , bi=bi3,

n · curl n = − 2K = − b3�L� .

Here, L is along the ẑ axis. The use of the dislocation density
tensor and of the contortion tensor for a discrete defect is
inspired by the approach of Kröner �16� and Nye �17� for
continuous defects. The present result is obtained under the
assumption that b is small.

A less general demonstration, but of a simple physical
content, is as follows. Consider a planar twist grain boundary
made of parallel equidistant screw lines Lj, repeat distance �,
and Burgers vector b. This plane separates two smectic
grains, misoriented one with respect to the other by the angle
��	b	 /� �15�, assuming � is small. We can write �
=�	n · curl n	dx �x̂ orthogonal to the twist boundary is the
axis of twist�. Since ��	b	 /� also reads ��	b	 /���x�dx,
we have 	n · curl n	= �	b	 /���x�. 1 /� is the density of dislo-
cations, which is also the mean value of the comb periodic
function � j=−�

� �y−yj�, with yj = j� �ŷ is orthogonal to the
dislocations in the twist boundary�. Hence, assuming that
	n · curl n	 is the mean value of the distribution � j	n · curl n	 j,
each 	n · curl n	 j assigned to a dislocation Lj, one gets by
identification

	n · curl n	 j = 	b	�x��y − yj� = 	b	3�Lj� .

Hence, each dislocation Lj carries a rotation rate 	n · curl n	 j
obeying the expression derived above in a more general con-
text.

We have not yet made reference to the fact that n · curl n
is a pseudoscalar. We assume, as it is usually done, that the
frame of reference is right handed. In such a frame a right-
handed cholesteric N� has a positive pitch p= 2�

q . In its
ground state n · curl n=−q	0, according to Eq. �4�. By anal-
ogy, the above relation n · curl n=−b3�L� implies that for
b�0 the layers surrounding the screw dislocation have the
configuration of a right-handed helix. This fixes the conven-
tion on the sign of b.

APPENDIX B: CONTINUOUS DISCLINATIONS
AT THE N�\Sm-A� transition

The coordinates of a helix H of radius rH can be written as

H 
 �rH cos �,rH sin �,��� ,

with an evident notation �= p /2�. We assume in this appen-
dix that H is a � axis of a distorted cholesteric, and that there
is a � disclination of strength k=1 /2 along H. Let �H be the
unit tangent at a point on H; the rotation vector of the dis-
clination line is

�H = 2 sin
�

2
�H � �− rH sin �,rH cos �,��, � = � .

The curvature of H requires between two infinitesimally
close points P and Q= P+�H�P�ds on H the attachment of a
density of line defects. Let M be a running point on the cut
surface � of H. The variation of the relative displacement of
the two lips of � between P and Q is �15�

� = 2 sin
�

2
��H�Q�QM� − �H�P�PM� � ,

which can also be written as

� = 2 sin
�

2
d�H � PM� + O�2� .

Neglecting second-order terms, it remains an infinitesimal
disclination whose rotation vector is

d�H = 2 sin
�

2
d�H � − �cos �,sin �,0�d� ,

where d�H is not a rotation of symmetry of the N� phase.
Therefore, the infinitesimal disclinations attached to H do not
relax viscously and form a stacking fault H whose energy
adds to the free energy of the line H proper. At this stage, it
simplifies the analysis to take the local director n along d�H;
n belongs to the local cholesteric plane orthogonal to �H.

The energy is bounded if the line H is paired with a line
H� of opposite rotation vectors at corresponding points, or
such that �+�� is a multiple of 2�. The example of interest
for us is when �=��=�, with two helical k=1 /2 wedge
disclination lines at the same distance �=rH=rH� of the axis
of the helices, displaced one with respect to the other by a
translation p /2 along this axis. Two points P �on H� and P�
�on H�� can be paired in such a way that OP� =−OP��
=��cos � , sin � ,0�, with

��P� = 2�− � sin �,� cos �,��/N ,

��P�� = 2�� sin �,− � cos �,��/N ,

where N2=�2+�2. The corresponding infinitesimal rotation
vectors in P and P� are

d��P� = − 2��cos �,sin �,0�d�/N ,

d��P�� = 2��cos �,sin �,0�d�/N .

They are opposite and relate to disclination lines of opposite
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orientations, which can be moved at will, provided that they
remain attached at P and P�, and that d��P� and d��P�� are
constant vectors. Adding up the two disclinations along the
same line, it remains a disclination segment PP�� , oriented
from P to P�, attached to H and H�, with a rotation vector

density equal to d�P �Fig. 7�.
The pair H+H� is therefore equivalent at a distance to a �

disclination of strength k=1 or, equivalently, a screw dislo-
cation of Burgers vector b= p. This result does not depend on
the radius �.
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